7,239 research outputs found

    A Study On Applications And Techniques Of Surface Re- Construction

    Get PDF
    This paper describes a general method for automatic reconstruction of accurate, concise, piecewise smooth surfaces from unorganized 3D points. Instances of surface reconstruction arise in numerous scientific and engineering applications, including reverseengineering, the automatic generation of CAD models from physical objects etc. Previous surface reconstruction methods have typically required additional knowledge, such as structure in the data, known surface genus, or orientation information. In contrast, the method outlined in this paper requires only the 3D coordinates of the data points. From the data, the method is able to automatically infer the topological type of the surface, its geometry, and the presence and location of features such as boundaries, creases, and corners. The surface reconstruction method has three major phases: Initial surface estimation, Mesh optimization, and piecewise smooth surface optimization. In this paper emphasis has been given on the initial surface estimation

    Reconstructing triangulated surfaces from unorganized points through local skeletal stars

    Get PDF
    Surface reconstruction from unorganized points arises in a variety of practical situations such as range scanning an object from multiple view points, recovery of biological shapes from twodimensional slices, and interactive surface sketching. [...]Reconstrução da superfície de pontos desorganizados surge em uma variedade de situações práticas, tais como rastreamento de um objeto a partir de vários pontos de vista, a recuperação de formas biológicas de fatias bi-dimensionais, e esboçar superfícies interativas. [...

    Marching cubes in an unsigned distance field for surface reconstruction from unorganized point sets

    Get PDF
    Surface reconstruction from unorganized point set is a common problem in computer graphics -- Generation of the signed distance field from the point set is a common methodology for the surface reconstruction -- The reconstruction of implicit surfaces is made with the algorithm of marching cubes, but the distance field of a point set can not be processed with marching cubes because the unsigned nature of the distance -- We propose an extension to the marching cubes algorithm allowing the reconstruction of 0-level iso-surfaces in an unsigned distance field -- We calculate more information inside each cell of the marching cubes lattice and then we extract the intersection points of the surface within the cell then we identify the marching cubes case for the triangulation -- Our algorithm generates good surfaces but the presence of ambiguities in the case selection generates some topological mistakesWorkflow Management Coalitio

    From Multiview Image Curves to 3D Drawings

    Full text link
    Reconstructing 3D scenes from multiple views has made impressive strides in recent years, chiefly by correlating isolated feature points, intensity patterns, or curvilinear structures. In the general setting - without controlled acquisition, abundant texture, curves and surfaces following specific models or limiting scene complexity - most methods produce unorganized point clouds, meshes, or voxel representations, with some exceptions producing unorganized clouds of 3D curve fragments. Ideally, many applications require structured representations of curves, surfaces and their spatial relationships. This paper presents a step in this direction by formulating an approach that combines 2D image curves into a collection of 3D curves, with topological connectivity between them represented as a 3D graph. This results in a 3D drawing, which is complementary to surface representations in the same sense as a 3D scaffold complements a tent taut over it. We evaluate our results against truth on synthetic and real datasets.Comment: Expanded ECCV 2016 version with tweaked figures and including an overview of the supplementary material available at multiview-3d-drawing.sourceforge.ne

    Point Cloud Structural Parts Extraction based on Segmentation Energy Minimization

    Get PDF
    In this work we consider 3D point sets, which in a typical setting represent unorganized point clouds. Segmentation of these point sets requires first to single out structural components of the unknown surface discretely approximated by the point cloud. Structural components, in turn, are surface patches approximating unknown parts of elementary geometric structures, such as planes, ellipsoids, spheres and so on. The approach used is based on level set methods computing the moving front of the surface and tracing the interfaces between different parts of it. Level set methods are widely recognized to be one of the most efficient methods to segment both 2D images and 3D medical images. Level set methods for 3D segmentation have recently received an increasing interest. We contribute by proposing a novel approach for raw point sets. Based on the motion and distance functions of the level set we introduce four energy minimization models, which are used for segmentation, by considering an equal number of distance functions specified by geometric features. Finally we evaluate the proposed algorithm on point sets simulating unorganized point clouds

    Universal attraction force-inspired freeform surface modeling for 3D sketching

    Get PDF
    This paper presents a novel freeform surface modeling method to construct a freeform surface from 3D sketch. The approach is inspired by Newton’s universal attraction force law to construct a surface model from rough boundary curves and unorganized interior characteristic curves which may cross the boundary curves or not. Based on these unorganized curves, an initial surface can be obtained for conceptual design and it can be improved later in a commercial package. The approach has been tested with examples and it is capable of dealing with unorganized design curves for surface modeling
    • …
    corecore