9,885 research outputs found

    The Geometric Median and Applications to Robust Mean Estimation

    Full text link
    This paper is devoted to the statistical and numerical properties of the geometric median, and its applications to the problem of robust mean estimation via the median of means principle. Our main theoretical results include (a) an upper bound for the distance between the mean and the median for general absolutely continuous distributions in R^d, and examples of specific classes of distributions for which these bounds do not depend on the ambient dimension dd; (b) exponential deviation inequalities for the distance between the sample and the population versions of the geometric median, which again depend only on the trace-type quantities and not on the ambient dimension. As a corollary, we deduce improved bounds for the (geometric) median of means estimator that hold for large classes of heavy-tailed distributions. Finally, we address the error of numerical approximation, which is an important practical aspect of any statistical estimation procedure. We demonstrate that the objective function minimized by the geometric median satisfies a "local quadratic growth" condition that allows one to translate suboptimality bounds for the objective function to the corresponding bounds for the numerical approximation to the median itself. As a corollary, we propose a simple stopping rule (applicable to any optimization method) which yields explicit error guarantees. We conclude with the numerical experiments including the application to estimation of mean values of log-returns for S&P 500 data.Comment: 28 pages, 2 figure

    An advanced deep learning models-based plant disease detection: A review of recent research

    Get PDF
    Plants play a crucial role in supplying food globally. Various environmental factors lead to plant diseases which results in significant production losses. However, manual detection of plant diseases is a time-consuming and error-prone process. It can be an unreliable method of identifying and preventing the spread of plant diseases. Adopting advanced technologies such as Machine Learning (ML) and Deep Learning (DL) can help to overcome these challenges by enabling early identification of plant diseases. In this paper, the recent advancements in the use of ML and DL techniques for the identification of plant diseases are explored. The research focuses on publications between 2015 and 2022, and the experiments discussed in this study demonstrate the effectiveness of using these techniques in improving the accuracy and efficiency of plant disease detection. This study also addresses the challenges and limitations associated with using ML and DL for plant disease identification, such as issues with data availability, imaging quality, and the differentiation between healthy and diseased plants. The research provides valuable insights for plant disease detection researchers, practitioners, and industry professionals by offering solutions to these challenges and limitations, providing a comprehensive understanding of the current state of research in this field, highlighting the benefits and limitations of these methods, and proposing potential solutions to overcome the challenges of their implementation

    Modular lifelong machine learning

    Get PDF
    Deep learning has drastically improved the state-of-the-art in many important fields, including computer vision and natural language processing (LeCun et al., 2015). However, it is expensive to train a deep neural network on a machine learning problem. The overall training cost further increases when one wants to solve additional problems. Lifelong machine learning (LML) develops algorithms that aim to efficiently learn to solve a sequence of problems, which become available one at a time. New problems are solved with less resources by transferring previously learned knowledge. At the same time, an LML algorithm needs to retain good performance on all encountered problems, thus avoiding catastrophic forgetting. Current approaches do not possess all the desired properties of an LML algorithm. First, they primarily focus on preventing catastrophic forgetting (Diaz-Rodriguez et al., 2018; Delange et al., 2021). As a result, they neglect some knowledge transfer properties. Furthermore, they assume that all problems in a sequence share the same input space. Finally, scaling these methods to a large sequence of problems remains a challenge. Modular approaches to deep learning decompose a deep neural network into sub-networks, referred to as modules. Each module can then be trained to perform an atomic transformation, specialised in processing a distinct subset of inputs. This modular approach to storing knowledge makes it easy to only reuse the subset of modules which are useful for the task at hand. This thesis introduces a line of research which demonstrates the merits of a modular approach to lifelong machine learning, and its ability to address the aforementioned shortcomings of other methods. Compared to previous work, we show that a modular approach can be used to achieve more LML properties than previously demonstrated. Furthermore, we develop tools which allow modular LML algorithms to scale in order to retain said properties on longer sequences of problems. First, we introduce HOUDINI, a neurosymbolic framework for modular LML. HOUDINI represents modular deep neural networks as functional programs and accumulates a library of pre-trained modules over a sequence of problems. Given a new problem, we use program synthesis to select a suitable neural architecture, as well as a high-performing combination of pre-trained and new modules. We show that our approach has most of the properties desired from an LML algorithm. Notably, it can perform forward transfer, avoid negative transfer and prevent catastrophic forgetting, even across problems with disparate input domains and problems which require different neural architectures. Second, we produce a modular LML algorithm which retains the properties of HOUDINI but can also scale to longer sequences of problems. To this end, we fix the choice of a neural architecture and introduce a probabilistic search framework, PICLE, for searching through different module combinations. To apply PICLE, we introduce two probabilistic models over neural modules which allows us to efficiently identify promising module combinations. Third, we phrase the search over module combinations in modular LML as black-box optimisation, which allows one to make use of methods from the setting of hyperparameter optimisation (HPO). We then develop a new HPO method which marries a multi-fidelity approach with model-based optimisation. We demonstrate that this leads to improvement in anytime performance in the HPO setting and discuss how this can in turn be used to augment modular LML methods. Overall, this thesis identifies a number of important LML properties, which have not all been attained in past methods, and presents an LML algorithm which can achieve all of them, apart from backward transfer

    Designing a Direct Feedback Loop between Humans and Convolutional Neural Networks through Local Explanations

    Full text link
    The local explanation provides heatmaps on images to explain how Convolutional Neural Networks (CNNs) derive their output. Due to its visual straightforwardness, the method has been one of the most popular explainable AI (XAI) methods for diagnosing CNNs. Through our formative study (S1), however, we captured ML engineers' ambivalent perspective about the local explanation as a valuable and indispensable envision in building CNNs versus the process that exhausts them due to the heuristic nature of detecting vulnerability. Moreover, steering the CNNs based on the vulnerability learned from the diagnosis seemed highly challenging. To mitigate the gap, we designed DeepFuse, the first interactive design that realizes the direct feedback loop between a user and CNNs in diagnosing and revising CNN's vulnerability using local explanations. DeepFuse helps CNN engineers to systemically search "unreasonable" local explanations and annotate the new boundaries for those identified as unreasonable in a labor-efficient manner. Next, it steers the model based on the given annotation such that the model doesn't introduce similar mistakes. We conducted a two-day study (S2) with 12 experienced CNN engineers. Using DeepFuse, participants made a more accurate and "reasonable" model than the current state-of-the-art. Also, participants found the way DeepFuse guides case-based reasoning can practically improve their current practice. We provide implications for design that explain how future HCI-driven design can move our practice forward to make XAI-driven insights more actionable.Comment: 32 pages, 6 figures, 5 tables. Accepted for publication in the Proceedings of the ACM on Human-Computer Interaction (PACM HCI), CSCW 202

    Segmentation of Pathology Images: A Deep Learning Strategy with Annotated Data

    Get PDF
    Cancer has significantly threatened human life and health for many years. In the clinic, histopathology image segmentation is the golden stand for evaluating the prediction of patient prognosis and treatment outcome. Generally, manually labelling tumour regions in hundreds of high-resolution histopathological images is time-consuming and expensive for pathologists. Recently, the advancements in hardware and computer vision have allowed deep-learning-based methods to become mainstream to segment tumours automatically, significantly reducing the workload of pathologists. However, most current methods rely on large-scale labelled histopathological images. Therefore, this research studies label-effective tumour segmentation methods using deep-learning paradigms to relieve the annotation limitations. Chapter 3 proposes an ensemble framework for fully-supervised tumour segmentation. Usually, the performance of an individual-trained network is limited by significant morphological variances in histopathological images. We propose a fully-supervised learning ensemble fusion model that uses both shallow and deep U-Nets, trained with images of different resolutions and subsets of images, for robust predictions of tumour regions. Noise elimination is achieved with Convolutional Conditional Random Fields. Two open datasets are used to evaluate the proposed method: the ACDC@LungHP challenge at ISBI2019 and the DigestPath challenge at MICCAI2019. With a dice coefficient of 79.7 %, the proposed method takes third place in ACDC@LungHP. In DigestPath 2019, the proposed method achieves a dice coefficient 77.3 %. Well-annotated images are an indispensable part of training fully-supervised segmentation strategies. However, large-scale histopathology images are hardly annotated finely in clinical practice. It is common for labels to be of poor quality or for only a few images to be manually marked by experts. Consequently, fully-supervised methods cannot perform well in these cases. Chapter 4 proposes a self-supervised contrast learning for tumour segmentation. A self-supervised cancer segmentation framework is proposed to reduce label dependency. An innovative contrastive learning scheme is developed to represent tumour features based on unlabelled images. Unlike a normal U-Net, the backbone is a patch-based segmentation network. Additionally, data augmentation and contrastive losses are applied to improve the discriminability of tumour features. A convolutional Conditional Random Field is used to smooth and eliminate noise. Three labelled, and fourteen unlabelled images are collected from a private skin cancer dataset called BSS. Experimental results show that the proposed method achieves better tumour segmentation performance than other popular self-supervised methods. However, by evaluated on the same public dataset as chapter 3, the proposed self-supervised method is hard to handle fine-grained segmentation around tumour boundaries compared to the supervised method we proposed. Chapter 5 proposes a sketch-based weakly-supervised tumour segmentation method. To segment tumour regions precisely with coarse annotations, a sketch-supervised method is proposed, containing a dual CNN-Transformer network and a global normalised class activation map. CNN-Transformer networks simultaneously model global and local tumour features. With the global normalised class activation map, a gradient-based tumour representation can be obtained from the dual network predictions. We invited experts to mark fine and coarse annotations in the private BSS and the public PAIP2019 datasets to facilitate reproducible performance comparisons. Using the BSS dataset, the proposed method achieves 76.686 % IOU and 86.6 % Dice scores, outperforming state-of-the-art methods. Additionally, the proposed method achieves a Dice gain of 8.372 % compared with U-Net on the PAIP2019 dataset. The thesis presents three approaches to segmenting cancers from histology images: fully-supervised, unsupervised, and weakly supervised methods. This research effectively segments tumour regions based on histopathological annotations and well-designed modules. Our studies comprehensively demonstrate label-effective automatic histopathological image segmentation. Experimental results prove that our works achieve state-of-the-art segmentation performances on private and public datasets. In the future, we plan to integrate more tumour feature representation technologies with other medical modalities and apply them to clinical research

    Machine Learning Approaches for the Prioritisation of Cardiovascular Disease Genes Following Genome- wide Association Study

    Get PDF
    Genome-wide association studies (GWAS) have revealed thousands of genetic loci, establishing itself as a valuable method for unravelling the complex biology of many diseases. As GWAS has grown in size and improved in study design to detect effects, identifying real causal signals, disentangling from other highly correlated markers associated by linkage disequilibrium (LD) remains challenging. This has severely limited GWAS findings and brought the method’s value into question. Although thousands of disease susceptibility loci have been reported, causal variants and genes at these loci remain elusive. Post-GWAS analysis aims to dissect the heterogeneity of variant and gene signals. In recent years, machine learning (ML) models have been developed for post-GWAS prioritisation. ML models have ranged from using logistic regression to more complex ensemble models such as random forests and gradient boosting, as well as deep learning models (i.e., neural networks). When combined with functional validation, these methods have shown important translational insights, providing a strong evidence-based approach to direct post-GWAS research. However, ML approaches are in their infancy across biological applications, and as they continue to evolve an evaluation of their robustness for GWAS prioritisation is needed. Here, I investigate the landscape of ML across: selected models, input features, bias risk, and output model performance, with a focus on building a prioritisation framework that is applied to blood pressure GWAS results and tested on re-application to blood lipid traits

    Smart Farm-Care using a Deep Learning Model on Mobile Phones

    Get PDF
    Deep learning and its models have provided exciting solutions in various image processing applications like image segmentation, classification, labeling, etc., which paved the way to apply these models in agriculture to identify diseases in agricultural plants. The most visible symptoms of the disease initially appear on the leaves. To identify diseases found in leaf images, an accurate classification system with less size and complexity is developed using smartphones. A labeled dataset consisting of 3171 apple leaf images belonging to 4 different classes of diseases, including the healthy ones, is used for classification. In this work, four variants of MobileNet models - pre-trained on the ImageNet database, are retrained to diagnose diseases. The model’s variants differ based on their depth and resolution multiplier. The results show that the proposed model with 0.5 depth and 224 resolution performs well - achieving an accuracy of 99.6%. Later, the K-means algorithm is used to extract additional features, which helps improve the accuracy to 99.7% and also measures the number of pixels forming diseased spots, which helps in severity prediction. Doi: 10.28991/ESJ-2023-07-02-013 Full Text: PD

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    The role of artificial intelligence-driven soft sensors in advanced sustainable process industries: a critical review

    Get PDF
    With the predicted depletion of natural resources and alarming environmental issues, sustainable development has become a popular as well as a much-needed concept in modern process industries. Hence, manufacturers are quite keen on adopting novel process monitoring techniques to enhance product quality and process efficiency while minimizing possible adverse environmental impacts. Hardware sensors are employed in process industries to aid process monitoring and control, but they are associated with many limitations such as disturbances to the process flow, measurement delays, frequent need for maintenance, and high capital costs. As a result, soft sensors have become an attractive alternative for predicting quality-related parameters that are ‘hard-to-measure’ using hardware sensors. Due to their promising features over hardware counterparts, they have been employed across different process industries. This article attempts to explore the state-of-the-art artificial intelligence (Al)-driven soft sensors designed for process industries and their role in achieving the goal of sustainable development. First, a general introduction is given to soft sensors, their applications in different process industries, and their significance in achieving sustainable development goals. AI-based soft sensing algorithms are then introduced. Next, a discussion on how AI-driven soft sensors contribute toward different sustainable manufacturing strategies of process industries is provided. This is followed by a critical review of the most recent state-of-the-art AI-based soft sensors reported in the literature. Here, the use of powerful AI-based algorithms for addressing the limitations of traditional algorithms, that restrict the soft sensor performance is discussed. Finally, the challenges and limitations associated with the current soft sensor design, application, and maintenance aspects are discussed with possible future directions for designing more intelligent and smart soft sensing technologies to cater the future industrial needs
    • …
    corecore