921 research outputs found

    Satellite-derived UV climatology at Escudero station, Antarctic Peninsula

    Get PDF
    We have used data from the Ozone Monitoring Instrument (OMI) aboard NASA's Earth Observing System (EOS) Aura satellite over the period 2004-11 to describe the characteristics of surface ultraviolet (UV) irradiance at Escudero Station (62°12′S, 58°57′W). The station is located on King George Island (northern Antarctic Peninsula). Temperatures in summer are frequently above 0°C, and the surrounding ocean is typically ice-free. We found that the UV irradiance at Escudero is driven by the Antarctic ozone hole (which annually in spring leads to significant variations in the ozone) and by clouds (which are more frequent and have a larger optical depth compared with other Antarctic sites). The combined effect of ozone and clouds led to significant variations in the surface UV. The variability (taken as the standard deviation of the UV estimates retrieved from OMI) is typically greater than 30% at Escudero, but may reach values greater than 50% in spring. The consistency of OMI-derived data was checked by using ground-based spectral measurements carried out under controlled conditions in January 2011. © 2013 Antarctic Science Ltd

    Temporal trends in satellite-derived erythemal UVB and implications for ambient sun exposure assessment

    Get PDF
    Ultraviolet radiation (UVR) has been associated with various health outcomes, including skin cancers, vitamin D insufficiency, and multiple sclerosis. Measurement of UVR has been difficult, traditionally relying on subject recall. We investigated trends in satellite-derived UVB from 1978 to 2014 within the continental United States (US) to inform UVR exposure assessment and determine the potential magnitude of misclassification bias created by ignoring these trends. Monthly UVB data remotely sensed from various NASA satellites were used to investigate changes over time in the United States using linear regression with a harmonic function. Linear regression models for local geographic areas were used to make inferences across the entire study area using a global field significance test. Temporal trends were investigated across all years and separately for each satellite type due to documented differences in UVB estimation. UVB increased from 1978 to 2014 in 48% of local tests. The largest UVB increase was found in Western Nevada (0.145 kJ/m2 per five-year increment), a total 30-year increase of 0.87 kJ/m2. This largest change only represented 17% of total ambient exposure for an average January and 2% of an average July in Western Nevada. The observed trends represent cumulative UVB changes of less than a month, which are not relevant when attempting to estimate human exposure. The observation of small trends should be interpreted with caution due to measurement of satellite parameter inputs (ozone and climatological factors) that may impact derived satellite UVR nearly 20% compared to ground level sources. If the observed trends hold, satellite-derived UVB data may reasonably estimate ambient UVB exposures even for outcomes with long latency phases that predate the satellite record

    EMPIRE: A robust empirical reconstruction of solar irradiance variability

    Full text link
    We present a new empirical model of total and spectral solar irradiance (TSI and SSI) variability entitled EMPirical Irradiance REconstruction (EMPIRE). As with existing empirical models, TSI and SSI variability is given by the linear combination of solar activity indices. In empirical models, UV SSI variability is usually determined by fitting the rotational variability in activity indices to that in measurements. Such models have to date relied on ordinary least squares regression, which ignores the uncertainty in the activity indices. In an advance from earlier efforts, the uncertainty in the activity indices is accounted for in EMPIRE by the application of an error-in-variables regression scheme, making the resultant UV SSI variability more robust. The result is consistent with observations and unprecedentedly, with that from other modelling approaches, resolving the long-standing controversy between existing empirical models and other types of models. We demonstrate that earlier empirical models, by neglecting the uncertainty in activity indices, underestimate UV SSI variability. The reconstruction of TSI and visible and IR SSI from EMPIRE is also shown to be consistent with observations. The EMPIRE reconstruction is of utility to climate studies as a more robust alternative to earlier empirical reconstructions.Comment: J. Geophys. Res. (2017

    EOS Science Poster Series: AIR-Our Outer Atmosphere

    Get PDF
    This poster depicts how NASA scientists are working to understand the outer atmosphere (air). Satellite images, graphs, and pictures complement the fact-filled information. The poster can be ordered from the Web site; this site also includes PowerPoint and PDF files with the poster information. Educational levels: Middle school, High school, Undergraduate lower division, Undergraduate upper division, Graduate or professional

    Earth observations from DSCOVR EPIC instrument

    Full text link
    The National Oceanic and Atmospheric Administration (NOAA) Deep Space Climate Observatory (DSCOVR) spacecraft was launched on 11 February 2015 and in June 2015 achieved its orbit at the first Lagrange point (L1), 1.5 million km from Earth toward the sun. There are two National Aeronautics and Space Administration (NASA) Earth-observing instruments on board: the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). The purpose of this paper is to describe various capabilities of the DSCOVR EPIC instrument. EPIC views the entire sunlit Earth from sunrise to sunset at the backscattering direction (scattering angles between 168.5° and 175.5°) with 10 narrowband filters: 317, 325, 340, 388, 443, 552, 680, 688, 764, and 779 nm. We discuss a number of preprocessing steps necessary for EPIC calibration including the geolocation algorithm and the radiometric calibration for each wavelength channel in terms of EPIC counts per second for conversion to reflectance units. The principal EPIC products are total ozone (O3) amount, scene reflectivity, erythemal irradiance, ultraviolet (UV) aerosol properties, sulfur dioxide (SO2) for volcanic eruptions, surface spectral reflectance, vegetation properties, and cloud products including cloud height. Finally, we describe the observation of horizontally oriented ice crystals in clouds and the unexpected use of the O2 B-band absorption for vegetation properties.The NASA GSFC DSCOVR project is funded by NASA Earth Science Division. We gratefully acknowledge the work by S. Taylor and B. Fisher for help with the SO2 retrievals and Marshall Sutton, Carl Hostetter, and the EPIC NISTAR project for help with EPIC data. We also would like to thank the EPIC Cloud Algorithm team, especially Dr. Gala Wind, for the contribution to the EPIC cloud products. (NASA Earth Science Division)Accepted manuscrip

    Examination on total ozone column retrievals by Brewer spectrophotometry using different processing software

    Get PDF
    The availability of long-term records of the total ozone content (TOC) represents a valuable source of information for studies on the assessment of short-and long-term atmospheric changes and their impact on the terrestrial ecosystem. In particular, ground-based observations represent a valuable tool for validating satellite-derived products. To our knowledge, details about software packages for processing Brewer spectrophotometer measurements and for retrieving the TOC are seldom specified in studies using such datasets. The sources of the differences among retrieved TOCs from the Brewer instruments located at the Italian stations of Rome and Aosta, using three freely available codes (Brewer Processing Software, BPS; O3Brewer software; and European Brewer Network (EUBREWNET) level 1.5 products) are investigated here. Ground-based TOCs are also compared with Ozone Monitoring Instrument (OMI) TOC retrievals used as an independent dataset since no other instruments near the Brewer sites are available. The overall agreement of the BPS and O3Brewer TOC data with EUBREWNET data is within the estimated total uncertainty in the retrieval of total ozone from a Brewer spectrophotometer (1%). However, differences can be found depending on the software in use. Such differences become larger when the instrumental sensitivity exhibits a fast and dramatic drift which can affect the ozone retrievals significantly. Moreover, if daily mean values are directly generated by the software, differences can be observed due to the configuration set by the users to process single ozone measurement and the rejection rules applied to data to calculate the daily value. This work aims to provide useful information both for scientists engaged in ozone measurements with Brewer spectrophotometers and for stakeholders of the Brewer data products available on Web-based platforms
    • …
    corecore