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ABSTRACT

A central theme in computational social choice is to study the ex-
tent to which voting systems computationally resist manipulative
attacks seeking to influence the outcome of elections, such as ma-
nipulation (i.e., strategic voting) [1], control [7, 4], and bribery [5].
Bucklin and fallback voting are among the voting systems with the
broadest resistance (i.e., NP-hardness) to control attacks. However,
only little is known about their behavior regarding manipulation
and bribery attacks. We comprehensively investigate the compu-
tational resistance of Bucklin and fallback voting for many of the
common manipulation and bribery scenarios; we also complement
our discussion by considering several campaign management prob-
lems for Bucklin and fallback.
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F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity;
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1. BUCKLIN AND FALLBACK VOTING

An election is a pair (C,V), where C = {cy,...,cn} is a set of m
candidates and V = (vq,...,v,) is a list of votes (or ballots) spec-
ifying the n voters’ preferences over the candidates in C, where
the representation of the preferences depends on the voting system
used. We allow voters to be weighted, i.e., a nonnegative integer
weight w; is associated with each vote v;. For example, a vote v;
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of a voter with weight w; = 3 is counted as if three voters with unit
weight would have cast the same ballot. An unweighted election
is the special case of a weighted election where each voter has unit
weight. A voting system is a rule for how to determine the win-
ner(s) of a given election. Both Bucklin and fallback voting use the
notion of (weighted) majority threshold in V, which is defined by
maj(V) = |W/2] 41, where W = Y, w; is the total weight of the
votes in V. In Bucklin voting (BV), votes are linear rankings of all
candidates, denoted by, e.g., co > ¢3 > ¢, meaning that this voter
(strictly) prefers ¢, to ¢3 and c3 to ¢;. We call the top position in a
vote level 1, the next position /evel 2, and so on. Starting with the
top position and proceeding level by level through the votes in V,
we determine the smallest level ¢ such that some candidate(s) oc-
cur(s) in at least maj(V') votes up to this level and those occurring
most often up to this level ¢ are the Bucklin winners. Fallback vot-
ing is a hybrid voting system combining Bucklin with approval vot-
ing. In approval voting, votes in an election (C, V') indicate for each
candidate ¢ € C whether ¢ is approved by this voter or not. Every
candidate with the highest approval score is an approval winner.
In fallback voting (FV), each voter first partitions the set of can-
didates into the approved ones and the disapproved ones and then
provides a linear ranking of the approved candidates. For example,
some voter might disapprove of ¢; and ¢4, but approve of ¢; and
¢3, preferring ¢; to ¢3; this vote is denoted by ¢ > ¢3 | {c1,c4}.
To determine the winners, we first try to find the Bucklin winners
when they exist. If so, all Bucklin winners are fallback winners.
However, due to disapprovals there might be no Bucklin winner; in
that case all approval winners are fallback winners.

2. RESULTS

Manipulation: Extending the work of Bartholdi et al. [1], Conitzer
et al. [2] introduced the following decision problem to model ma-
nipulation by a coalition of weighted voters. For an election sys-
tem &, they define &-CONSTRUCTIVE COALITIONAL WEIGHTED
MANIPULATION (&-CCWM) to be the problem where we are giv-
en a set C of candidates, a list V of nonmanipulative votes over C
each having a nonnegative integer weight, where Wy is the list of
these weights, a list Wy of the weights of k manipulators in S (whose
votes over C are still unspecified) with VNS =0, and a designated
candidate ¢ € C. We ask whether the votes in S can be set such that
c is an & winner of (C,V US). The unweighted case £-CCUM
is the special case of &-CCWM where all voters and manipula-
tors have unit weight. By changing the question to “... such that
¢ is not a winner in (C,V US)?.” we obtain the destructive vari-
ants, £-DCWM and &-DCUM. Table 1 gives an overview of our
complexity results for manipulation in Bucklin voting (“BV”) and
fallback voting (“FV”). “P” (“NP-c.”) means the problem is solv-



able in polynomial time (is NP-complete). Note that all our results
hold in both the nonunique-winner and the unique-winner model.

& &-CCUM  &-DCUM £-CCWM &-DCWM
BV P P NP-c. P
FV P P P P

Table 1: Results for manipulation

Bribery and Campaign Management: &-CONSTRUCTIVE UN-
WEIGHTED BRIBERY (&-CUB) denotes the standard bribery sce-
nario proposed by Faliszewski et al. [S] where given an & election
(C,V), a designated candidate p, and a nonnegative integer k, we
ask whether p can be made a winner by changing the votes of at
most k voters. This, again, can be extended by either consider-
ing voters with different weights (€-CWB), or allowing that each
voter has a different price for changing her vote (£-CUB-$), or
both (£-CWB-$). By changing the question to ask whether p can
be prevented from being a winner of the election by bribing some
of the voters, we obtain the destructive variants of these bribery
scenarios, which we denote by &-DUB, &£-DWB, &£-DUB-$, and
&-DWB-$. The left-hand side of Table 2 shows our bribery results.

Problem BV FV Problem BV FV
&-CUB NP-c. NP-c. &-CUSB NP-c. NP-c.
&-DUB P P &-DUSB NP-c. NP-c.
&-CUB-$ NP-c. NP-c. &-CWSB NP-c. NP-c.
&-DUB-$ P P &-DWSB NP-c. NP-c.
&-CWB NP-c. NP-c. FV-CUEB - P
&-DWB P P FV-DUEB - P
&-CWB-$ NP-c. NP-c. FV-CWEB - NP-c.
&-DWB-$ NP-c. NP-c. FV-DWEB - NP-c.

Table 2: Results for bribery and campaign management

Besides discussing attacks by bribery and manipulation, it is also
quite natural to consider bribery scenarios through the lenses of
running a political campaign. After all, in a successful campaign,
the candidates spend their effort (measured in terms of time, finan-
cial cost of organizing promotional activities, and even in terms of
the difficulty of convincing particular voters) to change the minds
of the voters. Formally, this idea is very close to bribery; indeed,
this view of campaign management was first presented in a paper
whose focus was on the SWAP BRIBERY problem introduced by
Elkind et al. [3]. This problem models a situation where a cam-
paign manager, who is interested in the victory of a given candi-
date p, can organize meetings with specific voters (the unweighted
variant of the problem) or with groups of like-minded voters (the
weighted variant) and convince them to change their preference or-
ders. However, the difficulty (or the cost) of changing the voters’
preference orders depends both on the voter and on the extent of the
change (e.g., it might be expensive to swap a voter’s most preferred
candidate with her least preferred one, but it might be very cheap
to swap her two least preferred candidates). Elkind et al. [3] define
so-called swap-bribery price functions that for each voter and for
each pair of adjacent candidates give the cost of swapping these two
candidates in the voter’s preference order. In &-CONSTRUCTIVE
SWAP BRIBERY (&-CUSB), where & € {BV,FV}, we ask if there
is a sequence of swaps of adjacent candidates that make a given
candidate a winner. (Note that the swaps are performed in se-
quence; even if some candidates are not adjacent at first, they may
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become adjacent in the course of performing the swaps.) We define
the weighted variant of the problem, £-CWSB, and the destruc-
tive variants (&-DUSB and &£-DWSB) in the standard way (as far
as we can tell, the weighted variant of the problem has not been
studied before). The definition of swap bribery is very natural for
voting rules where each voter ranks all the candidates; for the case
of fallback we need to extend the definitions. In our approach, we
define swap bribery under fallback to allow the swaps within the
approved parts of the votes only. Naturally, one could also define
costs for including given disapproved candidates in the approved
part as Elkind et al. [3] indeed did for SP-AV (a variant of approval
voting). However, following Schlotter et al. [8], we believe that it
is more informative to study the complexity of modifying the rank-
ings within the approved parts and the complexity of modifying the
sets of approved candidates separately.

The idea of extension bribery is to capture very noninvasive cam-
paign actions, where we try to convince some voters to include the
designated candidate at the end of the ranking of approved candi-
dates, and the price for this action is given by the voters’ extension
bribery price funtions. In FV-CONSTRUCTIVE UNWEIGHTED EX-
TENSION BRIBERY (FV-CUEB), given a fallback election (C,V),
a designated candidate p, the voters’ extension bribery functions,
and a nonnegative integer k, we ask if p can be made a winner
by extending the approved parts of the voters’ ballots without ex-
ceeding the budget k. Again, the weighted variant (FV-CWEB)
is defined in the natural way and so are the destructive variants
(FV-DUEB and FV-DWEB). The right-hand side of Table 2 sum-
marizes our results for both swap and extension bribery.

Complementing the results regarding control, campaign manage-
ment, and possible/necessary winner problems, we now have an al-
most complete picture of the (worst-case) complexity of Bucklin
and fallback voting for all the standard election problems. Hav-
ing this is particularly useful for Bucklin and fallback voting: For
control problems they are among the hardest voting rules but for
bribery and manipulation they often lay on the edge of (in)tractabil-
ity. For detailed proofs of the presented results, see [6].
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