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Abstract
We introduce a general problem about bribery in voting systems. In the R-Multi-Bribery
problem, the goal is to bribe a set of voters at minimum cost such that a desired candidate wins
the manipulated election under the voting rule R. Voters assign prices for withdrawing their
vote, for swapping the positions of two consecutive candidates in their preference order, and for
perturbing their approval count for a candidate.

As our main result, we show that R-Multi-Bribery is fixed-parameter tractable paramet-
erized by the number of candidates for many natural voting rules R, including Kemeny rule, all
scoring protocols, maximin rule, Bucklin rule, fallback rule, SP-AV, and any C1 rule. In particu-
lar, our result resolves the parameterized of R-Swap Bribery for all those voting rules, thereby
solving a long-standing open problem and “Challenge #2” of the 9 Challenges in computational
social choice by Bredereck et al.

Further, our algorithm runs in single-exponential time for arbitrary cost; it thus improves
the earlier double-exponential time algorithm by Dorn and Schlotter that is restricted to the
unit-cost case for all scoring protocols, the maximin rule, and Bucklin rule.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2 Discrete
Mathematics, J.4 Social and Behavioral Sciences

Keywords and phrases Parameterized algorithm, swap bribery, n-fold integer programming

Digital Object Identifier 10.4230/LIPIcs.STACS.2017.46

1 Introduction

In this work we address algorithmic problems from the area of voting and bribing. In
these problems, we are given as input an election, which consists of set C of candidates
and a set V of voters v, each of which is equipped with a total order ≺v indicating their
preferences over the candidates. Further, we have a fixed voting rule R (that is not part
of the input), which determines how the orders of the voters are aggregated to determine
the winner(s) of the election among the candidates. Popular examples of voting rules R
include “scoring protocols” like plurality – where the candidate(s) ranked first by a majority
of voters win(s) – or the Borda rule, where each candidate receives |C| − i points from being
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46:2 Voting and Bribing in Single-Exponential Time

Table 1 R-Multi-Bribery generalizes several studied bribery problems. For Kemeny rule, no
previous results are known to us. Also, XP denotes an algorithm with run time nf(|C|) and FPT-AS
a fixed-parameter approximation scheme.

Specialization of Previous best result
Problem R-Multi-Bribery (except Kemeny rule)

R-$Bribery πi = 0, αi =∞, ai = di =∞ 22O(|C|)
nO(1) [9]

R-Manipulation ιi = 0 for i ∈ S, ιi =∞ for i /∈ S 22O(|C|)
· nO(1) [9]

R-CCAV/R-CCDV ιi = 0, πi = αi =∞ 22O(|C|)
· nO(1) [9]

R-Swap Bribery αi =∞, ai = di =∞, ιi = 0 22O(|C|)
· nO(1), unit cost [13]

R-Shift Bribery R-Swap Bribery with XP, arbitrary cost,
πi(a, b) =∞ for a, b 6= c1 FPT-AS, restricted cost [10]

R-Support Brib. πi = ai = di =∞, ιi = 0 NP-c [26]
R-Mixed Brib. ai = di =∞, ιi = 0 NP-c [14]
R-Extension Brib. πi(a, b) = 0 if ranki(a, b) > li, NP-c [2]

else πi(a, b) =∞, ai = di =∞, ιi = 0
R-Possible Win. reduce to R-Swap Bribery [14, Thm 2] 22O(|C|)

· nO(1) [4]
Dodgson Score Condorcet-Swap Bribery with πi = 1 22O(|C|)

· nO(1) [1]
Young Score R-CCDV with R = Condorcet, di = 1 22O(|C|)

· nO(1) [27]

ranked i-th by a voter and the candidate with most points wins; and the Copeland rule,
which orders candidates by their number of pairwise victories minus their number of pairwise
defeats. The goal is to manipulate the given election (C, V ) by some actions Θ in such a
way that a designated candidate c1 ∈ C wins the perturbed election (C, V )Θ under the fixed
voting rule R. Such manipulation problems model various real-life issues, such as actual
bribery, or campaign management, or post-election checks, as in destructive bribery (known
as margin of victory). Manipulation is performed by the actions of swapping the position
of two adjacent candidates in the preference order of some voter, by support changes that
perturb the approval count of a voter, and control changes that (de)activate some voters.
The algorithmic problem is to achieve the goal by performing the most cost-efficient actions.
To measure cost of swaps, we consider the model introduced by Elkind et al. [14] where each
voter may assign different prices for swapping two consecutive candidates in their preference
order; this captures the notion of small changes and comprises the preferences of the voters.
We additionally allow voter-individual cost for support changes and control changes. We call
this the R-Multi-Bribery problem.

Various special cases of theR-Multi-Bribery problem have been studied in the literature;
see Table 1 for an overview which problems are captured by R-Multi-Bribery.

For instance, Faliszewski et al. [18] introduced the R-Swap Bribery problem, where
only swaps are permitted. Of particular interest has been to understand the computational
complexity such problems with respect to the number |C| of candidates [1, 4, 7, 8, 9, 10, 11,
13, 19]. A common outcome are fixed-parameter algorithms that find an optimal solution
of each instance I in time f(|C|) · |I|O(1) for some function f ; for example, Dorn and
Schlotter [13] show how to solve R-Swap Bribery with unit costs in time 22O(|C|) · |I|O(1)1

for so-called linearly describable voting rules R. In general, the function f grows quite fast,
often double-exponential in |C| which stems from solving a certain integer linear program
(ILP) at some point of the algorithm. This observation led Bredereck et al. [6] to put forward

1 Bredereck et al. [7] pointed out that the algorithm by Dorn and Schlotter only works for unit costs.
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the following “Challenge #1”, as part of their “Nine Research Challenges in Social Choice”:

Many [FPT results in computational social choice] rely on a deep result from combin-
atorial optimization due to Lenstra [that] is mainly of theoretical interest; this may
render corresponding fixed-parameter tractability results to be of classification nature
only. Can the mentioned ILP-based [...] results be replaced by direct combinatorial [...]
fixed-parameter algorithms?

Another downside of the “ILP-based approach” is that it inherently treats voters not as
individuals, but as groups which share preferences. This makes it difficult to obtain algorithms
where voters from the same group differ in some way, such as by the cost of bribing them.
Their “Challenge #2” thus reads:

[T]here is a huge difference between [...] problems, where each voter has unit cost
for being bribed, and the other flavors of bribery, where each voter has individually
specified price [...] and it is not known if they are in FPT or hard for W[1]. What is
the exact parameterized complexity of the R-Swap Bribery and R-Shift Bribery
parameterized by the number of candidates, for each voting rule R?

Our contribution. Our main result is a fixed-parameter algorithm for R-Multi-Bribery
parameterized by the number of candidates, for many fundamental voting rules R. In
particular, our algorithm works for voter-dependent cost functions, and it runs in time that
is only single-exponential in |C|.

I Theorem 1. R-Multi-Bribery is fixed-parameter tractable parameterized by the number
of candidates, and can be solved in time

2O(|C|6 log |C|) · n3 if R is a scoring protocol, any C1 rule, or SP-AV,
2O(|C|6 log |C|) · n4 if R is the maximin, Bucklin or fallback rule, and
2O(|C|!6) · n3 if R is the Kemeny rule.

We argued R-Multi-Bribery generalizes many well-studied voting and bribing problems,
parameterized by the number of candidates. A direct corollary of Theorem 1 is:

I Corollary 2. Let R be a scoring protocol, a C1 rule, the maximin rule, the Bucklin rule,
the SP-AV rule, the fallback rule, or Kemeny rule. Then R-Swap Bribery with arbitrary
cost is fixed-parameter tractable parameterized by the number |C| of candidates.

This solves “Challenge #2” by Bredereck et al. [6]. In particular, for scoring protocols,
maximin rule and Bucklin rule, Corollary 2 extends and improves an algorithm by Dorn
and Schlotter [13] that is restricted to the unit-cost case of R-Swap Bribery, and requires
double-exponential run time 22O(|C|) · nO(1).

Furthermore, we avoid using Lenstra’s algorithm for solving ILPs with bounded number
of variables, and thereby achieve the exponential improvements over previous run times for
R-Swap Bribery. This way, we substantially contribute towards resolving “Challenge #1”
by Bredereck et al.

We remark that it is unclear (cf. [19, p. 338]) if the Kemeny rule can be described by
linear inequalities as defined by Dorn and Schlotter [13]; even if it does, ours is the first
fixed-parameter algorithm for R-Swap Bribery under the Kemeny rule, as Dorn and
Schlotter’s algorithm only applies to the unit-cost case.

Another corollary of Theorem 1 is the following:

I Corollary 3. R-Shift Bribery is fixed-parameter tractable parameterized by the number
of candidates, for R being the Borda rule, the maximin rule and the Copelandα rule.

STACS 2017
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This way, we simultaneously improve the fixed-parameter algorithm by Dorn and Schlotter [13]
for unit cost, the XP-algorithm and the fixed-parameter approximation scheme for arbitrary
cost by Bredereck et al. [7].

Further, we have the following:

I Corollary 4. Approval-$Bribery, Approval-$CCAV and Approval-$CCDV can be solved
in time 2O(|C|6 log |C|) · n4.

This improves a recent result by Bredereck et al. [9] who solved these problems in time that
is double-exponential in |C|.

Our approach. Our approach to prove Theorem 1 is to formulate the R-Multi-Bribery
problem in terms of an n-fold integer program (IP). Unlike fixed-dimension ILPs, which can
be handled by Lenstra’s algorithm [23], n-fold IPs allow variable dimension at the expense of
a more rigid block structure of the constraint matrix. We manage to encode many voting
rules R in a constraint matrix that has this required structure. While the dimension of the
IP is not bounded in terms of the number of candidates, we bound the dimension of each
block by a function of |C|. Then we solve the n-fold IP via the fixed-parameter algorithm
of Hemmecke, Onn and Romanchuk [22], parameterized by the largest coefficient and the
largest dimension of each block of the IP.

We complement our positive results by a complexity lower bound for solving n-fold IPs:

I Theorem 5. Assuming ETH, there is no algorithm solving n-fold IPs in time ao(
3√r·s·t) ·

nO(1), where a is the largest absolute value in the constraint matrix and r, s, t bound the
dimension of each block. Further, solving n-fold IPs is W[1]-hard parameterized by r, s, t.

We defer the proof of Theorem 5 to the full version of this paper.

Related work. Bribery problems in voting systems are well-studied [7, 13, 14, 19]. Bredereck
et al. [7] consider shift bribery, where candidates can be shifted up a number of positions
in a voter’s preference order; this is a special case of swap bribery. An extension of their
model [11] allows campaign managers to affect the position of the preferred candidate in
multiple votes, either positively or negatively, with a single bribery action, which applies to
large-scale campaigns. In a different model [10], complexity of bribery of elections admitting
for multiple winners, such as when committees are formed, has been studied. Also, different
cost models have been considered: Faliszewski et al. [18] require that each voter has their
own price that is independent of the changes made to the bribed vote. The more general
models of Faliszewski [17] and Faliszewski et al. [20] allow for prices that depend on the
amount of change the voter is asked for by the briber. For various other bribery models that
have been investigated algorithmically, cf. Rothe [3, Chapter 4.3.5].

Regarding ILPs, tractable fragments include ILPs whose defining matrix is totally un-
imodular (due to the integrality of the corresponding polyhedra and the polynomiality of
linear programming), and ILPs in fixed dimension [23]. Courcelle’s theorem [12] implies that
solving ILPs is fixed-parameter tractable parameterized by the treewidth of the constraint
matrix and the maximum domain size of the variables. Ganian and Ordyniak [21] showed
fixed-parameter tractability for the combined parameter the treedepth and the largest abso-
lute value in the constraint matrix, and contrasted this with a W[1]-hardness result when
treedepth is exchanged for treewidth.
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2 Voting and Bribing Problems

We give notions for the problems we deal with; for background, cf. Brams and Fishburn [5].

Elections. An election (C, V ) consists of a set C candidates and a set V = Va ∪V` of voters,
where Va are active voters and V` are latent voters. Only active voters participate in an
election, but through a control action (defined later) latent voters can become active or
active voters can become latent. Unless specified otherwise, we assume that V = Va. Each
voter i is a linear order �i over the set C which we call a preference order. For distinct
candidates a and b, we write a �i b if voter i prefers a over b. We denote by rank(c, i) the
position of candidate c ∈ C in the order �i.

Swaps. Let (C, V ) be an election and let �i∈ V be a voter. A swap γ = (a, b)i in preference
order �i means to exchange the positions of a and b in �i; denote the resulting order by �γi ;
the cost of (a, b)i is πi(a, b). A swap γ = (a, b)i is admissible in �i if rank(a, i) = rank(b, i)−1.
A set Γ of swaps is admissible in �i if they can be applied sequentially in �i, one after the
other, in some order, such that each one of them is admissible. Note that the obtained vote,
denoted by �Γ

i , is independent from the order in which the swaps of Γ are applied. We also
extend this notation for applying swaps in several votes and denote it V Γ.

Support changes. In voting rules such as SP-AV or Fallback, each voter �i also has an
approval count li ∈ {0, . . . , |C|}. For voter �i and t ∈ {−li, . . . , |C| − li}, a support change ti
changes the approval count of voter i to li + t. We denote a set of support changes by Σ, and
the changed set of voters by V Σ. The cost of support change ti is αi(t); always αi(0) = 0. If
voter i is involved in a swap or support change, a one-time influence cost ιi occurs.

Control changes. The set of voters may be changed by activating some latent voters from V`
or deactivating some active voters from Va; we call this a control change. We denote the
changed set of voters by V ` ∪ V a. The cost of activating voter �i∈ V` is ai and the cost of
deactivating voter �i∈ Va is di; always ai = 0 for �i∈ Va and di = 0 for �i∈ V`.

Voting rules. A voting rule R is a function that maps an election (C, V ) to a subsetW ⊆ C,
called the winners. We study the following voting rules:

Scoring protocols. A scoring protocol is defined through a vector s = (s1, . . . , s|C|) ∈ N|C|0
with s1 ≥ · · · ≥ s|C| ≥ 0. A candidate receives sj points for each voter that ranks it as j-th
best. The candidate with the maximum number of points is the winner. Examples include
the Plurality rule (s = (1, 0, . . . , 0)), d-Approval (s = (1, . . . , 1, 0, . . . , 0) with d ones), and the
Borda rule (s = (|C| − 1, |C| − 2, . . . , 1, 0)). Throughout, we assume that max|C|j=1 sj ≤ |C|,
which is the case for the aforementioned popular rules.

Bucklin. The Bucklin winning round is a number k such that using the k-approval rule
yields a candidate with more than n

2 points, but (k − 1)-approval does not. The Bucklin
winner is the candidate with maximum points when k-approval is used.

Condorcet consistent rules. A candidate c ∈ C is a Condorcet winner if any other c′ ∈
C \ {c} satisfies |{�i∈ V | c �i c′}| > |{�i∈ V | c′ �i c}|. A voting rule is Condorcet
consistent if it selects the Condorcet winner in case there is one. Such rules are classified
by Brams and Fishburn [5] as C1, C2 or C3, depending on the kind of information needed
to determine the winner. For a, b ∈ C let v(a, b) = |{�i∈ V | a �i b}|; we write a <M b if a
beats b in a head-to-head contest, that is, if v(a, b) > v(b, a).

STACS 2017
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Let R be a Condorcet consistent rule. We say R is C1 if knowing <M suffices to
determine the winner. C1 rules include the Copelandα rule, the Slater rule, and others.
E.g., the Copelandα rule for α ∈ [0, 1] specifies that for each head-to-head contest between
two distinct candidates, if some candidate is preferred by a majority of voters then (s)he
obtains one point and the other candidate obtains zero points, and if a tie occurs then both
candidates obtain α points; the candidate with largest sum of points wins.

We say R is C2 if it is not C1 and knowing v(a, b) for all a, b ∈ C is sufficient for
determining the winner. The following two rules are C2:

Maximin. Declares c ∈ C is a winner if it maximizes v∗(c) = min{v(c, a) | c 6= a ∈ C}.
Kemeny. Declares c ∈ C a winner if there exists a ranking of candidates �R such that c

is first in �R and �R maximizes the total agreement with voters
∑n
i=1 |{(a, b) | ((a �R b)⇔

(a �i b)) ∀a, b ∈ C}| among all rankings.
We say R is C3 if it is neither C2 nor C3. The following two rules are C3:
Dodgson. The Dodgson score of a candidate c is the minimum number of swaps needed

such that c becomes the Condorcet winner. A candidate c is the Dodgson winner if their
Dodgson score is minimum.

Young. Analogously, the Young score of a candidate c is the minimum number of voters
that need to be deleted from an election for c to become the Condorcet winner. The candidate
with the lowest Young score is the Young winner.

Additionally, if approval counts are given for each voter, other voting rules are possible:
SP-AV. A candidate c gets a point from every voter i with rank(c, i) ≤ li. The candidate

with maximum number of points wins.
Fallback. Delete, for each voter �i, the non-approved candidates (i.e., all c with

rank(c, i) > li) from its order. Then, use the Bucklin rule, which might fail due to step one;
in that case, use the SP-AV rule.

3 A grammar for n-fold integer programming

We now set up our main tool, a grammar for n-fold IPs. For background on n-fold IPs, we
refer to the books of Onn [25] and De Loera et al. [24].

n-fold integer programs. Given nt-dimensional integer vectors b,u, l,w, an n-fold integer
programming problem (IP )E(n),b,l,u,w in variable dimension nt is defined as

min
{

wx : E(n)x = b , l ≤ x ≤ u , x ∈ Znt
}
, where E(n) :=


D D · · · D

A 0 · · · 0
0 A · · · 0
...

...
. . .

...
0 0 · · · A


is an (r + ns)× nt-matrix, D ∈ Zr×t is an r × t-matrix and A ∈ Zs×t is an s× t-matrix.

Hemmecke et al. [22] developed a dynamic program to show:

I Proposition 6 ([22, Thm. 6.1]). There is an algorithm solving (IP )E(n),b,l,u,w in time
aO(trs+t2s) ·O(n3L), where a = max{‖D‖∞, ‖A‖∞} and L is the length of the input.

The structure of E(n) allows us to divide the nt variables into n bricks of size t. We use
subscripts to index within a brick and superscripts to denote the index of the brick, i.e. xij is
the j-th variable of the i-th brick with j ∈ {1, . . . , t} and i ∈ {1, . . . , n}.
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Also note that there are two types of constraints, given by either the row of matrices D,
or by the matrix A for each brick. These types lead us to define globally and locally uniform
expressions. A globally uniform expression for a t-tuple of coefficients (a1, . . . , at) is:

n∑
i=1

t∑
j=1

ajx
i
j .

Observe that constraints given by a row of matrices D have the form of a globally uniform
expression equalling a number on the right hand side. We call them globally uniform
constraints; typically they assure that the solution fits a budget or other global condition.

A locally uniform expression for (a1, . . . , at) is an expression

t∑
j=1

ajx
i
j − bi, i = 1, . . . , n .

Notice that a locally uniform expression is in fact a set of n expressions which only differ in
their additive constants. All constraints which are not globally uniform have the form of
a locally uniform expression equaling some right hand side. We call them locally uniform
constraints and typically use them to give variables within a brick their intended meaning.

As we have just seen, unlike with general IPs, n-fold IPs obey a uniform block structure.
Many “integer programming tricks” are known for expressing logical connectives and other
operations within IP; however, it is not obvious if they can be implemented also in n-fold IP.
Our goal is to establish that all constraints constructed in a particular way are valid uniform
constraints, and determine the parameters r, s, t and a in the run time of Theorem 6.

Expressions and constraints. We define an n-fold IP grammar as follows, where lue and
gue stands for “locally uniform expression” and “globally uniform expression”:

♥ ::= =|<|>|≤|≥
♦ ::=♥ |6=

luem ::=xi | a variable per brick with li, ui s.t. max
i
ui −min

i
li ≤ m

k∑
j=1

aj luemj
| for k integers a1, . . . , ak

luem +oi | for n integers o1, . . . , on

(luem) | to clarify operator priority
λ an empty expression

gue ::= luem

The subscript luem denotes an external guarantee that the result of this expression lies in
{L, . . . , U} with |U −L| ≤ m. Notice that in the above, one lue actually describes n objects,
one in each brick. These objects differ from each other in exactly two ways. One, when a
variable xi is added to each brick, its lower and upper bounds li, ui may be different for each
i ∈ {1, . . . , n}. Second, in the expression luem +oi, the additive constant oi may be different
for each i ∈ {1, . . . , n}.

STACS 2017
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Special attention is given to binary lue: lueb is lue1 which is always in {0, 1}.

lueb ::= lueb → lueb | ¬ lueb | lueb ∧ lueb |
lueb ∨ lueb | lueb⊕ lueb |
boolm(luem) | 0 if luem is 0, else 1
boolm(luem♦ luem) 1 if luem♦ luem , else 0

lue2 ::= signm(luem) −1 if luem neg., 1 if pos., 0 otherwise.

Then, locally and globally uniform constraints (luc and guc) are defined as:

luc ::= luem♦ luem′ and guc ::= gue♥ gue

Finally, an n-fold IP recipe is a tuple (G,L) where G and L are the sets of locally and globally
uniform constraints, respectively. Let t′ ∈ N be the number of variables introduced to each
brick. Let Sol(G,L) ⊆ Znt′ be the set of all vectors that satisfy all constraints in (G ∪ L).

Constructing n-fold IP from recipe. Now we shall describe how to turn an n-fold IP recipe
into a system of lower and upper bounds and linear equalities satisfying the n-fold format,
proving this theorem:

I Theorem 7. Let (G,L) be an n-fold IP recipe with G ∪ L build by m applications of the
grammar rules such that a is an upper bound on |aj | in all coefficients and all m′ appearing
in boolm′ and signm′ . Then in time O(|G ∪ L|), one can compute numbers r, s, t ∈ O(m),
an n-fold matrix E(n) ∈ Znt, a right hand side b ∈ Zr+sn and lower and upper bounds
l,u ∈ Zr+sn such that O(a) is an upper bound on the absolute value of the coefficients of
E(n), and Sol(G,L) = {(x1|t′ , . . . ,xn|t′ | E(n)(x1, . . . ,xn) = b, l ≤ x ≤ u}, where xi|t′ is
the restriction of xi to its first t′ variables.

For the proof, to determine the parameters r, s, t of the resulting n-fold IP, we define
the s-increase of luem and t-increase of luem, denoted ∆s(luem) and ∆t(luem), and
analogously for luc’s and gue’s. The s-increase ∆s(luem) and the t-increase ∆t(luem) are
the number of auxiliary equalities and auxiliary variables needed to express a luem or luc.
We note the s- and t-increase of each rule after defining it.

Rewriting luem to
∑k

j=1 ajxj + b̄i for i = 1, . . . , n. Rewriting luem in some expression
means replacing it with a new variable z and adding locally uniform constraints to L. These
constraints assure that the variable z will carry the desired meaning. The result is that every
luem is rewritten to the format

∑t
j=1 ajxj + bi as introduced in Sect. 3. In this phase we

may still be adding constraints that are not in the n-fold format (contain inequalities etc.)
as they will be dealt with later. Also note that we use the notation lue simply to distinguish
between various lue; do not confuse this with negation.

lueb ::= lue′b ∨lueb ⇒ create a new binary variable s and set 2z = lue′b +lueb + s.
∆s(lueb) = ∆s(lue′b) + ∆s(lueb) + 1, ∆t(lueb) = ∆t(lue′b) + ∆t(lueb) + 2.
lueb ::= ¬ lue′b ⇒ z = 1− lue′b.
∆s(lueb) = ∆s(lue′b) + 1, ∆t(lueb) = ∆t(lue′b).
lueb ::= lueb → lueb | lueb ∧ lueb | lueb⊕ lueb: it is folklore [16] that all logical
connectives can be constructed with ¬ and ∨.
∆s(lueb) = ∆s(lue′b) + ∆s(lueb) +O(1), ∆t(lueb) = ∆t(lue′b) + ∆t(lueb) +O(1)
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lueb ::= boolm(luem) and lue2 ::= signm(luem) : We assume that −L < luem < U

for L,U ∈ N and that m = max{L,U}2. Because we will introduce a coefficient upper
bounded by m into the system, we will denote the operation boolm(x). Let v, u be two
new variables such that v = 1 if and only if luem ≥ 0, and u = 1 if and only if luem ≤ 0:

v, u ∈ {0, 1} : 1 + luem ≤ Uv ≤ U + luem & 1− luem ≤ Lu ≤ L− luem

Then if lueb ::= boolm(luem) let z = ¬(v∧u) and if lueb ::= signm(luem) let z = v−u.
∆s(lueb) = ∆(luem) +O(1), ∆t(lueb) = ∆t(luem) +O(1) and analogously for lue2.
lueb ::= boolm(lue′m♦luem) ⇒
♦ is “=”: z = boolm(lue′m−luem)
♦ is “ 6=”: z = 1− boolm(lue′m−luem)
♦ is “>”: z = boolm(signm(lue′m−luem) = 1)
♦ is “≥”: z = boolm(lue′m > luem) ∨ boolm(lue′m = luem)

And analogously when ♦ is “<” and “≤”.
∆s(lueb) = ∆s(lue′b) + ∆s(lueb) +O(1), ∆t(lueb) = ∆t(lue′b) + ∆t(lueb) +O(1)
luem ::= λ | (luem) | luem +oi |

∑k
j=1 aj luemj

| xi are rewritten in the obvious way.

Rewriting luc ::= luem ♦ luem′ to luem′′ = bi

when ♦ is “=”: luem = luem′ ⇒ luem− luem′ = 0.
∆s(luc) = ∆s(luem) + ∆s(luem′) and ∆t(luc) = ∆t(luem) + ∆t(luem′).
when ♦ is “ 6=”: luem 6= luem′ ⇒ boolm+m′(luem 6= luem′) = 1. Then,
∆s(luc) = ∆s(boolm+m′(luem 6= luem′)) and ∆t(luc) = ∆t(boolm+m′(luem 6= luem′)).
when ♦ is not “=”, intuitively we want to add a slack variable:
luem♦ luem′ ⇒ luem− luem′ +

∑n
i=1 y

i = 0 with yi for i = 1, . . . , n being n
new variables with li = ui = 0 for i > 1 and with
l1 = 0 and u1 =∞ when ♦ is “≤”,
l1 = 1 and u1 =∞ when ♦ is “<”,
l1 = −∞ and u1 = 0 when ♦ is “≥”, and
l1 = −∞ and u1 = −1 when ♦ is “>”,

“∞” stands for a sufficiently large number, which is usually clear from the context. Then,
∆s(luc) = ∆s(luem) + ∆s(luem′) and ∆t(luc) = ∆t(luem) + ∆t(luem′) + 1.

Finally, rewrite the globally uniform constraints in G. Since gue ::= luem and luem gets
rewritten to

∑t
j=1 ajx

i
j as required, the above rules suffice to obtain a globally uniform

expression as defined in Sect. 3, and similarly for guc ::= gue♥ gue′. Let ∆t(guc) =
∆t(gue) + ∆t(gue′) if ♥ is “=” and ∆t(guc) = ∆t(gue) + ∆t(gue′) + 1 otherwise and let
∆t(gue) = ∆t(luem).

It remains to compute the parameters r, s, t. Let #variables be the number of distinct
variables introduced through luem ::= xi. Then,

t = #variables +
∑

lucj∈L∆t(lucj) +
∑

gucj∈G
∆t(gucj),

s = |L|+
∑

lucj∈L∆s(lucj),
r = |G|, and
all coefficients are bounded in absolute value by max{max{|aj | | aj in

∑k
j=1 aj luem},

max{m | boolm, signm ∈ luc ∈ L}} ∈ O(a).

Clearly, r, s, t ∈ O(m) and this concludes the proof of Theorem 7.

2 This is without loss of generality: when L < luem < U with L,U ∈ N, luem is always positive and
boolm(luem) is always 1; analogously when luem is always negative.
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A demonstration of the rewriting process. We want m variables x1, . . . , xm in each brick
describing a permutation of {1, . . . ,m}. That is equivalent to

∑m
j=1 xj =

(
m+1

2
)
and xj 6= xk

for all j 6= k and xj ∈ {1, . . . ,m} for all j. This is expressible by 1 +
(
m
2
)

luc’s:
m∑
j=1

xj =
(
m+ 1

2

) ∧
xj 6= xk for all j 6= k . (1)

The first luc is already in the format required in Sect. 3. However, for the other luc’s,
rewriting rules are applied. Fix j, k. The resulting n-fold IP will contain these constraints
(for brevity we omit rewriting inequalities by slack variables as this is standard):

w = xj − xk
1 + w ≤ mv ≤ m+ w

1− w ≤ mu ≤ m− w express z¬ bool = ¬(v ∧ u) = ¬v ∨ ¬u
v¬ = 1− v

∧
u¬ = 1− u v, u, s ∈ {0, 1}

2z∨ = v¬ + u¬ + s

z¬ bool = 1− z∨ and set ¬bool(xj − xk) = 0
z¬ bool = 0 .

Further, given n permutations oi1, . . . , oim for i = 1, . . . , n, one for each brick, we want to
compare the permutation x1, . . . xm to o1, . . . , om and determine which indices are inverted,
that is, xj < xk ⇔ oj > ok. In other words, we want to determine when the sign of (xj − xk)
equals the sign of (ok − oj). So, for each j 6= k we add a new indicator variable sjk as follows:

sjk = bool2(signm(xj − xk) = signm(oik − oij)) (2)

Notice that signm(oik−oij) is a constant oikj so the expression above turns to bool2(signm(xj−
xk)− oikj) which is now clearly a lueb and is rewritten similarly as before.

An example of what is not expressible in the n-fold IP grammar is the (nonsensical)
expression

∑m
j=1 o

i
jxj . This is not a lue since the numbers oij appear not as additive constants

but as coefficients. However, coefficients are required to be identical across bricks in the
grammar rule luem ::=

∑k
j=1 aj luemj

.
I Remark. Naturally, we ask if the bool() operation can be implemented without introducing
a number a depending on the lower and upper bounds, as a becomes the base of the run
time in Theorem 6. One can show that such dependence is necessary (proof deferred):

I Lemma 8. Unless FPT = W[1], for any computable function f it is impossible to express
the bool() operation consistently with the n-fold IP format while introducing only numbers
bounded by f(k), and introducing only f(k) new variables. Moreover, solving n-fold IP
parameterized only by the dimensions r, s, t (and not by the largest entry a) is W[1]-hard.

4 Single-Exponential Algorithms for Voting and Bribing

We now establish a formulation of R-Multi-Bribery as an n-fold IP, for various rules R.
To this end, we first describe the part of the IP which is common to all such rules. Thereafter,
we add the parts of the formulation which depend on R. Given an instance (C, V ) of
R-Multi-Bribery, we construct an n-fold IP whose variables describe the situation after
bribery actions (swaps, support changes, control changes) were performed. From these
variables we also derive new variables to express the cost function. In the following we always
describe the variables and constraints added per voter, and there is one brick per voter.
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Swaps. We describe the preference order with swaps Γ applied by variables x1, . . . , x|C|
with the intended meaning xij = rank(cj , i)Γ. Recall from Sect. 3 that constraints (1) enforce
that (x1, . . . , x|C|) is a permutation of {1, . . . , |C|}; we add them to the program.

To express the swaps performed by Γ, for each pair of candidates cj , ck ∈ C we introduce
binary variables sjk, skj so that sjk = 1 if and only if cj and ck are swapped. We use the
fact (cf. [15, Proposition 3.2]) that for two orders �,�′, the admissible set of swaps Γ such
that �′=�Γ is uniquely given as the set of pairs (ci, cj) for which either ci � cj ∧ cj �′ ci or
cj � ci ∧ ci �′ cj . Thus, we only need to set constraint (2) from Sec. 3 with oij = rank(cj , i).

Support changes. To indicate support changes, we introduce binary variables r−|C|, . . . , r|C|
where r0 = 1 means no change, rj = 1 means support change j. We set the lower and upper
bounds to ensure that rj = 0 for all j 6∈ {−li, |C| − li}. Finally, we introduce a variable
xα ∈ {1, . . . , |C|} indicating the approval count after the support change:∑|C|

j=−|C| rj = 1, xα = li +
∑|C|
j=−|C| jrj .

Influence bit. We introduce a binary variable xι taking value 1 if a swap or a support
change is performed, and value 0 otherwise: xι = bool|C|2+2|C|

(∑
j 6=k sjk +

∑
j 6=0 rj

)
.

Control changes. We introduce two binary variables xa, x` such that xa = 1, x` = 0 if
voter i is active, and xa = 0, x` = 1 if voter i latent: xa + x` = 1.

Further, for each pair cj , ck ∈ C of candidates we introduce a variable xjk which takes
value 1 if cj �γi ck and 0 otherwise. We will also frequently (and implicitly) use the following
variable-splitting trick:

I Lemma 9. Let x be an integral variable with lower bound ` and upper bound u and let z
be a binary variable. It is possible to introduce a variable xz and auxiliary lue constraints
with ∆s = O(1) and ∆t = O(1) such that xz = x if z = 1 and xz = 0 if z = 0.

Proof. First, add `z ≤ xz ≤ uz; then z = 0 implies xz = 0 and does not influence xz when
z = 1. Second, add boolb(boolb(z = 1)→ boolm(xz = x) = 1) with m = O(−`+ u). J

Objective function. Finally, the linear objective function is given as follows:

w(x, s, r) =
∑n
i=1

[(∑
j 6=k πi(j, k)sijk

)
+
(∑m

j=−m αi(j)rij
)

+ ιix
i
ι + aix

i
a + dix

i
`

]
.

Let us determine the values of the parameters r, s, t and a. We have introduced O(|C|2)
variables and imposed O(|C|2) constraints on them, so s = t = O(|C|2). The coefficients aj
obey maxj |aj | ≤ O(|C|), and we use the boolM operation withM ∈ O(|C|2), so a = O(|C|2).

Now we describe the part specific to the voting rules. A voting rule R is incorporated
in the IP in two steps. First, optionally, new variables are derived using locally uniform
constraints. Then, globally uniform constraints are imposed.

Often we can only set up the IP knowing certain facts about how the winning condition
is satisfied. We guess those facts, construct the IP, solve it and remember the objective value.
Finally, we choose the minimum over all guesses.

Scoring protocol s = (s1, . . . , s|C|). We introduce variables σc where σc is the number of
points a voter gives candidate c. Then, an “active” copy of each new variable (denoted σai
for i = 1, . . . , |C|) is created such that we can disregard the contribution of latent voters. To
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do this we use Lemma 9 with x := σi, z := xa, and xz := σai for every i = 1, . . . , |C|. Then
we add the following globally uniform constraints:∑n

i=1 σ
a
j <

∑n
i=1 σ

a
1 for j = 2, . . . , |C| .

Any C1 rule R. We guess the resulting <M such that c1 is a winner with respect to R;
there are O(3|C|2) guesses. Knowing <M means that for any pair cj , ck of distinct candidates,
we know if v(cj , ck) > v(ck, cj), v(ck, cj) > v(cj , ck) or v(cj , ck) = v(cj , ck). We thus add:∑n

i=1 x
a
jk >

∑n
i=1 x

a
kj(if cj <M ck) and

∑n
i=1 x

a
jk =

∑n
i=1 x

a
kj(if v(cj , ck) = v(ck, cj)) .

Maximin rule. For c1 to be winner with the maximin rule means that there is a B ∈
{1, . . . , |V |} such that v∗(c1) = B, while for all c ∈ C \ {c1}, v∗(cj) < B. That, in turn,
means, that for every candidate cj there is a candidate cj′ such that v(cj , cj′) < B. Guess B
and cj′ for every cj ; there are at most n · |C|2 guesses. Then add the following constraints:∑n

i=1 x
a
1j ≥ B and

∑n
i=1 x

a
jj′ < B, j = 2, . . . , |C| .

Bucklin. Guess the number |V a| ∈ {1, . . . , n} of active voters and set
∑n
i=1 x

i
a = |V a|.

Then, guess the winning round k and note that the winning score will be larger than
|V a|/2. Altogether there are O(|C||V |) guesses. Similarly to scoring protocols, we introduce
variables σj (number of points for candidate j in k-approval) and σ̃j (number of points for
candidate j in (k − 1)-approval). We omit the details of how to split variables into active
and latent:

σj = bool|C|(xj < k) and σ̃j = bool|C|(xj < k − 1), j = 1, . . . , |C| .

Then, the winning condition is expressed as:
n∑
i=1

σa1 > |V a|/2
∧ n∑

i=1
σaj <

n∑
i=1

σa1 for j = 2, . . . , |C|
∧ n∑

i=1
σ̃ac < |V a|/2, c ∈ C .

SP-AV. In SP-AV, each candidate c receives a point if it ranks above the approval count.
As before, we introduce variables σc for points received by a candidate c and split them into
active and latent (again using Lemma 9).

σj = bool|C|(xj < xα) for j = 1, . . . , |C|
∧ ∑n

i=1 σ
a
j <

∑n
i=1 σ

a
1 for j = 2, . . . , |C| .

Fallback. In the fallback rule, the non-approved candidates are discarded, the Bucklin
rule is applied and if it fails to select a winner, the SP-AV rule is applied. We guess the
Bucklin winning round k or if SP-AV is used and the number |V a| of active voters; there are
O(|V | · |C|) guesses. (SP-AV is used exactly when the winning score is less than |V a|/2.) If
Bucklin is used, we need a slight modification to take support changes into account. Instead
of σj = bool|C|(xj < k) we have σj = [bool|C|(xj < k) ∧ bool|C|(k ≤ xα)]; similarly for σ̃j .

As argued, for each rule we introduced O(|C|2) variables and locally uniform constraints,
and O(|C|2) globally uniform constraints. Thus, by Theorem 7 we get an n-fold matrix with
parameters r = s = t = a = O(|C|2). Proposition 6 is then used to solve the n-fold IP in
time 2O(|C|6 log |C|)n3. Also, O(3|C|2) guesses suffice for each rule except Maximin, Bucklin
and Fallback, where O(|C|2|V |) guesses suffice.

An exception to this run time is the Kemeny rule:
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Kemeny. For c1 to be a Kemeny winner, there has to be a ranking �R∗ of the candidates
that ranks c1 first and �R∗ maximizes the total agreement with voters

∑|V |
i=1{(a, b) | ((a �R∗

b)⇔ (a �i b)), a, b ∈ C} among all rankings. In other words, the number of swaps sufficient
to transform every �i into �R∗ is smaller than the number of swaps needed to transform
every �i into any other �R′ where c1 is not first.

We guess the ranking �R∗ ; then we introduce variables xiR for R ∈ {R∗} ∪ {R′ |
c1 is not first in R′} so that xiR is the number of swaps needed to transform �Γ

i into �R,
splitting them into active and latent as before. Then, we introduce the necessary constraints:

xR =
∑
j 6=k[sign|C|(xj − xk) = sign|C|(rank(k,R)− rank(j, R)] for all R,∑n

i=1 x
ai
R >

∑n
i=1 x

ai
R∗ for R 6= R∗ .

This solves Kemeny-Multi-Bribery in time 2O(|C|!6)n3, and completes proving Theorem 1.
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