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Abstract  

Background and aims:  

Celiac disease with its endoscopic manifestation of villous atrophy is underdiagnosed 

worldwide. The application of artificial intelligence (AI) for the macroscopic detection of villous 

atrophy at routine esophagogastroduodenoscopy may improve diagnostic performance.  

 

Methods:  

A dataset of 858 endoscopic images of 182 patients with villous atrophy and 846 images from 

323 patients with normal duodenal mucosa was collected and used to train a ResNet 18 deep 

learning model to detect villous atrophy. An external data set was used to test the algorithm, 

in addition to six fellows and four board certified gastroenterologists. Fellows could consult the 

AI algorithm’s result during the test. From their consultation distribution, a stratification of test 

images into “easy” and “difficult” was performed and used for classified performance 

measurement.  

 

Results:  

External validation of the AI algorithm yielded values of 90 %, 76 %, and 84 % for sensitivity, 

specificity, and accuracy, respectively. Fellows scored values of 63 %, 72 % and 67 %, while 

the corresponding values in experts were 72 %, 69 % and 71 %, respectively. AI consultation 

significantly improved all trainee performance statistics. While fellows and experts showed 

significantly lower performance for “difficult” images, the performance of the AI algorithm was 

stable.  

 

Conclusion:  

In this study, an AI algorithm outperformed endoscopy fellows and experts in the detection of 

villous atrophy on endoscopic still images. AI decision support significantly improved the 

performance of non-expert endoscopists. The stable performance on “difficult” images 

suggests a further positive add-on effect in challenging cases.  
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Introduction 

Celiac disease, a disorder caused by an inflammatory reaction of the small intestinal mucosa 

to ingested gluten in genetically susceptible persons, has a worldwide prevalence of 1.4% [1]. 

While the prevalence is reported to be rising, the disease continues to be underreported [2-4] 

and more than 50% of cases are undiagnosed worldwide. This seems to be due to its 

unspecific symptoms [5], as well as the endoscopic manifestation (small intestinal villous 

atrophy), which is often subtle and easily overlooked at inspection [6]. Villous atrophy is most 

often caused by celiac disease, but can also occur in other disorders, such as tropical sprue 

or Whipple’s disease [7]. Endoscopic markers of villous atrophy include a mosaic pattern and 

deep groves of the mucosa, scalloping and, in severe cases, loss of duodenal folds, as well as 

visible submucosal vessels and duodenal erosions [8]. At least 23% of histologically and 

serologically confirmed cases of villous atrophy and celiac disease showed no macroscopic 

signs of villous atrophy during conventional endoscopic examination [9]. The histological 

examination shows villous effacement, crypt hypertrophy and an accumulation of lymphocytes 

in the mucosa and is most often classified by the Marsh-Oberhuber classification [10, 11]. As 

70% of patients are diagnosed as adults [12] and the time between the onset of symptoms and 

the definitive diagnosis amounts to 11 years on average [13], there is an apparent need for 

scientific innovation into the diagnostic yield of this disease. Blood serology can make the 

diagnosis with high accuracy [5], however this test is only applied if celiac disease is 

considered by the clinician. Esophagogastroduodenoscopy (EGD) on the other hand is a 

diagnostic tool that is performed frequently for upper GI conditions unrelated to celiac disease. 

It stands to reason that villous atrophy may be present concomitantly in a relevant percentage 

of these examinations. To improve macroscopic detection in these cases by modern 

techniques of image analysis may be scientifically and clinically interesting.  

Deep learning algorithms have been developed with great success for the recognition of 

colorectal polyps during colonoscopy [14, 15] as well as other gastrointestinal disorders [16]. 

We therefore aimed to design a deep learning algorithm for the detection of villous atrophy on 

images of the duodenum and jejunum.  

Various national guidelines give recommendations concerning the training of endoscopists in 

their respective countries. In Great Britain independent performance of EGD is permitted after 

250 cases under supervision if certain criteria are met [17]. Considering the prevalence of 

celiac disease, it is likely that the visual diagnosis of villous atrophy is often made without 

supervision for the first time. This fact further suggests that an artificial intelligence clinical 

decision support solution (AI-CDSS) for the detection of villous atrophy and celiac disease may 

have a potential clinical benefit, especially for gastroenterology fellows in training.  
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Methods 

The main objective of this study was to demonstrate that an AI algorithm detects villous atrophy 
with higher sensitivity than trainees in endoscopy. Sensitivities of 85% and 70% were assumed 
for the AI algorithm and trainees, respectively. To show this difference with a power of 80% 
and a p-value of < 5 % a sample size of greater than 131 test images per group was calculated.  

858 still images of the duodenum or jejunum from 182 patients with histologically confirmed  
villous atrophy (VA) (Marsh-classification grade III) [10] were retrospectively extracted from 
Augsburg University Hospital database for the years 2010 to 2021. 846 further images from 
323 patients with macroscopically and histologically confirmed non-atrophic small intestinal 
mucosa (controls) were extracted for the same period. Patients with known celiac disease 
under gluten free diet were excluded from the control data set. Images were recorded during 
routine clinical practice using Olympus gastroscopes (GIF-HQ190, GIF-HQ-180, GIF-HQ1500; 
Olympus Medical Systems, Tokyo, Japan). At least one image and at most 69 images were 
included per patient. Characteristics of the VA and control datasets are shown in Table 1.  

The training dataset was split into five equal-sized subsets. Splitting the images from one 

patient into multiple subsets was avoided. To classify these images, a Convolutional Neural 

Network (CNN) was used as a model. This type of network consists of a sequence of 

convolutional and non-linear layers. In this case the ResNet architecture was employed [18]. 

The model uses so-called skip-connections, which allow to propagate low-level features. For 

this project, a ResNet with 18 layers (ResNet18) was chosen [19]. This model was trained with 

the images of four subsets and then validated internally with the remaining subset (five-fold 

cross-validation). This process was repeated for each subset, such that each subset was 

validated once. An additional external test data set was obtained from Jena University Hospital, 

Jena, Germany. Following the same rules of inclusion as for the training data, the test set 

comprised 194 VA images and 155 control images. Indications for EGDs in adults in 

descending order of frequency included abdominal pain, diarrhea, anemia, Crohn’s disease, 

non-cardiac chest pain and suspected mastocytosis. In children, EGD was only performed for 

the clinical suspicion of celiac disease, which included abdominal discomfort, diarrhea, anemia 

and failure to thrive, as well as positive serology. Further details of this dataset are shown in 

Table 2. Images were recorded during clinical practice using Olympus gastroscopes (GIF-

HQ190, GIF-HQ185, GIF-HQ1500; Olympus Medical Systems, Tokyo, Japan).  

The trained AI algorithm, as well as four board certified gastroenterologists (experts) with > 

1000 EGDs and six gastroenterology fellows (trainees) with an experience of 100 – 1000 EGDs 

were tested on the external test data set. The mean endoscopic experience of trainees ± 

standard deviation was 278 ± 173 examinations at the time of the study. A binary decision for 

a macroscopic suspicion of villous atrophy and subsequent indication for duodenal biopsy was 

asked for each image. The trainees were given access to the results of the AI algorithm. This 

means that after documentation of their suspected diagnosis, trainees were allowed to consult 

the AI algorithm, whenever they were unsure or in doubt. Consultation of the AI algorithm was 

documented for each test image. Finally, a definitive diagnosis was documented if the AI 

algorithm was consulted. This group was informed about the sensitivity and specificity of the 

AI algorithm on the external data set in advance. For evaluation, trainees were regarded as 

two groups, once before the AI result could be consulted, once after optional consultation of 

the AI algorithm’s result for all test questions. The test images were divided into two 

subcategories: “Easy” images were defined as images for which zero or one trainee consulted 

the AI, “difficult” images were defined as images, for which two or more trainees consulted the 

AI algorithm. 

The categorical variables are expressed as absolute numbers and percentages. Pooled 
sensitivity, specificity and accuracy of each group were determined and are presented as 
percentages. These quality criteria / performance indices were compared between 
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gastroenterologists’ experience levels as well as depending on images’ difficulty within each 
experience level. The different experience levels were compared using the McNemar test [20]. 
The difficulty within each experience level was tested using Fisher's Exact Test. Correction for 
multiple comparisons was performed by the Bonferroni method. A p-value of less than or equal 
to 0.05 was considered statistically significant. Ethics approval was obtained for the entire 
study, from the Ethics Committee of Ludwig-Maximilians-University, Munich (Project Nr: 21-
1215) and for the external data set from the Ethics Committee of Jena University Hospital 
(Registration Nr. 2021-2297). The approval included data acquisition, data processing for the 
development of an AI algorithm and preclinical evaluation of this algorithm.  
 

Results 

The internal cross-validation yielded values of 82 %, 85 % and 84 % for sensitivity, specificity 

and accuracy for the AI algorithm. On the external test data, the AI algorithm achieved values 

of 90 %, 76 %, and 84 % for sensitivity, specificity, and accuracy, respectively. Sensitivities, 

specificities and accuracies of the different groups of endoscopists and the AI algorithm for the 

external test data set are shown in Figure 1. All differences reached statistical significance 

except for the comparisons of specificities of trainees vs. experts and trainees with AI support 

vs. AI alone. 

Within the group trainee with AI support, the AI algorithm’s finding was consulted in 21 % 

(N=438) of overall pooled test questions (N=2094). In 42 % (N=185) of these cases, the AI 

algorithm disagreed with the test subject. In cases of disagreement with the AI finding, the 

trainees changed their final diagnosis in 81 % (N=149). In 92 % (N=139) of these cases, the 

decision change led to the correct diagnosis. In cases of agreement of primary diagnosis and 

AI finding (58%, N=253), the decision was kept in 97% (N=246) of cases and agreement with 

the AI finding led to the right diagnosis in 79% (N=200) of cases.  

Of all 349 test images, 30% (105 images) triggered no consultation of the AI by any of the six 

trainees. For 29 % of the tests (101 images) one trainee consulted the AI, two trainees 

consulted the AI in 28 % of the tests (99 images), three trainees consulted the AI in 11 % (37 

images) and four consulted the AI in 2 % of the tests (7 images). There were no test images, 

for which five or all six of trainees consulted the AI algorithm. Hence, the test images were 

divided into two subcategories: “Easy” images were defined as images for which zero or one 

trainee consulted the AI, “difficult” images were defined as images, for which two or more 

trainees consulted the AI algorithm. Sensitivities, specificities and accuracies for all groups 

after this subdivision are shown in Figure 2. 

 

Discussion 

Detection of villous atrophy, in the vast majority of cases due to celiac disease, by artificial 

intelligence has been attempted by different groups. Gadermayr et al. [21] achieved an 

accuracy of 94 % to 100 % for the detection of villous atrophy during EGD using a combination 

of multi-resolution local binary patterns, improved Fisher vectors and a multi-fractal spectrum 

with expert knowledge. However, this technique requires water immersion of the duodenum 

and the study was conducted in children. Villous atrophy can also be detected on capsule 

endoscopy images with a high accuracy of over 90 % using different forms of artificial 

intelligence [22, 23]. These studies were done in the setting of a high pre-test probability or the 

clinical suspicion of celiac disease. Water immersion of the duodenum, as well as capsule 

endoscopy are not routine examinations, and reserved for particular cases. The aim of the 

current study was the development of an application for routine EGD and for supporting the 

endoscopist in making the incidental diagnosis of villous atrophy. Since celiac disease causes 
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unspecific symptoms, false diagnoses such as gastritis or even IBS may be made, because 

the differential diagnosis of celiac disease was not considered.  

Celiac disease reportedly has a rising prevalence of at least 1 % worldwide, of which more 

than 50 % are undiagnosed [2-4, 24]. According to large epidemiologic studies, patients may 

often present without gastrointestinal symptoms [12] and therefore are difficult to detect 

clinically. In this setting of low pre-test probability for celiac disease, serology testing is rarely 

performed by clinicians. This suggests a potential benefit of an AI-CDSS for the detection of 

villous atrophy and, consequently celiac disease during routine EGD, i.e. in cases, where celiac 

disease is not a probable differential diagnosis before the intervention. The reduction of lag 

time between the onset of symptoms and the final diagnosis by means of an AI application 

may prove valuable: It may reduce the burden of advanced disease und may thus be cost 

effective.  

This study was designed to show a superiority of an AI algorithm over trainees in the detection 

of villous atrophy, which was indeed demonstrated. An improvement of trainee performance 

by AI support was a secondary outcome parameter. A superiority of the AI algorithm over 

experts or a benefit of AI support for this group were considered unlikely, which is why these 

questions were not addressed in the study. The measured difference between AI and experts 

was an unexpected finding, which may generate hypotheses for further research.  

Fellows consulted the AI tool in 21 % of pooled test questions. A subdivision into “easy” and 

“difficult” test images was done according to the frequency of AI consultation by the test 

subjects for a specific test image. The results show a clinically relevant and statistically 

significant difference between “easy” and “difficult” images in all performance parameters and 

for all groups, except for the AI algorithm. With regard to the sensitivity in VA detection by AI, 

there was no statistically significant difference between “easy” and “difficult” images (91 % vs. 

89 %). It classified images, which were easy or difficult for endoscopists to assess, with stable 

performance. Consequently, there may be parameters in the endoscopic image, which cannot 

be detected by the human eye but can be used for diagnosis by an AI algorithm. These results 

suggest a clinical benefit in the detection of villous atrophy (and, thereby, celiac disease) by 

the application of the AI algorithm, especially for endoscopy fellows in training and in 

macroscopically challenging cases.  

This study may have several limitations. While the dataset is comparably large considering the 

rarity of the disease, only cases with a high degree of histologic alterations in the duodenal 

mucosa were included (Marsh III). An increase of mucosal lymphocytes (Marsh I) and the 

proliferation of crypts (Marsh II) were not included, since they are not visible on the 

macroscopic endoscopic image and were rarely found on biopsy in our population (data not 

shown). Mild cases of celiac disease might therefore be missed by the AI algorithm. 

Furthermore, the test decision was based on the inspection of a single duodenal image. This 

practice gives less visual information to endoscopists than they would obtain in a clinical 

setting; their diagnostic capability might be diminished simply due to this circumstance. 

However, also AI performance may be improved upon application to video data. The low 

number of test subjects calls into question if the results can be generalized. In order to 

circumvent this problem, we used statistical methods for low subject numbers (McNemar test) 

and a large test data set (349 test images) for a more accurate measurement of the subjects’ 

performance. A further limitation is the retrospective nature of the data set, which might entail 

a lower image quality, than is standard today, as well as a lack of standardization of image 

collection. However, non-conformity of images provides a more realistic data set, reduces the 

risk of overfitting and improves the robustness of the resulting algorithm.  

The composition of the test dataset with an approximately 50:50 split of VA to control patients 

does not reflect real life, where the true prevalence of celiac disease is 1.4 % [1]. A theoretical 
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test dataset with a spit of 1.4 to 98.6 % and a sufficient number of VA images for statistical 

testing would have required over 10,000 images in the control group. This setting would have 

been impractical for human testing. Therefore, a high prevalence of VA images was tolerated 

in the test.  

Furthermore, the test dataset was created according to the relevant test parameters of 

microscopic villous atrophy and physiological mucosa, resulting in a non-matched dataset with 

a difference in mean age between the groups. Since the study was focused solely on the 

detection of villous atrophy on the endoscopic image, it is unlikely that age disparity impaired 

test validity.     

It could be argued that the disclosure of the AI algorithm’s performance on the test data set to 

endoscopists might have introduced a bias. However, disclosure of accurate information on AI 

performance was considered critical to establishing realistic testing conditions. To minimize a 

possible confounding effect, subjects were left unaware of the fact that the disclosed 

performance was derived from the test data. Furthermore, since results from internal cross 

validation and external validation were similar, a relevant confounding effect was unlikely.   

In summary, AI significantly outperformed endoscopy fellows and experts in the detection of 

villous atrophy and showed stable diagnostic ability in images which were difficult for humans 

to assess. Further clinical studies are needed to evaluate this new technology in real life.   
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Tables and Table and Figure legends:  

Table 1 Villous Atrophy (VA) Set Control Set 

 Patients 
(N=182) 

Images 
(N=858) 

Patients 
(N=323) 

Images 
(N=846) 

< 18 yrs  119 (65.4%) 401 (46.7%) 34 (10.5%) 58 (6.9%) 

> 18 yrs 63 (34.6%) 457 (53.3%) 289 (89.5%) 788 (93.1%) 

Male 71 (39.0%) 319 (37.2%) 155 (48.0%) 419 (49.5%) 

Female 111 (61.0) 539 (62.8%) 168 (52.0%) 427 50.5%) 

WLI mode 751 (87.5%) 764 (90.3%) 

NBI mode 107 (12.5%) 82 (9.7%) 

Near focus mode 43 (5.0%) 52 (6.1%) 

Indigo-carmine staining 123 (14.3%) 19 (2.2%) 

Table 1, Legend: Training data set: Characteristics of included patients and images; WLI, white 

light imaging; NBI, narrow band imaging; percentages are given based on the subsets (VA and 

control); in total 505 patients and 1704 images.  

 

Table 2 Villous Atrophy (VA) Set Control Set 

 Patients 
(N=63) 

Images 
(N=194 

Patients 
(N=65) 

Images 
(N=155) 

< 18 yrs  32 (50.8%) 89 (45.9%) 2 (3.1%) 9 (5.8%) 

≥ 18 yrs 31 (49.2%) 105 (54.1%) 63 (96.9%) 146 (94.2%) 

Mean age ± SD 28.4±23.8  46.4±19.1  

Median age 17  42  

Male 22 (34.9%) 68 (35.1%) 21 (32.3%) 49 (31.6%) 

Female 41 (65.1%) 126 (64.9%) 44 (67.7%) 106 (68.4%) 

WLI mode 190 (97.9%) 152 (98.1%) 

NBI mode 4 (2.1%) 3 (1.9%) 

Near focus mode 9 (4.6%) 6 (3.9%) 

Indigo-carmine staining 0 (0%) 0 (0%) 

Table 2, Legend: External test data set: Characteristics of included patients and images; WLI, 

white light imaging; NBI, narrow band imaging; SD = standard deviation; percentages are given 

based on the subsets (VA and control), in total 128 patients and 349 images.  

 

Legend of figure 1: Sensitivities (A), specificities (B) and accuracies (C) of the different groups 

in the evaluation by the external test set; T: Trainees; T + AI: Trainees with AI support, pooled 

result for all final diagnoses of all test images; E: Experts; AI: result of the AI algorithm.  

 

Legend of figure 2: Sensitivities (A), specificities (B) and accuracies (C) of the different groups 

and for the two subdivisions into “easy” and “difficult” images; easy: white columns; difficult: 

black columns; T: Trainees; T + AI: Trainees with AI support, pooled result for all final 

diagnoses of all test questions; E: Experts; AI: result of the AI algorithm.  

 

Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Abbreviations: AI, artificial intelligence; AI-CDSS, artificial intelligence clinical decision 

support solution; EGD, esophagogastroduodenoscopy; VA, villous atrophy;  
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