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Abstract 

Ultraviolet (UV) radiation has several effects on human health as well as other 
biological and chemical systems. The radiation can be weighted with the erythemal 
action spectrum and then converted to the dimensionless UV Index, which is 
designed to indicate the detrimental “sunburning power” of the radiation for public 
heath purposes. A global view of the erythemally weighted irradiance from the 
Ozone Monitoring Instrument (OMI) on board the Aura spacecraft has been 
available since July, 2004. However, ground-based validation and correction of the 
satellite data are still required. In this thesis, the erythemal dose rates at local solar 
noon taken from the satellite were compared to ground-based data measured by 
spectroradiometers or broadband radiometers in two different climate areas: the 
Tropics and midlatitudes. This seeks to redress the lack of data and satellite 
validation for the Tropics, and also allows comparison with previous work in 
midlatitudes. The validation results show that the satellite data overestimates the 
ground-based data by 9%-32% at the cleanest site, with a much higher discrepancy at 
polluted sites. Using a radiative transfer model confirmed that the positive bias in the 
satellite data was mainly caused by aerosol absorption that is not taken into account 
in the satellite retrieval algorithm. Therefore, two empirical methods were introduced 
in order to correct the OMI UV data for absorbing aerosols under clear sky 
conditions. These methods required aerosol optical depth and aerosol single 
scattering, or aerosol absorption optical depth, as input parameters. The methods 
improved the OMI UV data by up to 30% depending on site and input data source. 
For cloudy conditions aerosol data is usually not available either from ground-based 
or satellite-based measurements; however, the effect of cloud is usually far greater 
than that of aerosol, and some of the aerosol effect (scattering) is intrinsically 
included in the cloud correction. A further empirical model for cloudy conditions 
was derived to reduce bias of the OMI UV data with respect to ground-based data. 
The method only requires the OMI UV data as an input. The cloudy model reduced 
the bias by about 13%-30% depending on site, and gave similar results even when 
used with clear sky data. Since ground-based data is sparse, the final goal of the 
work was to produce a corrected map of UV index for the whole of Thailand, based 
only on data available from satellite, which gives full regional coverage. Issues with 
availability and quality of satellite data meant that the best results were achieved by 
using only the cloudy sky correction, for all conditions. The resulting daily noontime 
UV Index maps of Thailand were assessed against ground-based data for 
independent years. The corrected UV Index was within ±2 compared with ground-
based data for all sites, compared to discrepancies of up to 4 UV Index for 
uncorrected data. 
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Chapter 1 – Introduction 

1.1 General Overviews 

Solar ultraviolet (UV) irradiance may produce a variety of effects, many of them 

detrimental, on human health, terrestrial and aquatic ecosystems. In this thesis, the 

erythemal irradiance affecting human skin is taken as the focus. It refers to the 

spectral UV irradiance weighted by the erythema action spectrum defined by 

Commission Internationale de l’Eclairage (CIE), or in layman’s terms the 

“sunburning power” of the radiation. It is becoming increasingly difficult to ignore 

the knowledge of its variability in space and time. 

 

The amount of UV irradiance can be measured directly by ground-based instruments 

and calculated by using model calculations, for instance, radiative transfer models 

and empirical models. The model outputs are limited by the knowledge of the 

atmospheric conditions being modelled, i.e. the availability of relevant input data. 

Since ground-based measurements have been installed at limited sites, covering a 

small fraction of the earth’s surface, satellite UV estimation techniques based on 

radiative transfer models and reflectivity measurements are a promising advance 

since they can in principle provide UV irradiance on the global basis. However, 

satellite data represents average conditions over large areas, and it is based on model 

calculations including some assumptions that are sometimes unrealistic. Thus, the 

validation of satellite data with ground-based data is required. Recent validations of 

satellite retrievals have been concentrated mostly in regions of midlatitudes and high 

latitudes, where there are the most ground-based instruments. Far too little attention 

has been paid to Tropical sites. Therefore, this thesis examines erythemal irradiance 

retrieved from Ozone Monitoring Instrument (OMI) in the Tropics with respect to 

local ground-based measurements, and compares the results to similar validation 

techniques at midlatitudes.  

 

1.2 The Purposes of This Work 

The final goal of this work is to provide a method of using satellite retrieved UV 

irradiance to provide public health information on erythemal irradiance in the 
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Tropics, specifically in Thailand. To that end, the satellite data must first be 

validated against ground-based measurements. This validation is undertaken both for 

sites in the Tropical and midlatitudes. 

 

The objectives in achieving this goal are: 

 

- To identify the differences between erythemal irradiance at local solar noon 

retrieved from OMI and measured from ground-based instruments. 

- To present new methodologies of estimating the erythemal irradiance using 

both satellite and ground-based data. The methods will be tested by 

application in the midlatitudes and the Tropics. 

- To investigate and compare the success of the improvements to the basic 

OMI retrievals in the two different climates. 

- To provide data for public use, for example, erythemal irradiance or UV 

Index maps, based on the empirically improved satellite retrievals. 

 

1.3 Outline of Structure 

In the following chapter, it begins by laying out the background and literature 

review. In Chapter 3, sites and instrumentation used in this research are described. In 

Chapter 4, comparisons between satellite and ground-based data for clear sky and all 

sky conditions have been investigated. Chapters 5 and 6 introduce methodologies to 

improve satellite estimates for clear sky and cloudy sky conditions. The results of the 

further extension to generate UV maps for Thailand are shown in Chapter 7. The 

final conclusion is presented in Chapter 8. 
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Chapter 2 – Background and Literature Review 

2.1 Solar Ultraviolet Radiation 

Solar radiation is electromagnetic radiation emitted by the sun. The emission 

spectrum of equivalent blackbody temperature of the sun at 5900 K is represented in 

Figure 2.1, compared with the spectrum of solar irradiance at the top of the 

atmosphere and ground surface. The majority of solar radiation, with a wavelength 

more than 300 nm, is emitted from the sun’s photosphere whereas the radiation with 

a wavelength less than 300 nm is emitted from the sun’s chromosphere. Solar 

radiation whose wavelength is shorter than 50 nm is radiated from the corona. In the 

earth’s atmosphere, wavelengths shorter than 300 nm are mainly absorbed by ozone 

and molecular oxygen and wavelengths higher than 700 nm are absorbed by water 

vapour and carbon dioxide, to give the spectrum at the surface shown in Figure 2.1. 

[Salby, 1996] 

 

 

Figure 2.1 The spectrum of a black body at 5900 K (dashed), the spectrum of solar 

irradiance at the top of the atmosphere (solid) and at the earth’s surface (shaded) 

[Salby, 1996]. 

 



Chapter 2 – Background and Literature Review 

 
 

17

It should be noted that there are artificial sources of UV radiation such as high-

pressure discharge lamps and welding arcs [NRPB, 2002]; however, all naturally 

occurring UV radiation arriving at the earth’s surface is from the sun. Solar UV 

radiation is only about 5% of the solar radiation at the top of the atmosphere 

compared to 55% in the visible and 40% in the infrared ranges [Vardavas and 

Taylor, 2007]. It can be subdivided into three categories: UVA (315-400 nm), UVB 

(280-315 nm) and UVC (200-280 nm) according to CIE, based on physical effects 

[Webb, 2000b]. When the radiation passes through the earth’s atmosphere, 

absorption and scattering processes occur, e.g., absorption by atmospheric gases and 

aerosols, scattering by aerosols and clouds. Although UVC radiation has the highest 

photon energy, it is essentially all absorbed by atmospheric oxygen and ozone in the 

“Hartley band”. Most of UVB radiation and some of the UVA radiation are also 

absorbed by atmospheric ozone in the “Huggins band”, demonstrated in Figure 2.2. 

 

 

Figure 2.2 Ozone absorption coefficient of UV radiation [Salby, 1996]. 

 

Much of the interest in solar UV radiation stems from its effects on human health, 

most often quantified as the erythemal irradiance. Erythema is sunburn and the 

action spectrum for this effect is defined by CIE [1998], after McKinlay and Diffey 

[1987]. It is this measure of UV radiation with which we will be concerned. The 

erythemal weighting function is defined by Equation 2.1. 
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where )(λCIE  is the normalised erythemal weighting function or erythema action 

spectrum, and λ  is wavelength (nm). 

 

Erythemal irradiance can be calculated by integrating the product of spectral 

irradiance and erythema action spectrum over the UVA and the UVB ranges as 

shown in Equation 2.2. 

 

 
∫ λλλ=

400

250

d)(CIE)(IIrradianceErythemal  (2.2) 

 

where )(Iλ  is the spectral irradiance (W·m-2), and )(CIE λ  is the erythema action 

spectrum. 

 

For public awareness, the level of erythemally weighted UV irradiance at the earth’s 

surface is converted to a unitless value called “UV Index” or “UVI” [ WHO, 2002]. 

The UV Index can be calculated by dividing the erythemally weighted UV irradiance 

(mW·m-2) by 25 m2
·mW-1. The integer UV Index is further separated into bands 

based on effects on a fair-skinned person as shown in Figure 2.3. Values less than 2 

are defined as low risk whereas over 10 are extreme (rapid sunburn). Maximum 

values of UV Index are determined mainly by latitude and altitude, e.g., the UV 

Index value does not exceed about 6 in Southern Ontario, Canada [Fioletov et al., 

2004] while it can be up to the value of about 10 or more in the Tropics [Ilyas et al., 

1999; Janjai et al., 2009a], and reaches up to 20 at a tropical high altitude station in 

Andean Altiplano, Argentina [Cede et al., 2002]. 
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Figure 2.3 UV radiation exposure categories [WHO, 2002]. 

 

2.2 Factors Influencing Solar UV Radiation 

Since solar UV radiation is electromagnetic radiation, when it passes through the 

earth’s atmosphere it can be absorbed, scattered and reflected by the components of 

the atmosphere such as atmospheric gases, air molecules, clouds, aerosols and ozone. 

Its intensity at the surface also depends on the solar energy output, some 

geographical factors such as the solar zenith angle and the sun-earth distance, and 

finally the albedo of the surface. This section describes the main factors affecting 

UV radiation reaching the earth’s surface. 

 

2.2.1 The Extraterrestrial Solar Spectrum 

The total solar output reaching the top of the atmosphere at the mean sun-earth 

distance is called the “solar constant” which is actually variable. The average solar 

constant measured by several satellites is about 1370 W·m-2. Variability in solar 

output is controlled by two phenomena: the 27-day solar rotation and the 11-year 

solar cycle. This variability influences the amount of extraterrestrial solar UV 

radiation. The variation of the total solar extraterrestrial radiation is about 0.1% or 1 

W·m-2 during each 11-year sunspot cycle, while at UV wavelengths it is a few 

percent [Lean et al., 1997]. Since increases in solar output result in more ozone 

production, the UV radiation is absorbed more before arriving at the surface, and 

surface UV radiation follows the ozone cycle. The total solar output also depends on 

the distance between the sun and the earth’s surface. Because of the eccentricity of 

the orbit of the earth, the distance between the sun and the earth is smallest on 3 

January (perihelion) and largest on 4 July (aphelion) with the difference of about 7% 
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between extremes. As a result, the incoming solar radiation varies by ±3.5% 

throughout the year. 

[Iqbal, 1983; Salby, 1996; WMO, 2007] 

 

The solar spectrum outside the earth’s atmosphere can be obtained by the ground-

based Langley plot method [Bais, 1997; Gröbner and Kerr, 2001] and space-based 

measurements from satellite instruments onboard, for example, the Atmospheric 

Laboratory for Applications and Science (ATLAS), the National Oceanic and 

Atmospheric Administration (NOAA) and the Upper Atmosphere Research Satellite 

[Cebula et al., 1996; WMO, 2007]. The comparison of the solar spectrum from the 

ground-based Langley plot method and the satellite measurements shows an 

agreement better than ±3%. 

 

2.2.2 Solar Zenith Angle 

The solar zenith angle is the angle measured at the earth’s surface between the sun 

and the local zenith, and depends on latitude, season and time of day. It is the factor 

most strongly influencing solar radiation intensity causing diurnal, annual and 

latitudinal variations in the amount of UV irradiance at the earth’s surface. When the 

sun is at a high position in the sky, the radiation travels through less atmosphere, and 

is absorbed and scattered less, so more UV radiation reaches the earth’s surface. On 

the other hand, the radiation passes through more of the atmosphere when the sun is 

at a lower position, so less UV radiation reaches the ground. In addition, radiation 

striking the ground at a larger solar zenith angle is spread out over a larger area, thus 

significantly reducing irradiance. 

 

Solar zenith angle can be calculated following Equations 2.3 and 2.4 as described by 

Iqbal [1983]. 

 

 )coscoscossin(sincos 1
z ωφδ+φδ=θ −

 (2.3) 

 

where zθ  is the solar zenith angle, 

φ  is the geographic latitude, 
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ω  is the hour angle, the angular distance that the earth has rotated in a day. In 

one day (24 hours) the earth rotates 360°. Therefore, the hour angle is equal to 15° 

multiplied by the number of hours from local solar noon, and defined by 

)hour12(15 −=ω where hour is the current time of the day. 

δ  is the solar declination, the angular distance of the sun at local solar noon 

with respect to the celestial equator plane. It is maximum (23.5°) on the 

summer/winter solstice and minimum on the equinoxes. The solar declination can be 

calculated as follows: 

 

 
Γ+Γ−

π
=δ sin070257.0cos399912.0006918.0(

180o

 

Γ+Γ− 2sin000907.02cos006758.0  
 

)3sin00148.03cos002697.0 Γ+Γ−  
 

(2.4) 

 

where 365/)1d(2 n −π=Γ  and nd  is the day number of the year. 

 

2.2.3 Altitude 

Altitude, is the height of the surface above sea level (a.s.l.), also influences the 

amount of solar radiation [Blumthaler et al., 1997; Dubrovský, 2000; Pfeifer et al., 

2006; Schmucki and Philipona, 2002; WMO, 2007]. At high altitudes, more UV 

radiation reaches the surface because the radiation passes through less of the 

atmosphere before it reaches the surface. Also, at high altitudes the surface is often 

covered with snow, contributing to enhanced UV irradiance with high surface 

albedo. Thus, the effects of altitude depend on location, through the local surface and 

the clearness of the atmosphere. The variation with altitude of erythemal radiation 

measured by Robertson-Berger broadband filter UV radiometer at two sites: Hradec 

Kralove (50.17°N, 15.83°E, 278 m a.s.l.) and Milesovka (50.55°N, 13.93°E, 827 m 

a.s.l.) in the Czech Republic, was found to be 4% to 8% per km [Dubrovský, 2000]. 

The wavelength dependency of the altitude effect at Garmisch-Partenkirchen (730 m 

a.s.l.) and Wank (1730 m a.s.l.) in Germany was also reported by Blumthaler et al. 

[1997]: 9% per km at 370 nm, 11% per km at 320 and 24% per km at 300 nm. The 
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effect is far more pronounced at short wavelengths, but will depend on the amount of 

aerosol and ozone in the layer between any two altitudes. For instance, Herman et al. 

[1999b] reported that with every 1 km increase in altitude, the erythemal radiation 

increases by 10% to 40% in Germany where the low altitude sites considered were 

relatively polluted and cloud effects were included [Blumthaler et al., 1997; 

Schmucki and Philipona, 2002; Seckmeyer et al., 1997]. 

 

2.2.4 Stratospheric Ozone 

Ozone ( 3O ) is a molecule of three oxygen atoms naturally found in the stratosphere 

where it is produced (see in Equations 2.5 and 2.6). It occurs mainly at altitudes 

between approximately 25 km and 100 km. Stratospheric ozone is the main 

component of the atmosphere which strongly absorbs solar UV radiation, especially 

UVC and UVB and some part of UVA radiation (see in Equations 2.7 and 2.8) 

[Liou, 2002]. 

 

 O2hO2 →ν+ , nm242<λ  (2.5) 

 MOMOO 32 +→++  (2.6) 

 OOhO 23 +→ν+ , nm1100<λ  (2.7) 

 23 O2OO →+  (2.8) 

 

where νh  is solar energy depending on wavelength. M is any third atom or molecule 

such as N2 and O2, and λ  is wavelength. 

 

The absorption of UV radiation by ozone depends on wavelength. For example, 

ozone absorption of the radiation at 320 nm is only 1% of that at 280 nm [Webb, 

1998]. Figure 2.2 shows the ozone absorption cross section in three bands: Hartley 

band, Huggins band and Chappuis band, covering the UV and visible wavelengths. 

We can see that UV radiation is strongly absorbed in the Hartley band and weakly 
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absorbed in the Huggins band whereas the Chappuis band covers visible 

wavelengths and is also relatively weak. 

 

The study of atmospheric ozone was first begun in the mid-1920s using the Dobson 

instrument developed at Oxford University, followed by a network of six 

instruments in the late-1920s. A big increase in total ozone measurement with about 

100 instruments began in the year 1957 during the International Geophysical Year. 

In the early 1980s, the Brewer spectrometer was also developed to measure total 

ozone. At present there are more than 200 Brewer spectrometers installed 

worldwide, and more than 100 Dobson instruments, both contributing to the ground-

based network of ozone measurements. Apart from ground-based measurement, total 

ozone data has been available from satellite measurement since 1979, e.g., Total 

ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet (SBUV), 

Global Ozone Monitoring Experiment (GOME), which can show the pattern of total 

ozone on a global scale. The data from all these measurements led to the discovery 

of ozone depletion and determined the basic geographical and annual behaviour of 

total ozone. They have been also shown that total ozone is strongly correlated to 

weather patterns [Kerr, 2005] and meteorology, e.g., vorticity [Vaughan and Price, 

1991]. 

 

The first discovery of ozone depletion was in the Antarctic in the 1980s by Farman 

et al. [1985]. The ozone at Halley Bay (76°S, 27°W) observed by a Dobson 

spectrometer had declined from about 300 Dobson Unit (DU) in year 1975 to less 

than 200 DU in year 1984. The chemical ozone loss in these areas is enabled by the 

polar vortex during mid-winter and early spring. During the Antarctic winter, it is 

almost dark, and there are strong winds around the lower stratosphere resulting in 

low temperatures (less than 190 K) and a pool of trapped air over the continent 

[WMO, 2007]. As a consequence of these low temperatures, Polar Stratospheric 

Clouds (PSCs) are formed comprising of water vapour and nitric acid [Pyle, 2000]. 

The chemical reaction involving chlorofluorocarbon (CFC) product on the surface of 

the PSCs is shown in Equation 2.9. 
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 )gas(Cl)solid(HNO)gas(ClONO)solid(HCl 23
PSCs

2 + →+  (2.9) 

 

In early spring, molecular chlorine is photolysed to chlorine atoms by sunlight and 

the chlorine then acts as a catalyst in destroying ozone. This is illustrated through 

Equations 2.10 to 2.14 [Pyle, 2000]. From these equations, it can be seen that the 

stratospheric ozone is transformed to oxygen molecules, causing the loss of the 

stratospheric ozone. 

 

 MOClMClOClO 22 +→++  (2.10) 

 MClOClhνOCl 222 ++→+  (2.11) 

 MOClMClO 22 ++→+  (2.12) 

 
23 O2ClO2O2Cl2 +→+  (2.13) 

Net: 23 O3O2 →  (2.14) 

 

where M is usually N2 or O2. 

 

In addition, a cycle of bromine and chlorine oxides [McElroy et al., 1986] can also 

reduce the polar ozone during winter and spring as shown in Equations 2.15 to 2.18 

[WMO, 2007]. 

 

 
2OClBrhνClOBrO ++→++  (2.15) 

 
23 OBrOOBr +→+  (2.16) 

 
23 OClOOCl +→+  (2.17) 

Net: 23 O3O2 →  (2.18) 
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The above chemical reactions lead to the so-called ozone hole, whose area defined 

by total column ozone values less than 220 DU and depth vary from year to year. 

There has been an increase of the ozone hole area since the early 1990s, with nearly 

25 million km2 in year 2003 [Newman et al., 2004], and a decrease of minimum total 

ozone from about 200 DU in year 1979 to about 100 DU in year 2000 [WMO, 2003]. 

While the Montreal Protocol [WMO, 2007] has reduced chlorine emissions and 

chlorine loading has begun to respond, there is as yet no sign of a reduction in the 

annual loss of Antarctic ozone. 

 

The decrease of stratospheric ozone was found not only in the Antarctic, but also in 

the Arctic [Sinnhuber et al., 2000] and midlatitudes [Kerr, 1991; Siani et al., 2002; 

Stolarski et al., 1992], although not the Tropics [Ganguly and Iyer, 2006; Pyle, 

2000]. The polar and global ozone depletion were reviewed by WMO [2003; 2007]. 

In the Arctic, the decrease of total ozone was not as much as in the Antarctic since 

the Arctic stratospheric temperatures in winter are not as low as those in the 

Antarctic and the vortex is not as strong. The total ozone at Ny-Ålesund, Spitsbergen 

(79°N, 12°E) in March, 2000 was less than the mean total ozone between years 1980 

and 1989 by about 100 DU [Sinnhuber et al., 2000]. The stratospheric ozone 

declined about 6% for southern midlatitudes and about 5% for northern midlatitudes 

between the years 2002 and 2005, compared with that in the year 1980 [WMO, 

2007]. During the same period, the global annually averaged stratospheric ozone 

decreased approximately 3.5%. These values were similar to the value of the years 

1997 to 2001 indicating that ozone is no longer decreasing [WMO, 2003]. 

 

The Antarctic ozone depletion was a major force in defining the Montreal Protocol, 

agreed in year 1987. The Montreal Protocol and later amendments were designed to 

reduce production of ozone depleting substances such as CFCs, Halons, Methyl 

chloroform (CH3CCl3) and Methyl bromide (CH3Br), in order to protect the ozone 

layer. At the present, it can be seen that the protocol is working with clear evidence 

of a decrease of ozone depletion substances in the atmosphere [WMO, 2007]. 

Forward modelling predicts that the global ozone layer should be recovered to the 

same levels of the pre-1980s by about year 2050 [WMO, 2007] or year 2068 

estimated by Newman et al. [2006]. These predictions are, however, dependent on 
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other factors that might interact with ozone cycle described earlier. For example, 

climate change (surface warming) gives cooling in the stratosphere, which can 

decrease chemical reaction rates at midlatitudes, but increase ozone loss at high 

latitudes (where more PSCs form). Climate change can also change global dynamics 

which transports ozone from source to sink regions [Stevenson et al., 2005; Zeng and 

Pyle, 2003]. 

 

Since the stratospheric ozone is the main absorber protecting the earth’s surface from 

the harmful solar radiation, the decrease in total ozone and the change in vertical 

ozone profile should lead to an increase in surface UV irradiance as illustrated by 

various recent studies [Bartlett and Webb, 2000; Garane et al., 2005; Herman et al., 

1996; Janjai et al., 2009a; Josefsson, 2006; Kerr and McElroy, 1993; Madronich et 

al., 1998; McKenzie et al., 1999; Meleti et al., 2009; Sasaki et al., 2002; Trepte and 

Winkler, 2004; Zerefos et al., 2000; Zerefos, 2002]. For example, Kerr and McElroy 

[1993] reported the decrease in total ozone from 1989 to 1993 at Toronto as 4.1% 

per year in winter and 1.8% per year in summer. In contrast, the increase in spectral 

UV irradiance at 300 nm was 35% per year in winter and 6.7% per year in summer. 

Bartlett and Webb [2000] showed that the decrease in ozone was by 5.9%, while the 

increase in the ratio of erythemal to UVA (320-400 nm) irradiance was by 4.3% 

between years 1993 and 1997 at Reading, UK. Zerefos et al. [2002] showed that UV 

irradiance at 305 nm at Thessaloniki increased about 0.40% per year based on the 

1990s level which was related to a 0.13% per year ozone decline. Sasaki et al. [2002] 

showed that from years 1990 to 2000 UVB (290-320 nm) irradiance increased 1.22% 

per year, especially in winter, at Tokai University (Japan), corresponding to the 

ozone depletion in midlatitudes in 1990s. Josefsson [2006] reported that the CIE-

weighted (erythemal) irradiance during years 1983-2003 at Norrköping, Sweden was 

increased by 0.52% per year responding to a total ozone decrease of 0.14% per year. 

Janjai et al. [2009a] showed increases in erythemal irradiance at Chiang Mai, Ubon 

Ratchathani and Nakhon Pathom, Thailand from years 2001 to 2005, i.e. 1.43% per 

year all year and 2.66% per year during dry season for Chiang Mai. However, they 

suggested that this may due to a reduction of cloud cover resulting from a decrease 

in precipitation. WMO [2007] reported that due to the success of the Montreal 

Protocol, increases in UV radiation observed at some southern hemisphere sites in 

unpolluted locations have levelled off following a similar observed consistency in 
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ozone over the past few years. Increase in UV radiation is significantly related to 

ozone depletion but other factors such as changes in clouds, aerosols and sunshine 

duration must also be considered. Recent studies show that where ozone changes 

were small, others factors, e.g., changes in pollution could dominate changes in UV 

radiation [Chubarova, 2008; Janjai et al., 2009a; McKenzie et al., 2007]. 

 

2.2.5 Tropospheric Trace Gases 

Apart from ozone in the stratosphere, UV radiation can be absorbed by tropospheric 

trace gases, and through photolysis influence atmospheric chemistry. There are many 

tropospheric absorbers of UV radiation such as tropospheric ozone, sulphur dioxide 

(SO2) and nitrogen dioxides (NO2) [Chubarova, 2006; Chubarova, 2008; WMO, 

2007]. The influence of these gases can be usually detected in polluted areas or 

during natural hazards, e.g., forest fires, volcanic eruptions. For example, erythemal 

irradiance at Moscow decreased about 1.5% to 2% due to increase in NO2 

[Chubarova, 2008]. 

 

2.2.6 Clouds 

Clouds, formed of small water droplets or ice crystals [Calbó et al., 2005], scatter 

(according to Mie scattering) UV radiation without significant absorption. The 

amount of clouds on average can cover over half of the earth’s surface and influence 

both incoming and outgoing radiation [Houghton, 2002]. Clouds have strongly non-

linear effects on the amount of UVA and UVB radiation. Clouds can both enhance 

and reduce UV radiation, depending on their geometrical thickness, composition, 

height and spatial homogeneity. In addition, clouds may play a role in absorption of 

UV radiation by other atmospheric compositions such as ozone through increasing 

the pathlength travelled by radiation. UV radiation can be decreased by about 65% 

up to 90% under overcast conditions [den Outer et al., 2005; Németh et al., 1996; 

Seckmeyer et al., 2008]. For broken cloud conditions, the radiation can be enhanced 

(according to Mie scattering) by about 15%-25% compared to the radiation at clear 

sky conditions [Németh et al., 1996; WMO, 2007]. The average reduction of UV 

radiation by clouds is less than for visible radiation with 32% for erythemal 

irradiance against 43% for total solar radiation compared to the clear sky values [den 
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Outer et al., 2005; Josefsson and Landelius, 2000]. Similarly, the percentage 

increase due to broken clouds is 6% for UV radiation compared to 12% for total 

solar radiation, relative to no clouds near the sun  [Piacentini et al., 2003]. 

 

Clouds are highly variable in space and time which causes differences when UV 

irradiances from satellite retrievals and ground-based measurements are compared. 

This is likely due to the fact that satellites measure over an area, which clouds in the 

area will be averaged, whereas ground-based measurements refer to an exact point. 

 

2.2.7 Aerosols 

Aerosols are tiny solid and liquid particles suspended in the air [Iqbal, 1983; Seinfeld 

and Pandis, 2006]. There are both natural and anthropogenic aerosols such as desert 

dust, biomass burning aerosols and organic carbon significantly affecting solar 

radiation, as reviewed in WMO [2007]. Aerosols have both direct and indirect effects 

on solar radiation [IPCC, 2007]. The direct effect is that they can both absorb and 

scatter (according to Mie theory) solar radiation resulting in a change to the radiative 

balance of the earth-atmosphere system. As a result, they cause warming where there 

is absorption, and reduce solar radiation at the earth’s surface. An indirect effect of 

aerosols is that they can change the microphysical properties of cloud in ways that 

depend on particle size, chemical composition, and ambient environment [IPCC, 

2007]. This can induce changes of cloud height, cloud lifetime and cloud albedo, for 

example, and hence alter the cloud (and therefore planetary) albedo. Effects of 

aerosols on UV radiation depend on their optical properties and the number of 

particles. Normally, the optical properties of aerosols are presented in terms of 

aerosol optical depth, which is a parameter that indicates how much radiation is 

reduced by aerosols; aerosol single scattering albedo which is the ratio of aerosol 

scattering to attenuation by both absorption and scattering processes; and phase 

function which determines the amounts of forward and backward scattering. These 

parameters are wavelength dependent. 

 

The understanding of the aerosol properties and their effect on UV radiation has 

been a challenge often due to paucity of aerosol data. Recent studies showed that 

aerosol has a measurable impact on UV irradiance, i.e. it can reduce the surface UV 
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irradiance [di Sarra et al., 2002; Erlick and Frederick, 1998; Esteve et al., 2009; 

Krzyscin and Puchalski, 1998]. For example, Krzyscin and Puchalski [1998] 

suggested that aerosol optical depth at Belsk, Poland (52°N, 21°E) varying from 0.1 

to 0.7 can change erythemal daily doses by 20%-30%. The reduction of erythemal 

irradiance per unit aerosol optical depth at 415 nm can be up to 50%-55% as 

illustrated in di Sarra et al. [2002]. Balis et al. [2004] showed that the surface UV 

irradiance at 305 nm may change about 10%-25% for different aerosol optical depth 

and aerosol type. At the same aerosol optical depth, the erythemal irradiance 

decreased less than 20% under high aerosol single scattering albedo (0.94), while the 

decrease was about 25%-30% at lower aerosol single scattering albedo (0.87) 

[Chubarova, 2009]. Acosta and Evans [2000] showed that erythemal irradiance in 

downtown areas of the Mexico City were lower than the values in the suburban 

regions by 20% (or up to 40% on polluted days). During biomass burning in northern 

region of India, Latha et al. [2004] and Badarinath et al. [2009] suggested that every 

0.1 increase in aerosol optical depth measured at 500 nm can reduced 0.01 W·m-2 of 

erythemal irradiance. Kalashnikova et al. [2007] show that smoke aerosols over 

Darwin, Australia, reduced the surface UV irradiance (290-300 nm) by as much as 

40%-50% near active fires. The smoke aerosols reduced the UV irradiance (290-300 

nm) by 15%-25% for the area far from the fires. Apart from reduction of the surface 

UV radiation due to aerosol, Wenny et al. [2001] showed that erythemal irradiance 

can increase up to 4% during low aerosol optical depth periods. 

 

Since the properties of aerosol are difficult to determine, this can be a problem of 

UV estimation using satellites especially for polluted areas [Arola et al., 2009; 

Buchard et al., 2008; Ialongo et al., 2008; Kazadzis et al., 2009b; Meloni et al., 

2005; Tanskanen et al., 2006], an issue discussed further in Section 2.4.5.  

  

2.2.8 Surface Albedo 

The earth’s surface can absorb, reflect or scatter UV radiation reaching it, and in the 

case of water transmit to some depth. Consequently, it can enhance UV radiation 

especially with high reflecting surfaces such as snow, sand and ice [Kalliskota et al., 

2000; Renaud et al., 2000; Reuder et al., 2007; WMO, 2007]. The proportion of 

reflecting and scattering indicated by surface albedo depends on surface types. For 
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instance, the UVB surface albedo values for various surface types were published, 

e.g., snow: up to 0.90, dry beach sand: 0.02-0.15, vegetated surfaces (grass): 0.01-

0.05, building materials: 0.02-0.10, water: 0.05-0.08 [Blumthaler and Ambach, 1988; 

Chadyšienė and Girgždys, 2008; Corrêa and Ceballos, 2008; Godar, 2005]. Since 

snow is highly reflective, it increases UV radiation both on a horizontal surface, 

following further backscattering by the atmosphere, and for other surfaces by direct 

reflection onto the surface. Renaud et al. [2000] showed that erythemal irradiance at 

snow covered surfaces on a cloudless day can increase by 15% to 25% while on a 

cloudy day it can increase by up to 80% due to multiple reflections between the 

surface and cloud layer. A practical problem when UV radiation is estimated by 

using satellite data is that snow can be classified as cloud since its brightness is 

similar to that of cloud, and the UV radiation is then underestimated [Tanskanen et 

al., 2007]. 

 

2.3 Effects of UV Radiation 

Although UV radiation is the shortest wavelength radiation and the smallest part of 

solar radiation arriving at the earth’s surface, it has the highest energy, with various 

detrimental effects on human health, terrestrial ecosystems, aquatic ecosystems, 

biogeochemical cycles, tropospheric composition, air quality and materials damage 

[UNEP, 2006]. However, it is not all negative and there is one well known beneficial 

effect of exposure to UV radiation, the production of vitamin D which is a necessary 

hormone for bone health and potentially for many aspects of general health [Norval 

et al., 2007; UNEP, 2006]. Following are some detrimental examples of UV 

exposure on human health. UV radiation does not penetrate far into the body because 

most of it is absorbed in the superficial tissue layers. Therefore, much of the harmful 

UV radiation affects the eyes and skin. In addition, UV also affects the immune 

system. 

 

2.3.1 Effects on the Eye 

The eye can be directly exposed to UV radiation and this may cause acute effects or 

chronic effects. Exposure to UV radiation can damage many components of eyes 

such as sunburn at the eyelid, photoconjunctivitis at the conjunctiva, pterygium at 
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cornea, and anterior subcapsular opacities of the lens [de Gruijl et al., 2003; 

Longstreth et al., 1998; Norval et al., 2007; UNEP, 2006]. Longstreth et al. [1998] 

demonstrated that most of UV radiation (below 300 nm) does not pass beyond the 

cornea and the rest of UV radiation (below 370 nm) can be absorbed at the lens, thus 

only the radiation at longer wavelengths than that can reach the retina. As a result, 

the cause of the lens damage is usually UVA radiation while UVB and UVC 

wavelengths affect the cornea. The acute effect of receiving UV radiation is 

photokeratitis which happens after a few hours exposure. This can be characterised 

by reddening and inflaming of the eyeball, gritty feeling of severe pain, tearing, 

photophobia (fear of light) and blepharospasm (twitching). This is often found in 

skier and is known as snow blindness. The chronic effects are pterygium resulting 

from an outgrowth of the conjunctival tissue over the surface of the cornea, and 

pinguecula which is a raised opaque mass (usually as a yellowish patch) just adjacent 

to the cornea [Longstreth et al., 1998]. These result in the loss of transparency. 

Cataracts are the well known eye damage and a major cause of blindness due to 

oxidized lens proteins [Longstreth et al., 1998]. 

 

A number of epidemiologic publications have reviewed the relationship between UV 

exposure and its effect on the eye in several countries such as the U.S. [Taylor et al., 

1988; West et al., 2005], Australia [Taylor, 1980; Threlfall and English, 1999], 

Jordan [Al-Bdour and Al-Latayfeh, 2004], and Japan [Hayashi et al., 2003]. For 

example, a strong correlation between pterygia and surface UV irradiance in Jordan 

was shown by Al-Bdour and Al-Latayfeh [2004]. In a group of Australian 

Aborigines, cataracts occurred more often in the high annual mean UV level areas 

[Taylor, 1980]. A correlation with regression coefficient of 0.70 between the risk of 

cortical cataract and the cumulative UVB exposure was found in Chesapeake Bay 

[Taylor et al., 1988]. Although overall UV exposures relate to eye diseases, the 

correlations must also account for other factors, such as behavioural, ethnic and 

environmental differences. 

 

2.3.2 Effects on the Skin 

Skin can be directly exposed to UV radiation which can cause not only acute injury 

(suntan, sunburn, blistering and peeling) but also chronic injury (skin ageing and 
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skin cancer) in all types of human skin [de Gruijl et al., 2003; MacKie, 2000]. The 

effects of UV radiation on human skin depend on exposure time and human skin 

types, the latter divided to six groups shown in Table 2.1 [MacKie, 2000]. The 

effects are most often presented with respect to risk for people who have fair skin 

(Types 1 and 2) that tans poorly and burns frequently. The acute effects on human 

skin can happen 4-12 hours after exposure to UV radiation and are observed as 

sunburn – a reddening of the skin and hot or burning sensation. This may be 

followed by inflammation, blistering and peeling of the skin. The maximum damage 

can be seen 12-24 hours after excess exposure to the UV radiation, and be 

diminished over the next 48-72 hours after the exposure. 

 

Table 2.1 Classification of skin types [MacKie, 2000]. 

Skin type  
classification 

Characterisation 

Type 1 Fair skinned Caucasians who burn very easily and 
never tan. 

Type 2 Fair skinned Caucasians who burn easily and tan 
slowly and with difficulty. 

Type 3 Medium skinned Caucasians who burn rarely and tan 
relatively easily. 

Type 4 Darker skinned Caucasians who virtually never burn 
and tan readily. 

Type 5 Asian or Indian skin. 
Type 6 Afro-Caribbean or Black skin. 

 

Regarding chronic effects, exposure to natural UV radiation can cause photoaging 

which changes the texture and the elasticity of skin. As a result, damaged skin gets 

wrinkles and sags. A more serious effect is skin cancer. There are three skin cancer 

types: basal cell carcinoma (BCC) which appears as a red lump, squamous cell 

carcinoma (SCC) appearing as a thickened red scaly point, and cutaneous melanoma 

(CM) which is the most dangerous type of skin cancer appearing as a mole or fleck 

[Longstreth et al., 1998; MacKie, 2000; Norval et al., 2007; UNEP, 2006]. The first 

two skin cancers are often referred to as the non-melanoma skin cancers which are 

clearly correlated with UV exposure. They usually occur in light-skinned people and 

on the areas of the body most exposed to sunlight such as face, neck and ear. It is 

clear that the risk of SCC can be linked to cumulative lifetime exposure to UV 

radiation. BCC may also be related to a high level of childhood exposure to sunlight. 
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Unlike BCC and SCC, CM is often found on areas of the body that are infrequently 

UV exposed. 

 

Epidemiological studies show that increases in skin damage were reported for many 

countries and this likely related to UV exposure. Abarca et al. [2002] showed that 

ozone depletion, increased terrestrial UVB radiation and sunburn increase were 

related during 1986-2000 spring period in Southern Chile where ozone loss can be 

significant. In Manitoba, Canada, the annual percentage change of BCC and SCC 

increased 2.4%, mainly in people older than 40 years of age from the early 1970s to 

2000 [Demers et al., 2005]. Similar increases in skin cancer incidence have been 

observed elsewhere but are influenced by behaviour [Veierod et al., 2003] and case 

of travel to low latitudes, not simply local increases in erythemal irradiance, which 

are often small [Bentham, 2001; Office for National Statistics, 2003]. 

 

2.3.3 Immune System 

The skin includes a number of cells from the immune system. The immune system is 

the body’s defence mechanism against foreign substances (antigens), e.g., virus 

infection, cancers and diseases. When substances enter the body, the immune system 

will recognise them to be either “self” or “non-self” entities. However, the immune 

system needs to be able to classify between self and non-self, and eliminate only the 

non-self. UV radiation can induce photochemical changes in the skin and potentially 

alter cell surface proteins (at least three photoreceptors located at or near the skin 

surface are involved – Deoxyribonucleic acid (DNA), urocanic acid and membrane 

components) that are used to determine self from non-self entities. Thus UV 

radiation can act as an immunosuppressive. The absorption of UV radiation at the 

body surface can affect the function of the skin-mediated part of the immune system 

that can then cause a weakened immune system, depending on UV doses, 

wavelengths, and types of immune response. When immunosuppression is induced, 

the immune system wrongly determines self to non-self or vice versa. Therefore, the 

immunosuppressive effects of UV radiation can influence the outcome of melanoma 

and non-melanoma skin cancer, certain infectious diseases, some forms of 

autoimmunity, and allergy. 

[Longstreth et al., 1998; Norval, 2000; Norval et al., 2007; Ullrich , 2005] 
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2.4 Methods to Determine UV Irradiance 

After the discovery of ozone depletion and concern about the expected increase in 

UV irradiance, there was much effort to determine UV irradiance at the earth’s 

surface. This can be obtained from several resources: ground-based instruments, 

radiative transfer models, statistical models and satellite instruments. These methods 

have both advantages and disadvantages. Ground-based measurement can directly 

provide UV irradiance at a specific point and for real weather conditions if 

instruments have good calibrations and specifications. However, instruments can 

measure UV radiation for a limited area, and do not provide for regional or global 

coverage. Radiative transfer models calculate UV irradiance based on a model 

atmosphere with the extraterrestrial solar spectrum and several scattering and 

absorbing geophysical parameters as input. Statistical models show relationship 

between surface UV irradiance and one or more parameters such as ozone, solar 

zenith angle. Both types of model need input data from atmospheric measurements. 

One solution is to use the satellite retrieved UV irradiance for the entire globe, based 

on radiative transfer models and other products, e.g. backscattered radiation at 

several wavelengths which provides atmospheric data such as ozone, aerosols, 

clouds and surface albedo. However, satellite retrieval data is usually provided once 

per day from polar orbiting satellites and represents average conditions over large 

areas. The UV values from satellite retrievals are often different from those from 

ground-based measurements, showing the retrieval algorithm still needs 

improvement, as detailed in later chapters. More details on measurement of UV 

radiation at the surface are given in the following section. 

 

2.4.1 Ground-Based Measurements 

In general, there are four main types of ground-based instruments measuring solar 

UV radiation namely spectroradiometers, broadband radiometers, narrowband 

multifilter radiometers and dosimeters, having some differences of their systems, 

characteristics, and purposes of use [Webb, 1998; WMO, 2007]. In this section, the 

fundamental systems of these instruments, and benefits and weakness will be 

described. 
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2.4.1.1 Spectroradiometers 

Spectroradiometers are instruments that are used to measure spectral irradiance. A 

spectroradiometer includes three essential components: input optics, 

monochromator(s) and a detector. Input optics collect the incident radiation and 

direct into the monochromator. The most common input optics are quartz or Teflon 

cosine response diffusers, providing for a measurement of irradiance. The light is 

guided from the input optic to the monochromator by either liquid or (quartz) fibre 

bundles or enters directly into the monochromator which then separates the radiation 

into each specific wavelength. The monochromator usually consists of gratings (or 

prisms), with the full width at half maximum (FWHM) recommended to be less than 

1 nm. For solar UV measurement, a double monochromator is again advised [WMO, 

2001]. The monochromator often also includes mirrors to guide the light from the 

entrance slit to the gratings or prisms and on to the exit slit of the monochromator, 

where it is incident on a detector. The standard double grating monochromator scans 

to sample each specific wavelength. The scan time for all wavelength desired can be 

several minutes depending on wavelength interval, bandwidth, step length and the 

time spent to measure at each position. Then the light in each wavelength is 

transformed to electronic signals by the radiation detector that normally is either a 

Photomultiplier tube (PMT) for high sensitivity, photodiode detector, or a diode 

array. In the case of recent diode array instruments a single monochromator is used, 

and straylight and sensitivity characteristics are not as good as those of the double 

monochromator instruments. The instruments are temperature dependent, especially 

the PMT, and require well-controlled temperature stabilization. Long-term stability 

of such spectroradiometers is generally not good and frequent calibration checks are 

necessary, both for wavelength specification and absolute units of irradiance. The 

double monochromator instruments tend to be large with high costs, are temperature 

dependent, and require computer control, a steady power supply and calibration 

facilities. The accuracy of the spectroradiometer is affected by a number of 

parameters including wavelength alignment, bandwidth, straylight, angular 

dependence, temperature dependence, linearity, stability, polarisation, and 

calibration sources [Webb et al., 1998]. Since it can measure the spectral irradiance 

with high spectral resolution, the data is versatile with multiple uses, for example, 
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studying the effects of cloud and aerosol on UV irradiance [Bais et al., 2005; Bartlett 

and Webb, 2000; Seckmeyer et al., 1996]. 

 

2.4.1.2 Broadband Radiometers 

Broadband radiometers can provide the total irradiance in a wider band (more than 

10 nm), the detail depending on the device used. Filters and solid-state detectors are 

used to tailor the waveband and spectral response of the instruments. For UV 

measurement, the radiometers are often designed to mimic the erythemal action 

spectrum [McKinlay and Diffey, 1987]. This measurement is instantaneous and can 

therefore be at far higher temporal resolution than the spectrometers which take time 

to scan. It is less temperature dependent and more stable compared to 

spectrophotometers. The broadband radiometer is quite a compact, cheap and simple 

system, and requires a data logger to collect the voltage signal. For these reasons, 

this radiometer type is more frequently used for long-term monitoring. However, 

they still require Quality Control (QC) which is the on-site or internal checks such as 

regular calibrations, instrument maintenance and routine or temporary data 

correction, and Quality Assurance (QA) which is the external verification of the on-

site QC, resulting data and its related uncertainty. The data are less versatile than the 

spectral measurements in term of atmospheric or biological research, but provide 

useful data for climatology and public health applications. 

 

2.4.1.3 Narrowband Multifilter Radiometers 

The performance of narrowband instruments is between spectrophotometers and 

broadband radiometers. Essentially they consist of a series of several wavelength 

limited broadband meters packaged together. They can measure the radiation in 

several narrow bands, usually between 2 nm and 10 nm, so have lower spectral 

resolution than that of spectrophotometers. Therefore, they give more information 

compared with broadband radiometers and need less maintenance than 

spectrophotometers. In addition, this instrument, combined with a radiative transfer 

model, can provide information on temporal change and derived UV spectral data 

which can be used to determine dose rates for any desired action spectrum. The 
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instruments have also been used to derive column ozone, and photolysis rates of 

some atmospheric species [Dahlback, 1996; Gao et al., 2001]. 

 

2.4.1.4 Dosimeters 

All the above physical instruments are used predominantly to measure UV 

irradiance, that is, on a flat horizontal surface. Dosimeters measure dose, usually 

based on a biological response, over wavelength and time of radiation received at a 

specific point. To know the direct dose received by a person, a dosimeter is needed. 

Polysulphone film [Davis et al., 1976] is the most well known of the dosimeters in 

human exposure studies [Parisi and Kimlin, 2004; Siani et al., 2008], with a 

response spectrum similar to that for erythema [Davis et al., 1981; Diffey, 1997], 

causing a measurable response at a wavelength of 330 nm. The dosimeter can be 

used not only in air but also underwater [Dunne, 1999]. Photosensitive papers are 

another type of dosimeter, which change colour when exposured to UV radiation 

[Diffey, 1997]. Uracil thin film [Gróf et al., 1996; Webb, 1998] and “biofilm” 

[Rettberg et al., 1999; Rettberg and Cockell, 2004] are dosimeters based on DNA 

damage and require significant post-processing for analysis. The size of dosimeters 

is smallest compared to other types of physical instrument, so it can be used easily 

and personally. In addition, it does not need any power supply. As a result, the cost 

of dosimeters should be lower than other types. However, they need to be calibrated 

by using broadband radiometers or spectroradiometers, and under the same source 

spectrum as that for which they will be used [Webb, 1995; Webb, 2000a]. While 

approximate, their outputs are compared to the more sophisticated instruments, 

dosimeters have an important role in determining UV exposures and effects. 

[Di Menno et al., 2002; Webb, 2000a; Webb, 2003; WHO, 1992; WMO, 2003] 

 

2.4.2 Radiative Transfer Models 

A radiative transfer model is a set of mathematical tools, used to calculate spectral 

intensity (diffuse, direct and global). The model considers absorption, scattering and 

emission of radiation passing through the atmospheric column. The accuracy of 

radiative transfer models depends on both the mathematical schemes and the 

accuracy of input data. There is a variety of radiative transfer models, freely 
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available, that can be used to estimate spectral UV irradiance reaching the earth’s 

surface such as Libradtran or uvspec model [Mayer et al., 1997; Mayer and Kylling, 

2005]; the Tropospheric Ultraviolet Visible model [NCAR (National Center for 

Atmospheric Research), 2006]; the Streamer model [Key and Schweiger, 1998]; the 

System for Transfer of Atmospheric Radiation model [Ruggaber et al., 1994]. These 

models are different in terms of their accuracy, input data, processing of times and 

methodologies, but have all been validated against measurements. Although there are 

several radiative transfer models, the widely accepted uvspec model is the only one 

that was used in this study. The following provides general information on the 

uvspec radiative transfer model. 

 

2.4.2.1 The Uvspec Radiative Transfer Model 

Libradtran is a library of radiative transfer routines and program produced as a 

software package [Mayer and Kylling, 2005]. It is used for radiative transfer 

calculations in the earth’s atmosphere using the main program called uvspec model. 

The software package is freely available from http://www.libradtran.org. The 

program can be run using the command line in UNIX and Windows. In this study, 

the libradtran version 1.3 was installed under the Windows operating systems. The 

user, in this case, is recommended to install the Cygnus development suite called 

Cygwin, a Linux-like environment for Windows, which is one of the “GNU” tools 

available from http://cygwin.com [Mayer et al., 2007]. 

 

2.4.2.2 The Uvspec Input and Output 

As mentioned above, the uvspec model is invoked from the single command line as 

 

uvspec <input_file> output_file 

 

where input_file is an ASCII file varied by users. It contains many options for 

atmospheric parameters including the molecular atmosphere such as pressure, 

temperature and ozone, aerosol and cloud [Mayer and Kylling, 2005]. A comment is 

described by using a #. An example of the uvspec input file for a clear sky 

atmosphere is shown below: 
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                            # Location of atmospheric profile file.  

atmosphere_file ../data/atmmod/afglt.dat 

# Location of the extraterrestrial 

spectrum 

solar_file ../data/solar_flux/atlas_plus_modtran 

ozone_column  247.         # Scale ozone column to 247.0 DU 

day_of_year 2            # Correct for Earth-Sun distance 

sza 36.81                   # Solar zenith angle 

rte_solver disort2          # Radiative transfer equation solver 

deltam  on                  # delta-M scaling on 

nstr  6                     # Number of streams 

wavelength 291.0 400.0     # Wavelength range (nm) 

spline 291.0 400.0 1.0         # Interpolate from first to last in step 

quiet.     #End of the command 

 

From the input file, the atmospheric model containing pressure, temperature, ozone 

and some trace gases profiles are read from atmospheric_file. There are six standard 

atmospheric models provided by libradtran, which can be chosen by users, as 

follows: 

 

afglt  Tropical 

afglms  Midlatitide Summer 

afglmw  Midlatitude Winter 

afglss  Subarctic Summer 

afglsw  Subarctic Winter 

afglus  U.S. Standard. 

 

In this study, the atmospheric file, afglt, afglms and afglmw were selected for 

Thailand and UK. Likewise, the extraterrestrial solar flux can be read from 

solar_file. There are several extraterrestrial solar flux files which can be chosen in 

libradtran such as apm_1nm referring to ATLAS plus modtran spectrum convolved 

with a triangular function with FWHM of 1 nm [Mayer et al., 2007] and 
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atlas_plus_modtran which includes the flux from ATLAS2, ATLAS3 and modtran. 

The latter is used in this study. 

 

Ozone_column defines total ozone column in DU. 

 

Aerosol properties can be set up and modified with aerosol_ as can be seen in the 

example below: 

 

aerosol_vulcan 1   # Aerosol type above 2km 

aerosol_haze 6   # Aerosol type below 2km 

aerosol_season 1   # Summer season 

aerosol_visibility 20.0  # Visibility in km. 

 

aerosol_vulcan specifies aerosol situation above 2 km from the earth’s surface. It 

can be separated into four types: background, moderate volcanic, high volcanic and 

extreme volcanic aerosols. aerosol_haze is used to define aerosol type in the lower 2 

km of the atmosphere, which contains four types of aerosol (rural, maritime, urban 

and tropospheric types) for selection. aerosol_season is used to specify aerosol 

profile as spring-summer or fall-winter profiles. aerosol_visibility sets a value of 

visibility in km. Furthermore, in case event that aerosol optical thickness is known, 

aerosol_set_tau can be used to set it as a parameter into the model. 

 

For the output, the program reads the standard input file and then gives a standard 

output file. For a discrete ordinate radiative transfer (DISORT) solver applied in this 

work, the output format is presented below. 

 

lamda   edir   edn   eup   uavgdir   uavgdn   uavgup 

 

where lamda is wavelength (nm) 

edir is direct beam irradiance (mW·m-2-nm) 

edn is diffuse down irradiance (mW·m-2-nm) 

eup is diffuse up irradiance (mW·m-2-nm) 

uavgdir is direct beam contribution to the main intensity (mW·m-2-nm) 
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uavgdn is diffuse downward radiation contribution to the mean intensity 

(mW·m-2-nm) 

uavgup is diffuse upward radiation contribution to the mean intensity 

(mW·m-2-nm) 

 

The uvspec model includes three essential steps. Firstly, the standard input data is 

converted to the optical properties data. Then the radiative transfer equation solver as 

described above calculates transmittance, reflectance and radiances. Finally, the 

calculated outputs are post-processed to give absolute values by multiplication with 

the extraterrestrial solar irradiance, correction of sun-earth distance, and then, if 

required, convolution with a slit function, or integration over a wavelength region 

[Mayer et al., 1997; Mayer and Kylling, 2005]. 

 

2.4.2.3 The Use of Uvspec Model 

The uvspec radiative transfer model has been used widely. Many studies used uvspec 

for estimating surface UV irradiance, based on satellite data inputs, e.g., reflectivity 

[Meerkoetter et al., 1997; Verdebout, 2000; Wuttke et al., 2003] and ozone column 

[Janjai et al., 2009a]. Many studies estimated clear sky surface UV radiation using 

uvspec and some input data, e.g., ozone and aerosol optical depth [Lindfors and 

Vuilleumier, 2005; Mayer et al., 1997; Seckmeyer et al., 2008]. In addition, using the 

radiative transfer model combining with spectral UV irradiance and aerosol optical 

depth, aerosol single scattering can be estimated [Arola et al., 2005; Cordero et al., 

2009; Ialongo et al., 2010; Kazadzis et al., 2009a]. 

 

Validation of radiative transfer models can be checked either by comparing results 

with measurements or with other models of known quality. Mayer et al. [1997] 

found that the differences between measurement and uvspec model values were 

between -11% and 2% for wavelengths between 295 nm and 400 nm and solar zenith 

angles up to 80°. The agreement of UV irradiances between measurements and 

discrete ordinate methods was found within 6% (290-350 nm) [Wang and Lenoble, 

1994] and 8% (290-320 nm) [Zeng et al., 1994] for cloudless conditions, and 20% 

(280-320 nm) for cloudy conditions [Forster et al., 1995]. The comparison of UV 

Index calculated from six radiative transfer models including the uvspec model was 



Chapter 2 – Background and Literature Review 

 
 

42

presented by Koepke et al. [1998] and the agreement was generally within ±0.5 UV 

Index. The computed spectral global irradiance calculated from twelve radiative 

transfer models agreed to between 2% and 5% as shown by van Weele et al. [2000] 

using the same input parameters. 

 

2.4.3 Parameterization Schemes 

A parameterisation scheme uses one or more main controlling parameters for a 

physical process to define a related variable in a simple way. This method uses less 

input data compared with radiative transfer models and is not complicated compared 

with other methods. A direct relation between input and output is defined rather than 

representing the full complexity of the physical scheme (in this case radiative 

transfer). The scheme is limited by the accuracy of the algorithm and the spatial 

resolution. Following are several examples of parameterization methods. 

 

One parameterization method was built by Eck et al. [1995] to calculate UVB 

irradiance (290-325 nm) under both clear sky and cloudy sky conditions in Toronto. 

The input data needed in the model are total ozone column and UV reflectivity from 

TOMS, solar extraterrestrial irradiance and solar zenith angle. The difference 

between modelled and measured spectral UVB irradiances was only 4% for a very 

clear day, but greater in less ideal conditions. 

 

Li et al. [2000] built a model from ozone column, aerosol extinction optical depth, 

aerosol single scattering, reflectivity at 360 nm and 380 nm from TOMS or visible 

wavelength from NOAA/Advanced Very High Resolution Radiometer or 

Geostationary Operational Environmental Satellites. The validation was shown by 

Wang et al. [2000]. UVB (280-320 nm) and erythemal irradiances from the model 

were compared to the ground-based data measured at several Canadian sites, and the 

mean differences were found: 0.033 mW·m-2 for UVB irradiance, and 3.02 mW·m-2 

for erythemal irradiances. 

 

Parameterisation of daily UV irradiation was introduced by Feister et al. [2002]. 

This method used daily global and diffuse irradiation and the daily minimum solar 

zenith angle as input parameters. The results showed overestimation of modelled 
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values by 15% and 21% for UVA (315-400 nm) and UVB (290-315 nm), 

respectively. 

 

Fioletov at al. [2003] estimated UV Index at 45 sites in Canada. Their model 

requires global irradiance, total ozone column and dew point temperature as input 

parameters. The modelled results generally agreed within 2%-3% compared to 

ground-based data. In Spain, UV Index was also estimated by using a simple 

parameterisation scheme presented by Badosa et al. [2005]. Solar zenith angle, total 

ozone column, altitude, aerosol optical depth and single scattering albedo were taken 

into account in the model. The results showed a bias of 4% when compared with 

ground-based data. 

 

2.4.4 Empirical Models 

Empirical models present relationships between UV irradiance and routinely 

measured meteorological parameters. This method has been explored by a number of 

authors as detailed below. It should be remembered that empirical relationships often 

only apply to the site where they were derived, and they should be used with caution 

at other locations. 

 

The relation between UV and global radiation has been widely investigated [Antón et 

al., 2005; Cañada et al., 2000; Cañada et al., 2003; Feister et al., 2002; Ilyas et al., 

1999; Kudish and Evseev, 2000]. The studies presented either linear relations or 

multiple regressions between UV and global radiation in different areas such as 

Penang, Malaysia [Ilyas et al., 1999] and Dead Sea and Beer Sheva, Israel [Kudish 

and Evseev, 2000] and Valencia and Cordoba, Spain [Cañada et al., 2003]. Several 

attempts have been made to relate UV radiation to other parameters such as relative 

optical mass, clearness index [Cañada et al., 2000; Cañada et al., 2003], ozone 

column, reflectivity, aerosol index [Antón et al., 2005] and sunshine duration 

[Lindfors and Vuilleumier, 2005; Lindfors et al., 2003]. The differences between 

modelled and ground-based UV data can be quite large, e.g., 20% as shown by 

Lindfors and Vuilleumier [2005] and 5-27% as presented by Antón et al. [2005]. 
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Apart from UV irradiance, several recent studies have developed empirical models to 

estimate UV Index by using data such as solar zenith angle and total ozone [Allaart 

et al., 2004; Sudhibrabha et al., 2004]. The model presented by Allaart et al. [2004] 

showed better performance than the model introduced by Burrows et al. [1994] at 

high solar zenith angles for the data of De Bilt (midlatitudes) and Paramaribo 

(Tropics). Another empirical model using the data of Thailand was presented by 

Sudhibrabha et al. [2004]. This study found the mean absolute percentage error of 

the residual of 7.5% compared with ground-based data. 

 

2.4.5 Satellite Retrievals 

The advantage of satellite retrievals is providing data with a global view; however, 

they need good algorithms and input data to calculate UV irradiance. Since the 

1970s, satellite retrievals combined with radiative transfer models have been used to 

derive ozone, trace gases and erythemal irradiances at the earth’s surface for the 

entire globe, initially using TOMS, onboard several satellites; Earth Probe, Meteo-3 

and Nimbus-7, during 1978-2005. This has been superseded by OMI onboard the 

National Aeronautics and Space Administration (NASA) Aura spacecraft since July 

2004 to continue monitoring of ozone, trace gases and retrieval of surface UV 

irradiance [Levelt et al., 2006b; Tanskanen et al., 2006]. The description of the OMI 

UV algorithm and products will be given later in Chapter 3. 

 

Although satellite retrievals can provide data over a wide geographical distribution, 

they do so at relatively low spatial resolution, and ground-based validation of 

satellite data is required in any event. Initial studies compared TOMS UV data with 

ground-based UV data at several sites in Canada [Fioletov et al., 2002; Fioletov et 

al., 2004; McKenzie et al., 2001], the U.S. [DeLuisi et al., 2003; Fioletov et al., 

2004; Sabburg et al., 2002], Garmisch-Partenkirchen, Germany and Lauder, New 

Zealand [McKenzie et al., 2001], Ispra (Italy) and Thessaloniki (Greece) [Arola et 

al., 2005; Kazantzidis et al., 2006; McKenzie et al., 2001], Sodankyla (Finland) and 

Bilthoven (Netherland) [Kazantzidis et al., 2006], island of Campedusa [Meloni et 

al., 2005], Ushuaia (Argentina), Palmer (Antarctica) and San Diego (California) 

[Cede et al., 2004; Kalliskota et al., 2000]. Overall, they found that the TOMS 

satellite data were generally higher than ground-based data. Biases, for cloud-free 
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conditions, were in the range of 5%-45%, and this can be larger for cloudy 

conditions. The differences between satellite data and ground-based data for clean 

areas (low aerosol) were lower than those for urban areas. 

 

After the Aura spacecraft was launched, comparisons of the OMI based UV data and 

ground-based data became the focus of attention [Buchard et al., 2008; Ialongo et 

al., 2008; Kazadzis et al., 2009a; Tanskanen et al., 2007; Weihs and Simic, 2006; 

Weihs et al., 2008]. Many of the studies used UV data from spectrophotometers to 

estimate ground-based spectral UV dose rates and daily doses for the northern high 

latitudes and midlatitudes, but several have used broadband measurements for 

comparison, e.g., Ialongo et al. [2008] and Weihs et al., [2008]. The broadband data 

is often at higher time resolution and thus would allow the effects of rapidly 

changing conditions to be examined. Overall, results showed overestimation of UV 

product by OMI when compared with ground-based data; however, for some 

instances of snow covered surfaces OMI underestimated measurements compared to 

ground-based instruments as the bright scene from the snow covered surface was 

misinterpreted as cloud [Tanskanen et al., 2007]. It would appear that the bias 

mainly results from aerosol absorption which is not accounted for in the satellite UV 

algorithm and therefore causes the satellite retrieval to overestimate surface UV 

when significant aerosols are present. 

 

Several studies [Arola et al., 2005; Arola et al., 2009; Cede et al., 2004; Ialongo et 

al., 2010; Kazadzis et al., 2009a; Krotkov et al., 2005] have introduced various 

correction procedures to account for aerosol absorption with some success, e.g., the 

correction method in Arola et al. [2009] reduced bias by 5%-20% at midlatitude 

sites. It should be remembered that aerosols are not the only source of uncertainty in 

the satellite retrievals. Other sources include problems with defining surface albedo 

[Tanskanen et al., 2007], cloudiness, and pixel inhomogeneities [Kazadzis et al., 

2009b; Weihs et al., 2008]. These factors will be discussed in more detail in later 

chapters. 

 

Having provided a general background to UV science in terms of radiative transfer, 

measurements and biological effects, the following chapters will detail efforts to 

improve satellite UV estimation in the UK and Thailand. The goal is to improve UV 
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estimation for areas with no ground-based measurement systems and provide a tool 

for public health applications. 
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Chapter 3 – Sites and Instrumentation 

There are two main sources of UV irradiance data used in this thesis: ground-based 

measurements and satellite retrievals. This chapter will describe the sites, 

instruments and techniques used in acquiring the data that is analysed in subsequent 

chapters. It is separated into three main sections, descriptions of sites and 

instrumentation of the two different climate areas of concern: the Tropics (Thailand) 

and the midlatitudes (UK); and then the satellite retrievals. 

 

3.1 Sites and Instrumentation in Thailand 

3.1.1 Erythemal UV Irradiance Measuring Sites in Thailand 

Thailand is a country in Southeast Asia, covering the latitudes from 5°N to 20°N and 

longitudes from 97°E to 105°E (see Figure 3.1). The climate of Thailand is classified 

as tropical wet and dry [Met Office, 2007], and characterized by two monsoons: the 

South-West monsoon (from mid-May to mid-October) causing rain over the whole 

country and the North-East monsoon (from mid-October to mid-February) which 

brings cold and dry air from China to northern and north-eastern parts but causes rain 

along the eastern side of the country. Between the two monsoons (from mid-

February to mid-May), is the period April/May when the sun is highest in the sky for 

the country, and temperatures are greatest. The other period of highest sun coincides 

with the wet South-West monsoon. The northern part of the country is surrounded by 

the landmass of Southeast Asia with local industries and traffic, while the southern 

peninsula is surrounded by the Gulf of Thailand in the east and the Andaman Sea in 

the west, with resulting cleaner air than the north. 

 

UV irradiance measurement in Thailand is coordinated at the Laboratory of Tropical 

Atmospheric Physics, Silpakorn University, Thailand, using broadband instruments 

in several selected parts of the country [Janjai et al., 2009a; Janjai et al., 2010; Kift 

et al., 2006]. The four UV measurement sites in Thailand used in this study are at 

Chiang Mai (18.78°N, 98.98°E, 240 m a.s.l.), Ubon Ratchathani (15.25°N, 104.87°E, 

122 m a.s.l.), Nakhon Pathom (13.82°N, 100.04°E, 30 m a.s.l.) and Songkhla 
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(7.20°N, 100.60°E, 4 m a.s.l.), as shown in Figure 3.1. These sites cover the four 

main climatic regions of Thailand. Chiang Mai is a city in northern Thailand. It has 

the highest altitude of the four sites with a relatively cool, dry season in winter, and 

is situated in a natural bowl which tends to trap pollutants. Development within the 

city drives air pollution to high levels. Nakhon Pathom is a suburb of Bangkok 

characterised by urban and industrial aerosols with a dry season in winter. Ubon 

Ratchathani is in the Northeast of Thailand with a dry season in winter, and the 

industry is of a more agricultural nature than the other two cities. These cities are 

also influenced by seasonal biomass burning during January to April when rice straw 

is burnt after harvesting [Janjai et al., 2009b]. Songkhla is in the Southeast of 

Thailand on the coast of the Gulf of Thailand, which has mild weather and is wet for 

the whole year. Tourism is the main industry and the aerosols are under a maritime 

influence. 

 

Figure 3.1 The positions of Thailand sites. 
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The instruments are mounted at a height of about 1.5 m to 2.0 m above the local 

platform surface, close to the standard height for radiation instruments, allowing for 

observation and cleaning of the domes. The local platforms are flat roof tops which 

enable the instruments to be unshaded and with a clear view of the horizon despite 

local buildings and vegetation.  

 

3.1.2 Broadband Instrument Measuring Erythemal UV Irradia nce 

in Thailand 

For long-term outdoor measurement, broadband UV radiometers of Solar Light 

Company Inc. (Solar Light, Pennsylvania, USA) have been installed at the four sites. 

The first radiometers were purchased in June, 1997 for Nakhon Pathom, and in 

November, 1997 for Chiang Mai. After several years two other radiometers were 

installed at Songkhla in July, 2000 and at Ubon Ratchathani in August, 2000. 

Another UV-Biometer was purchased in year 2003, for use as a travelling standard 

for calibration purposes. 

 

3.1.2.1 Specifications 

The broadband radiometers installed at the four sites of Thailand are the UV-

Biometer (model 501) of the Roberson-Berger type meter [Morys and Berger, 1993]. 

The UV-Biometer is designed to measure erythemally weighted UV irradiance, 

which means the spectral response of the meter approximates the sunburn (erythema) 

response of human skin to UV radiation. The radiometer consists of a quartz dome, 

black glass filter, green glass filter, GaAsP diode, diode insulator, Peltier element, 

heat conductor, and desiccators, as shown in Figure 3.2. 
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Figure 3.2 Diagram of a UV-Biometer detector [Morys and Berger, 1993]. 

 

Of the radiation incident on the quartz dome, the visible and infrared radiation is 

absorbed by the black filter while UV radiation can pass through to the phosphor. 

The phosphor absorbs the UV light and then re-emits it as green light. The green 

light from the phosphor passes a green glass filter, which blocks any red light passed 

by the black filter. The remaining light is detected by a solid state (GaAs) 

photodiode. The phosphor, green filter and photodiode assembly together is 

surrounded by a good heat conductor for temperature stabilization. The combination 

of the phosphor and GaAs responses together provide an instrument that can be used 

as an erythemal UV sensor since it has a spectral response close to the erythemal 

action spectrum defined by CIE [McKinlay and Diffey, 1987] as seen in Figure 3.3 

(the figure of spectral response of the travelling standard UV-Biometer measured in 

Manchester, 2009, can be seen in Appendix 1, which includes the experimental 

details). The signal from the photodiode, which is proportional to the erythemal 

radiation, produces a current and it is transferred to a data recorder. 
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Figure 3.3 Typical Spectral response of the UV-Biometer [Morys and Berger, 

1993]. 

 

The incident radiation on a horizontal surface varies as the cosine of the zenith angle 

of incidence. This dependency is usually called the “cosine law” and ideally the 

angular response of a radiometer for irradiance should mimic this cosine 

dependency. However, imperfections of the quartz dome, reflections from the 

surface of the dome and black filter, non-uniformity of the phosphor and shading of 

the sensor for high incident angles are causes of deviations in angular response. In 

general, the angular response of this type of detector is within a 5% error of the ideal 

cosine response for incident zenith angles less than 60°, and less well matched at 

larger angles (see Figure 3.4) [Webb, 1998]. The experimental details of cosine 

response for the travelling standard UV-Biometer measured in Manchester, 2009, 

can be seen in Appendix 1. 
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Figure 3.4 The actual cosine response of the UV-Biometer (s/n 5809) measured by 

the manufacturer compared with the ideal cosine function. 

 

3.1.2.2 Data Acquisition  

The electrical signal from the UV-Biometer must be recorded on a suitable data 

logger. In order to collect data from the instrument, the radiometer at each site is 

connected to the data logger (DC100) and chart recorder of Yokogawa (Japan) as 

shown in Figures 3.5 and 3.6. The chart recorders are a backup which are used only 

when the data loggers fail, and for a quick visual check that data recording is 

proceeding normally. The data logger is set to sample the voltage output from the 

radiometer every second and then records the averaged value every ten minutes.  
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Figure 3.5 A data logger of Yokogawa. 

 

 

Figure 3.6 A chart recorder of Yokogawa. 

 

These data are sent to the Laboratory of Tropical Atmospheric Physics, Silpakorn 

University. The voltage signals are then converted to erythemal irradiance by using 

conversion factors in V/(W·m-2) from the manufacturer and field calibrations, and 

corrected for spectral and cosine errors. The conversion factor is initially provided in 

calibration information from the manufacturer, but must be checked at regular 

intervals. In addition, the single conversion factor does not give true erythemal 

irradiance in all conditions unless the instrument response exactly matches the 

human erythemal response. Thus the calibration must be adjusted for the interplay of 

this mismatch with the changing solar spectrum due to changing ozone and solar 

zenith angle. 
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To convert the raw data from the data logger to erythemally weighted UV irradiance, 

Equation 3.1 [Webb et al., 2006] was used to calculate the UV irradiance and apply 

the spectral response and cosine response functions. 

 

 Coscor)TO,(Cf)UU(E 3zoCIE θ−=  (3.1) 

 

where CIEE  is the erythemal effective irradiance, 

U  and oU  are the raw and dark signals from the detector, 

C  is the absolute calibration factor, 

)TO,(f 3zθ  is the normalisation spectral response function , and 

Coscor is the cosine correction function. 

 

The value of U  is collected from the radiometer during day time at the specified 

measurement time (unit of voltage) while the value of oU  is the value measured at 

night in the same units (i.e. the dark signal). C  is a constant value used for 

converting the voltage to irradiance (W·m-2/V) verified for a specific set of 

conditions. For instance, for the model 501 UV-Biometer, the condition is at solar 

zenith of 30°, total ozone column of 270 DU, zero albedo and sea level. The function 

of )TO,(f 3zθ  for each site can be determined by using a uvspec radiative transfer 

model (see Chapter 2) to give a matrix for the differences from these baseline 

conditions, dependent on solar zenith angle and total ozone following Equation 3.2 

[Webb et al., 2006], as shown in Figure 3.7. The limitations of the matrix are: solar 

zenith angles are in the range of 0° to 90° with 1° step, and total ozone column are in 

the range of 200-400 DU with 1 DU step. 

 

 

∫
∫
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where )(CIE λ  is the CIE erythemal action spectrum [McKinlay and Diffey, 1987], 

)(SRFλ  is the response of the radiometer, 
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)(Erad λ  is a set of solar spectra calculated with uvspec for different solar 

zenith angles and total ozone column, 

λ  is wavelength. 

 

 

Figure 3.7 The normalisation of spectral response function. 

 

For the cosine error correction (Coscor), since the actual cosine response of the 

instruments is not the same as the ideal cosine function, this can result in systematic 

measurement errors. The magnitude of the cosine error depends on the “state of the 

sky” such as zenith angle and cloud cover, which determine the radiance distribution 

i.e. the pattern of the direct and diffuse components across the hemisphere [Hülsen 

and Gröbner, 2007; Webb, 1998]. 

 

To correct the cosine error, the following equations have been used [Hülsen and 

Gröbner, 2007]. 
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where glof  is the global cosine error and gloE  is the global radiation which is the sum 

of the direct radiation, dirE , and the diffuse radiation,difE . The values of dirE  and 

difE  can be obtained from measurement or models. dirf  is the direct cosine error 

which is the angular response function (ARF) that can be obtained in a laboratory, 

and diff is the diffuse cosine error which can be calculated from the following 

equation assuming a homogeneous radiance distribution integrated over the whole 

hemisphere. 

 

 
∫

π

θθθ=
2/

0

dif d)sin()(ARF2f  (3.5) 

 

where  θ  is solar zenith angle. 

 

3.1.2.3 Calibrations 

A full calibration of the UV-Biometer can be divided into three main steps: spectral 

response, angular response and absolute calibration (see Appendix 1). The first two 

steps are performed in a laboratory with standard lamps while the absolute 

calibration is performed with respect to a standard instrument and the sun as source.  

 

The absolute calibration factor can be obtained by using a reference 

spectroradiometer. The calibrated detector is placed against the reference 

spectroradiometer on a roof to measure the radiation from the sun. Then the absolute 

calibration factor can be calculated from the equation below [Hülsen and Gröbner, 

2007]. 
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where C is the absolute calibration factor and DE is the spectrum weighted with the 

detector spectral response. DU  and offsetU  are the raw and dark signal measured by 

the detector. Coscor  is the cosine error correction and of  is the normalization 

spectral response factor as mentioned above. For details of the calibration of UV-

Biometer (s/n 5809) against a double monochromator in Manchester, 2009, see 

Appendix 1. 

 

Regarding the instruments in Thailand [Janjai et al., 2009a], these UV-Biometers 

were originally calibrated to National Institute of Standards and Technology (NIST) 

traceable standards via quartz-halogen lamps by the Solar Light facility in 

Pennsylvania, USA. By using the fifth UV-Biometer as a travelling standard, the 

calibration factors at each site have been reviewed annually by an on-site 

intercomparison between the standard and each site instrument using the method in 

Webb et al. [2006]. Prior to 2003, one site instrument per year was sent to Solar 

Light for characterisation and recalibration, and then used to check the calibrations at 

the other sites through intercomparison. The cosine responses showed little change 

while the spectral responses altered gradually with time causing changes in 

calibration factors that were within 1.5% over an 8-year period [Janjai et al., 2009a]. 

The spectral response of the fifth, travelling standard instrument was checked in 

Thailand in 2008 and both cosine and spectral responses were independently 

checked in Manchester in 2009: the cosine response showed little change from the 

original (within the measurement uncertainties ~ 2%), while there had been a small 

shift in the spectral response at longer UVA wavelengths. However, the spectral 

response check in 2008 in Thailand showed no significant change in response. So we 

take the statement of Janjai et al. [2009a] that this travelling instrument was stable 

for the period of concern. Therefore, the original cosine and spectral responses from 

the manufacturer have been used throughout since any observed changes during 

recalibration have been small. The estimated overall uncertainty of the radiometer is 

within ±8% [Janjai et al., 2009a]. 
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3.1.2.4 Maintenance 

The quality of data also depends on maintenance of the instruments. The instruments 

at the four Thai sites are well maintained with daily cleaning of the quartz dome, 

regular changing of the desiccants and annual field calibrations under clear sky 

conditions. Additionally, the instruments are transported to the manufacturer 

periodically to calibrate the angular response, the spectral response and the absolute 

calibration in the laboratory. 

 

3.2 Sites and Instrumentation in UK 

3.2.1 Erythemal UV Irradiance Measuring Sites in UK 

The UK is a country at northern midlatitudes, covering the latitudes from 50°N to 

60°N and longitudes from 8°W to 2°E. The UK climate is classified as the cold 

temperate (or maritime, west coast) [Met Office, 2007], which has unpredictable 

weather. It can be sunny, raining, and cloudy in one day. These weather patterns can 

occur in summer as well as winter. The four seasons of the UK are: spring (March to 

May), summer (June to August), autumn (September to November) and winter 

(December to February). The main influence on the climate is from the Atlantic 

Ocean. The weather in the UK is very variable with large inter-annual differences, 

and can be under the influence of air masses from both the Arctic and the Tropics, 

and either continental or maritime in origin.  

 

In this study, there are nine UK sites where UV irradiances are measured; Camborne 

(50.22°N, 5.32°W, 85 m a.s.l.), Chilton (51.58°N, 1.32°W, 122 m a.s.l.), Glasgow 

(55.86°N, 4.34°W, 9 m a.s.l.), Kinloss (57.64°N, 3.56°W, 5 m a.s.l.), Leeds 

(53.85°N, 1.61°W, 164 m a.s.l.), Lerwick (60.14°N, 1.19°W, 79 m a.s.l.), Snowdon 

(53.07°N, 4.08°W, 1025 m a.s.l.), Manchester (53.47°N, 2.23°W, 43 m a.s.l.) and 

Reading (51.44°N, 0.94°W, 67 m a.s.l.) as shown in Figure 3.8. The last two sites 

provide spectral data, while the remainder operate broadband instruments similar to 

those in Thailand. 
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Figure 3.8 The position of nine stations in the UK. 

 

3.2.2 Broadband Instruments 

There are seven broadband instruments [Pearson et al., 2006] in UK used in this 

study. Three of them; Chilton, Leeds and Glasgow, are at Health Protection Agency 

(HPA) sites, and were installed in 1988. A further three instruments installed at 

Camborne and Lerwick since 1993, and Kinloss since 1995 are based at UK 

Meteorological office sites. Another instrument supported by a Welsh Assembly 

Grant has been on the mountain of Snowdon since 2003. The data collection and 

analysis, and calibration of all instruments are overseen by HPA. 
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3.2.2.1 Specifications  

These networks have used two versions of broadband instruments; model 500 (RB-

500) and model 501 (RB-501) of Robertson-Berger meters. Initially, RB-500 meters 

were used at the all sites except at Snowdon. Currently, these instruments are still 

used at Camborne, Kinloss and Lerwick, while they have been replaced by RB-501 

meters at Chilton in October, 2004 and at Leeds and Glasgow in May 2005. For 

Snowdon, a RB-501 meter was installed in 2003. The specifics of the model 501 

Roberson-Berger meter have been described above. The RB-500 meter was the 

earlier version: it used a vacuum photodiode rather than the solid state version, and 

did not have the same temperature stabilisation [Pearson et al., 2004]. 

 

3.2.2.2 Data Acquisition 

The erythemal irradiance data from the instruments is converted from analogue to 

digital data and then transferred to processing computers. The data from these 

instruments is recorded every 20 seconds and then averaged over five minutes, and 

then the calibration applied to give irradiances. For Snowdon, since the location of 

this instrument is on the mountain of Snowdon, the data is limited by the power 

supply taken from a railway station. Therefore, the data of this site can be recorded 

only about six months per year from April/March to September/October when the 

tourist train is operating. For missing data, any small data gap is filled by the average 

data on either side of the gap, and large data gaps cause rejection of the whole day in 

climatological data analysis. 

 

3.2.2.3 Calibrations 

All these instruments are field calibrated using a standard broadband instrument. 

Usually, the field calibration is held in July. The standard is calibrated against a 

double monochromator scanning spectroradiometer which is calibrated against 

deuterium discharge lamps traceable to the National Physical Laboratory. The 

overall uncertainty is estimated at 9% for RB-500 and 4% for RB-501, based on 

uncertainties of national standard, transfer standard, spectral response, temperature 

response, linearity, angular response and offset [Pearson et al., 2000]. 
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3.2.3 The Bentham Spectroradiometer 

The Bentham spectroradiometer model DMc150 is one version of the 

spectroradiometers manufactured by Bentham Instruments Limited (Reading, UK). It 

is a double monochromator with the advantage of reduced straylight compared with 

a single monochromator. There are four basic units of the instrument: input optics, 

monochromator, detector, and control and logging system (see Figure 3.9). The input 

optics of DMc150 are usually made from Teflon for UV measurement. The cosine 

response of the diffuser, measured using a 1000 W quartz halogen lamp, is 

wavelength independent. The radiation is transferred to the monochromator through 

the quartz fibre optic cable. 

 

 

Figure 3.9 Basic components of a spectroradiometer system [Bentham Instruments 

Ltd, 1997]. 
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Figure 3.10 Schematic elements of a Double Monochromator [Bentham Instruments 

Ltd, 1997]. The layout of the DMc150 is slightly different, but the basic elements are 

the same. 

 

The double monochromator (see Figure 3.10) packed in the “envirobox” (a 

temperature stabilisation system) consists of mirrors and 1200 lines/mm gratings 

with the reciprocal dispersion 2.7 nm per mm. The mirrors are used for directing the 

radiation from the entrance slit, which reduces straylight. Then the light is separated 

into its specific wavebands at the first diffraction grating. At the middle slit of the 

DMc150 double monochromator, there is a filter wheel used for the purpose of 

limiting the signal at the detector, which is a PMT, and for measuring the dark 

current. Further dispersion occurs at the second grating and the light is then directed 

wavelength by wavelength, as the gratings turn, onto the PMT thus building a 

complete spectrum. The bi-alkali end window PMT is selected for low dark current 

noise and for low hysteresis. The wavelength dependent electrical signals from the 

PMT are converted to corresponding irradiance values in units of mW·m-2
·nm-1 by 

way of the calibration. A computer is used for controlling and logging the system. 

 

The Bentham instrument has been located in a small building at the University of 

Reading since August 1999. The input optic mounted on the roof is connected to the 

double monochromator and the PMT mounted in the envirobox inside the building, 

by way of the fibre optic cable. Both sections are also connected to the control and 

logging system as can be seen in Figure 3.11. 
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Figure 3.11 The Bentham DMc150 installed at the University of Reading. 

 

Raw data from the Bentham is automatically collected from sunrise to sunset every 

half an hour. The spectral irradiance is scanned from 290 nm to 500 nm with a step 

of 0.5 nm, and the spectral calibration file applied. A single scan takes approximately 

five minutes. Furthermore, SHICrivm software [Slaper et al., 1995] is used for 

routine QC of the measurements. This package, now widely used, assesses and 

corrects small wavelength inaccuracies in the spectral data, and then provides spectra 

as they would appear if measured by an instrument with a triangular slit function of 1 

nm FWHM, as well as the wavelength corrected spectra with the instrument’s true 

slit function. Ideally, a spectroradiometer would have an infinitely narrow slit 

function to truly measure monochromatic light. In practice, this is not possible and 

there is always a trade off between signal, dispersion and slit function. However, 

with a rapidly changing signal with wavelength (as in the solar UV) different slit 

functions will incorporate different amounts of straylight into a pseudo-

monochromatic signal. Normalising the slit function effect to a standard function, as 

SHICrivm does, makes it easier to compare data from different instruments. The 
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package also makes a number of other quality control checks for shape-errors, spikes 

and variability, for example, and returns a number of coloured QC flags for each 

spectrum. The quality controlled data is then available and can be accessed from 

ftp://o3uvdata.seaes.manchester.ac.uk/. The output data file called as “level_1” from 

the database contains the metadata information, wavelength, and the measured 

spectral irradiance in unit of mW·m-2
·nm-1.  

 

The erythemal irradiance from the raw data can be calculated by using Equation 2.2 

(see Chapter 2). After that the erythemally weighted UV irradiance at the lowest 

solar zenith angle of the day is selected to represent the irradiance at local solar 

noon. Note that the erythemal irradiance at solar local noon from the Bentham 

DMc150 used in this study is not always exactly at true solar noon value since 

measurements are made only every 30 minute, but the time difference is no more 

than 15 minutes. 

 

Calibration of the instrument is required more frequently than for the broadband 

radiometers since the double monochromators with their moving parts, and the high 

voltage PMT detectors, are inherently less stable than the simpler radiometers. The 

wavelength calibration (or check of wavelength alignment of monochromator) 

should be performed first, and then the irradiance calibration should be checked. The 

initial method of calibration in the laboratory (see Figure 3.12 with the DMc150 in 

place of the DTM300) uses a 1000 W FEL tungsten halogen lamp as a primary 

standard lamp with known spectral output, traceable to NIST, and certificated by 

Optronics Laboratories, Florida, USA. The output of the lamp is stable and smooth 

from UV to infrared ranges [Webb, 1998].  

 



Chapter 3 – Sites and Instrumentation 

 

 
 

65

A 1000 W tungsten halogen lamp

A Bentham spectroradiometer
(DTM300)

A set of 200 W transfer 
tungsten halogen lamps

A Bentham spectroradiometer
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NISTA 1000 W tungsten halogen lamp

A Bentham spectroradiometer
(DTM300)

A set of 200 W transfer 
tungsten halogen lamps

A Bentham spectroradiometer
(DMc150)

NIST

 

Figure 3.12 The diagram of calibration process for spectrophotometers. 

 

Thereafter the DMc150 is calibrated in the field, at monthly intervals or more 

frequently if circumstances dictate, using the transfer standards that are themselves 

calibrated via the DTM300 (Figure 3.12). The uncertainty incurred in the calibration 

process can be about 1% including uncertainties of alignment and orientation, 

stability of the detector, statistical noise, nonlinearity and straylight, additional to the 

2%-3% uncertainty inherent in a new standard lamp. Since the standard lamp is not 

field equipment, a set of several 200 W DXW tungsten halogen standard lamps, in 

fixed mounts that attach uniquely to the input optics, are used as transfer (or 

travelling) standard lamps. The uncertainty of transfer lamps is approximately 3%-

5% with wavelength dependence, including uncertainties due to statistical noise, 

current regulation of the lamps, and transportation and long-term use of the lamps 

[Gröbner et al., 2005]. During the monthly calibration checks, changes of less than 

2% are deemed to be within the stability and uncertainties of the calibration process 

and no changes are made to the calibration. From results of the calibration check 

during 2004-2007, mean changes were considerably less than 2% and only 

occasional adjustments to the calibration were required. In addition, external quality 

assurance of the data has come through a series of international intercomparisons (of 

this instrument or its predecessor, e.g., Bais et al. [2001]; Webb, [1997] and Gröbner 

et al. [2005]), and more recently on-site comparison with a travelling standard 

instrument developed within the European Union project Quality Assurance of Solar 
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UV Measurements in Europe (QASUME). The results showed the deviations of the 

Bentham at Reading relative to the QASUME reference spectroradiometer were 1% 

in the UVB (305-315 nm) and 2% in the UVA (above 315 nm) [Gröbner et al., 

2006]. 

 

3.2.4 Brewer Spectrophotometers 

Brewer instruments, of which there are several models, are a type of 

spectrophotometer originally intended for automatic, total ozone measurements in 

the UV range by using either direct sunlight or diffuse sky light from the zenith. 

They can also measure spectral irradiance in a limited wavelength range (dependent 

on model) by using a quartz dome and Teflon diffuser. Recently, more than 200 of 

the instruments have been used globally [Kimlin et al., 2003; Sci-Tec, 1996; 

Tanskanen et al., 2007; WMO, 2008]. 

 

The general system of the instrument consists of three main sections: foreoptics, 

spectrometers, and a PMT detector as shown in Figure 3.13. For the foreoptics, 

incoming light is incident at zenith prism (ZP1), which by rotating can direct 

radiation into the monochromator from different sources: quartz window, calibration 

lamps or UV diffuser. For zenith angles between 0° and 90°, the sunlight and sky 

light passes through an inclined quartz window. At zenith angle 180° the 

spectrometer points to the calibration lamps, and at -90° a Teflon UV diffuser 

occupies the field of view (FOV) as shown in Figure 3.14. The light from the prism 

is then passed through several lenses and three control elements (iris diaphragm 

(IR1), filter wheel#1 (FW1) and filter wheel#2 (FW2) which control intensity for 

ozone, UV and lamp measurements) to a mirror (SM1). At the mirror, the light is 

reflected to a moveable grating (GR1) where the light is dispersed. The spectrum is 

then reflected and focused by the mirror on the plane of cylindrical slit mask (SL1) 

consisting of six exit slits (EX1). A stepper motor can control the slit mask positions 

to allow the spectrum to enter one of the six exit slits. In the double monochromator 

(Mark III) instrument the spectrum is then focused onto another grating (GR2) by 

another mirror (SM2). Finally, the spectral elements passing through the 
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spectrometer are amplified by the PMT detector and photon counts (raw counts) are 

then transmitted to a counter. 

 

 

.  

Figure 3.13 Optical Elements of Brewer Spectrophotometer [Sci-Tec, 1999]. 

 

 

Figure 3.14 Zenith prism targets [Sci-Tec, 1999]. 
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The spectrophotometer located on the roof of the Pariser building at the University 

of Manchester is a Brewer Mark III model (Figure 3.15) which is a double 

monochromator spectroradiometer, and the spectroradiometer at the University of 

Reading is a Brewer Mark IV single monochromator (Figure 3.16). 

 

 

Figure 3.15 The Brewer spectrophotometer (#172) installed at the University of 

Manchester. 

 

 

Figure 3.16 The Brewer spectrophotometer (#075) located at the University of 

Reading. 
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For ozone measurement at zenith angles between 0° and 90°, the grating (GR1) is 

fixed to adjust the light onto the slit mask that selects single wavelengths used for 

total ozone calculation. From the slit mask positions selected, the direct sun is 

measured at six wavelengths: 303.2 nm, 306.3 nm, 310.1 nm, 313.5 nm, 316.8 nm 

and 320.1 nm, with resolution of 0.6 nm [Sci-Tec, 1995]. The spectral radiation is 

counted and amplified in term of photon counts by using PMT. Total column ozone 

can be calculated by using differential absorption of selected wavelengths in the UV 

range, a process performed by the Brewer software. 

 

To monitor UV irradiance, the spectral UV data can be collected by using the quartz 

dome and Teflon diffuser for the zenith angle prism of -90°. The slit mask (SL1) is 

fixed to allow for dark count measurement. The grating (GR1) is moved to enable 

UV wavelengths to reach the PMT in turn as the wavelength incident on the slit 

changes with the grating rotation. The software for UV measurement is set to scan 

from 286.5 nm to 363.0 nm for Mark III and from 290.0 nm to 325.0 nm for Mark 

IV, in steps of 0.5 nm, which takes about six minutes to complete. The raw counts 

are converted throughout to counts per second and corrected for instrument dead 

time. Then the corrected raw counts are divided by the instrument response values 

and multiplied by the erythema weighting value at each wavelength (see Equation 

2.2). The weighted spectrum is then integrated to give the erythemal irradiance. Note 

that the Brewer UV spectral data do not extend across the full waveband of 

erythemally effective UV (290-400 nm), although the most erythemally effective 

wavelengths are measured. However, the erythemal data used in this thesis was 

corrected automatically for the missing wavelength by the retrieval software of the 

Brewer spectrometer. The uncertainty incurred by the lack of longer UVA 

wavelengths is less than 2% for the solar zenith angle less than 70° [Fioletov et al., 

2003; Fioletov et al., 2009]. 

 

The wavelength calibration of the instruments is performed regularly by using the 

internal mercury lamp and the sensitivity of the instruments is monitored by using an 

internal halogen lamp. Regarding the intercomparison of Brewer#075 and #172 in 

2005, 2007 and 2009, the UV calibration of the Brewer spectrophotometers was 

maintained in between the ozone calibration intercomparisons by calibration checks 
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against a series of 50 W tungsten halogen lamps, which allow any drift in the 

calibration to be identified. If necessary the UV operation of the Brewer can be 

calibrated with NIST traceable 1000 W tungsten halogen lamps. The new response 

files of years 2007 and 2009 were compared with the calibration file of year 2005, 

and the results for both instruments showed the stability of the systems with the 

differences within 8% for Brewer#075 and 3% for Brewer#172. The results of ozone 

data showed the agreement within approximately ±2 DU. 

 

3.3 Overall Uncertainty of Ground-Based Instruments 

The broadband radiometer has a typical uncertainty of 7.2% or more. This includes 

the uncertainty of calibration procedure (~3.1%), the uncertainty of converting from 

detector weighted irradiance to erythemally weighted irradiance (~1.7%), and the 

uncertainty of the cosine correction (1.7%-4.3%) [Hülsen and Gröbner, 2007]. 

However, as discussed earlier, the broadband radiometers used in this study have the 

overall uncertainties within ±9% (i.e., ±8% for the Thai sites, and ±4 to ±9% for the 

UK sites). 

 

Overall uncertainty in spectral UV data measured by carefully calibrated and 

maintained Bentham and Brewer spectrometers is usually less than that from 

broadband radiometers. The uncertainty of UV irradiance measured by Brewer 

spectrometer is estimated to be within ±6% depending on sites for all known major 

sources of error such as straylight and cosine error [Sabburg et al., 2002] and within 

±5%, measured by Bentham spectrometer [Webb et al., 1999].  

 

3.4 The Ozone Monitoring Instrument 

3.4.1 General Information 

The Ozone Monitoring Instrument is one of the instruments onboard NASA Earth 

Observing System (EOS) Aura spacecraft. It was launched on 15 July, 2004 [Levelt 

et al., 2006a], and from 6 September, 2004 OMI has measured the composition of 

the earth’s atmosphere on a global scale [Tanskanen, 2008].  
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Aura/OMI is a sun synchronous polar orbiting satellite passing near the earth’s poles 

at an altitude of around 705 km above the earth’s surface, with an inclination of 

98.2° [Laan et al., 2001; Levelt et al., 2006b]. The telescope of OMI provides a large 

FOV of 114° as can be seen in Figure 3.17. This results in a higher spatial resolution 

(13 km×24 km at nadir) compared with TOMS and GOME. The resolution can reach 

up to around 13 km×150 km at the largest swath-angle (57°) [Levelt et al., 2006b]. 

OMI is a nadir-viewing spectrometer with a 2600 km wide swath that can cover most 

of global area in a day using a two dimensional charge-coupled device detector. One 

dimension detects the spectral information and another detects the spatial 

information. The equator overpass time of the satellite is usually about 1:45 pm local 

solar time, which can be varied by ±50 minutes, and at high latitudes there are often 

several overpasses per day [Tanskanen et al., 2007]. 

 

 

Figure 3.17 OMI measurement principle modified from Levelt et al. [2006b]. 

 

The instrument contains two spectrometers measuring the earth radiance and solar 

irradiance spectrum between 270 nm and 500 nm, covering UV and visible ranges. 

The light entering the telescope and then passing a polarization scrambler is split into 

two channels: the UV channel (270-365 nm) and the Visible channel (365-500 nm), 

using a dichroic filter. The UV channel is divided into two sub-channels: UV-1 (270-
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310 nm) and UV-2 (310-365 nm) [Levelt et al., 2006b], to reduce an excess of 

straylight below 290 nm. 

 

OMI requires not only on-ground but also in-flight calibration [Levelt et al., 2006b]. 

The on-ground calibration provides several parameters, for example, absolute 

radiance, absolute irradiance, straylight, detector and electronics characteristics. The 

purpose of the in-flight calibration is for measuring the sun once per day using an 

internal white light source and light emitting diodes to check the overall 

performance. More extensive information about the OMI calibration can be also seen 

in Laan et al. [2001] and Dobber et al. [2006]. 

 

With regard to the science objectives [Levelt et al., 2006a], OMI can provide data on 

trace gases including Ozone, Nitrogen dioxide, Sulphur dioxide, Formaldehyde 

(HCHO), Bromineoxide (BrO) and Chlorinedioxide (OClO). Furthermore, OMI can 

also retrieve aerosol characteristics, cloud top heights and surface UV irradiance. In 

this thesis, we aim to use the OMI surface UV irradiance and OMI aerosol data. 

 

3.4.2 Surface Ultraviolet Irradiance from OMI 

3.4.2.1 OMI Surface UV Algorithm 

The OMI UV algorithm is based on the TOMS UV algorithm developed by NASA 

Goddard Space Flight Centre [Eck et al., 1995; Krotkov et al., 1998; Krotkov et al., 

2001; Tanskanen et al., 2006]. However, the OMI UV product has a higher spatial 

resolution of 13×24 km2 at nadir. The OMI surface UV algorithm relies on 

“TOMRAD” radiative transfer model [Dave, 1964] and input data such as total 

column ozone from OMI and climatological surface albedo based on TOMS data 

[Tanskanen, 2004]. Firstly, clear sky UV irradiance is calculated by assuming that 

the atmosphere has no cloud and no aerosols. Then the clear sky irradiance is 

multiplied by a cloud and nonabsorbing aerosol correction factor (i.e., aerosol 

scattering which is included in the backscatter measurement) derived from further 

OMI products, e.g., the measured 360 nm radiance at the overpass time. Note, 

however, that the backscatter measurements on which this correction is based still do 



Chapter 3 – Sites and Instrumentation 

 

 
 

73

not fully probe the lower boundary layer and the aerosols therein [McKenzie et al., 

2008]. An overview of the OMI UV algorithm is shown in Figure 3.18. 

 

 

Figure 3.18 OMI UV algorithm overview modified from Krotkov et al. [2002b]. 

 

In the algorithm, the non-clear sky conditions are distinguished into 

cloud/nonabsorbing aerosol, and absorbing aerosol. These can be separated by using 

the two values of Lambertian Equivalent Reflectivity (LER) at 360 nm (see Equation 

3.7) [Krotkov et al., 2002a; Krotkov et al., 1998; Krotkov et al., 2001; Krotkov et al., 

2002b] and Aerosol Index (AI), (see Equation 3.8) [Krotkov et al., 2002a; Krotkov et 

al., 2002b]. 

 

 

)P(SR1

)P,,(TR
)P,,(II

Sb360

So360360
Soo360 −

θθ
+θθ=  (3.7) 

 

where 360I  is the LER radiance at near 360 nm, 

oI  is the radiation reaching the instrument from a pure Rayleigh atmosphere 

with zero surface reflectivity, 

θ  is the viewing angle, 

oθ  is solar zenith angle, 
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360R  is the LER at 360 nm, 

360T  is the total amount of direct plus diffuse radiation reaching the surface, 

multiplied by the atmospheric transmission of the diffuse reflected radiation in the 

direction of the satellite, 

SP  is surface pressure, and 

bS  is the diffuse reflection of Rayleigh atmosphere illuminated from below 

by an isotropic source. 

 

 ])I/I(log)I/I([log100AI calcnm360nm33110measnm360nm33110 −−=  (3.8) 

 

where I is the upwelling radiance at the top of the atmosphere at 331 nm and 360 nm, 

these being the shortest and longest available wavelengths where gaseous absorption 

is negligible. 

 

- Clear-Sky UV Irradiance 

For a cloud- and aerosol-free atmosphere, the clear sky surface UV irradiance,clearE , 

is calculated for a Lambertian reflecting surface by using the formula below 

[Krotkov et al., 1998; Tanskanen et al., 2006]: 

 

 

bS

diffdir
2
o

clear SA1

EE

d

E
E

−
+

=  (3.9) 

 
 

where dirE  is direct irradiance at the ground for unit solar flux and zero surface  

reflectivity, 

diffE is diffuse irradiance at the ground for unit solar flux and zero surface 

reflectivity, 

d  is the sun-earth distance, 

oE  is the extraterrestrial solar flux at 1 Astronomical Unit, 

SA  is the surface albedo, and 
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bS  is the fraction of reflected radiation that is in turn backscattered to the 

surface by the Rayleigh atmosphere. 

 

For the purpose of estimating clearE , the dirE , diffE  and bS  in Equation 3.9 were 

solved from the radiative transfer equation in the UV range (290-400 nm) using the 

auxiliary equations method [Dave, 1964]. This process accounts for all orders of 

scattering and polarization effects. In addition, a spherical geometry correction is 

required [Krotkov et al., 2002b]. Therefore, the irradiances at solar zenith angles up 

to 85° are more correct. 

 

The model was separated for a set of 26 ozone and temperature profiles to calculate 

the numerical parameters using ozone absorption coefficients based on the laboratory 

measurements of Bass and Paur [1985], and the Rayleigh scattering coefficients 

based on the work by Bates [1984], cited in Krotkov et al. [2002b]. The ozone and 

temperature profiles are based on the Nimbus-7/SBUV instrument measurements 

above 15 km and on balloon ozonesonde measurements for lower altitudes 

[McPeters et al., 1998]. The profiles have been generated for three zones:  low 

latitude (15°) covering a range of 225-475 DU, midlatitude (45°) and high latitude 

(75°) covering a range of 125-575 DU.  

 

To estimate surface albedo (SA ), it is assumed that the albedo is spectrally 

independent in the UV range. Monthly Minimum Lambertain Equivalent 

Reflectivity at 360 nm or 380 nm (MLER) retrieved from the Nimbus-7/TOMS 

during 1978 to 1993 was used. A linear interpolation in space and time method is 

then used for estimating MLER on a given day for each OMI FOV [Krotkov et al., 

2002a; Tanskanen et al., 2003; Tanskanen, 2004]. 

 

The irradiance values were convoluted using the numerical parameters with a 

triangular slit function (FWHM=0.55 nm) centred at 305, 310, 324, 380 nm and 22 

additional wavelengths to generate lookup tables to calculate clearE . Finally, the 

surface albedo correction and sun distance correction were applied according to 

Equation 3.9. 
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 - Correction for absorbing aerosols 

Aerosols can absorb both direct and diffuse UV radiation. Additionally, they also 

attenuate the outgoing diffuse radiation. If the satellite algorithms do not account for 

absorbing aerosol, overestimation of UV irradiance can result. The situation becomes 

more complicated in cases where aerosols are located mostly in the atmospheric 

boundary layer under a cloud layer. However, nonabsorbing and absorbing aerosols 

can be separated by LER and AI. Absorbing aerosols cause the satellite-derived LER 

to decrease with decrease in wavelength while nonabsorbing aerosols typically cause 

the LER to increase with decrease in wavelength [Krotkov et al., 2002a]. 

 

In the case that LER<0.15 and AI>0.5, the absorbing aerosol correction factor is 

applied. Using AI, the correction factor for absorbing aerosol is determined as 

)R,AI(g 360e−  [Herman et al., 1999a; Krotkov et al., 2002a; Krotkov et al., 1998; 

Krotkov et al., 2002b; Tanskanen et al., 2006]. Therefore, the UV irradiance (E ) in 

this case can be calculated by using the equation below: 

 

 
Clear

)R,AI(g EeE 360 ⋅= −
 (3.10). 

 

The g factor is a function of aerosol height, observational geometry and aerosol type, 

which is set to a constant value of 0.25 in the current version of the OMI UV 

algorithm. 

 

- Cloud/nonabsorbing aerosol correction 

For the other conditions, surface UV irradiance (E) can be found by multiplying the 

cloud correction factor ( TC ) [Krotkov et al., 2001] with clear sky UV irradiance as 

in the equation below: 

 

 
ClearT ECE ⋅=  (3.11). 

 

To estimate the cloud correction, the assumptions are that cloud is homogeneous, the 

plane-parallel cloud model is embedded into a scattering molecular atmosphere with 
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known ozone absorption and surface albedo, and cloud optical thickness is spectrally 

independent. The cloud correction is based on radiative transfer calculations and is 

generated as lookup tables as functions of cloud optical thickness, surface albedo and 

solar zenith angle. The cloud optical thickness is obtained by using the 360 nm 

radiance measured at the overpass time by OMI. Surface albedo is taken from a 

climatology database [Tanskanen, 2004]. 

 

3.4.2.2 Data Products 

The Level-2 OMI Surface UV irradiance and Erythemal Dose (OMUVB) products 

are provided in terms of surface spectral UV irradiances at 305 nm, 310 nm, 324 nm, 

380 nm, erythemal dose rate both at overpass  time and local solar noon, and 

erythemal daily dose [Levelt et al., 2006b; Tanskanen et al., 2006].  

 

For specified sites, these data can be accessed from http://avdc.gsfc.nasa.gov/. 

However, this requires a formal request to the OMI team, who will then provide the 

data for the stations requested. This data product will be used in Chapter 4 to Chapter 

6. The data product is written as text files containing the data as shown below: 

  

Datetime  : Date and time 

MJD2000   : Modified Julian Day 2000 

Year      : Year 

DOY       : Day Of Year 

sec. (UT) : Elapsed time (seconds, UT) 

Orbit     : Aura orbit number 

CTP       : OMI Cross Track Position (0-59) 

Lat.      : CTP center latitude (degree) 

Lon.      : CTP center longitude (degree) 

Dist.     : Distance between the station and the CTP (km) 

SZA       : Solar Zenith Angle (degree) 

GPQF      : Ground Pixel Quality Flags (dimensionless) 

OMAF      : OMTO3 Algorithm Flags (dimensionless) 

OMQF      : OMTO3 Quality Flags (dimensionless) 

UVBQF     : Quality Flags on Pixel Level (dimensionless) 

CSEDDose  : Clear Sky Erythemal Daily Does (J/m^2) 

CSEDRate  : Clear Sky Erythemal Daily Does Rate (W/m^2) 

CSIrd305  : Clear Sky Irradiance at 305 nm (W/m^2/nm) 
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CSIrd310  : Clear Sky Irradiance at 310 nm (W/m^2/nm) 

CSIrd324  : Clear Sky Irradiance at 324 nm (W/m^2/nm) 

CSIrd380  : Clear Sky Irradiance at 380 nm (W/m^2/nm) 

CldOpt    : Cloud Optical Thickness (dimensionless) 

EDDose    : Erythemal Daily Does (J/m^2) 

EDRate    : Erythemal Daily Does Rate (W/m^2) 

Ird305    : Irradiance at 305 nm (W/m^2/nm) 

Ird310    : Irradiance at 310 nm (W/m^2/nm) 

Ird324    : Irradiance at 324 nm (W/m^2/nm) 

Ird380    : Irradiance at 380 nm (W/m^2/nm) 

OPEDRate  : Overpass Erythemal Dose Rate (W/m^2) 

OPIrd305  : Overpass Irradiance at 305 nm (W/m^2/nm) 

OPIrd310  : Overpass Irradiance at 310 nm (W/m^2/nm) 

OPIrd324  : Overpass Irradiance at 324 nm (W/m^2/nm) 

OPIrd380  : Overpass Irradiance at 380 nm (W/m^2/nm) 

LambEquRef: Lambertian Equivalent Reflectivity at 360 nm 

(dimensionless) 

SufAlbedo : Surface Albedo at 360 nm (dimensionless) 

TerrHgt   : Terrain Height for center co-ordinate of ground 

pixel(m). 

 

For the global view, the Level-3 OMI Surface UV irradiance and Erythemal Dose 

(OMUVBd) product is now available at 

http://disc.sci.gsfc.nasa.gov/Aura/OMI/omuvbd_v003.shtml. The OMUVBd data 

product is written as Hierarchical Data Format (HDF)-EOS5 data files. This product 

will be described in more detail in Chapter 7. 

 

3.4.2.3 Error of OMI UV Irradiance 

Since the OMI UV irradiance is calculated by using the extraterrestrial solar 

irradiance, clear sky surface UV irradiance, cloud and aerosol correction factors, the 

errors can be caused by any or all of these factors. In Krotkov et al. [2002b], error 

analysis of OMI UV irradiance was investigated. By comparing three sets (Solar 

Stellar Irradiance Comparison Experiment, Solar Ultraviolet Spectral Irradiance 

Monitor and SBUV/2) of extraterrestrial solar irradiance, the differences found are 

less than ±3% in the UV range. This can be assumed as the absolute uncertainty of 

±3%. The error in clear sky irradiance depends on the input data used in the radiative 
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transfer models. This typically gives an uncertainty of less than 5%. The error for 

cloud/aerosol correction factors can be significant, in the region of 20% or more. 

This includes errors in properties of cloud (e.g., cloud shape and cloud altitude, 

given the assumption of a homogenous, plan parallel cloud layer), ozone, and type of 

aerosols, which are used in models. In addition, when validating against ground-

based observations, there is the issue of temporal and spatial matching. 

 

3.4.3 Aerosol Optical Depth and Aerosol Absorption Optical Depth 

from OMI 

A further two satellite products, not themselves fully incorporated into the OMI UV 

algorithm, were used in this thesis work. There are two methods used to estimate 

aerosol optical depth, aerosol absorption optical depth and single scattering albedo 

for cloud free conditions: the OMI Near-UV Aerosol Optical Depth (OMAERUV) 

and the OMI Multi-wavelength Aerosol Optical Depth (OMAERO) algorithms. The 

OMAERUV algorithm uses the relationship between two UV wavelengths (354 and 

388 nm) and a set of assumed aerosol models to estimate aerosol index, aerosol 

extinction and absorption optical depth, as been used in TOMS aerosol algorithm 

[Torres et al., 1998]. The aerosol models consist of three major aerosol types: desert 

dust, biomass burning and sulfate-based aerosols, where each aerosol type is 

represented by seven aerosol models of varying single scattering albedo. Each 

subtype depends on size distribution and refractive index. The OMAERO algorithm 

uses up to 19 wavelengths in the 330 nm to 500 nm spectral range, which are 

independent from Raman scattering and gas absorption attributes [Torres et al., 

2002b]. This algorithm is based on four main aerosol models: desert dust, biomass 

burning, volcanic and weakly absorbing aerosol with several subtypes represented by 

each models according to their properties (particle size and refractive index). The 

particle size distributions and refractive index used in the OMI aerosol algorithm are 

taken from long-term Aerosol Robotic Network (AERONET) ground-based 

observations. The difference between the two methods is that the OMAERO method 

is mainly used over the oceans while the OMAERUV method is used over land. The 

reason for this is that over land the available spectral surface reflectivity database 
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may not be good enough to apply the multi-wavelength method which relies on 

spectral surface reflectivity data.  

 

In this study, the OMAERUV aerosol data product was used. This product includes 

aerosol optical depth, aerosol absorption optical depth at 354, 388 and 500 nm, and 

UV aerosol index. The data is written as an HDF-EOS5 which can be downloaded 

from http://avdc.gsfc.nasa.gov/ for the specific sites and from 

http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omaeruv_v003.shtml for the 

global view (Level-3 OMI Near-UV Aerosol Optical Depth, OMAERUVd).  

 

The overall accuracy of aerosol optical depth retrieved from the OMI product is 

estimated to be about 30% or more, and the accuracy of the single scattering albedo 

is 0.1, depending on the main uncertainties such as the aerosol size distribution, 

refractive index, layer height, the surface reflectivity and the cloud mask. The 

aerosol absorption optical depth is estimated to have a root mean square error about 

0.01 [OMI Team, 2009; Torres et al., 2002a; Torres et al., 2002b]. Ahn et al. [2008] 

compared aerosol optical depth and aerosol absorption optical depth retrieved from 

OMI with that from Aqua/Moderate Resolution Imaging Spectroradiometer 

(MODIS) and found that the OMI aerosol optical depth values were generally higher 

than the MODIS values. Livingston et al. [2009] also showed that OMAERUV 

aerosol optical depth retrievals are within 20% of the AERONET values for the 

nonabsorbing aerosols but are higher for the urban aerosols.  

 

3.4.4 Total Column Ozone from OMI 

Total ozone column from OMI is derived from two algorithms [Kroon et al., 2008]: 

OMI Total Ozone Mapping Spectrometer (“OMI-TOMS”) and OMI Differential 

Optical Absorption Spectroscopy (“OMI-DOAS”) technique developed by the Royal 

Netherlands Meteorological Institute [Veefkind et al., 2006]. The differences 

between the two algorithms are described in Kroon et al. [2008]. 

 

The total column ozone from TOMS and DOAS algorithms are in the OMI Total 

ozone data products, written as an HDF-EOS5. It can be downloaded from 
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http://avdc.gsfc.nasa.gov for the specific sites, and from 

http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI for the global view. 

 

The relative differences of total ozone column from the different methods vary from 

0% to 3% depending on latitude and season. The OMI-TOMS total ozone column is 

slightly lower than that measured from Brewer spectrometers by about 2%. For 

OMI-DOAS ozone data, the bias is about 1.4% [Antón et al., 2009]. 

 

3.4.5 Overall Uncertainty of OMI Data 

Several OMI products are used in the following work and each product has its own 

uncertainty. The smallest uncertainty is in total column ozone and is within 3% when 

compared to a range of ground-based instruments (which do not themselves agree 

perfectly). The uncertainty of indirect measurements of UV from OMI data can be 

much greater (20% or more). According to the comparisons of the OMI UV and 

ground-based UV at several sites [Buchard et al., 2008; Ialongo et al., 2008; 

Kazadzis et al., 2009a; Tanskanen et al., 2007], OMI data has been found to 

generally overestimate UV with respect to ground-based data, e.g., by 20% for 

erythemal data at the overpass time [Kazadzis et al., 2009a] and up to 50% at sites 

affected by absorbing aerosols [Tanskanen et al., 2007]. In contrast, the 

underestimation of the OMI UV data can be found at several sites affected by snow 

covered surface [Tanskanen et al., 2007], while for clean sites agreement with 

ground-based measurements is within the measurement errors [Fioletov et al., 2002; 

McKenzie et al., 2001]. The uncertainty of OMI aerosol optical depth can be about 

30% or more dependent on condition. This is borne out by the level of agreement 

with other measurements (which are themselves imperfect). 

 
Data of the types, and from the sites, described in this chapter are used in the 

following chapters to assess the success of OMI UV retrievals in the Tropics – a 

region for which the OMI retrieval has not previously been tested, and for which 

there are few ground-based measurements. Successful application of the OMI UV 

algorithm would therefore provide valuable data that is not available by other means. 
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Chapter 4 – Comparison between OMI and Ground-Based 

UV Data 

In this study, the erythemal irradiance at local solar noon, when the sun is highest in 

the sky, was used. This is a standard OMI data product available for anywhere on the 

globe, and represents the expected maximum UV value for the day under stable 

conditions. The time difference between the OMI UV overpass and ground-based 

measurements at local solar noon varies more for the UK sites (-1.5 to 2.5 hours) 

than that for Thai sites (0.5 to 2.5 hours). The OMI algorithm assumes that 

atmospheric conditions stay constant between the overpass time and noon, in 

calculating local noontime UV irradiance. This assumption and the time difference 

can introduce an additional uncertainty into the noon UV data product. This becomes 

an intrinsic part of the uncertainty in the OMI product. However, the mean ratios at 

overpass and noon differ by only 2% and the normalised root mean square deviations 

are also similar (0.16 for Songkhla at overpass and 0.18 at noon, with the other sites 

showing a corresponding result). For a broad application, e.g., one aimed at public 

health information, noon UV dose rate is more easily understood and more 

applicable and thus we use this in the following analysis.  

 

In this chapter, erythemal dose rates at local solar noon retrieved from OMI were 

compared with those from ground-based measurements at the UK sites (solar noon 

±4 minutes) and Thai sites (solar noon ±6 minutes). These sites represent different 

geographical and environmental conditions from previous studies [Arola et al., 2009; 

Buchard et al., 2008; Ialongo et al., 2008; Kazadzis et al., 2009a; Tanskanen et al., 

2007; Weihs et al., 2008], which focused mainly on comparisons for the northern 

midlatitudes and high latitudes. The period of the data used for the comparison is 

from August 2004 to December 2007. The results of the comparison are shown as 

scatter plots for all sky conditions and the subset of cloudless conditions, and can be 

evaluated against the one-to-one line with the limitation of ±30% as shown in Figure 

4.1. To determine cloudless days, the ground-based UV irradiance (10 minutes 

averages for Thai data and 5 minutes for UK data) was plotted from sunrise to 

sunset: days with an uninterrupted smooth bell curve were manually selected as clear 

days. 
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Figure 4.1 Comparison of the OMI erythemal UV irradiances at local solar noon 

(EUVOMI,ORIGINAL) with those measured from ground-based instruments (EUVGND) 

for all sky conditions (+) and cloudless conditions (•) for the years 2004-2007. The 

one-to-one line () and 30% limits (----) are also shown. 
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In order to indicate the agreement between the noontime erythemal irradiance 

retrieved from the OMI and the ground-based measurement, the ratios of the OMI 

data and the ground-based data were calculated and the distribution of the ratio at 

each site was plotted as shown in Figure 4.2. Since most of the distributions were not 

normal, mean and median of the ratio were calculated [Tanskanen et al., 2007]. The 

percentages of the OMI data that agree within ±10%, ±20% and ±30% of the 

ground-based data were determined and denoted as %W10, %W20 and %W30, 

respectively [Kazadzis et al., 2009a; Tanskanen et al., 2007]. Additionally, the 

agreement between the erythemal irradiance retrieved from OMI (yi) and ground-

based (xi) sources was calculated in terms of the averaged percentage differences 

)AvgDiff(%  and the bias )Bias(% as 
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where N is the number of data taken into account in the comparison [Siani, 2007]. 

All the statistical data described above are shown in Table 4.1 for Thai data and 

Table 4.2 for UK data. 
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Figure 4.2 Distributions of the ratio of the OMI data and ground-based (GND) data 

for all sky conditions. 
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 Table 4.1 Statistical analysis of the ratio of the OMI to ground-based data for Thai sites under all sky and cloudless conditions during 2004-

2007.  

Sites 
All sky conditions (Original OMI) Cloudless conditions (Original OMI) 

N Median Mean %W10 %W20 %W30 %AvgDiff %Bias N Median Mean %W10 %W20 %W30 %AvgDiff %Bias 

Chiang Mai 

Ubon Ratchathani 

Nakhon Pathom 

Songkhla 

1158 

1203 

1206 

1094 

1.30 

1.14 

1.24 

1.09 

1.62 

1.32 

1.44 

1.32 

14 

30 

21 

39 

30 

53 

38 

62 

48 

67 

52 

70 

32 

18 

23 

15 

62 

32 

44 

32 

180 

178 

108 

79 

1.30 

1.14 

1.29 

1.09 

1.37 

1.19 

1.31 

1.09 

1 

34 

7 

52 

19 

67 

34 

95 

51 

82 

52 

100 

30 

16 

26 

8 

37 

18 

31 

9 
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Table 4.2 Statistical analysis of the ratio of the OMI to ground-based data for UK sites under all sky and cloudless conditions during 2004-2007.  

Sites 
All sky conditions (Original OMI) Cloudless conditions (Original OMI) 

N Median Mean %W10 %W20 %W30 %AvgDiff %Bias N Median Mean %W10 %W20 %W30 %AvgDiff %Bias 

Camborne 

Chilton 

Glasgow 

Kinloss 

Leeds 

Lerwick 

Manchester 

Reading (Bentham) 

Reading (Brewer) 

Snowdon 

1650 

1697 

1866 

1973 

1682 

2066 

1481 

2052 

1919 

480 

1.59 

1.46 

1.63 

1.77 

1.52 

1.99 

1.27 

1.34 

1.23 

2.11 

1.92 

1.64 

1.92 

2.06 

1.94 

2.34 

1.73 

1.54 

1.48 

2.58 

7 

10 

8 

5 

8 

4 

17 

12 

17 

5 

15 

19 

16 

12 

18 

9 

34 

25 

37 

14 

26 

30 

23 

20 

28 

14 

48 

42 

55 

25 

51 

38 

50 

57 

49 

67 

31 

33 

25 

68 

92 

64 

92 

106 

94 

134 

73 

54 

48 

158 

103 

70 

72 

83 

67 

39 

65 

151 

153 

15 

1.42 

1.52 

1.65 

1.70 

1.41 

2.03 

1.25 

1.32 

1.22 

1.25 

1.54 

1.50 

1.71 

1.83 

1.50 

2.01 

1.23 

1.32 

1.21 

1.24 

0 

0 

0 

0 

4 

0 

9 

5 

8 

0 

3 

0 

1 

5 

7 

0 

40 

13 

35 

20 

21 

11 

4 

10 

21 

3 

66 

43 

89 

93 

40 

40 

50 

55 

38 

64 

20 

27 

19 

21 

54 

50 

71 

83 

50 

101 

23 

32 

21 

24 
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We can see from the results in Figure 4.1 and Tables 4.1 and 4.2 that the noontime 

erythemally weighted irradiances obtained from OMI generally overestimate those 

from ground-based measurements, particularly for cloudless conditions. The ratios 

for the all sky conditions show greater scatter than for the cloudless conditions and 

include instances of underestimation by OMI. Some of this scatter can be due to 

changing cloud conditions between overpass time and local solar noon. The bias 

values for all sky conditions are greater than for the cloudless conditions; for 

example, the bias values of Reading sites are 54% for all sky conditions and 32% for 

cloudless conditions. The scatter is greater in cloudy conditions, as expected, but the 

median values are found to be independent of cloudiness as a few outliers skew the 

mean values upwards in cloudy conditions, but do not affect the median. The results 

for the cleaner air site at Songkhla (mean=1.32, median=1.09) are in better 

agreement than the more urban sites such as Chiang Mai (mean=1.62, median=1.30). 

Comparing the results from the two regions, the scattergrams in Figure 4.1 show that 

the data for Thai sites are more scattered than those for the UK, which may result 

from more variations in cloud type (tropical cumuli) and aerosol loading (biomass 

burning) in Thailand, but also from the range of time differences between overpass 

time and local noon allowing more time for conditions to change. The bias values for 

UK sites are generally higher than for Thai sites. This might be due to the fact that 

the absolute amount of erythemal irradiance for the UK is lower than for Thailand 

and the low UV levels can result in large relative differences because of rapid 

changes in cloudiness [Arola et al., 2009; Buchard et al., 2008]. The ratios between 

the OMI and ground-based data in this study were in general slightly higher than 

those from previous studies [Arola et al., 2009; Kazadzis et al., 2009a; Tanskanen et 

al., 2007]. This may be due to the fact that the noontime data was used in our study 

while the overpass time data [Arola et al., 2009; Kazadzis et al., 2009a] and daily 

doses [Tanskanen et al., 2007] were used for the other studies, but different 

environmental and climatological conditions may also have some bearing on the 

results. 

 

In order to investigate the effect of aerosol, the uvspec model [Mayer and Kylling, 

2005] as described in Chapter 2 was run for aerosol free and realistic polluted 

aerosol cases for clear sky days in the years 2005 and 2006. The data used in this 

section are from Chiang Mai, Nakhon Pathom, Songkhla, Manchester and Reading, 
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where there are ground-based measurements that can provide some indication of 

aerosol properties. The radiative transfer model was set as follows: the standard 

atmospheric profiles were assumed as midlatitude summer and winter for UK and 

tropical atmosphere for Thailand. The extraterrestrial solar spectrum was based on 

Atlas_Plus_Modtran. The DISORT was selected as a radiative transfer equation 

solver with 6 streams [Chandrasekhar, 1960]. Total ozone column was taken from 

Brewer spectrophotometers for Reading and Manchester, and the satellite data from 

OMI was used for the other sites. Ground albedo was taken from OMI products, at 

values between 0.03-0.07 for UV wavelengths. Solar zenith angle was matched with 

that for local solar noon from the OMI UV product. Aerosol type above 2 km was 

assumed as background type and that below 2 km was assumed as maritime type for 

Songkhla and urban type for the other sites.  

 

For Reading and Manchester, the daily aerosol optical depth data were taken from 

Brewer spectroradiometers, based on direct sun measurements. These data are 

available at ftp://o3uvdata.seaes.manchester.ac.uk/. The aerosol optical depth can be 

set as a routine Brewer output, calculated as a residual of the ozone and SO2 

measurements. As such it is subject to uncertainties of the order of 1% when 

evaluated against other methods of AOD measurement (W. Kumharn, personal 

communication). The aerosol optical depth at the two sites shows seasonal variation 

with a maximum (up to 2.32) in summer and a minimum (less than 0.14) in winter. 

The mean value (± standard deviation) from years 2003 to 2008 is 0.76±0.08. The 

aerosol single scattering albedo for these sites is set as a constant value at 0.85. This 

value was from running the uvspec model for clear sky days of years 2005 and 2006, 

and varying aerosol single scattering albedo at 0.80, 0.85 and 0.95. The smallest bias 

between ground-based and uvspec erythemal irradiances occurred when the aerosol 

single scattering albedo was set at 0.85. 

 

For the three Thai sites, the aerosol optical depth and aerosol single scattering albedo 

data were taken from AERONET level 1.5 (data available at 

http://aeronet.gsfc.nasa.gov) [Holben et al., 1998]. The AERONET stations were not 

installed until late 2006, and this limited the number of clear sky days available for 

use with our ground-based UV dataset. For this reason we used mean monthly 
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averaged aerosol optical depth data at 340 nm from the years 2006 to 2008, matched 

to clear sky UV data from a given month. The standard deviation on the monthly 

mean aerosol optical depth data is about 40% for each site. For the two inland sites 

(Chiang Mai and Nakhon Pathom), there is a clear seasonal cycle in aerosol optical 

depth with maximum (up to 1.2) in February-April due to biomass burning [Kift et 

al., 2006]. This reduces to 0.3-0.6 for the rest of the year. Songkhla in contrast 

exhibits very little seasonal cycle, having aerosol optical depth values in the range 

0.2 to 0.5 throughout the year. Long-term averaged (years 2006 to 2008) single 

scattering albedo values at 440 nm (the shortest wavelength available) were used as 

constant values: 0.89 for urban sites and 0.97 for the maritime site. 

 

The erythemal irradiances calculated from uvspec with and without effects of 

aerosol, plus OMI UV erythemal irradiance, were plotted against the ground-based 

data shown in Figure 4.3.  
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Figure 4.3 Comparison of erythemal UV irradiances retrieved from OMI (o), 

modelled by uvspec with aerosol (+) and without aerosol (+), and measured by 

ground-based instruments. 

 

As we can see, the values calculated from the Libradtran model with aerosol were 

closer to the ground-based values than those without aerosol, particularly for UK 

sites. This may result from the monthly averaged aerosol optical depth values used 
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for the Thai sites while the daily values were used for the UK sites. For the cleaner 

site of Songkhla, the erythemal irradiance calculated from uvspec with and without 

aerosols are similar, since maritime aerosol absorbs only a small amount of the 

radiation (SSA=0.97).  

 

This result supports the hypothesis that a large part of the differences between OMI 

and ground-based data may be attributed to aerosol. Therefore to improve the OMI 

UV data, a correction for the aerosol absorption should be applied as this is not 

included in the standard OMI UV algorithm (although aerosol scattering has already 

been included).  

 

In summary, the noontime erythemal irradiance retrieved from OMI data from years 

2004 to 2007 were compared with those measured by ground-based instruments at 

four Thai sites and nine UK sites. The results showed an overestimation of UV data 

in the OMI product compared with the ground-based data. The biases between the 

OMI data and the ground-based data were 9% for cloudless conditions and 32% for 

all sky conditions at the clean site. These were much higher for the urban sites (37% 

and 62%, respectively). Most of the biases for the UK data were greater than for 

Thai data. It should be noted that each data set has an associated uncertainty, 

described in Chapter 3, which should be considered in the comparison results. 

Nonetheless, the overall results suggest that aerosol correction is needed to improve 

the OMI UV data and this will be discussed in more detail in Chapter 5.  
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Chapter 5 – Improving Satellite Estimates for Clear Skies 

(Using Aerosol Data) 

Aerosols play an important role in the change of UV radiation reaching the earth’s 

surface [Chou et al., 2006]. The effects of aerosol on the UV radiation can occur 

through both scattering and absorption. Aerosols that absorb the UV radiation can 

attenuate both direct and diffuse radiation, with an effect greater than nonabsorbing 

aerosols at the same optical depth. The scattering effect is included in the 

cloud/nonabsorbing aerosol correction in the OMI UV algorithm while the 

absorption effect is not. Thus, the overestimation in the OMI UV data when 

compared to the ground-based data that has been documented in several previous 

studies is likely attributable to the lack of attention to aerosols in the OMI algorithm. 

The results shown in Chapter 4 support this hypothesis for the sites in the UK and 

Thailand. Having identified that the OMI UV product requires a correction to 

account for absorption by aerosols, a broadly applicable method of performing such 

a correction and a source of aerosol data is needed. 

 

In this chapter, two empirical methods that can improve the noontime OMI 

erythemal irradiances for clear sky conditions are introduced. The first method is 

based on the uvspec radiative transfer calculation, as suggested by Kazadzis et al. 

[2009a]. The uvspec model helps to generate a look up table of the aerosol correction 

factor as a function of aerosol optical depth and aerosol single scattering albedo. The 

second method shows the aerosol correction factor as a function of aerosol 

absorption optical depth, and this follows the method suggested in previous studies 

[Arola et al., 2005; Arola et al., 2009; Ialongo et al., 2010; Kazadzis et al., 2009a; 

Krotkov et al., 2005].  

 

It should be noted that all data analysed in this chapter are erythemal irradiance at 

local solar noon under clear sky conditions. 
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5.1 The Aerosol Optical Depth Correction 

5.1.1 Modelling 

Based on the result from the uvspec model in Chapter 4, the erythemal data retrieved 

from OMI can be brought closer to the ground-based data when aerosols are taken 

into account (see model results with and without aerosol). In this section, the uvspec 

model was used to calculate the erythemal irradiance at local solar noon for clear sky 

days of year 2005 (to match the OMI retrievals) for varying aerosol optical depth 

(AOD) and aerosol single scattering albedo (SSA). The AOD values were varied 

from 0.0 to 1.2 with 0.1 step and SSA values were varied between 0.80 and 1.0. The 

data used for comparison were from four sites: Chiang Mai, Nakhon Pathom, 

Songkhla and Reading, where AOD and SSA were available as described in Chapter 

4. The erythemal irradiances at local solar noon calculated from the uvspec 

sensitivity study were then plotted against those retrieved from OMI. The plot is 

separated into two different cases (urban and maritime) as shown in Figure 5.1. The 

data of Songkhla was used as a reference maritime site while the combined data of 

the other three sites represented the urban case. 
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Figure 5.1 Examples of comparisons between the noontime erythemal irradiance 

from OMI (EUVOMI) and uvspec (EUVUVSPEC) by varying aerosol optical depth 

between 0.0 and 1.2. 

 

From Figure 5.1, we can see that for the free-aerosol (AOD=0.0, top red line) the 

uvspec values were close to the OMI values and the uvspec values got progressively 

less as aerosol increases. At a fixed AOD, the uvspec values were closer to the OMI 

values when SSA was higher. This is due to the fact that absorbing aerosol is not 

included in the current OMI surface UV algorithm. From the above results, the 

erythemal irradiance calculated from the uvspec model can be written as a function 

of AOD, SSA and the OMI erythemal data as shown below: 
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OMICORR EUV)SSA,AOD(FEUV ⋅=  (5.1) 

 

where CORREUV  is the erythemal irradiance at local solar noon corrected in this 

study, OMIEUV  is the original erythemal irradiance at local solar noon retrieved from 

OMI, and )SSA,AOD(F  is an aerosol correction factor. 

 

In order to determine )SSA,AOD(F , the slopes of the linear lines at each AOD and 

SSA (see Figure 5.1) were then obtained. The slopes normalised at AOD=0 were 

plotted against AOD at each SSA as illustrated in Figure 5.2.  
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Figure 5.2 Normalised irradiance as a function of AOD and SSA for two aerosol 

types. 

 

From Figure 5.2, the best fit between the normalised F and AOD is shown in term of 

an exponential relationship, of the form: 

 

 AOD)SSA(kexp)SSA,AOD(F ⋅−=  (5.2). 

 

The coefficient value (k) is a function of SSA and can be estimated by using a 

regression method as described by Stoecker W.F. [1971], to give the results in 

Equation 5.3. 
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 1.0)SSA1(3.1)SSA1(8.2k 2 +−+−=  for urban 
(5.3) 

 1.0)SSA1(4.1)SSA1(1.0k 2 +−+−=  for maritime 
 
The semi-empirical method illustrated above (Equations 5.1-5.3), allows the 

erythemal irradiance retrieved from OMI to be corrected if the aerosol optical depth 

and single scattering albedo are available.  

 

5.1.2 Validation Based on Ground-Based Aerosol Optical Depth 

Data     

To validate the erythemal irradiance at local solar noon calculated from the empirical 

model, the data of year 2007 which is independent data from that used to generate 

the model was used. The daily aerosol optical depth at 320 nm retrieved from 

Brewer spectrophotometer was used for Reading, and AOD at 340 nm from 

AERONET was used for the Thai sites. The aerosol single scattering albedo values 

were set as constant values: 0.89 and 0.97 for the urban and rural Thai sites 

respectively, and 0.85 for Reading, as described in Chapter 4. 

 

The validation and associated statistical analysis are shown in Figure 5.3 and Table 

5.1. These include median and mean of the ratio, %W10, %W20, %W30, %AvgDiff 

and %Bias. The results also show the comparison between the original OMI data and 

corrected OMI data. 
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Figure 5.3 Comparison of erythemal irradiance at local solar noon from the original 

OMI (EUVOMI, +) and the AOD empirical model (EUVMODEL, o) with ground-based 

measurements (EUVGND) under clear sky conditions using AOD from the ground-

based measurement. The 1:1 correlation () and ±30% limits (---) are also shown. 
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Table 5.1 Statistical analysis of the ratio of the original OMI data and the AOD modelled data to ground-based data under cloudless conditions 

using AOD from independent ground-based measurements.  

Sites 
Cloudless conditions (Original OMI) Cloudless conditions (AOD and SSA model) 

N Median Mean %W10 %W20 %W30 %AvgDiff %Bias N Median Mean %W10 %W20 %W30 %AvgDiff %Bias 

Chiang Mai 

Nakhon Pathom 

Songkhla 

Reading (Bentham) 

5 

22 

8 

32 

1.28 

1.32 

1.02 

1.34 

1.26 

1.32 

1.05 

1.34 

0 

5 

88 

0 

20 

32 

88 

16 

60 

45 

100 

44 

23 

27 

4 

28 

26 

32 

5 

34 

5 

22 

8 

32 

1.09 

1.07 

1.00 

1.04 

1.10 

1.09 

1.01 

1.06 

80 

64 

88 

59 

100 

95 

100 

91 

100 

100 

100 

100 

9 

8 

1 

6 

10 

9 

1 

6 
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As can be seen from the above results, after the process of aerosol correction, all of 

the median ratios were close to one (less than 10% from unity) which were generally 

better than those from the original OMI data (up to 34%). Most of the empirically 

corrected data was close to the ground-based data by within ±20%, which was a 

significant improvement on the uncorrected data. The aerosol correction factor could 

improve the OMI erythemal data by 2%-30%, with the smaller improvement at the 

cleanest site, where there is least aerosol.   

 

5.1.3 Validation Based on OMI Aerosol Optical Depth Data 

The above validation was based on the ground-based aerosol optical depth which is 

not always widely available. The OMI aerosol products provide the same coverage, 

and are spatially matched with the OMI UV products. Therefore the aerosol optical 

depth at 354 nm taken from the OMI overpass time was considered, as described in 

Section 3.4.3, to investigate the performance of the empirical model. The single 

scattering albedo values were assumed as constant values: 0.89 for the urban Thai 

sites, 0.97 for the maritime site, and 0.85 for the UK sites. Since aerosol information 

comes from the satellite, all ground-based sites could be used in this evaluation. The 

noontime erythemal irradiance was calculated using the empirical model (Equations 

5.1-5.3) for the four Thai sites and nine UK sites. All data used in this part were from 

years 2004, 2006 and 2007 for Thai sites, and years 2006 and 2007 for UK sites, 

which are independent data from the generation of the model (year 2005). Note, that 

in this study the HPA data is available until April, 2007, except for Snowdon that has 

no data in year 2007. The empirically corrected data were compared with those from 

the ground-based measurement as shown in Figure 5.4 and Table 5.2. 
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Figure 5.4 Comparison of erythemal irradiance at local solar noon from the original 

OMI (+) and the AOD empirical model (o) with ground-based measurements under 

clear sky conditions using AOD from OMAERUV product. The 1:1 correlation () 

and ±30% limits (---) are also shown.
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Table 5.2 Statistical analysis of the ratio of the original OMI data and the AOD modelled data to ground-based data under cloudless conditions 

using AOD from OMAERUV product. 

Sites 
Cloudless conditions (Original OMI) Cloudless conditions (AOD and SSA model) 

N Median Mean %W10 %W20 %W30 %AvgDiff %Bias N Median Mean %W10 %W20 %W30 %AvgDiff %Bias 

Chiang Mai 

Ubon Ratchathani 

Nakhon Pathom 

Songkhla 

Camborne 

Chilton 

Glasgow 

Kinloss 

Leeds 

Lerwick 

Manchester 

Reading (Bentham) 

Reading (Brewer) 

Snowdon 

98 

94 

45 

27 

27 

15 

7 

14 

8 

4 

17 

20 

20 

6 

1.29 

1.12 

1.24 

1.08 

1.34 

1.52 

1.48 

1.55 

1.34 

1.45 

1.28 

1.37 

1.25 

1.25 

1.37 

1.13 

1.27 

1.09 

1.38 

1.50 

1.48 

1.53 

1.30 

1.47 

1.27 

1.36 

1.25 

1.26 

0 

40 

11 

63 

0 

0 

0 

0 

13 

0 

6 

0 

5 

0 

20 

80 

44 

93 

4 

0 

0 

7 

13 

0 

29 

5 

10 

0 

54 

93 

60 

100 

19 

7 

0 

7 

38 

25 

59 

20 

85 

83 

30 

12 

22 

9 

31 

40 

38 

40 

26 

38 

24 

30 

22 

23 

37 

13 

27 

9 

38 

50 

48 

53 

30 

47 

27 

36 

25 

26 

98 

94 

45 

27 

27 

15 

7 

14 

8 

4 

17 

20 

20 

6 

1.21 

1.03 

1.10 

1.03 

1.25 

1.43 

1.40 

1.40 

1.25 

1.33 

1.14 

1.21 

1.11 

1.20 

1.25 

1.02 

1.12 

1.03 

1.29 

1.42 

1.41 

1.45 

1.17 

1.37 

1.16 

1.17 

1.07 

1.20 

11 

73 

42 

89 

7 

0 

0 

0 

0 

0 

24 

15 

35 

0 

49 

93 

76 

100 

15 

7 
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7 

25 

25 

65 

40 

80 

50 

76 

97 

93 

100 

67 

20 
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7 

63 

50 

82 

80 

95 

100 

21 
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10 

3 

25 

34 

34 

35 

13 

30 

14 

14 

6 

18 

25 
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12 

3 

29 

42 

41 

45 

17 

37 

16 

17 

7 

20 
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From the results shown in Figure 5.4 and Table 5.2, after the OMI aerosol optical 

depth correction was applied, the corrected OMI erythemal data at all sites were 

closer to the ground-based values. The median ratios were reduced by 5%-16%, for 

example, the median ratio was reduced from 1.08 to 1.03 for Songkhla and from 1.37 

to 1.21 for Reading. Most of the corrected data was within ±30% of the ground-

based data. The exceptions were the sites at Chilton, Glasgow, Kinloss and Lerwick, 

but the median values of these sites were still closer to one after the aerosol 

correction was applied. 

 

When the results in Tables 5.1 and 5.2 were compared for Chiang Mai, Nakhon 

Pathom, Songkhla and Reading, the results in Table 5.1, using ground-based aerosol 

optical depth, were better than the results in Table 5.2, using the OMI OMAERUV 

aerosol optical depth. This may be due to the uncertainty of OMI aerosol optical 

depth. Comparing aerosol optical depth retrieved from AERONET with that from the 

OMI product (not shown), it was found that most of the OMI aerosol optical depth 

data was lower than the AERONET aerosol optical depth, and would therefore 

produce less correction. Once again this may be a feature of the inability of satellites 

to probe the lowest levels of the boundary layer [Tanskanen et al., 2006]. 

 

From the results, it could be concluded that the empirical model based on the 

sensitivity study with the uvspec calculation leads to an improvement in the OMI 

erythemal irradiance at local solar noon for all sites of either tropical or temperate 

climatologies. As might be expected, the performance of the model strongly depends 

on the accuracy of aerosol optical depth used in the model, and is most effective 

where ground-based aerosol optical depth at a particular site is available. 

 

5.2 The Aerosol Absorption Optical Depth Correction 

The first method to correct the OMI erythemal data described in Section 5.1 was 

based on aerosol optical depth and aerosol single scattering albedo. These parameters 

relate to aerosol absorption optical depth (AAOD), written as AAOD=AOD·(1-

SSA). In this section, an aerosol absorption correction factor (FAAOD) is introduced as 

a function of OMI AAOD at 354 nm. This uses a similar method, but different 

aerosol inputs, to previous work [Arola et al., 2005; Arola et al., 2009; Ialongo et 
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al., 2010; Kazadzis et al., 2009a; Krotkov et al., 2005]. For example, Arola et al. 

[2009] used a merge of model and AERONET data while Krotkov et al. [2005] used 

UV multifilter rotating shadow band radiometer data.  

 

5.2.1 Modelling 

In this section, the ratio of the OMI erythemal irradiances to the ground-based data 

in year 2005 at Chiang Mai, Ubon Ratchathani, Nakhon Pathom, Songkhla and 

Reading, were plotted against OMI AAOD values at 354 nm taken at overpass time 

(OMAERUV, as described in Section 3.4.3) for cloudless cases as illustrated in 

Figure 5.5. The data of Songkhla was used as a reference maritime site while the 

combined data of the other four sites represented the urban case; the latter having a 

correlation coefficient of 0.47 and a standard error in the slope of 0.26.  
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Figure 5.5 The ratio between the erythemal irradiances at local solar noon derived 

from OMI (EUVOMI) and from ground-based instruments (EUVGND) as a function of 

OMI aerosol absorption optical depth (AAOD) at 354 nm for urban and maritime 

areas. 

 

Using Figure 5.5, the OMI data must be divided by the equation for the straight line 

fit to get the ground-based values. Thus, the aerosol correction factor, FAAOD 

becomes: 
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 [ ] 1
AAOD AAOD33.31F −⋅+=  for urban aerosols 

(5.4) 
and [ ] 1

AAOD AAOD50.01F −⋅+=  for the maritime case. 

 

This can be compared with [ ] 1
AAOD )nm320(AAOD60.11F −⋅+= as introduced by 

Ialongo et al. [2010] and [ ] 1
AAOD )nm325(AAOD31F −⋅+=  as suggested by Krotkov 

et al. [2005]. 

 

To correct the OMI erythemal irradiance for clear sky conditions, these factors were 

then applied to the equation as follows: 

 

 
OMIAAODCORR EFE ⋅=  (5.5) 

 

where CORRE  and OMIE are noontime erythemal dose rates corrected for absorbing 

aerosols and retrieved from OMI product, respectively, and AAODF  is the aerosol 

absorption correction factor. 

 

5.2.2 Validation Based on Ground-Based Aerosol Absorption 

Optical Depth Data 

The erythemal irradiance at local solar noon in year 2007 calculated from the 

empirical model was compared with the concurrent ground-based erythemal 

irradiance at the four sites: Chiang Mai, Nakhon Pathom, Songkhla and Reading. 

The AAOD values (AAOD=AOD·(1-SSA)) at the four sites were calculated by 

using AOD and SSA as described in Section 5.1.2. The validation and the same 

statistical analysis are shown in Figure 5.6 and Table 5.3. 
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Figure 5.6 Comparison of erythemal irradiance at local solar noon from the original 

OMI (EUVOMI, +) and the AAOD empirical model (EUVMODEL, o) with ground-

based measurements (EUVGND) under clear sky conditions using AAOD from the 

ground-based measurement. The 1:1 correlation () and ±30% limits (---) are also 

shown. 
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Table 5.3 Statistical analysis of the ratio of the original OMI data and the AAOD modelled data to ground-based data under cloudless conditions 

using AAOD from the ground-based measurement.  

Sites 
Cloudless conditions (Original OMI) Cloudless conditions (AAOD model) 

N Median Mean %W10 %W20 %W30 %AvgDiff %Bias N Median Mean %W10 %W20 %W30 %AvgDiff %Bias 

Chiang Mai 

Nakhon Pathom 

Songkhla 

Reading (Bentham) 

5 

22 

8 

32 

1.28 

1.32 

1.02 

1.34 

1.27 

1.32 

1.05 

1.35 

0 

5 

88 

0 

20 

32 

88 

6 

60 

41 

100 

41 

23 

27 

4 

29 

27 

32 

5 

35 

5 

22 

8 

32 

1.06 

1.05 

1.02 

1.04 

1.07 

1.06 

1.05 

1.03 

80 

77 

88 

66 

100 

100 

88 

91 

100 

100 

100 

100 

6 

5 

4 

3 

7 

6 

5 

3 
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As can be seen from the results above, when the aerosol correction factor was 

applied, the corrected OMI data showed an improvement by about 30%. The median 

values of the corrected OMI data were closer to one (between 1.02 and 1.06) while 

those of the original OMI data were higher (up to 1.34). Most of the OMI corrected 

data was within ±20% of the ground-based data.  

 

5.2.3 Validation Based on OMI Aerosol Absorption Optical Depth 

Data 

The AAOD based on ground-based data was used in the above validation. The 

following validation used AAOD values based on the OMI OMAERUV product 

taken from OMI overpass time, as described in Section 3.4.3. The noontime 

erythemal irradiances in this section are the same set that was used in Section 5.1.3. 

Using the above method (Equations 5.4 and 5.5), the erythemal irradiances corrected 

for aerosol absorption were validated by comparing with ground-based data for 

independent years (2004, 2006 and 2007), as shown in Figure 5.7. The mean and 

median of the ratio between the corrected data and ground-based data, and also the 

%W10, %W20, %W30, %AvgDiff and %Bias are given in Table 5.4, together with the 

corresponding values for the original OMI data. 
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Figure 5.7 Comparison of erythemal irradiance at local solar noon from the original 

OMI (EUVOMI, +) and the AAOD empirical model (EUVMODEL, o) with ground-

based measurements (EUVGND) under clear sky conditions using AAOD from 

OMAERUV product. The 1:1 correlation () and ±30% limits (---) are also shown. 
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Table 5.4 The ratio of OMI corrected data and the ground-based data and the ratio of original OMI data and the ground-based data statistics 

under clear sky conditions using AAOD from OMAERUV product. 

Sites 
Cloudless conditions (Original OMI) Cloudless conditions (AAOD model) 

N Median Mean %W10 %W20 %W30 %AvgDiff %Bias N Median Mean %W10 %W20 %W30 %AvgDiff %Bias 

Chiang Mai 

Ubon Ratchathani 

Nakhon Pathom 

Songkhla 

Camborne 

Chilton 

Glasgow 

Kinloss 

Leeds 

Lerwick 

Manchester 

Reading (Bentham) 

Reading (Brewer) 

Snowdon 

70 

59 

26 

24 

20 

9 

7 

13 

8 

5 

13 

23 

23 

7 

1.30 

1.11 

1.24 

1.08 

1.33 

1.42 

1.46 

1.39 

1.37 

1.38 

1.27 

1.33 

1.24 

1.25 

1.40 

1.13 

1.29 

1.08 

1.32 

1.46 

1.47 

1.42 

1.38 

1.39 

1.26 

1.33 

1.23 

1.26 

0 

42 

15 

67 

0 

0 

0 

0 

13 

0 

0 

0 

4 

0 

26 

80 

42 

92 

5 

0 

0 

8 

13 

0 

38 

4 

26 

0 

50 

92 

58 

100 

25 

11 

0 

8 

13 

20 

62 

43 

91 

86 

31 

12 

24 

8 

27 

37 

38 

34 

31 

33 

23 

28 

21 

23 

40 

13 

29 

8 

32 

46 

47 

42 

38 

39 

26 

33 

23 

26 

70 

59 

26 

24 

20 

9 

7 

13 

8 

5 

13 

23 

23 

7 

1.17 

0.90 

1.01 

1.04 

1.09 

1.19 

1.29 

1.34 

1.15 

1.14 

1.08 

1.10 

0.99 

1.21 

1.21 

0.93 

1.03 

1.03 

1.07 

1.25 

1.26 

1.29 

1.14 

1.18 

1.08 

1.10 

1.02 

1.15 

26 

37 

46 

92 

60 

22 

0 

8 

13 

0 

54 

52 

78 

43 

57 

81 

85 

100 

90 

56 

29 

38 

63 

60 

85 

87 

91 

43 

71 

100 

96 

100 

90 

67 

57 

38 

88 

100 

85 

87 

100 

100 

17 

-8 
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21 

23 

24 

12 

16 
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13 

21 
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25 

26 
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14 
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15 
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It is apparent from Figure 5.7 and Table 5.4 that after the absorbing aerosol 

correction was included, all of the corrected erythemal irradiances at local solar noon 

were closer to the ground-based data especially for the Thai sites. The median ratios 

were reduced by 4%-24%, for example the median ratio was reduced from 1.08 to 

1.04 for Songkhla and from 1.24 to 0.99 for Reading. Most of the corrected OMI UV 

data were within ±30% of the ground-based data, apart from Chilton, Glasgow and 

Kinloss. For Ubon Ratchathani, the corrected OMI data was slightly underestimated, 

which shows that the averaged urban aerosol correction may be slightly too high for 

this site. It is known that Ubon Ratchathani is cleaner than Chiang Mai, and also not 

subject to so much biomass burning. The cleanest site, Songkhla, has its own 

correction factor for maritime aerosol. Even so there is improvement particularly in 

%W10, with 85% of corrected OMI measurements lying within 10% of the ground-

based data. 

 

From the results, it could be concluded that the empirical model using aerosol 

absorption optical depth can also lead to an improvement in the OMI erythemal 

irradiance for all sites. The performance of the model depends on accuracy of aerosol 

absorption optical depth used in the model as can be seen when the ground-based 

AAOD values were used in the model. 

 

5.3 Summary 

In this chapter, two empirical models used for absorbing aerosol correction were 

introduced. The empirical models were generated using the erythemal irradiances at 

local solar noon of the year 2005. The corrected OMI erythemal irradiances of the 

years 2004, 2006 and 2007 for Thai sites, and only 2006 and 2007 for the UK sites 

were calculated and then compared with the ground-based data. Initially, there was 

overestimation of UV in the uncorrected OMI data (up to ~47%). After the absorbing 

aerosol correction factors were applied, for cloudless conditions, the differences 

between the OMI and ground-based data improved for both the Tropical sites (by up 

to 28%, site and method dependent) and the temperate sites (by 5%-30%, site and 

method dependent). These results are comparable to other recent studies taking a 

similar approach but using different input data for the correction [Arola et al., 2009; 

Ialongo et al., 2010; Kazadzis et al., 2009a]. For example, a correction for absorbing 
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aerosol based on ground-based measurements were applied, leading to improvements 

in the OMI UV retrieval for several locations: 5%-20% at various sites across 

Europe [Arola et al., 2009], 8%-25% in Rome [Ialongo et al., 2010], and 7%-23% in 

Thessaloniki [Kazadzis et al., 2009a]. Our results also show that the improvement is 

much better if the ground-based aerosol data are applied in the empirical models, 

since they are site specific and expected to represent the boundary layer better than 

the satellite data. Nonetheless, the correction using widely available satellite data is 

still significant, particularly when the AAOD correction is used. 

 

Some of the work presented in Chapters 4 and 5 has been published in Journal of 

Geophysical Research and can be cited as Buntoung, S., and A.R. Webb (2010), 

Comparison of erythemal UV irradiances from Ozone Monitoring Instrument (OMI) 

and ground-based data at four Thai stations, J. Geophys. Res., 115, D18215, 

doi:10.1029/2009JD013567, as presented in Appendix 2.  
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Chapter 6 – Extending Results to Cloudy Conditions 

The erythemal irradiance at local solar noon retrieved from OMI under clear sky 

conditions was investigated and improved as described in Chapter 5. Two empirical 

models were introduced and used to correct the OMI UV data under clear sky 

conditions. From the results, it can be seen that after the aerosol correction was 

applied, the difference between the corrected OMI UV and ground-based UV data 

was reduced, and at some (but not all) sites the median bias was within the 

uncertainties of the ground-based data with which the corrected satellite data were 

compared. However, for all the sites considered, the clear sky case is not the norm 

and conditions with some degree of cloud cover must also be assessed.  

 

It was shown in Chapter 4 that most of the OMI data overestimated the ground-based 

data, as it did for clear skies, but for all sky conditions there was considerably more 

scatter in the data (see, for example, Figure 4.1). This might be due to the fact that 

the noontime OMI UV and noontime ground-based UV data are not exactly 

synchronous and cloud is assumed constant in the OMI UV algorithm, which may 

not be true. In addition, OMI UV data is the averaged value of a large area while 

ground-based UV data is taken from a specific point, which can cause discrepancies 

particularly in broken cloud conditions. These mismatches can result in the 

additional differences (which may be positive or negative) between the two datasets 

when cloud appears. 

 

In this chapter, an empirical method to improve the OMI erythemal irradiance at 

local solar noon for cloudy conditions is conducted. The corrected values were 

validated with ground-based data for cloudy conditions. The correction method was 

then extended to correct and validate the OMI erythemal data for clear sky 

conditions. The correction can be split into two requirements: to reduce the bias (as 

was the case for clear skies) and to reduce the scatter that is a feature of the great 

variability of cloud in both time and space.  
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6.1 Cloudy Sky Modelling 

Since cloud effects on UV radiation are complex and depend on cloud type and sky 

coverage, cloud height and depth, and microphysical properties, data that are not 

available, a simple empirical model to improve the OMI noontime erythemal 

irradiance for cloudy conditions is introduced in this section. The aim of this is to 

reduce the bias in the cloudy sky data, while recognising that reduction of the scatter 

in the data is not possible without significantly more information, which is not 

routinely available: recall that we aim to improve the UV data available for regions 

where there is little or no ground-based information and standard satellite products 

must form the basis of all corrections.  

 

Reducing the bias is essentially the same task as that presented in Chapter 5, and 

involves accounting for absorbing aerosols – note that the median bias was very 

similar for both cloudless and all sky conditions (see Chapter 4). However, the 

correction derived in Chapter 5, for two different aerosol types, rather than location, 

depends on input aerosol data from the ground or from satellite. In cloudy 

conditions, this data is not available. Aerosol optical depth measurement from the 

ground relies on the availability of direct sun, which may be intermittent but 

unreliable in broken cloud conditions, and absent in overcast conditions. Similarly, 

aerosol optical thickness, aerosol single scattering albedo and aerosol absorption 

optical thickness data from OMI can only be derived for cloud free conditions. 

 

In the simplest approach to this problem, the OMI erythemal irradiances at local 

solar noon for cloudy conditions were plotted against the ground-based erythemal 

data as shown in Figure 6.1, separated into two cases: Thai and UK sites, for year 

2005. The erythemal irradiance used to generate the model was from the OMUVB 

product that is available at http://avdc.gsfc.nasa.gov/ and ground-based measurement 

for the four Thai sites and nine UK sites in the year 2005. 

 

While the clear sky corrections were based on aerosol type at the site (i.e., urban or 

maritime), the all sky data also includes the effect of cloud. Cloud influences can 

dominate the aerosol dependent effects, and the cloud and aerosol effects can 

interact, with the end result on radiative transfer depending on both cloud and 
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aerosol properties. Urban aerosols seem to have similar effects on UV radiative 

transfer under clear skies in any climate (Chapter 5), but Tropical clouds can be quite 

different to those experienced in the temperate UK. A typical example would be the 

comparison of towering Tropical cumulonimbus clouds versus the stratus layer that 

accompanies a midlatitude warm front. For this reason, and the fact that the 

correction does not depend directly on aerosol data, the cloudy sky correction was 

based on sites allocated by region (cloud type) rather than by aerosol type. 

 

Figure 6.1 Comparison between the noontime OMI erythemal data (EUVOMI) and 

the noontime ground-based erythemal data (EUVGND) for cloudy conditions of year 

2005.  

 

As can be seen in Figure 6.1 most of the OMI erythemal irradiance for UK sites and 

over half those for Thai sites are higher than the ground-based erythemal data. There 
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is a great deal more scatter in the Thai data, perhaps due in part to the range of times 

between OMI overpass and noon, but also to the nature of Tropical cloud. The slope 

of the Thai graph was lower than that of UK graph, values being 1.12 and 1.26, 

respectively. Thus, the OMI erythemal data can be adjusted by using the slopes as 

follows: 

 

 
OMICLOUDCORR EFE ⋅=  (6.1) 

 

where CORRE  is the corrected OMI erythemal irradiance for cloudy conditions, OMIE  

is the original OMI erythemal irradiance for cloudy conditions, and CLOUDF  is cloud 

correction factor shown below: 

 

 

12.1

1
FCLOUD =  for Thai sites 

(6.2) 

and 
26.1

1
FCLOUD =  for UK sites. 

 

6.2 Validation for Cloudy Sky Conditions 

To validate the empirical model for cloudy conditions, the erythemal irradiances at 

local solar noon in the years 2004, 2006 and 2007 for Thai sites, and 2006 and 2007 

for UK sites, which are independent from the model data, were used. Using the 

empirical model as expressed in Equations 6.1 and 6.2, the corrected OMI erythemal 

irradiances for cloudy conditions were calculated. Then the modelled erythemal 

irradiances were compared with the ground-based erythemal irradiances. The 

comparison results are shown in Figure 6.2 and the statistical analysis such as the 

median of the ratio, %W10, %W20 and %W30 are also shown in Table 6.1, including 

the comparison between the original OMI data and corrected OMI data. 
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Figure 6.2 Comparison of erythemal irradiance at local solar noon from the original 

OMI (+) and the empirical (cloudy) model (o) with ground-based measurements 

under cloudy conditions. The 1:1 correlation () and ±30% limits (---) are also 

shown.
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Table 6.1 The ratio of the original OMI data and the modelled data to ground-based data for cloudy conditions. 

Sites 
Cloudy conditions (Original OMI) Cloudy conditions (cloudy model) 

N Median Mean %W10 %W20 %W30 %AvgDiff %Bias N Median Mean %W10 %W20 %W30 %AvgDiff %Bias 

Chiang Mai 

Ubon Ratchathani 

Nakhon Pathom 

Songkhla 

Camborne 

Chilton 

Glasgow 

Kinloss 

Leeds 

Lerwick 

Manchester 

Reading (Bentham) 

Reading (Brewer) 

Snowdon 

568 

653 

723 

634 

473 

494 

487 

490 

494 

503 

572 

649 

619 

94 

1.28 

1.13 

1.25 

1.08 

1.56 

1.49 

1.66 

1.84 

1.48 

2.09 

1.26 

1.35 

1.25 

2.37 

1.69 

1.36 

1.48 

1.29 

1.91 

1.65 

1.94 

2.16 

1.83 

2.46 

1.68 

1.55 

1.43 

2.82 

17 

30 

21 

38 

8 

7 

6 

4 

8 

3 

18 

11 

18 

2 

34 

53 

37 

60 

17 

18 

13 

10 

20 

7 

37 

24 

38 

10 

50 

66 

51 

69 

29 

28 

19 

18 

30 

13 

51 

42 

53 

19 

30 

19 

24 

14 

50 

40 

53 

61 

46 

70 

30 

34 

25 

77 

69 

36 

48 

29 

91 

65 

94 

116 

83 

146 

68 

55 

43 

182 

568 

653 

723 

634 

473 

494 

487 

490 

494 

503 

572 

649 

619 

94 

1.14 

1.01 

1.11 

0.96 

1.23 

1.18 

1.32 

1.46 

1.18 

1.66 

1.00 

1.07 

0.99 

1.88 

1.51 

1.21 

1.32 

1.16 

1.51 

1.31 

1.54 

1.72 

1.45 

1.95 

1.34 

1.23 

1.13 

2.23 

26 

32 

24 

35 

25 

24 

14 

17 

25 

15 

28 

31 

30 

16 

49 

56 

45 

61 

42 

44 

29 

30 

47 

23 

49 

52 

54 

22 

65 

73 

61 

72 

55 

62 

45 

39 

60 

30 

65 

63 

68 

33 

19 

8 

13 
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28 

18 

32 

40 

25 
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12 
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58 

51 

21 

32 
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51 
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54 
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34 
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It can be seen from the results in Figure 6.2 and Table 6.1 that the modelled data 

were closer to the one-to-one line. The median values of the ratio post-correction 

were closer to one for all data. Some datasets were slightly over-corrected compared 

with the ground-based data such as the data of Songkhla, but this was, and remains, 

close to the ground-based data on average. The average differences between the 

modelled data and ground-based data were within ±30% for all sites except 

Glasgow, Kinloss, Lerwick and Snowdon. It is noticeable that these sites can all be 

described by some combination of high latitude, high altitude and low data 

availability, where local or seasonal microclimates may influence the observed local 

UV irradiances (best captured by the ground-based data). Despite this, the UK-wide 

empirical correction was improved from the OMI correspondence with ground-based 

data even at these challenging sites. Overall, this method can improve the original 

OMI erythemal irradiances by about 12%-14% for Thai sites and about 30% for UK 

sites. As can be seen the correction method can only reduce the bias between the 

OMI UV data and the ground-based data, but does not much affect on the scatter. 

 

6.3 Validation for Clear Sky Conditions 

As it is noted in Chapter 5 that the absorbing aerosol correction for clear sky data 

depends on the availability of aerosol data, it should be useful if the empirical model 

for cloudy conditions described above can also be applied for the clear sky data. 

However, this may result in lowering the original OMI UV data and make it closer to 

the one-to-one line. 

 

To compare performance of the empirical model in Sections 5.2 and 6.1, the same 

dataset of the erythemal irradiances at local solar noon under clear sky conditions 

used in Section 5.2.3 was used in this section. The OMI erythemal data was 

corrected using the model in Equations 6.1 and 6.2 and then compared to the ground-

based data as shown in Figure 6.3 and Table 6.2. 
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Figure 6.3 Comparison of erythemal irradiance at local solar noon from the original 

OMI (+) and the empirical (cloudy) model (o) with ground-based measurements 

under clear sky conditions. The 1:1 correlation () and ±30% limits (---) are also 

shown. 
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Table 6.2 The ratio of the original OMI data and the modelled data to ground-based data for clear sky conditions. 

Sites 
Clear sky conditions (Original OMI) Clear sky conditions (cloudy model) 

N Median Mean %W10 %W20 %W30 %AvgDiff %Bias N Median Mean %W10 %W20 %W30 %AvgDiff %Bias 

Chiang Mai 

Ubon Ratchathani 

Nakhon Pathom 

Songkhla 

Camborne 

Chilton 

Glasgow 

Kinloss 

Leeds 

Lerwick 

Manchester 

Reading (Bentham) 

Reading (Brewer) 

Snowdon 

70 

59 

26 

24 

20 

9 

7 

13 

8 

5 

13 

23 

23 

7 

1.30 

1.11 

1.24 

1.08 

1.33 

1.42 

1.46 

1.39 

1.37 

1.38 

1.27 

1.33 

1.24 

1.25 

1.40 

1.13 

1.29 

1.08 

1.32 

1.46 

1.47 

1.42 

1.38 

1.39 

1.26 

1.33 

1.23 

1.26 

0 

42 

15 

67 

0 

0 

0 

0 

13 

0 

0 

0 

4 

0 

26 

80 

42 

92 

5 

0 

0 

8 

13 

0 

38 

4 

26 

0 

50 

92 

58 

100 

25 

11 

0 

8 

13 

20 

62 

43 

91 

86 

31 

12 

24 

8 

27 

37 

38 

34 

31 

33 

23 

28 

21 

23 

40 

13 

29 

8 

32 

46 

47 

42 

38 

39 

26 

33 

23 

26 

70 

59 

26 

24 

20 

9 

7 

13 

8 

5 

13 

23 

23 

7 

1.16 

0.99 

1.11 

0.96 

1.05 

1.13 

1.16 

1.10 

1.09 

1.10 

1.01 

1.06 

0.98 

1.00 

1.25 

1.01 

1.15 

0.97 

1.04 

1.16 

1.17 

1.13 

1.10 

1.11 

1.00 

1.06 

0.98 

1.00 

39 

81 

42 

71 

95 

33 

29 

23 

50 

60 

85 

74 

91 

100 

57 

95 

65 

100 

100 

67 

71 

69 

75 

80 

100 

96 

100 

100 
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100 

85 

100 

100 

89 

100 

77 

88 

100 

100 

100 

100 

100 

20 
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12 
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14 

15 

11 
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10 
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It can obviously be seen from the results that all modelled data were closer to the 

one-to-one line. The median ratios were between 0.96 and 1.16 for the two countries, 

where the negative biases were shown for the data of the clean aerosol sites such as 

Songkhla. Over half of the modelled erythemal data were within ±20% compared to 

the ground-based data. What is interesting is that the improvement by using the 

cloudy model as described above is slightly better than that using the AAOD or 

AOD correction methods that are shown in Section 5.2. 

 

6.4 Summary  

In this chapter, the empirical method used to improve the OMI noontime erythemal 

irradiance for cloudy conditions was introduced. After the empirical model was 

applied, the modelled OMI erythemal irradiances show the better agreement than the 

original OMI erythemal irradiances, compared with the ground-based data. This 

method can adjust the OMI data to be closer to ground-based data by about 12%-

14% for Thai sites and about 30% for UK sites, but does not solve for cloud 

variation causing the remaining scatter data. In addition, the empirical model was 

tested with the clear sky erythemal data. The validation results were slightly better 

than the results that were described in Chapter 5, where the aerosol correction was 

applied. This may be due to the uncertainty of the OMI aerosol data. In general, 

therefore, it seems that the empirical model suggested in Section 6.1 can be used for 

both cloudy and clear sky conditions, and whether aerosol data is available or not.  

 

As can be seen the empirical method discussed in this chapter can be used to adjust 

the OMI noontime erythemal irradiance for anywhere, for example, the whole 

country of Thailand, as far as the OMI erythemal data is available. In addition, this 

simple empirical method does not depend on aerosol data that is not always 

available. 
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Chapter 7 – Extending Results to Generate UV Maps for 

Thailand 

The amount of erythemal irradiance is normally converted (scaled) to UV Index for 

public dissemination. As described in Chapter 2, the UV Index is a dimensionless 

number of value between zero and 12 (or more), provided in public broadcasts as an 

integer number that indicates the sunburning power of the sun at a given time and 

place. Maps of UV Index have been provided in several countries for example the 

U.S., Europe and Australia. In Thailand, the UV Index has been presented at only 

four sites; Chiang Mai, Ubon Ratchathani, Bangkok and Songkhla by Thai 

Meteorological Department. In a study of Janjai et al. [2010], they generated maps 

of the monthly average erythemal daily dose and the yearly average erythemal daily 

dose from years 1995 to 2002 over Thailand. Their study used satellite-derived 

earth-atmospheric albedo (obtained from Geosynchronous Meteorological Satellite-

5), total column ozone (retrieved from TOMS) and other ground-based ancillary data 

(e.g., visibility and aerosol single scattering albedo) as the input parameters. The root 

mean square difference and mean bias difference between the monthly average 

erythemal daily doses calculated from the model and ground-based measurements 

were 12.3% and 0.7%, respectively. 

 

In this study, we have attempted to extend the daily noontime erythemal dose rate 

and thus the UV Index information to the entire area of Thailand. While the work of 

Janjai et al. [2010] provides climatological data in terms of monthly means and 

daily doses, the current work indicates the actual noontime (assumed maximum) UV 

Index for the day in a format with which the public are familiar. This study takes 

advantage of satellite OMI UV retrievals, and the corrections based on the methods 

described in Chapter 5 (for clear sky conditions) and Chapter 6 (for cloudy 

conditions) to generate maps of the noontime erythemal irradiance and then the UV 

Index over Thailand. Our method needs only two main parameters as the inputs, 

which are the OMI erythemal dose rate at local solar noon and the OMI aerosol 

absorption optical depth. Additional information is needed to identify sky conditions 

either clear or cloudy. 
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7.1 Operational Approach 

In an operational environment, where the aim is to produce corrected daily noontime 

UV Index on a regular basis, a decision tree is required to adopt the most appropriate 

correction for each day. This is particularly important at the present time because 

some satellite data products have not been available for very many years, so this 

work dealt with incomplete data sets. This is particularly true for AAOD data where 

in some regions there is not enough information even to provide a monthly mean 

value. The cloudy correction (Chapter 6) is empirically based and aerosol correction 

is intrinsic in the overall correction. However, where more precise data for a given 

location/time are available then the clear sky correction (Chapter 5) is more 

appropriate. 

 

The initial pragmatic approach has to be based on availability of data. Using this 

criterion, the data to consider are: 

 

a) Satellite noontime UV data – usually available for every pixel for every day 

(sometimes a few pixels are missing if the overpass just misses an area. Typically a 

“stripe” of blank pixels occurs across the country, see Figure 7.1) 

 

  

Figure 7.1 An example of a stripe of blank pixels of OMI noontime erythemal data 

across Thailand on 07/08/2009. 
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b) Satellite AAOD data – available for most pixels if the area is cloud free (daily 

basis) 

– monthly means for each year have been generated in this 

work, but still lead to missing pixels (see section 7.3, Figure 7.8) 

– monthly means based on all three years available (see 

section 7.3, Figure 7.9) provide the best estimate that would be available at present. 

With time, the monthly means will be based on more data until they become true 

climatological variables. 

c) Cloud plus aerosol information – for cloudy conditions, there is no aerosol data 

available (although this does not define cloud conditions). Thus a correction of 

satellite UV data under cloudy conditions must use the empirical model which 

includes, implicitly, effects of aerosol and cloud. 

 

Given this less than ideal access to the data required, the correction applied to the 

OMI erythemal data would be chosen according to the following criteria: 

 

1) For clear sky conditions, satellite daily erythemal and AAOD data are widely 

available for the day. Then the clear sky correction is applied. 

2) For clear sky conditions, satellite daily erythemal data is widely available, but 

daily AAOD data is missing. Then the clear sky correction is applied incorporating 

best available monthly mean data for AAOD. If only a few pixels of data missing, 

use daily values from adjacent pixels. 

3) For cloudy regions or country, satellite daily erythemal data is widely available, 

but no AAOD data is available. Then the cloudy correction which implicitly includes 

aerosol is applied. 

4) In case of no information on cloud/aerosol, satellite daily erythemal data is only 

available. Then the cloudy correction, i.e. the default correction that also works 

reasonably well for clear skies (Chapter 6) is applied. 

5) For default case, no satellite daily erythemal data is available. Then the cloudy 

correction is applied to satellite monthly erythemal data.  

 

The problem then becomes one of identifying clear sky conditions, using only the 

satellite overpass data. Earlier we used ground-based data to identify clear sky days. 

This is no longer an option as there are few ground-based stations. The sky 
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conditions in the examples given in the following work were identified manually 

from satellite visible images retrieved from Meteorological satellite. However, 

another method to identify sky conditions, that relies only on OMI data,  was used in 

Arola et al. [2009]. This would negate the need to use more than one satellite 

product, and would be preferable for widespread operational use. Therefore, this 

method is included in the outline decision making, below. The OMI clear sky 

erythemal dose rate (EUVclr) and the OMI erythemal dose rate (EUVcld) at local solar 

noon included in the OMUVBd product were used together. Sky conditions are 

separated by using OMI cloud modification factor (CMF=EUVcld/EUVclr). Clear sky 

data is determined when the cloud modification factor is higher than 0.95. 

 

Overall approach is summarised as a flow chart shown in Figure 7.2. 

 

 

Figure 7.2 Operational approach to correct OMI noontime erythemal dose rate in 

this thesis. 

 

7.2 Mapping Input Data 

For the mapping process, there are two main parameters needed as input data into the 

empirical models described in earlier chapters. The first parameter is erythemal dose 
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rate at local solar noon taken from the OMUVBd OMI data product, and the second 

data is AAOD at 388 nm included in the OMAERUVd OMI data product. Both 

datasets are in the OMI level 3 data products and can be acquired from the NASA’s 

Goddard Earth Sciences Data and Information Services Centre (GES DISC, data 

available at http://disc.sci.gsfc.nasa.gov). The data is in the HDF-EOS format.  

 

The OMI level 3 data products contain data for a 1.0 degree by 1.0 degree longitude 

by latitude grid covering the whole globe [OMI Team, 2009]. These products are 

produced by weighted averages of best pixel data from single orbit level 2 OMUVB 

swath observations over the fixed grids from latitudes -180° to +180° and longitudes 

-90° to +90° [McPeters et al., 1998]. The dimensions of the grids are 360 by 180. 

The centre of the first grid cell is located at longitude -179.5° and latitude -89.5°. 

The centre of the final grid cell is located at longitude +179.5° and latitude +89.5°. 

The centre of the grid itself is located at longitude 0.0° and latitude 0.0°, and 

corresponds to the corners of four grid cells. Examples of the noontime erythemal 

dose rate and AAOD data are shown in Figure 7.3 and 7.4. Note, the stripes of 

unavailable data are shown in Figure 7.3, and the paucity of data in Figure 7.4. 

 

Figure 7.3 An example of noontime erythemal dose rate from OMUVBd data 

product of 16 October, 2009. This figure was produced with the Giovanni online 

data system, developed and maintained by the NASA GES DISC.  
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Figure 7.4 An example of AAOD from OMAERUVd data product of 16 October, 

2009. This figure was produced with the Giovanni online data system, developed 

and maintained by the NASA GES DISC. 

 

The OMUVBd product (accessed for this work on 20 July 2010) was available from 

2 January, 2007 to 27 February, 2010 and the OMAERUVd product was available 

from 1 October, 2004 to 18 July, 2010. It is expected that both data sets will be 

available in the future. In this study, the coincident data during 2 January, 2007 to 31 

December, 2009 were used. 

 

In this study, the OMI noontime erythemal dose rate and OMI AAOD data covering 

Thailand are selected. The original OMUVBd and OMAERUVd products in HDF-

EOS format contain data as an array (180×360 pixels) covering the latitudes from 

90ºS to 90ºN and the longitudes from 180ºW to 180ºE. The data covering Thailand 

i.e. the latitudes of 5ºN to 21ºN and the longitudes of 96ºE to 107ºE, were then 

selected (16×11 pixels) by using a program written in Interactive Data Language 

program. 
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7.3 Methodology 

As we can see from the examples of the erythemal dose rate at local solar noon and 

AAOD data in Figures 7.3 and 7.4, the data sets are incomplete, especially for the 

AAOD data. This is likely due to cloud contamination and algorithm flags (see in 

README for OMAERUVd available at http://disc.sci.gsfc.nasa.gov/Aura/data-

holdings/OMI/, which provides details of conditions when data are not valid). 

 

To overcome this problem for Thailand, first the monthly mean AAOD data by year 

was calculated to see whether this would provide sufficient data. The results are 

illustrated in Figures 7.5-7.7. This still leaves blank pixels (white pixels), so the 

average for all three years was generated (Figure 7.8). If there still are blank pixels, 

the average value of adjacent pixels is used to give complete monthly AAOD data 

(Figure 7.9). Note that monthly AAOD data averaged from the three year period is 

not enough (which is far from ideal ~30 years) but build up to more complete 

climatology as years pass and data increases. From the figures we can see that 

AAOD each year are similar in pattern, being high in March/April and again in 

October, which can result from biomass burning. 

 

The OMI aerosol absorption optical depth is then converted to aerosol correction 

factor (FAAOD). Since the calculation of FAAOD depends on aerosol types: urban and 

maritime, as shown in Equation 5.4, we assumed that the pixels higher than the 

latitude of 13ºN are occupied by urban aerosols while the others are occupied by 

maritime aerosols [Janjai et al., 2005]. 
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Figure 7.5 The monthly maps of AAOD over Thailand from OMAERUVd product, 

for year 2007 (white pixels represent no data).  
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Figure 7.6 The monthly maps of AAOD over Thailand from OMAERUVd product, 

for year 2008 (white pixels represent no data). 
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Figure 7.7 The monthly maps of AAOD over Thailand from OMAERUVd product, 

for year 2009 (white pixels represent no data).   
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Figure 7.8 The monthly maps of AAOD over Thailand from OMAERUVd product 

for 3 years (white pixels represent no data). 
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Figure 7.9 The monthly maps of AAOD over Thailand from OMAERUVd product 

for 3 years with adjacent filling gaps. 
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The UV data is generally more complete. However, on a daily basis there may still 

be missing pixels. It is however possible to generate monthly means of erythemal 

data for each year (see Figures 7.10-7.12), and have a complete data set averaged 

from the three years data (see Figure 7.13).  
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Figure 7.10 The monthly maps of erythemal irradiance at local solar noon over 

Thailand, for year 2007. 
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Figure 7.11 The monthly maps of erythemal irradiance at local solar noon over 

Thailand, for year 2008. 
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Figure 7.12 The monthly maps of erythemal irradiance at local solar noon from 

OMUVBd product over Thailand, for year 2009 (no OMUVBd data in February). 
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Figure 7.13 The monthly maps of erythemal irradiance at local solar noon from 

OMUVBd product over Thailand, for three years. 
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From the maps we can see that the general pattern of the monthly average erythemal 

dose rates at local solar noon is similar for each year, but details can be variable. 

There are distinct year to year differences. From January to April, the sun path 

moves northward from the southern celestial sphere toward the northern celestial 

sphere. Therefore, high erythemal dose rate areas increase progressively from the 

South to the North. From mid-May to mid-October, the influence of the South-West 

monsoon causing rain for the whole country decreases the erythemal dose rate over 

the country especially the western part of the country. From mid-October to mid-

February, the North-East monsoon brings cool and dry air to the northern and north-

eastern part but causes rainfall in the eastern part of the South. However, at this 

period the apparent sun path moves southward from the celestial equator causing low 

erythemal dose rate in the North, the Northeast and the Centre. 

 

The following figures illustrate, for specific cases, the generation of UV Index maps 

based on varying amounts of data availability, starting with the worst case (no 

AAOD and missing UV pixels), and proceeding to the best case (fully available daily 

data). Since a goal of this thesis is to extend the results for public use, the corrected 

noontime erythemal dose rate (mW·m-2) in each case was divided by 25 in order to 

calculate the noontime UV Index over the country (see Figures 7.14-7.17, where × in 

the UV Index maps represents the position of ground-based sites).  

 

The lowest level default for a UV map of Thailand (e.g. if a data blank covers much 

of the country for a day), based on the maps generated above and the work of 

Chapters 5 and 6, would then be the year specific monthly mean UV corrected with 

the default cloud correction, to give monthly mean corrected UV for year 20XX (see 

Figure 7.14). This would apply for past data. For near real time data (e.g. yesterday) 

a year specific monthly mean is not available, and instead the long-term monthly 

mean data must be used e.g. Figure 7.13 which is the average of years 2007-2009, 

but can be improved upon as more data becomes available. 
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Figure 7.14 An example of noontime erythemal map on 07/08/2009 (white pixels 

represent no data). 

 

Given that the underlying daily erythemal data is generally available, and a decision 

can be made about clear or cloudy conditions, it is possible for most days to improve 

upon this. If the daily UV data is available but it is cloudy or cloud is indeterminate, 

then the cloud correction is applied to the daily UV data (see Figure 7.15). 
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Figure 7.15 An example of noontime erythemal map on cloudy day (03/08/2008). 

 

Where conditions are known to be clear, but full AAOD data is not available, the 

clear sky correction can be used with the monthly mean AAOD data from Figure 7.9 

(see Figure 7.16). 
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Figure 7.16 An example of noontime erythemal map on clear sky day (02/04/2007) 

with the monthly AAOD correction. 

 

In the ideal case, both erythemal and AAOD data are fully available and a day 

specific correction can be applied (see Figure 7.17).  
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Figure 7.17 An example of noontime erythemal map on clear sky day (02/04/2007) 

with the daily AAOD correction (white pixels represent no data). 

 

7.4 Validation 

To validate the model performance, noontime UV Indices at the four Thai sites: 

Chiang Mai, Ubon Ratchathani, Nakhon Pathom and Songkhla, were selected from 

the maps. The comparison results are presented in Table 7.1.  
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Table 7.1 Validation of the corrected OMI UV Index with respect to ground-based 

UV Index. 

Conditions 
UV 
data 

AAOD 
data 

Model Sites* 
Ground-

based UVI 
Corrected 
OMI UVI 

Undefined 
(07/08/2009) 

Monthly No 
Cloudy 

correction 

CM 2.8 9.9 
UB 4.2 10.9 
NP 4.2 9.5 
SK 11.4 10.4 

Cloudy 
(03/08/2008) 

Daily No 
Cloudy 

correction 

CM 14.1 10.6 
UB 9.3 8.1 
NP 9.1 10.3 
SK 10.1 9.6 

Clear sky 
(02/04/2007) 

Daily No 
Cloudy 

correction 

CM 10.7 12.7 
UB 13.3 13.3 
NP 11.3 13.0 
SK No data 13.1 

Clear sky 
(02/04/2007) 

Daily Monthly 
Clear sky 
correction 

CM 10.7 13.2 
UB 13.3 13.5 
NP 11.3 14.2 
SK No data 14.7 

Clear sky 
(02/04/2007) 

Daily Daily 
Clear sky 
correction 

CM 10.7 13.8 
UB 13.3 14.8 
NP 11.3 14.2 
SK No data 14.7 

Clear sky 
(11/01/2008) 

Daily No 
Cloudy 

correction 

CM 7.1 8.1 
UB 7.2 8.9 
NP 6.9 8.8 
SK 10.3 10.6 

Clear sky 
(11/01/2008) 

Daily Monthly 
Clear sky 
correction 

CM 7.1 8.9 
UB 7.2 9.1 
NP 6.9 8.9 
SK 10.3 11.8 

Clear sky 
(11/01/2008) 

Daily Daily 
Clear sky 
correction 

CM 7.1 8.6 
UB 7.2 9.9 
NP 6.9 9.8 
SK 10.3 11.8 

Clear sky 
(12/01/2008) 

Daily No 
Cloudy 

correction 

CM 7.0 8.1 
UB 6.8 8.1 
NP 7.4 8.8 
SK 11.6 10.4 

Clear sky 
(12/01/2008) 

Daily Monthly 
Clear sky 
correction 

CM 7.0 9.0 
UB 6.8 8.3 
NP 7.4 9.0 
SK 11.6 11.7 

Clear sky 
(12/01/2008) 

Daily Daily 
Clear sky 
correction 

CM 7.0 9.1 
UB 6.8 No data 
NP 7.4 9.5 
SK 11.6 No data 

 

*CM = Chiang Mai, UB=Ubon Ratchathani, NP=NakhonPathom, SK=Songkhla 
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The validation results in Table 7.1 show that for the default case where the monthly 

erythemal data was used with the cloudy correction, the differences between the 

corrected OMI and ground-based UV Index are large (within ±7 UVI) as expected. 

Smaller differences were achieved when the daily OMI UV data was used with 

either clear sky or cloudy correction. Using the clear sky correction, the corrected 

OMI UV Index values are similar (±3 UVI) when either the daily or monthly OMI 

AAOD data were used. Better results (±2 UVI) are shown when the cloud correction 

was applied. While one might hope that specific aerosol data would provide the best 

correction, this assumes that the aerosol data fully represent the conditions. It is 

known that the satellite data do not fully probe the lower boundary layer where much 

of the aerosol exists, and this is evident in the results. The cloud correction, while 

empirical, intrinsically accounts for both cloud and aerosol effects through the full 

depth of the atmosphere. It would appear that until there is an improvement in 

satellite aerosol products, and broad scale, satellite-based correction for aerosol is 

not as effective as a simple empirical correction. Where ground-based aerosol optical 

depth data exists, and accounts for the full depth of the atmosphere, this provides the 

best corrective option in clear sky conditions. 

 

7.5 Summary 

In this chapter, noontime erythemal irradiance calculated from the OMI products 

(i.e., OMUVBd and OMAERUVd) were corrected over the entire area of Thailand. 

There are two empirical models used in this study: clear sky correction (see Chapter 

5) and cloud correction (see Chapter 6). The use of the correction depends on the 

availability of input parameters and the sky conditions. The final results were shown 

in term of the UV Index over the country. The daily corrected satellite data was 

compared to the daily ground-based data. The differences between the two datasets 

are within ±3 UVI for the clear sky correction and ±2 UVI for the cloud correction. 

 

The method and results that are shown in this chapter are only some example taken 

from different sky conditions: clear sky and cloudy days. Attempts to correct the 

satellite UV data over Thailand were limited by both availability and quality of the 

input parameters required for the correction, especially the AAOD data. The 

correction method would be improved if aerosol and cloud information were more 
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readily available. Ideally, aerosol data that represents the full atmosphere is required 

– much of the aerosol extinction takes place in the lower boundary layer which is 

poorly represented in satellite products.  It should also be remembered that the 

satellite product represents an area of 312 km2 while the ground-based measurement 

represents a specific point. Localised effects may influence one measurement and not 

the other, and some uncertainty can be expected from this scaling issue. 

 

Given the lack of high quality AAOD data, the most effective correction for a 

country wide application is the cloudy sky empirical correction that implicitly 

includes cloud and aerosol typical of the region. Note that, as with all empirical 

techniques, the details of this correction may not be directly applicable to other 

regions and climates. 
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Chapter 8 – Summary 

Solar ultraviolet irradiance has effects on human health, terrestrial and aquatic 

ecosystems. The erythemal irradiance affecting human skin (sunburning), taken as 

the focus in this thesis, varies depending on the solar energy output, geographical 

factors (e.g., sun-earth distance, solar zenith angle and altitude), atmospheric 

composition (e.g., ozone, aerosols and clouds) and surface properties (e.g., albedo). 

The amount of irradiance can be measured directly by ground-based measurements; 

however, ground-based instruments have been installed only at limited sites. Satellite 

UV estimation techniques based on radiative transfer models and reflectivity 

measurements have potential to provide UV irradiance on a global basis. However, 

satellite data represents average conditions over large areas, and is based on model 

calculations that inevitably include assumptions that sometimes produce errors for all 

or part of the region concerned. Thus, the validation of satellite data with ground-

based data is still required. This thesis attempted to use the benefit of satellite UV 

retrieval to estimate erythemal irradiance at local solar noon for the whole country of 

Thailand where ground-based measurements are sparse, and compared the results to 

similar validation techniques in the UK. This is the first time that such studies have 

been conducted for the Tropics, previous work has been in midlatitudes where the 

climate is quite different. 

 

In this study, the erythemal irradiance at local solar noon is investigated for two 

different climate areas; Tropics and midlatitudes. There are four Thai ground-based 

sites: Chiang Mai, Ubon Ratchathani, Nakhon Pathom and Songkhla; and nine UK 

sites: Camborne, Chilton, Glasgow, Kinloss, Leeds, Lerwick, Manchester, Reading, 

and Snowdon. Most of the sites have been installed with broadband radiometers, but 

Manchester and Reading have spectroradiometers. Apart from the ground-based 

measurement, OMI onboard the Aura spacecraft measures solar reflected and 

backscattered light at UV and visible wavelengths which enable a series of data 

products to be retrieved: total column ozone, trace gases, aerosols, clouds and hence 

finally the surface UV irradiance on a global scale. 
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The comparisons of the noontime erythemal irradiance retrieved from OMI between 

years 2004 and 2007 with respect to the ground-based data at the various sites were 

detailed in Chapter 4. There was a general overestimation of UV by the OMI data 

but with considerable variation that included some instances of underestimation for 

both Tropics and midlatitudes. The biases between the OMI data and the ground-

based data were 9% for cloudless conditions and 32% for all sky conditions at the 

cleanest site sampled. Biases were much higher (at least about 20% for cloudless 

conditions) for the urban sites. Further investigation indicated that the positive bias is 

mainly due to aerosol absorption optical depth that is not accounted for in the OMI 

UV algorithm. 

 

As a result, two empirical models were derived to account for absorbing aerosol 

under cloudless conditions (clear sky correction). These were introduced in Chapter 

5. One correction uses aerosol optical depth from ground-based instruments and 

aerosol single scattering albedo, while the other uses aerosol absorption optical depth 

from the satellite as the input parameters. After the absorbing aerosol correction 

factors were applied, for cloudless conditions, the differences between the corrected 

OMI and ground-based data were reduced by up to 28% for the Tropical sites and 

5%-30% for the temperate sites. The results also show that the improvement is much 

better if ground-based aerosol data were applied to the empirical models, since they 

are site specific and expected to represent the boundary layer better than the satellite 

data. 

 

Since cloudless conditions are comparatively rare, an empirical method to correct the 

erythemal irradiance from OMI at local solar noon in cloudy conditions (cloudy 

correction) was then introduced (see Chapter 6). The corrected OMI erythemal 

irradiances were closer to the ground-based data than the original OMI erythemal 

irradiances. This method resulted in an improvement to the OMI data (relative to 

ground-based) of 12%-14% for Thai sites and about 30% for UK sites. However, this 

does not solve the issue of considerable scatter in the comparison data due to the vast 

variations possible in cloud type and characteristics. The cloudy correction was also 

successfully used with clear sky data.  
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To extend the correction methods to the whole country of Thailand, the two 

empirical models (clear sky correction and cloudy correction) were applied 

depending on the availability of inputs (especially aerosol data) and the sky 

conditions, as detailed in Chapter 7. The final results were presented in terms of 

daily noontime UV Index maps which are familiar to public health bodies and the 

public themselves. The differences between the corrected OMI UV Index and the 

ground-based UV Index were within ±3 UVI for the clear sky correction when the 

satellite aerosol data are available. However, there was very little daily aerosol data 

available so monthly averages had to be used. This situation should improve as more 

data becomes available and averages can at least be based on a longer term data set. 

The cloudy correction proved to be the overall most effective in correcting the OMI 

UV retrieval, and could be applied to the whole country in any conditions, once a 

decision about maritime and urban sites had been made. The resulting UV Index 

maps were again tested against ground-based data for independent years and found 

to be correct to ±2 UVI for all sites and all conditions, compared to the original OMI 

data which had a positive bias and could overestimate the true UVI by up to 4 units. 

 

Thus, OMI UV retrievals have been tested for the first time in the Tropics. Results 

were not dissimilar to validations at midlatitudes, and the main cause of discrepancy 

for clear sky conditions was shown to be missing aerosol effects in the retrieval 

algorithm. This could be corrected if ground-based aerosol data were available for a 

site, and was also attempted with satellite-based aerosol data. A paucity in, and lack 

of quality control for, the aerosol data meant that such corrections could not be 

applied on broad space and time scales. A simple linear correction proved most 

effective at correcting the overestimation of satellite UV and could be applied in all 

conditions. The correction was empirically derived and required only that Thailand 

be split into a maritime region (clean) and urban regions. While not able to account 

for subtle differences in aerosol and cloud that generated scatter in the ground-

satellite comparison, this method nonetheless provided UVI ±2 for the whole of 

Thailand, which is deemed valuable as a public health tool. 

 

From the results presented in this thesis it is clear that some uncertainties still remain 

in the corrected erythemal irradiances and that these need to be addressed. In 

particular, further work in the following areas is required: 
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- The aerosol data (AOD, AAOD and SSA) either from ground-based 

measurements or satellite retrievals should be further investigated. Improved 

data availability, and data quality, would improve the satellite UV corrections 

under clear sky conditions, as highlighted in Chapter 5. With time, it is to be 

hoped that the uncertainties in the aerosol data will be reduced. 

- To improve the background climatological data, the noontime erythemal 

irradiance and aerosol data should be routinely collected at as many sites as 

possible, allowing climatological expectations to be more firmly established. 

-  Cloud information from geostationary satellites that can provide data more 

often (every 30 minute) than the polar orbiting OMI may help to improve the 

cloud correction since it removes the assumption that cloud conditions stay 

the same between satellite overpass and noon. 

- The noontime UV Index of Thailand can be produced using results obtained 

from this study and published for public use. Going one step further to 

produce a UV index nowcast (current conditions) and ultimately a forecast 

would provide much added value. For a nowcast, the underlying data must be 

available in real time. Forecasting requires a good understanding of the local 

climatology and conditions (which would be provided by the continuing data 

collection mentioned above and the work within this thesis), combined with 

weather forecasts (cloud/no cloud) and some economic expectations (e.g. 

biomass burning, or not). 
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Appendix 1 – The calibration of UV-Biometer (s/n 5809)  

In this appendix, the three calibration processes of UV-Biometer (s/n 5809), which 

are cosine response, spectral response and absolute calibration, operated at the 

University of Manchester in year 2009 are described. The UV-Biometer of Solar 

Light Company Inc. was used as a standard instrument for calibration purposes noted 

in Section 3.1.2.   

 

A1.1 Spectral Response Calibration of UV-Biometer Solar Light 

Company Inc. (s/n 5809, Thailand) on 26 August 2009 

This section details determination of the relative spectral response of the UV-

Biometer model 501A. A solar simulator with a 1000 W universal Xenon arc lamp 

combined with a double monochromator was used as a light source. The double 

monochromator of Oriel instruments (Model 77200), which has 0.1 nm resolution 

with narrow slits and a 1200 line/mm grating, allows a spectral output ranging from 

200 nm to 24  µm. However, in this study, we set the slits to obtain about 5 nm 

FWHM to provide enough signal for the UV-Biometer, since closing the slits 

reduces the throughput of the monochromator. In order to identify the output of the 

light source, a Bentham DTM300 double monochromator was set to measure 

spectral irradiance. The optical head of the Bentham was fixed facing the light 

source. In front of the optical head of the Bentham, the UV-Biometer was mounted 

and able to rotate about the vertical to allow the light to pass intermittently to the 

Bentham input optics for verification of the test radiation. The spectral calibration 

setup is shown in Figure A1.1. 
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Figure A1.1 Setup of spectral calibration. 

 

The monochromator was set sequentially at wavelengths from 290.00 to 400.00 nm 

with 2.50 nm step. The output of the UV-Biometer was recorded using the Campbell 

21X (TG1), a data recorder of Campbell Scientific Ltd. (UK), averaging over 5 

minutes at each wavelength. To measure the spectral irradiance from the light 

source, the UV-Biometer was rotated 90° to allow the light to pass to the Bentham 

optical head. The Bentham was set to scan from 290 to 400 nm with the resolution of 

0.5 nm. The output of the Bentham is shown in Figure A1.2. 
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Figure A1.2 The spectral irradiance output from Bentham DTM300. 

 

The relative spectral response of the UV-Biometer was calculated by normalising the 

ratio of the output from the UV-Biometer (mV) and Bentham (mW/m2-nm). The 

relative spectral response function retrieved in this study was compared with the 

original value from Solar Light Company Inc. from 2003, and the erythema action 

spectra defined by CIE, which are shown in Figure A1.3. The new relative spectral 

response values are also shown in Table A1.1.    



Appendix 1 – The calibration of UV-Biometer (s/n 5809) 
 

 
 

155

UV-Biometer 

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

280.00 300.00 320.00 340.00 360.00 380.00 400.00

wavelength (nm)

N
o

rm
a

liz
e

 s
pe

ct
ra

l r
e

sp
o

ns
e

New 26 Aug 09

Original

CIE

 

Figure A1.3 The relative spectral response of UV-Biometer. 

 

We can see from Figure A1.3 that the present relative spectral response function is 

close to the original response for the shorter wavelengths (below 335 nm) but 

deviates at larger wavelength where there were very low signals recorded by the UV-

Biometer. Fortuitously the current spectral response has moved closer to the 

reference erythemal action spectrum that the instrument is supposed to represent. In 

order to compare the influence of the two spectral responses on the output of the 

Biometer, the spectral responses were multiplied by spectral irradiances measured on 

1 January, 2008 at 11:00 to calculate erythemal UV irradiances as shown in Figure 

A1.4. The difference between the erythemal UV irradiances using the present and 

original spectral response functions was about 8%. 
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Figure A1.4 Comparison of erythemal UV irradiance using different spectral 

responses. 
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Table A1.1 The relative spectral response function of UV-Biometer calibrated on 26 

August 2009. 

λ (nm) Normalised spectral response 

290.00 1.00E+00 

292.50 9.57E-01 

295.00 9.98E-01 

297.50 7.78E-01 

300.00 6.54E-01 
302.50 4.89E-01 

305.00 3.52E-01 

307.50 2.43E-01 

310.00 1.38E-01 

312.50 8.64E-02 
315.00 5.00E-02 

317.50 2.93E-02 
320.00 1.62E-02 

322.50 9.95E-03 

325.00 6.51E-03 

327.50 4.20E-03 

330.00 3.24E-03 
332.50 2.00E-03 

335.00 1.27E-03 

337.50 1.24E-03 

340.00 9.71E-04 

342.50 8.67E-04 
345.00 1.06E-03 

347.50 1.23E-03 
350.00 7.83E-04 

352.50 9.45E-04 

355.00 9.28E-04 

357.50 8.25E-04 

360.00 7.80E-04 
362.50 7.83E-04 

365.00 7.54E-04 

367.50 6.56E-04 

370.00 3.92E-04 

372.50 2.82E-04 
375.00 4.75E-04 

377.50 2.94E-04 
380.00 2.75E-04 

382.50 3.38E-04 

λ (nm) Normalised spectral response 

385.00 2.23E-04 

387.50 3.66E-04 

390.00 1.77E-04 

392.50 5.80E-05 

395.00 0.00E+00 
397.50 0.00E+00 

400.00 0.00E+00 
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A1.2 Cosine Calibration of UV-Biometer Solar Light Company Inc. 

(s/n 5809, Thailand) on 10 March 2009 

In general, UV-Biometers have an angular response close to the ideal cosine 

function. It is difficult to make an instrument with a perfect angular response due to 

small imperfections in commercial quartz domes. Traditionally, the cosine angular 

response of these instruments is deemed acceptable if it has less than 5% error for 

zenith angles less than 60° [Webb et al., 1998]. 

   

Regarding this calibration, a FEL 1000W standard lamp (s/n F318) of the Centre of 

Atmospheric Science, the University of Manchester, was used as a light source. This 

lamp has a vertical coil and surrounding bulb and is mounted in a holder on an 

optical rail via two vertical pins at the bottom of the bulb unit.  It requires an 8 amp 

current-stabilised power supply. The Campbell 21X (TG1) was setup to record 

signals from the UV-Biometer, averaging every 10 seconds. The calibration setup is 

shown in Figure A1.5. The distance between the centre of the lamp and the UV-

Biometer is about 0.65 m. The lamp was mounted at one end of an optical rail while 

the UV-Biometer was mounted at the other side so that its vertical rotation axis 

passed through the plane of the receiving surface of the UV-Biometer. A low power 

laser was used to horizontally align the centre of the UV-Biometer and the light 

source by passing the beam through the lamp position to the centre of UV-Biometer. 

 

 

Figure A1.5 Setup of cosine calibration. 
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The Campbell was set to record the UV and temperature signals in mV every second 

and average every ten seconds. The cosine response was measured across four 

quadrants (Q1, Q2, Q3, Q4) at intervals of 90° as can be seen in Figure A1.6. The 

centre of the UV-Biometer was set at 0° and then the receiving plane was rotated 

about its vertical axis (also passing through the central point) using a micrometer 

controlled rotation plate. Rotations went from zero to 88° in 4° steps. 

 

Figure A1.6 The definition of four quadrants using the UV-Biometer connector and 

the bubble level as referent points. 

 

The signals recorded at each angle for each quadrant were normalised by the 

reference signals measured at 0°, to give the relative angular response across each 

quadrant. The result in Figure A1.7 shows the relative angular response of the four 

quadrants of the UV-Biometer and their average obtained in this study compared 

with the value from Solar Light and the ideal cosine function.   
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Q2Q4

UV-Biometer connector
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Cosine Calibration of Solar Light UV-Biometer S/N 5809 10/03/09 with F318 Lamp
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Figure A1.7 Relative angular response of the UV-Biometer. 

 

From the result, we can see that the values of Q1 were lower than the cosine function 

while those of Q2 were higher. Furthermore, the values of Q3 and Q4 were between 

those values. This might have resulted from the position of the UV-Biometer centre 

not being exactly the optical centre of the instrument. However, the average value of 

the four quadrants was close to the value of the true cosine function and the original 

relative angular response from Solar Light.   

 

In general, the relative angular response is compared with the ideal cosine function. 

In this study, relative cosine response, )(C θ , of  the UV-Biometer is defined as the 

ratio of the relative angular response of the UV-Biometer, )(Aθ , to the cosine 

function, )cos(θ , [Grainger et al., 1993] as follows: 

 

 

θ
θ=θ

cos

)(A
)(C  (A1.1) 

 

The relative cosine response of the four quadrants of the UV-Biometer was 

calculated and shown in Figure A1.8. The average value of the relative cosine 
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response for four quadrants were also calculated and then compared with the original 

value from Solar Light as shown in Figure A1.9 and Table A1.2.   

 

Cosine Calibration of Solar Light UV-Biometer S/N 5809 with F318 on 10/03/09
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Figure A1.8 The cosine response of the UV-Biometer. 

 

Cosine Calibration of Solar Light UV-Biometer S/N 5809 with F318 on 10/03/09
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Figure A1.9 The relative cosine response of the UV-Biometer obtained from this 

study and Solar Light. 
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Table A1.2 The average value of relative angular response calibrated on 3 March 

2009. 

Zenith angle Average angular response 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

48 

52 

56 

60 

64 

68 

72 

76 

80 

84 

88 

1.0000 

0.9990 

0.9990 

0.9997 

1.0007 

1.0018 

1.0029 

1.0036 

1.0036 

1.0023 

0.9996 

0.9948 

0.9868 

0.9741 

0.9556 

0.9285 

0.8897 

0.8313 

0.7453 

0.6133 

0.3738 

0.1168 

0.2688 

 

Comparing the relative cosine response obtained from this study, and that from Solar 

Light provided in 2003, shows that the relative cosine response of this UV-Biometer 

is not appreciably different from a typical cosine response for such instruments. The 

difference between the two sets of data was less than 2.5% for the zenith angles less 

than 75° and about 12% for the larger angles.    
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A1.3 Absolute Calibration of UV-Biometer Solar Light Company 

Inc. (s/n 5809, Thailand) on 30 May 2009 

The purpose of absolute calibration is to determine a conversion factor called 

sensitivity (V/(W·m-2)) to convert signals (V) from the UV-Biometer to erythemal 

irradiances (W·m-2). In this study, the UV-Biometer was installed close to the 

Bentham DTM300 spectroradiometer, used as a reference, on the Pariser building, 

the University of Manchester as shown in Figure A1.10.  

 

 

Figure A1.10 Intercomparison between the UV-Biometer and the Bentham 

spectroradiometer on the Parisor Building in May 2009. 

 

The Bentham scanned every 15 minutes while the UV-Biometer recorded voltage 

signals every 10 seconds and then averaged every 15 minutes matching with the 

Bentham scan times. The irradiance spectra from the Bentham were weighted with 

the CIE erythema action spectrum to produce erythemal irradiances. Then the signals 

from the UV-Biometer were plotted against the erythemal irradiance from the 

Bentham as shown in Figure A1.11. The slope of the graph is then the sensitivity of 

the UV-Biometer which is 3.8526 V/(W·m-2) with the standard error values of 

0.0119. 
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Figure A1.11 Correlation plot between signals from the UV-Biometer and the 

erythemal UV irradiance from the Bentham spectroradiometer. 

 

The correlation between the two instruments is excellent even at large solar zenith 

angle where such calibrations tend to become non-linear. This is a result of the now 

excellent match between the biometer response and the reference erythemal action 

spectrum. 

 

To compare the new sensitivity (3.8526 V/(W·m-2)) with the original value from 

Solar Light (4.2589 V/(W·m-2)) since 2003, the UV-Biometer sensitivity studied in 

this work has gradually changed about 2% per year which is in the same range as the 

other UV-Biometers (2%-5%).  

 

In addition, we plotted the sensitivity against solar zenith angles, separated total 

column ozone measured from a brewer spectroradiometer at Manchester as shown in 

Figure A1.12. We can see from the result that the sensitivity has changed within 20% 

from minimum to maximum solar zenith angles. Also, the total column ozone affects 

the sensitivity at the larger solar zenith angles (more than 60°). 
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Figure A1.12 Variation of the sensitivity with solar zenith angle and total column 

ozone. 
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Appendix 2 – Publication Paper 

Presented here is a paper published in the Journal of Geophysical Research, cited as 

Buntoung, S., and A.R. Webb (2010), Comparison of erythemal UV irradiances from 

Ozone Monitoring Instrument (OMI) and ground-based data at four Thai stations, J. 

Geophys. Res., 115, D18215, doi:10.1029/2009JD013567. 
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