587 research outputs found

    Computers in Biology and Medicine / Survey on computer aided decision support for diagnosis of celiac disease

    Get PDF
    Celiac disease (CD) is a complex autoimmune disorder in genetically predisposed individuals of all age groups triggered by the ingestion of food containing gluten. A reliable diagnosis is of high interest in view of embarking on a strict gluten-free diet, which is the CD treatment modality of first choice. The gold standard for diagnosis of CD is currently based on a histological confirmation of serology, using biopsies performed during upper endoscopy. Computer aided decision support is an emerging option in medicine and endoscopy in particular. Such systems could potentially save costs and manpower while simultaneously increasing the safety of the procedure. Research focused on computer-assisted systems in the context of automated diagnosis of CD has started in 2008. Since then, over 40 publications on the topic have appeared. In this context, data from classical flexible endoscopy as well as wireless capsule endoscopy (WCE) and confocal laser endomicrosopy (CLE) has been used. In this survey paper, we try to give a comprehensive overview of the research focused on computer-assisted diagnosis of CD.FWF 24366(VLID)223161

    A REST-based framework to support non-invasive and early coeliac disease diagnosis

    Get PDF
    The health sector has traditionally been one of the early adopters of databases, from the most simple Electronic Health Record (formerly Computer-Based Patient Record) systems in use in general practice, hospitals and intensive care units to big data, multidata based systems used to support diagnosis and care decisions. In this paper we present a framework to support non-invasive and early diagnosis of coeliac disease. The proposed framework makes use of well-known technologies and techniques, both hardware and software, put together in a novel way. The main goals of our framework are: (1) providing users with a reliable and fast repository of a large amount of data; (2) to make such repository accessible by means of a suitable API in multiple modes, such as intuitive web-based or mobile visual interfaces; (3) to allow for data processing and analysis, as a basis for decision support systems

    Detection of duodenal villous atrophy on endoscopic images using a deep learning algorithm

    Get PDF
    Background and aims Celiac disease with its endoscopic manifestation of villous atrophy is underdiagnosed worldwide. The application of artificial intelligence (AI) for the macroscopic detection of villous atrophy at routine esophagogastroduodenoscopy may improve diagnostic performance. Methods A dataset of 858 endoscopic images of 182 patients with villous atrophy and 846 images from 323 patients with normal duodenal mucosa was collected and used to train a ResNet 18 deep learning model to detect villous atrophy. An external data set was used to test the algorithm, in addition to six fellows and four board certified gastroenterologists. Fellows could consult the AI algorithm’s result during the test. From their consultation distribution, a stratification of test images into “easy” and “difficult” was performed and used for classified performance measurement. Results External validation of the AI algorithm yielded values of 90 %, 76 %, and 84 % for sensitivity, specificity, and accuracy, respectively. Fellows scored values of 63 %, 72 % and 67 %, while the corresponding values in experts were 72 %, 69 % and 71 %, respectively. AI consultation significantly improved all trainee performance statistics. While fellows and experts showed significantly lower performance for “difficult” images, the performance of the AI algorithm was stable. Conclusion In this study, an AI algorithm outperformed endoscopy fellows and experts in the detection of villous atrophy on endoscopic still images. AI decision support significantly improved the performance of non-expert endoscopists. The stable performance on “difficult” images suggests a further positive add-on effect in challenging cases

    Novel Endoscopic Techniques in Celiac Disease

    Get PDF
    Celiac disease (CD) is a systemic, immune‐mediated illness that primarily affects the small bowel. A few decades ago, in the era of Watson and Crosby capsules, we used to sample the small bowel without even looking at it. Nowadays, with the continuous developing field of digestive endoscopy, we can even see the duodenal villi up closely, allowing for an optical, real‐time diagnosis of villous atrophy. Advanced endoscopic techniques such as magnification, chromoendoscopy (dye‐based and digital), water immersion, confocal endomicroscopy, endocytoscopy, and optical coherence tomography (OCT) have been evaluated in CD with good results: good agreement with histology, allowing for targeted biopsies and a reduction in the number of biopsies needed for diagnosis. Moreover, with the growing use of open‐access endoscopy in many parts of the world, endoscopy is now contributing to increasing the diagnostic rate of CD, by recognition of endoscopic markers in patients without clinical suspicion of this disease. This is however an observer‐dependent method; to overcome the endoscopists subjectiveness in assessing villous atrophy, in the last years, many papers have looked at means of computerized analysis of endoscopic images. Currently available data show that these automated, quantitative methods hold very promising for the future

    Precision medicine and machine learning towards the prediction of the outcome of potential celiac disease

    Get PDF
    Potential Celiac Patients (PCD) bear the Celiac Disease (CD) genetic predisposition, a significant production of antihuman transglutaminase antibodies, but no morphological changes in the small bowel mucosa. A minority of patients (17%) showed clinical symptoms and need a gluten free diet at time of diagnosis, while the majority progress over several years (up to a decade) without any clinical problem neither a progression of the small intestine mucosal damage even when they continued to assume gluten in their diet. Recently we developed a traditional multivariate approach to predict the natural history, on the base of the information at enrolment (time 0) by a discriminant analysis model. Still, the traditional multivariate model requires stringent assumptions that may not be answered in the clinical setting. Starting from a follow-up dataset available for PCD, we propose the application of Machine Learning (ML) methodologies to extend the analysis on available clinical data and to detect most influent features predicting the outcome. These features, collected at time of diagnosis, should be capable to classify patients who will develop duodenal atrophy from those who will remain potential. Four ML methods were adopted to select features predictive of the outcome; the feature selection procedure was indeed capable to reduce the number of overall features from 85 to 19. ML methodologies (Random Forests, Extremely Randomized Trees, and Boosted Trees, Logistic Regression) were adopted, obtaining high values of accuracy: all report an accuracy above 75%. The specificity score was always more than 75% also, with two of the considered methods over 98%, while the best performance of sensitivity was 60%. The best model, optimized Boosted Trees, was able to classify PCD starting from the selected 19 features with an accuracy of 0.80, sensitivity of 0.58 and specificity of 0.84. Finally, with this work, we are able to categorize PCD patients that can more likely develop overt CD using ML. ML techniques appear to be an innovative approach to predict the outcome of PCD, since they provide a step forward in the direction of precision medicine aimed to customize healthcare, medical therapies, decisions, and practices tailoring the clinical management of PCD children

    Rationale for Timing of Follow-Up Visits to Assess Gluten-Free Diet in Celiac Disease Patients Based on Data Mining

    Get PDF
    The assessment of compliance of gluten-free diet (GFD) is a keystone in the supervision of celiac disease (CD) patients. Few data are available documenting evidence-based follow-up frequency for CD patients. In this work we aim at creating a criterion for timing of clinical follow-up for CD patients using data mining. We have applied data mining to a dataset with 188 CD patients on GFD (75% of them are children below 14 years old), evaluating the presence of gluten immunogenic peptides (GIP) in stools as an adherence to diet marker. The variables considered are gender, age, years following GFD and adherence to the GFD by fecal GIP. The results identify patients on GFD for more than two years (41.5% of the patients) as more prone to poor compliance and so needing more frequent follow-up than patients with less than 2 years on GFD. This is against the usual clinical practice of following less patients on long term GFD, as they are supposed to perform better. Our results support different timing follow-up frequency taking into consideration the number of years on GFD, age and gender. Patients on long term GFD should have a more frequent monitoring as they show a higher level of gluten exposure. A gender perspective should also be considered as non-compliance is partially linked to gender in our results: Males tend to get more gluten exposure, at least in the cultural context where our study was carried out. Children tend to perform better than teenagers or adultMinisterio de EconomĂ­a y Competitividad TIN2017-88209-C2-2-RJunta de AndalucĂ­a US-126334

    World Journal of Gastroenterology / Computer-aided texture analysis combined with experts' knowledge : improving endoscopic celiac disease diagnosis

    Get PDF
    AIM: To further improve the endoscopic detection of intestinal mucosa alterations due to celiac disease (CD). METHODS: We assessed a hybrid approach based on the integration of expert knowledge into the computer-based classification pipeline. A total of 2835 endoscopic images from the duodenum were recorded in 290 children using the modified immersion technique (MIT). These children underwent routine upper endoscopy for suspected CD or non-celiac upper abdominal symptoms between August 2008 and December 2014. Blinded to the clinical data and biopsy results, three medical experts> visually classified each image as normal mucosa (Marsh-0) or villous atrophy (Marsh-3). The experts decisions were further integrated into state-of-the-art texture recognition systems. Using the biopsy results as the reference standard, the classification accuracies of this hybrid approach were compared to the experts diagnoses in 27 different settings. RESULTS: Compared to the experts diagnoses, in 24 of 27 classification settings (consisting of three imaging modalities, three endoscopists and three classification approaches), the best overall classification accuracies were obtained with the new hybrid approach. In 17 of 24 classification settings, the improvements achieved with the hybrid approach were statistically significant (P < 0.05). Using the hybrid approach classification accuracies between 94% and 100% were obtained. Whereas the improvements are only moderate in the case of the most experienced expert, the results of the less experienced expert could be improved significantly in 17 out of 18 classification settings. Furthermore, the lowest classification accuracy, based on the combination of one database and one specific expert, could be improved from 80% to 95% (P < 0.001). CONCLUSION: The overall classification performance of medical experts, especially less experienced experts, can be boosted significantly by integrating expert knowledge into computer-aided diagnosis systems.KLI 429-B13(VLID)215382

    Generic Feature Learning for Wireless Capsule Endoscopy Analysis

    Full text link
    The interpretation and analysis of wireless capsule endoscopy (WCE) recordings is a complex task which requires sophisticated computer aided decision (CAD) systems to help physicians with video screening and, finally, with the diagnosis. Most CAD systems used in capsule endoscopy share a common system design, but use very different image and video representations. As a result, each time a new clinical application of WCE appears, a new CAD system has to be designed from the scratch. This makes the design of new CAD systems very time consuming. Therefore, in this paper we introduce a system for small intestine motility characterization, based on Deep Convolutional Neural Networks, which circumvents the laborious step of designing specific features for individual motility events. Experimental results show the superiority of the learned features over alternative classifiers constructed using state-of-the-art handcrafted features. In particular, it reaches a mean classification accuracy of 96% for six intestinal motility events, outperforming the other classifiers by a large margin (a 14% relative performance increase)
    • 

    corecore