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Abstract: The assessment of compliance of gluten-free diet (GFD) is a keystone in the supervision of
celiac disease (CD) patients. Few data are available documenting evidence-based follow-up frequency
for CD patients. In this work we aim at creating a criterion for timing of clinical follow-up for CD
patients using data mining. We have applied data mining to a dataset with 188 CD patients on
GFD (75% of them are children below 14 years old), evaluating the presence of gluten immunogenic
peptides (GIP) in stools as an adherence to diet marker. The variables considered are gender, age,
years following GFD and adherence to the GFD by fecal GIP. The results identify patients on GFD for
more than two years (41.5% of the patients) as more prone to poor compliance and so needing more
frequent follow-up than patients with less than 2 years on GFD. This is against the usual clinical
practice of following less patients on long term GFD, as they are supposed to perform better. Our
results support different timing follow-up frequency taking into consideration the number of years
on GFD, age and gender. Patients on long term GFD should have a more frequent monitoring as
they show a higher level of gluten exposure. A gender perspective should also be considered as
non-compliance is partially linked to gender in our results: Males tend to get more gluten exposure,
at least in the cultural context where our study was carried out. Children tend to perform better than
teenagers or adults.

Keywords: celiac disease; data mining gluten free diet; gluten proteins; immunogenicity; evidence-
based practice; case management; treatment adherence and compliance

1. Introduction

Celiac disease (CD) is a chronic systemic immune-mediated condition that occurs in
a genetically susceptible host, produced by the ingestion of nutritional gluten, the major
protein component in wheat and other related cereals [1]. It is one of the most common
disorders, involving around 1% of the general population and can occur at any age [2]. CD
is characterized by the presence of a wide variety of CD-specific antibodies, enteropathy,
gluten-dependent clinical expressions, and HLA-DQ2 or HLA-DQ8 haplotypes [3–5].

A lifetime gluten-free diet (GFD) is nowadays the only treatment for CD. Non ex-
posure to gluten is believed to achieve mucosal recovery, resolve symptoms, and avoid
the difficulties associated to non-treated CD [6]. Even though following a GFD might
seem easy, it becomes a challenge in the gluten-rich Western diet. Indeed, it is increasingly
recognized that many CD patients on a presumably GFD may have ongoing symptoms
and/or persistent villous atrophy. Therefore, adherence to the GFD needs to be assessed to
guarantee potential effects on the patient’s health condition and quality of life [5].

There is no consensus regarding the best means for assessing compliance or the op-
timal frequency of monitoring the GFD. Despite the availability of diverse traditional
GFD adherence markers, such as dietary tests or serology, none of them are an accurate
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evaluation method of the dietary obedience [7,8]. As a result, finding gluten immuno-
genic peptides (GIP) in human urine and stools have appeared as novel markers for direct
verification of GFD compliance [9–11]. GIP show the capacity to resist to gastrointestinal
absorption and accounts for immunogenic reaction in T cells of patients with CD. Differ-
ently to traditional methods for the monitoring of GFD obedience, which only measures
the consequences of GFD non-adherence, this non-intrusive method allows for a direct
and quantitative evaluation of gluten exposure [11]. Using this new methodology, GIP
were detected in 30–60% of CD patients on a GFD and for whom no gluten exposure was
identified by dietary questionnaire or serological tests [1].

It is generally recommended that CD patients have careful long-term follow-up. Sil-
vester et al. [12], conclude that the existing guidelines regarding CD patients follow-up pro-
posed very different recommendations and many were not evidence-based. This study was
based on gastroenterological societies and associations guidelines and recommendations by
specialists obtained from MEDLINE and other Internet search engines. Javorsky, et al. [13]
searched the PubMed database for works related to evidence-based guidelines on follow-up
intervals for the 5 topmost chronic conditions according to the highest amount of patient
attendance in 2010 in the USA (back problems, arthritis, hypertension, mental disorders,
chronic obstructive pulmonary disease/asthma), with some guidelines attempting to rec-
ommend specific follow-up intervals, but not being evidence-based. They did not propose
intervals based on clinical data or failed to reveal on what timing the visits were based.
However, both works conclude that time frequency of visits intervals is relevant. Therefore,
prospective studies appear as necessary to create cost-effective, rational, and risk-stratified
guidelines for long-term follow-up of these patients [12].

Data mining can be defined as the automatic analysis of data sources to identify models
representing knowledge [14]. Clinical data mining is concerned with the application of
data mining techniques to clinical data [15], which in turn allows the creation of models of
knowledge and aids clinical decision making [16].

In this work, we aimed at providing grounds for evidence-based follow-up frequency
suggestions for CD patients, obtained by applying clinical data mining to a dataset extracted
from a cohort of 188 CD patients (75% of them are children below 14 years old), whose
GFD compliance was assessed. The presence of GIP in stools was used as a distinctive
biomarker of GFD adherence in this series. Other variables considered were gender, age
and length of ongoing GFD.

2. Materials and Methods

This work is based on the analysis of a retrospective dataset previously collected in
a partially blinded nonrandomized, multicenter study including 188 CD patients (75%
of them are children below 14 years old) following a GFD recruited between 2012 and
2014 at 13 Spanish hospitals [1]. The trial registration number is NCT02711397. This study
was authorized by the ethics committee of each involved institution and informed written
consent was acquired from participants over 18 years old and from parents or legal keepers
for participants below 18 years old. The group under study was composed of celiac patients
on GFD for at least 1 year before being included in the study. Inclusion criteria restricted
enrollment to those who had an HLA-DQ2 or HLA-DQ8 haplotype test and a histologically
nonstandard duodenal biopsy (grade Marsh IIIB or IIIC) at the time of diagnosis, as well
as positive serum anti-endomysium IgA antibodies and/or anti-tissue transglutaminase
(anti-tTG) IgA antibodies.

Adherence to GFD was evaluated by GIP detection. The concentration of GIP in feces
was assessed with sandwich enzyme-linked immunosorbent assay (ELISA) [17] using the
iVYDAL In Vitro Diagnostics iVYLISA GIP-S Kit (Biomedal S.L., Seville, Spain). Patients
were also measured on a four-day food record dietitian review and celiac serology (tissue
transglutaminase and deamidated gliadin peptide antibodies). Information regarding
the date of CD diagnosis, duration of the GFD, and demographic and clinical data were
also retrieved.
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Data Mining Methods

Data Mining comprises two main tasks: Prediction (supervised learning) and descrip-
tion (unsupervised learning) [18]. Prediction attempts to predict some or several unknown
variables from other known ones. The description, however, tries to look for patterns that
describe the data in a way that humans can understand.

Within the scope of prediction there are two fundamental tasks: Classification and
regression. Classification tries to assign a target variable that belongs to a dataset [19] while
regression aims to predict continuous values [20].

We can find a great variety of classification algorithms in the literature [19]. This
work has applied the C4.5 algorithm, which according to Wu et al. [21] is one of the top 10
data mining algorithms. This algorithm is one of the best-known ones capable of building
decision trees. It was implemented by Quinlan in [22] and is an extension to the ID3 [23]
algorithm also implemented by him.

Decision trees can be defined as a classification method that, given a dataset, recur-
sively divides it into subsets using decisions specified at each branch or node in the tree.
As we can see in the results shown in Figure 1, the parts of the tree are a root node (made
up of all data), inner nodes (branches), and end nodes (leaves). A register from a dataset is
classified by successively dividing, following the decision structure defined in the tree, and
the target label is assigned to each register according to the node of the leaf on which the
register is situated [24,25].
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Figure 1. Decision tree obtained by use of the C4.5 algorithm. GFD stands for Gluten Free Diet.

In Figure 1 we show the tree obtained with the dataset under study. Each register
stores information related to the variables under study: Gender of the patient, years
following GFD diet, age of the subject when collecting the sample and results positive or
negative of the fecal GIP. According to the tree, if the patient is 3 years old or below, the
GFD is correctly being followed, but if the age is over 3 years old and has been more than
2 years on GFD, the GFD diet is not correctly followed.

The algorithm C4.5 is described below. For a set S registers, C4.5 creates the initial tree
using the divide-and-conquer strategy in this way [21,26]:

• Case 1. All the registers in S belong to the same target label or S is not big enough.
Then the tree is created with only one leaf, with the target label more frequent S.
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• Case 2. In other cases, select a test base on a single variable with two or more outcomes.
This test becomes the root of the tree, and one branch is created for each outcome.
Then, split S into subsets S1, S2 . . . depending to the outcome for each register, and
apply the same procedure recursively to each subset.

3. Results and Discussion

Data mining techniques are becoming very popular in clinical data analysis, as a
complement to the classically used statistical analysis. Furthermore, data mining is proving
to be extremely useful when the volume of data increases [27]. In this era of computer-
aided health care, the management of follow-up visits and frequency with an evidence-
based approach has the power to decrease costs and improve the population access to the
health system [13].

The dataset collected includes four variables. The first, gender, indicates the gender of
the patient, the second, years, reports the years that the patient has been on GFD, the third,
age, the age of the patient when the sample was collected and finally, results, represents the
result of the fecal GIP as positive or negative. This test provides information on whether
fecal gluten peptides have been found, so that we can know for sure whether, or not, the
subject has followed medical recommendations about not taking gluten [1].

Initially an exploratory analysis of the data was carried out to get an overall vision of
the distribution of each of the four variables (see Figure 2).
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Figure 2. Distribution of the four variables.

Data showed to be unbalanced in regards to GIP (70.23% negatives and 29.67% pos-
itives) and gender (59.34% females and 40.66% males). Regarding years on GFD, most
of the samples correspond to short term GFD followers. The age of the samples is in the
interval (0, 20) for most of the samples.

Data where then analyzed using the C4.5 algorithm. It was executed with different
sets of parameters in order to obtain the best resulting tree in terms of area under the curve
(AUC). AUC ranks in the (0, 1) interval, with 1 being the best value. It tells us how capable
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a model is of distinguishing a target variable, positive or negative result for the fecal GIP in
our case. The resulting tree can be seen in Figure 1.

This tree is the one best representing the dataset, with an AUC value of 0.7. According
to this tree, patients are more adherent following GFD as usually children below 3 years age,
women with less than 2 years on GFD, and men up to 13 years old with less than 2 years
on GFD. Patients not correctly following the GFD can be characterized as CD patients
over 3 years old, with more than 2 years of GFD, and men with less than 2 years of GFD
but more than 13 years old. This decision tree identifies patients on the GFD for a longer
time, as more prone to poor compliance and perhaps needing more frequent follow-up.
These results concur with the results obtained previously by Comino et.al. in [1], in which
they identified 13 years old as an age point for increasing dietary transgressions, as well
as gender as a determining factor for these transgressions (male at certain ages are more
prone to not correctly follow GFD).

This is against the most usual clinical practice of following less the cohort of patients
on long term GFD, as they are supposed to perform better.

Current Recommendations for Frequency of Follow-Up in CD

The current clinical practice guidelines on CD do not offer a detailed background
with regard to recommendations about how often patients are met for follow-up. These
recommendations are based simply on suggestions of periodic visits, usually, or on an
annual basis [28–33]. Despite the efforts already made to prevent or diagnose the CD
early [34], there is no mention of clinical practice guidelines performing a more thorough
control in adolescent patients, despite teenage being a known factor of increased risk to
be exposed to gluten intake. The rationale for follow-up frequency in chronic diseases
is crucial to maximize the quality of patient care. CD is a chronic disease increasing in
frequency in different geographic areas [2]. In CD, non-exposure to gluten is the only
“medication”. Norris et al. [35] highlighted that compliance is related to how individuals
think about their personal need for a treatment in relation to their fears about the potential
adverse effects. Reminders or repeated interactions with health personnel may improve
compliance by building a therapeutic relationship. Hall et al. describe such process on
lengthy therapies such as the one used on physical rehabilitation [36].

Some studies considering the differences linked to gender in CD have been published.
Lee et al., in a study carried out by Columbia University, [37] describe gender differences
as being highly significant in quality of life perceived. As examples, eating out is a problem
for 20% of men and 65% of women, traveling for 18% of men and 64% of women, family
life for 18% of men and 49% of women, and diet obedience, regarding the professional
career, is a problem for 15% of men and 26% of women. It may be linked to a different level
of awareness about the impact of gluten exposure. Despite these significant gender-specific
differences, there is no differentiation on the follow up pathways [37]. Does this difference
have an actual impact on long term outcomes?

None of the published guidelines consider this gender perspective. It seems sensible
to assume that a better avoidance of gluten exposure will render better health outcomes.
From our understanding, this is the first time a research work applies data mining to
determine follow-up frequency for celiac disease. Although there have been many studies
on advances in diagnosis and treatment, the volume of research on patient follow-up is
significantly smaller. Scrutiny of performance of medical care can be improved by use of
better data analysis. The classic methods of follow-up, serology and dietary surveys, do
not present the accuracy needed to measure long term compliance. But in spite of these,
most centers keep on relying on it for their decision-making process during follow up
without tailoring their care to the actual profile of risk of gluten exposure. The frequency of
follow-up has not been analyzed in depth and has been based on general recommendations,
without individualization. Appropriate follow-up frequency must be established based
on healthcare outcomes. The idea that “one size fits all” proves to be incorrect for follow-
up strategies.
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4. Conclusions

GFD treatment is very difficult to satisfy, in spite of all efforts for adherence to it, since
gluten is present in most of the food we intake. The general population does not need
to adhere to GFD, making the coexistence with celiac population a risk. In this work, we
have been able to characterize the patients who are more adherent and those who do not
correctly follow the GFD based on the four variables studied (gender, age, years on GFD,
and fecal GIP).

The cohort of patients on long term GFD should have a more frequent monitoring as
they tend to show higher levels of gluten exposure upon longer time on GFD. Males tend
to get more gluten exposure when compared with females, at least in the cultural context
where our study was carried out.

Data mining techniques applied to records could improve the identification of celiac
patients who regularly transgress (voluntarily or involuntarily) whilst following a GFD.
It would help to avoid more serious consequences due to persistent exposure to gluten.
Timing of follow-up frequency should be different for patients newly diagnosed than for
patients on the GFD for a longer period. A gender perspective should be considered as the
risk off non-compliance is partially linked to gender in our results. CD management can
greatly benefit from evidence-based timing of follow-up visits.
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