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Abstract: - This paper presents a novel freeform surface modeling method to construct a freeform surface from 3D 

sketch. The approach is inspired by Newton’s universal attraction force law to construct a surface model from 

rough boundary curves and unorganized interior characteristic curves which may cross the boundary curves or not. 

Based on these unorganized curves, an initial surface can be obtained for conceptual design and it can be improved 

later in a commercial package. The approach has been tested with examples and it is capable of dealing with 

unorganized design curves for surface modeling. 
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1   Introduction 
Surface design plays a very important role in product 

development. Currently, there are a variety of 

commercial CAD systems to support interactive 

surface design through creating a well-organized 

curve network or virtual sculpting via 3D haptic 

devices [1]. However, at the early stage of form 

design, styling or industrial designers prefer a more 

intuitive design way by which they can obtain more 

sensory feedback during the design process, e.g., 

making 3D physical mockups or clay models [2] and 

3D virtual sketching [3,4]. From the 3D physical 

models, reverse engineering techniques [5] and 

systems such as rapidFromTM, can be used to 

construct surface from unorganized 3D measured 

points; while for 3D sketching, there are some 

challenges in constructing surface from unorganized 

curves.  In [6], we have demonstrated a motion-based 

3D sketch system to support large-sized freeform 

surface design. With an optical motion capture system 

[7], artists or designers wearing reflective motion 

marks on their hands can sketch out 3D design splines 

when moving their body and hand in space. 

     By nature of freehand sketching, 3D sketched 

strokes may be not well-connected and organized. For 

example, initial sketches may consist of rough 

boundary and interior curves. The rough boundary 

curves may be closed (intersected with together) or 

open. The interior curves that are assumed on the 

design surface may have various positions and 

orientations; they may not form a regular or an 

irregular curve network with the boundary curves. 

This brings a surface modeling challenge in dealing 

with unorganized curves because traditional surface 

construction methods are based on regular and 

well-organized curves. On the other hand, the number 

of all sampled points on sketch curves is not big 

enough and the distribution of the points may be nor 

good enough for using reverse engineering software to 

construct a surface. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Surface from unorganized sketch curves 

 

 

     In this paper, we present a new surface modeling 

technique for constructing surface from rough 

boundary curves and unorganized interior curves with 

arbitrary positions and orientations (Fig 1). Inspired 

by Newton’s universal attraction force law, we create 

interpolation points from the unorganized curves 

(points) by blending their normalized attractions. 

     The rest of the paper is organized as follows. After 

the review of related work in Section 2, a new surface 

interpolation scheme based on unorganized curves is 
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presented in Section 3. This scheme is used for 

creating an initial conceptual surface (interpolated 

point-based curves) directly from rough boundary 

curves and unorganized interior curves. Application 

examples are shown in Section 4 and final conclusions 

are drawn in Section 5. 

 

 

2   Related Work 
It is well known that traditional surface construction 

methods are based on regular and well-organized 

curves [8][9]. They have difficulties in sketch-based 

surface modeling application with unorganized curves 

[10]. Related works can be found in two categories: 

surface modeling from an irregular mesh (requiring 

boundary and interior curves connected) and surface 

deformation  (interior curves may not connected to the 

boundary). For an irregular mesh, a Gregory surface 

patch [11,12] is often used to generate surfaces. The 

irregular curves are assumed to intersect with each 

other. The basic Gregory technique [11] allows the 

design surface to be filled by free-from surface 

patches, which join together to make an over-all 

surface that is tangent plane continuous. Kuriyama 

[13] developed a curve mesh-based method for surface 

modeling with an irregular network of curves via 

sweeping and blending.  The surfaces generated from 

the network of intersected curves are represented by 

multisided patches defined on a multivariate 

coordinate system.  The over-all surface is a resulting 

interpolation from all intersected curves. These 

methods only support organized curves, and are not 

easy to be adapted for unorganized curves. 

     For surface deformation, the goal is to deform a 

surface according to given curves with known 

pre-images in the domain of the surface, such that 

attached constraints like “incidence of a curve on the 

surface” are satisfied and the new surface exhibits a 

change in consistence with the given curves [10,14].  

This approach employs the “curve on the surface” 

concept and uses Least-squares techniques to isolate 

the control vertices relevant to a curve placed on or 

near a surface so that motion of the curve displaces the 

control points, which in turn changes the surface. For 

surface patches with a low density of control points, 

changing a surface by deforming control points can 

suffer from aliasing artefacts [14]. In addition, the 

determination of the pre-image of an interior curve is 

not straightway.  Maekawa and Ko [10] subdivided the 

input curve into sub-segments so that the pre-image of 

each segment is a straight line in the parameter space. 

In general, the surface deformation method has 

difficulty in efficiency and numerical stability. The 

algorithm is quite complex and difficult in supporting 

interactive design and local modifications.  

      

 

3  New surface interpolation scheme 

from unorganized curves 
In form design application, characteristic curves from 

3D sketches are not always intersected to form a 

regular or irregular curve network. Even for boundary 

curves, they may not form a closed curve network too 

by a sketched input. The existing researches still have 

difficulty to cope with them. In order to construct a 

rough conceptual design surface from characteristic 

curves, a new surface representation scheme has been 

developed.   

     Our surface creation strategy is to create more 

isoparametric curves by directly interpolating both 

unorganised boundary and interior curves. Resulting 

isoparametric curves will form a regular curve 

network and then used for generating a surface.  

Alternatively, the points on the resultant curves can be 

fed into reverse engineering software for 

approximating a surface. 

     Our new surface interpolation method is inspired 

by Newton's law of universal gravitation. It states that 

all objects attract each other with a force of 

gravitational attraction. This force of gravitational 

attraction is directly dependent upon the masses of 

both objects and inversely proportional to the square 

(1/d2) of the distance d which separates their centers.  

If we regard each sketch point as an object with unity 

mass, a new interpolation point i (target object with 

unity mass) will be pulled towards the sketch point; 

the movement should be proportional to their 

universal attraction, i.e. (1/d2).  If we have n sketch 

points, the final position Pi of the interpolation point 

will depend on the sum of the movements 

corresponding to each sketch point position Vj and the 

distance dij between them. That is 
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The formula (1) can be rationalised by the sum of each 

inverse square of the distance dij as follows. 
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Where Wi is the rational denominator, Si is the 

interpolated position from n sketch points; each has its 

interpolation blending function Rij. The interpolation 

functions have properties similar to rational Bézier 

blending functions [11]. They are as follows: 

� Nonnegativity: all Rij are larger than zero; 

� Partition of unity:   =1; 

� When dij=0, Rij=1; 

� One maximum: each interpolation function 

attains exactly one maximum on the interval [0,1]. 

     Actually, the design surface can be regarded as a 

soft skin (sheet) touching to the sketched rigid frames. 

The final shape of surface should depend on not only 

the frames but also the softness of the skin material. 

Therefore, we can employ a parameter τ to replace the 

fixed attraction factor 2. It can be used for creating 

different surfaces through interpolating the same 

frames (sketch curves), reflecting the softness of the 

skin surface. Thus, the above equations (2), (3) and (4) 

can be rewritten as 
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The equations (5), (6) and (7) can give a global 

interpolation scheme; each new interpolated point can 

be associated with all sketch points.  They can also be 

used for local interpolation, from only related sketch 

points.  Let us say, we knew a network of arbitrary 

curves Ck(u,v), k=1,…, G. Their parameter space can 

be mapped into a unity square. The curves are not 

restricted as isoparametric curves. Their preimages 

can be any 2D line segments (Fig. 2 (a)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  General surface interpolation over unorganized 

curves 

 

In order to obtain a surface point P (u, v), we first find 

related points and then interpolate them based on 

Equations (5), (6) and (7). We start by drawing two 

straight lines at U=u, and V=v and then check 

intersection points of the u and v lines with the 

preimages of the curves (Fig. 2b). Each intersected 

point corresponds to a 3D point on a curve. All these 

3D points are then used for the interpolation. For 

example, in Fig. 2 (b), there are 5 intersection points 

(black dots) on the u line and 3 on the v line. These 8 

sketch points will be interpolated to create a surface 

point at (u, v).  In general, we may have m intersection 

points on the u line, and n on the v line.  As a result, 

two sets of parameter data {u1, …, um-1, um) and 

{v1,…,vn-1,vn) can be obtained, as well as  two sets 

of corresponding parametric distances between the 

parameter point (u, v) and intersection points in the u 

direction Udi=|u-ui|, i=1,…, m and  the v direction 

Vdj=|v-vj|, j=1,…, n.  Finally, we can use these 2D 

parameter distances in Equations (5),(6) and (7) for 

interpolation because we don’t know the 3D distances 

to begin with. 
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(b) Finding related points for interpolation 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Surface interpolation from four boundary 

curves: (a) top; (b) bottom 

 

    In order to study the blending function in Equation 

(7), we have explored surface interpolation from four 

boundary curves (Fig 3). The four boundary curves 

have a preimage as shown in Fig 3a. A surface point 

S(u,v) will relate to four boundary points P(0,v), 

P(1,v), P(u,0) and P(u,1). The distances between the 

surface point to the four boundary points   are u, (1-u), 

v, and (1-v) correspondingly.  From the Equation (5), 

we can compute the rational denominator as 
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From Equation (6), we can obtain the equation (8) as 

follows: 
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    Where, the r0v, r1v, ru0, and ru1 are rational 

blending functions for corresponding points P(0,v), 

P(1,v), P(u,0) and P(u,1).  Note that when u=0, the r0v 

equals 1. This means the surface passes through the 

boundary curve P(0,v). When u=1, the r1v values 1. 

The surface crosses the curve P(1,v). Similarly, while 

v=0 or 1, the surface patch will pass through the 

curves P(u,0) or P(u,1). Theoretically speaking, the 

surface S(u,v) plus boundary curves  is a full surface 

domain. If the four curves meet together to form four 

corners (a closed boundary), the resulting surface will 

have a topological structure in Fig. 4a. Otherwise, it 

may looks like an open structure (Fig.4b). 

 

 

 

 

 

 

 

 

 

      (a) Close Corners   (b) Open corners 

 

      Fig. 4. Surface representation scheme 

 

   From the Equation (8), we chose the blending 

function rov to demonstrate how the point P(0,v) will 

affect the interpolation over the preimage (Fig. 5). Fig 

5a shows that when τ=0, the blending function has a 

constant value of 0.25, which means that it will makes 

25% contributions to all interpolated points. when τ=1 

or 2, the blending function has a value between 0 to 1.  

The distribution is symmetric to the middle of the 

curve, which means that middle part of a curve will 
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make more contribution to the surface than the two 

end parts. 

 

 

 
(a) τ=0 

 

 
          (b) τ=1   

 

 

 
            

             (c) τ=2.0 

 

 

Fig. 5. Blending function of r0v 

 

     

   The blending functions change their shapes on the 

power of τ. When τ=1, the shape changes sharply near 

to the boundary (Fig. 5(b)). This is not a good property 

because the surface will change its shape dramatically 

around the boundary.  However, when τ=2, the shape 

changes quite smoothly (Fig. 5(c)). Thus we let τ equal 

2 in our modeling scheme.  

4   Application Examples  
After receiving a set of 3D sketches, we first project 

these curves onto a plane such as (X-Y) according to 

dimensions of curves and then create a pre-image 

based on the projections. All boundary curves on the 

projection plane will be treated to form a unity square 

image and all interior curves will then be 

parameterized accordingly. 

      This surface interpolation scheme can support 

surface modeling from unorganized curves. Figures 6a 

and 6b illustrate a surface from 3 and 4 boundary 

curves respectively.  Figure 6c gives an example of 

modeling a surface from 4 open boundary curves (the 

two lower corners are open). In Figures 6d and 6e, the 

surface is directly modeled from 4 boundary curves 

and 2 interior curves. In order to check the surface 

quality, it has been exchanged into the Alias Studio 

software.  Figure 6d shows its wireframe model and 

sectional curves. Figure 6e gives the corresponding 

shaded model. 

 
 

(a) 3-sided surface 

 

 
 

(b) 4-sided surface 

 
(c) Surface from an open boundary 

 

 



            
 

(d)Surface from 4 boundary curves and 2 

interior curves 
 

 
 

Figure 6. Examples of Surface Modelling 

 

     From the examples above, it can be seen that the 

surface interpolation scheme can interpolate a surface 

from a set of unorganized curves. It can generate a 

surface not only from closed boundary curves but also 

from open boundary curves. Even when initial 

boundary curves are open, resultant surfaces still can 

be are obtained, and give a good approximation of the 

initial boundary curves. However, surfaces are not 

very smooth where the interior curves occur (see cusps 

and creases in Fig 6 (d) and (e)). Therefore, this 

surface interpolation scheme is good for some 

applications such as architectural design where 

surfaces have no requirements of cross-boundary 

continuity. But it may be not good enough for directly 

generating engineering surface. Nevertheless, if 

resultant points are fed into reverse engineering 

software, the initial surface may be refined (refitted) 

with high quality surface. 

 

 

5   Conclusion 
In this paper, we present a novel surface modeling 

approach for supporting sketch applications in 

conceptual design. Based on rough boundary curves 

and unorganized interior curves, an initial surface can 

be directly interpolated and used as a conceptual 

surface or an interim surface to be further refined in a 

commercial software.  The proposed surface modeling 

approach and algorithm has been tested with 

examples. It is capable of dealing with unorganized 

design curves for surface modeling. 
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