In voting theory, bribery is a form of manipulative behavior in which an
external actor (the briber) offers to pay the voters to change their votes in
order to get her preferred candidate elected. We investigate a model of bribery
where the price of each vote depends on the amount of change that the voter is
asked to implement. Specifically, in our model the briber can change a voter's
preference list by paying for a sequence of swaps of consecutive candidates.
Each swap may have a different price; the price of a bribery is the sum of the
prices of all swaps that it involves. We prove complexity results for this
model, which we call swap bribery, for a broad class of election systems,
including variants of approval and k-approval, Borda, Copeland, and maximin.Comment: 17 page