14 research outputs found

    The Quest for a Killer App for Opportunistic and Delay Tolerant Networks (Invited Paper)

    Get PDF
    Delay Tolerant Networking (DTN) has attracted a lot of attention from the research community in recent years. Much work have been done regarding network architectures and algorithms for routing and forwarding in such networks. At the same time as many show enthusiasm for this exciting new research area there are also many sceptics, who question the usefulness of research in this area. In the past, we have seen other research areas become over-hyped and later die out as there was no killer app for them that made them useful in real scenarios. Real deployments of DTN systems have so far mostly been limited to a few niche scenarios, where they have been done as proof-of-concept field tests in research projects. In this paper, we embark upon a quest to find out what characterizes a potential killer applications for DTNs. Are there applications and situations where DTNs provide services that could not be achieved otherwise, or have potential to do it in a better way than other techniques? Further, we highlight some of the main challenges that needs to be solved to realize these applications and make DTNs a part of the mainstream network landscape

    Solutions for vehicular communications: a review

    Get PDF
    Vehicular networks experience a number of unique challenges due to the high mobility of vehicles and highly dynamic network topology, short contact durations, disruption intermittent connectivity, significant loss rates, node density, and frequent network fragmentation. All these issues have a profound impact on routing strategies in these networks. This paper gives an insight about available solutions on related literature for vehicular communications. It overviews and compares the most relevant approaches for data communication in these networks, discussing their influence on routing strategies. It intends to stimulate research and contribute to further advances in this rapidly evolving area where many key open issues that still remain to be addressed are identified.Part of this work has been supported by the Instituto de Telecomunicações, Next Generation Networks and Applications Group (NetGNA), Portugal, in the framework of the Project VDTN@Lab, and by the Euro-NF Network of Excellence of the Seventh Framework Programme of EU, in the framework of the Specific Joint Research Project VDTN

    CONSIDERATION OF RESOURCEFUL DATA AGGREGATION IN SENSING OF MOBILE SYSTEMS

    Get PDF
    Ad-hoc networks maintain routing among any pair of nodes while sensor networks encompass an additional dedicated communication prototype. Security concerns in ad-hoc networks are comparable to those within sensor networks and were enumerated in literature; however the defence method developed in support of ad-hoc networks is not unswervingly appropriate towards sensor networks. Because of restriction in bandwidth as well as buffer space, delay tolerant networks are susceptible to flood attacks. Although numerous schemes were projected to protect against flood attacks on Internet as well as in wireless networks, they believe constant connectivity moreover cannot be unswervingly applied to delay tolerant networks that have irregular connectivity. Networks of disruption tolerant consist of mobile nodes approved by human beings and networks facilitate data transport when mobile nodes are simply occasionally associated, making them suitable for functions where no communication transportation is accessible. We make use of rate limiting to protect against flood attacks within delay tolerant networks. Each node has an edge above packets that it, like a source node, can transmit towards network in every time period. Our fundamental idea of discovery is claim-carry-and-check. Proposed system works in a dispersed manner, does not depend on any online central authority or else infrastructure, which well suits environment of delay tolerant networks and employs well-organized constructions to maintain computation, communication as well as storage cost small

    A routing defense mechanism using evolutionary game theory for Delay Tolerant Networks

    Get PDF
    Delay Tolerant Networks (DTNs) often suffer from intermittent disruption due to factors such as mobility and energy. Though lots of routing algorithms in DTNs have been proposed in the last few years, the routing security problems have not attracted enough attention. DTNs are still facing the threats from different kinds of routing attacks. In this paper, a general purpose defense mechanism is proposed against various routing attacks on DTNs. The defense mechanism is based on the routing path information acquired from the forwarded messages and the acknowledgment (ACK), and it is suitable for different routing schemes. Evolutionary game theory is applied with the defense mechanism to analyze and facilitate the strategy changes of the nodes in the networks. Simulation results show that the proposed evolutionary game theory based defense scheme can achieve high average delivery ratio, low network overhead and low average transmission delay in various routing attack scenarios. By introducing the game theory, the networks can avoid being attacked and provide normal transmission service. The networks can reach evolutionary strategy stable (ESS) under special conditions after evolution. The initial parameters will affect the convergence speed and the final ESS, but the initial ratio of the nodes choosing different strategies can only affect the game process

    Optimizing groups of colluding strong attackers in mobile urban communication networks with evolutionary algorithms

    Get PDF
    In novel forms of the Social Internet of Things, any mobile user within communication range may help routing messages for another user in the network. The resulting message delivery rate depends both on the users’ mobility patterns and the message load in the network. This new type of configuration, however, poses new challenges to security, amongst them, assessing the effect that a group of colluding malicious participants can have on the global message delivery rate in such a network is far from trivial. In this work, after modeling such a question as an optimization problem, we are able to find quite interesting results by coupling a network simulator with an evolutionary algorithm. The chosen algorithm is specifically designed to solve problems whose solutions can be decomposed into parts sharing the same structure. We demonstrate the effectiveness of the proposed approach on two medium-sized Delay-Tolerant Networks, realistically simulated in the urban contexts of two cities with very different route topology: Venice and San Francisco. In all experiments, our methodology produces attack patterns that greatly lower network performance with respect to previous studies on the subject, as the evolutionary core is able to exploit the specific weaknesses of each target configuration.<br/

    A Security and Efficient Routing Scheme with Misbehavior Detection in Delay-Tolerant Networks

    Get PDF
    Due to the unique network characteristics, the security and efficient routing in DTNs are considered as two great challenges. In this paper, we design a security and efficient routing scheme, called SER, which integrates the routing decision and the attacks detection mechanisms. In SER scheme, each DTNs node locally maintains a one-dimensional vector table to record the summary information about the contact with other nodes and the trust degree of other nodes. To obtain the global status and the contact relationship among all nodes, the trusted routing table consisting of vectors of all nodes is built in each DTNs node. The method for detecting malicious nodes and selfish nodes is proposed, which exploits the global summary information to analyze the history forwarding behavior of node and judge whether it is a malicious node or selfish node. The routing decision method is proposed based on trust degree of forwarding messages between nodes, which adopts trust degree as relay node selection strategy. Simulation results show that compared with existing schemes SER scheme could detect the attacks behavior of malicious nodes and selfish nodes, at the same time, with higher delivery rate and lower average delivery delay

    Revocation Games in Ephemeral Networks

    Get PDF
    A frequently proposed solution to node misbehavior in mobile ad hoc networks is to use reputation systems. But in ephemeral networks - a new breed of mobile networks where contact times between nodes are short and neighbors change frequently - reputations are hard to build. In this case, local revocation is a faster and more efficient alternative. In this paper, we define a game-theoretic model to analyze the various local revocation strategies. We establish and prove the conditions leading to subgame- perfect equilibria. We also derive the optimal parameters for voting-based schemes. Then we design a protocol based on our analysis and the practical aspects that cannot be captured in the model. With realistic simulations on ephemeral networks we compare the performance and economic costs of the different techniques

    Towards a secure cooperation mechanism for Challenging Networks

    Get PDF
    A Challenging Network (CN) is a network paradigm adapting to the many issues of the environment in order to guarantee the communication among nodes. One of the most important issues of a CN is the problem of secure cooperation among nodes. In fact, an attacker, either internal or external, may constitute a threat for the network. In this work I investigate the problem of secure cooperation in three kinds of CNs: the Underwater Acoustic Net- works (UANs), the Delay Tolerant Networks (DTNs) and the Publish/Subscribe Networks (PSNs). A UAN is a network paradigm allowing communication among underwater nodes equipped with acoustic modems. Since the acoustic channel is an open medium, an attacker conveniently equipped could intercept the messages traversing the network. In this work I describe a cryptographic suite, aimed at protecting the communication among underwater acoustic nodes. A DTN is a network paradigm guaranteeing message delivery even in presence of network partitions. A DTN relies on the implicit assumption that nodes cooperate towards message forwarding. However, this assumption cannot be satisfied when there are malicious nodes acting as blackholes and voluntarily attracting and dropping messages. In this work I propose a reputation-based protocol for contrasting blackholes. A PSN is a network paradigm allowing communication from publishers to subscribers by means of an infrastructure, called Dispatcher. In this work I present a secure PSN conceived to support cooperation be- tween organizations. The service is based on the notion of security group, an overlay composed of brokers representing organizations that guarantees confidentiality and integrity in end-to-end delivery of messages and supports clients mobility

    ABSTRACT Surviving Attacks on Disruption-Tolerant Networks without Authentication

    No full text
    Disruption-Tolerant Networks (DTNs) deliver data in network environments composed of intermittently connected nodes. Just as in traditional networks, malicious nodes within a DTN may attempt to delay or destroy data in transit to its destination. Such attacks include dropping data, flooding the network with extra messages, corrupting routing tables, and counterfeiting network acknowledgments. Many existing methods for securing routing protocols require authentication supported by mechanisms such as a public key infrastructure, which is difficult to deploy and operate in a DTN, where connectivity is sporadic. Furthermore, the complexity of such mechanisms may dissuade node participation so strongly that potential attacker impacts are dwarfed by the loss of contributing participants. In this paper, we use connectivity traces from our UMass Diesel-Net project and the Haggle project to quantify routing attack effectiveness on a DTN that lacks security. We introduce plausible attackers and attack modalities and provide complexity results for the strongest of attackers. We show that the same routing with packet replication used to provide robustness in the face of unpredictable mobility allows the network to gracefully survive attacks. In the case of the most effective attack, acknowledgment counterfeiting, we show a straightforward defense that uses cryptographic hashes but not a central authority. We conclude that disruption-tolerant networks are extremely robust to attack; in our trace-driven evaluations, an attacker that has compromised 30 % of all nodes reduces delivery rates from 70 % to 55%, and to 20 % with knowledge of future events. By comparison, contemporaneously connected networks are significantly more fragile
    corecore