4,236 research outputs found

    Wireless Sensor Networks for Detection of IED Emplacement / 14th ICCRTS: C2 and Agility

    Get PDF
    14th International Command and Control Research and Technology Symposium (ICCRTS), June 15-17, 2009, Washington DC.This paper appeared in the Proceedings of the 14th International Command and Control Research and Technology Symposium, Washington, DC, June 2009.We are investigating the use of wireless nonimaging-sensor networks for the difficult problem of detection of suspicious behavior related to IED emplacement. Hardware for surveillance by nonimaging-sensor networks can cheaper than that for visual surveillance, can require much less computational effort by virtue of simpler algorithms, and can avoid problems of occlusion of view that occur with imaging sensors. We report on four parts of our investigation. First, we discuss some lessons we have learned from experiments with visual detection of deliberately-staged suspicious behavior, which suggest that the magnitude of the acceleration vector of a tracked person is a key clue. Second, we describe experiments we conducted with tracking of moving objects in a simulated sensor network, showing that tracking is not always possible even with excellent sensor performance due to the illconditioned nature of the mathematical problems involved. Third, we report on experiments we did with tracking from acoustic data of explosions during a NATO test. Fourth, we report on experiments we did with people crossing a live sensor network. We conclude that nonimaging-sensor networks can detect a variety of suspicious behavior, but implementation needs to address a number of tricky problems.supported in part by the National Science Foundation under the EXP Program and in part by the National Research Council under their Research Associateship Program at the Army Research Laborator

    Device based Multi-User Tracking System using Internet of Things

    Get PDF
    In Light Dependent Resistor (LDR) sensor-based user is localized based on the event and the intensity of the room light when a user enters inside a room and switch ON the lights, the intensity goes high, an entry is noti?ed. An exit is noti?ed when a user switches OFF the light and exit the room. Moreover, the model remains prone to more error in multi user localization because multiple users may enter inside same room at same time and the lights of many rooms remain ON which makes more difficult to localize a user. In order to overcome this ambiguity of light sensors, two passive infrared (PIR) sensor with radio frequency identi?cation (RFID) tag-based model has been proposed, where every user has a tag. In this system, 10 PIR sensors and 5 RFID readers were attached to house room (10.0 m * 6.0m). An entry is noti?ed if the following pattern form, the outer PIR detects a motion and waits for few seconds, next the RFID reader reads the tag given to the user and ?nally the inner PIR detects a motion within the given time delay. An exit of a user is noti?ed only if the pattern from inner PIR to outer PIR is followed with the given time delay. The RFID tag is used to identify which user has entered a room at a particular time and also ensures unauthorized entry. The LDR based system gives accuracy nearby 20% but the multi-person tracking in a binary infrared sensor network-based system gives accuracy near about 90%. In this paper, the proposed PIR sensor along with RFID based indoor navigation system gives accuracy near about 94%.                              &nbsp

    Pervasive surveillance-agent system based on wireless sensor networks: design and deployment

    Get PDF
    Nowadays, proliferation of embedded systems is enhancing the possibilities of gathering information by using wireless sensor networks (WSNs). Flexibility and ease of installation make these kinds of pervasive networks suitable for security and surveillance environments. Moreover, the risk for humans to be exposed to these functions is minimized when using these networks. In this paper, a virtual perimeter surveillance agent, which has been designed to detect any person crossing an invisible barrier around a marked perimeter and send an alarm notification to the security staff, is presented. This agent works in a state of 'low power consumption' until there is a crossing on the perimeter. In our approach, the 'intelligence' of the agent has been distributed by using mobile nodes in order to discern the cause of the event of presence. This feature contributes to saving both processing resources and power consumption since the required code that detects presence is the only system installed. The research work described in this paper illustrates our experience in the development of a surveillance system using WNSs for a practical application as well as its evaluation in real-world deployments. This mechanism plays an important role in providing confidence in ensuring safety to our environment
    corecore