121,356 research outputs found

    SASICE: Safety and sustainability in civil engineering

    No full text
    The performance of the built environment and the construction sector are of major importance in Europe’s long term goals of sustainable development in a changing climate. At the same time, the quality of life of all European citizens needs to be improved and the safety of the built environment with respect to man-made and natural hazards, such as flooding and earthquakes, needs to be ensured. Education has a central role to play in the transformation of a construction sector required to meet increasing demands with regard to safety and sustainability. In this work, the SASICE project is presented. The aim of this project is to promote the integration of safety and sustainability in civil engineering education. The project is organised in the context of the Lifelong Learning Programme, funded by the European Community. The coordinator organisation is the University of Bologna. Nine partner universities from different countries are involved in this transnational project. The universities participating to the project constitute a network of high level competences in the civil engineering area, with several opportunities to improve lifelong learning adopting different media: joint curricula, teaching modules and professor and student exchanges. As a response to the challenge regarding new educational methods in sustainable engineering, teaching modules are developed in 4 thematic areas: (1) Safety in construction, (2) Risk induced by Natural Hazards Assessment, (3) Sustainability in construction, and (4) Sustainability at the territorial level. The development of the teaching modules is based on an extensive analysis of the need for highly qualified education on Safety and Sustainability involving all relevant stakeholders (European and national authorities, companies, research institutes, professional organizations, and universities).The main target is enabling students to introduce these advanced topics in their study plans and curricula and reach, at the end of their studies, a specific skill and expertise in safety and sustainability in Civil Engineering. With our natural resources fading away and our infrastructure in dire need of repair, new trends and challenges in civil engineering education in the concept of “Sustainable Development” are needed to be adressed.<br/

    The Global Engineer : Incorporating global skills within UK higher education of engineers

    Get PDF

    Higher Education on Buildings: Case Study in the North Dakota Region

    Get PDF
    Because of the growing demand for local skilled professionals to improve the health, energy efficiency, and sustainability of residential and commercial buildings in North Dakota, this case study reports the current situation of higher education relating to buildings in the state’s vicinity, including Minnesota, Montana, North Dakota, and South Dakota. In this region, 116 programs relating to buildings were found in 41 postsecondary institutions, and both their majors and courses were then studied with frequency lists. The frequency information was analyzed over nine sets of curriculum areas at both graduate and undergraduate levels for the four states. After the current state of buildings in North Dakota was investigated, strategies were then proposed to rectify current issues regarding higher education on buildings, including but not limited to forming a comprehensive and interdisciplinary program on buildings (e.g., architectural engineering), providing more graduate programs, developing more courses in areas that lack adequate coursework, and increasing student enrollment. These strategies will greatly promote the health, energy efficiency, and sustainability for new and existing buildings in the four-state region of Minnesota, Montana, North Dakota, and South Dakota

    Developing Project Managers’ Transversal Competences Using Building Information Modeling

    Get PDF
    The emergence of building information modeling (BIM) methodology requires the training of professionals with both specific and transversal skills. In this paper, a project-based learning experience carried out in the context of a project management course at the University of Extremadura is analyzed. To that end, a questionnaire was designed and given to students who participated in the initiative. Results suggest that BIM can be considered a virtual learning environment, from which students value the competences developed. The emotional performance observed was quite flat. Similarly, students valued the usefulness of the initiative. Students expressed a desire for the methodological change of the university classes, and thought that BIM methodology could be useful for other courses. The results obtained show a line of work to be done to improve the training of students and university teaching

    Conceptual Framework for the Use of Building Information Modeling in Engineering Education

    Get PDF
    The objective of this paper is to present a critical literature review of the Building Information Modelling (BIM) methodologyandtoanalyzewhetherBIMcanbeconsideredaVirtualLearningEnvironment.Aconceptualframeworkis proposed for using BIM in a university context. A search of documents was carried out in the Core Collection of Web of Science; it was restricted to the last five years (2013–2017). A total of 95 documents were analyzed; all documents were written in English and peer reviewed. BIM meets all the characteristics of Virtual Learning Environments. The proposed framework has three dimensions (competencies, pedagogical approach and level of integration).It allows for the planning and analysis of future experiences of teaching BIM in a university context.Ministry of Economy and Competitiveness of Spain and AEI/FEDER, UE Projects EDU2016-77007-RRegional Government of Extremadura (Spain) IB 16068Regional Government of Extremadura (Spain) GR1800

    Revealing Casual Pathways to Sustainable Water Service Delivering Using fsQCA

    Full text link
    This study aimed to build on theory and practice regarding the combinations of conditions that influence water service sustainability when external partners are involved. The study investigates 26 well projects that have been implemented in developing countries with the assistance of Engineers Without Borders-USA (EWB-USA). Using past literature on sustainable water service delivery in developing communities, emergent coding techniques with project documents, and surveys with EWB-USA team members, this study identifies a set of project conditions to conduct fuzzy-set Qualitative Comparative Analysis (fsQCA). Findings show that the presence of a water committee cannot alone account for project sustainability. Additional conditions, such as technology and construction processes, project governance, and community engagement practices must also be considered for project sustainability. The relationship between construction quality and financial sustainability is also discussed. Overall, the findings from this research contribute to sector theory and reveal distinct pathways towards sustainable water services. These findings informed recommendations for EWB-USA well project implementation and management, and demonstrate the utility of fsQCA as a tool to navigate the complexities of water service delivery by external partners and improve understanding to increase water service sustainability

    Bibliometric Maps of BIM and BIM in Universities: A Comparative Analysis

    Get PDF
    Building Information Modeling (BIM) is increasingly important in the architecture and engineering fields, and especially in the field of sustainability through the study of energy. This study performs a bibliometric study analysis of BIM publications based on the Scopus database during the whole period from 2003 to 2018. The aim was to establish a comparison of bibliometric maps of the building information model and BIM in universities. The analyzed data included 4307 records produced by a total of 10,636 distinct authors from 314 institutions. Engineering and computer science were found to be the main scientific fields involved in BIM research. Architectural design are the central theme keywords, followed by information theory and construction industry. The final stage of the study focuses on the detection of clusters in which global research in this field is grouped. The main clusters found were those related to the BIM cycle, including construction management, documentation and analysis, architecture and design, construction/fabrication, and operation and maintenance (related to energy or sustainability). However, the clusters of the last phases such as demolition and renovation are not present, which indicates that this field suntil needs to be further developed and researched. With regard to the evolution of research, it has been observed how information technologies have been integrated over the entire spectrum of internet of things (IoT). A final key factor in the implementation of the BIM is its inclusion in the curriculum of technical careers related to areas of construction such as civil engineering or architecture

    CRC for Construction Innovation : annual report 2008-2009

    Get PDF
    • …
    corecore