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Abstract

This paper presents a novel 3D deformable surface that

we call an active polyhedron. Rooted in surface evolution

theory, an active polyhedron is a polyhedral surface whose

vertices deform to minimize a regional and/or boundary-

based energy functional. Unlike continuous active surface

models, the vertex motion of an active polyhedron is com-

puted by integrating speed terms over polygonal faces of

the surface. The resulting ordinary differential equations

(ODEs) provide improved robustness to noise and allow for

larger time steps compared to continuous active surfaces

implemented with level set methods. We describe an elec-

trostatic regularization technique that achieves global reg-

ularization while better preserving sharper local features.

Experimental results demonstrate the effectiveness of an ac-

tive polyhedron in solving segmentation problems as well as

surface reconstruction from unorganized points.

1 Introduction

Active surfaces, the 3D version of 2D active contours,

are an essential component of many computer vision and

image processing techniques. After a surface is initialized

in 3D space, it is subjected to various forces to evolve (or

deform) it to solve a variety of problems, such as segmen-

tation, shape modeling, multi-view 3D reconstruction, and

more.

1.1 Related work

In general, two representations of an active surface are

commonly used: explicit and implicit. Explicit representa-

tions [4, 6, 10, 11, 14] have been used in numerous medical

imaging problems, including the segmentation of anatom-

ical structures from 3D ultrasound, which is our primary

application. An important explicit representation is a mesh

composed of triangles in 3D space, precisely the surface

representation we employ in this paper.

While it is possible to model topological changes us-

ing an explicit surface representation, an advantage of the

second major category of segmentation approaches, those

based on implicit representations [1, 3, 9, 15], is that they

can automatically change topology when necessary. In par-

ticular, the method presented in [1] uses statistical modeling

of data inside and outside a contour to achieve ultrasound

segmentation; however the amount of noise in the examples

we segment is typically much larger.

Several other techniques for ultrasound segmentation

that do not use deformable models also exist. For example,

Boukerroui et al. [2] present a multi-resolution framework

with estimation of local textural and acoustic features of the

ultrasound data to increase robustness against speckle noise.

1.2 Our contribution

Although the function that controls the speed of each ver-

tex in either the explicit or implicit schemes may depend on

a local, regional, or global statistic or descriptor, the mo-

tion of each vertex is not coupled to its neighbor vertices

or adjacent faces. In this paper, we present a polyhedral

surface that we call an active polyhedron, which integrates

these forces once more over the polyhedral faces, effec-

tively providing a lowpass filtering effect on the data mea-

surements. Consequently, the active polyhedron approach

differs significantly from previous 3D active surfaces and

offers increased robustness to noise, including speckle noise

that is observed in ultrasound data. This type of noise is

spatially correlated and contaminates pointwise image mea-

surements. As a result, an active polyhedron is much less

prone to segmentation errors resulting from local variations

in the speed function, and in such cases, will be more ef-

fective at aligning its faces with the target structure. Com-

pared with previous methods, our active polyhedron model

prefers well-separated vertices since the information is be-

ing accumulated over adjacent faces of a vertex to deter-

mine its motion. This idea builds upon Unal et al.’s active

polygon framework [12, 13], which accumulates 2D image

information over adjacent edges of a 2D polygon’s vertex.



In addition to contributing this active polyhedron model, we

present the general theory describing its evolution by deriv-

ing the vertex motion using surface evolution theory. We

also formulate the extension of 2D electrostatic regulariza-

tion into 3D, which requires special attention to achieve the

desired regularization.

The rest of this paper is organized as follows. In Sec-

tion 2, we derive the vertex motion of an active polyhedron

and discuss our 3D electrostatic regularizer. Next, in Sec-

tion 3 we describe implementation details. Then, in Sec-

tion 4 we present some experimental results that demon-

strate the usefulness of the proposed method in solving seg-

mentation problems as well as reconstruction from unorga-

nized points.

2 Active Polyhedron

In this section we derive, for the first time, the equation

of motion for an active polyhedron by minimizing an energy

functional using gradient descent. This derivation is based

on that of the 2D active polygon [13], however, is quite dif-

ferent due to the 3D surface we use and its parametrization.

We begin with a surface S : R
2 → R

3 around a re-

gion R ⊂ R
3, as well as a function f : R

3 → R, and use

the divergence theorem to express the energy of the surface

computed over R as a surface integral over ∂R,

E(S) =

∫∫∫

R

f(x, y, z)dxdydz =

∫∫

S=∂R

〈F,N〉dS,

(1)

where N denotes the outward unit normal to S, and F

is chosen so that ∇ · F = f , dS is the differential area

on the surface, the surface is parameterized by S(u, v) =
(x(u, v), y(u, v), z(u, v)), and 〈·〉 is the inner product oper-

ator.

Next, we take the derivative of E(S) with respect to a

variable p whose variation affects the geometry of the sur-

face, but is independent of the parametrization variables

(u, v). This derivative can be shown [16] to have the form

Ep(S) =

∫∫

S

f〈Sp,N〉dS. (2)

Equation 2 applies both to a continuous active surface as

well as a surface discretely sampled using a polygonal

mesh.

Let us now add the constraint that S be a mesh of N
triangles. Si, the ith triangle of S, can be parameterized as

Si(u, v) = v1i + ue1i + ve2i, (3)

where points v1i, v2i, and v3i are triangle vertices, triangle

edge vectors e1i = v2i−v1i, e2i = v3i−v1i, and u ∈ [0, 1]
and v ∈ [0, 1 − u] are the parametrization variables over

(a) (b)

Figure 1. The vertices and edges used in the

parametrization of a triangle are shown in (a).
Any point on the triangle can be expressed as
xi = (v1i + ue1i + ve2i). In (b), vk’s neighbor
triangles Dk are shown.

which the integrals in the equations below will be evaluated.

A depiction appears in Figure 1(a).

With this parametrization, we can express Equation 2 as

a sum of piecewise continuous integrals over the triangle

faces,

Ep(S) =
N

∑

i=1

∫∫

Si

f(v1i+ue1i+ve2i)〈Sip,Ni〉dSi. (4)

Next, we define Sip for vertex vk as

Sip(u, v,vk) =

{

(1 − u − v)e, Si ∈ Dk

0, otherwise
(5)

where Dk is the set of M surface triangles that neighbor

vertex vk, as depicted in Figure 1(b), and e denotes one of

the standard basis vectors for R
3, (i.e., [1, 0, 0]T , [0, 1, 0]T ,

or [0, 0, 1]T ). We evaluate Equation 4 with p equal to one

of coordinates of vk, yielding

Ep(S) =
∑

Si∈Dk

∫∫

Si

f(Si(u, v))〈(1 − u − v)e,Ni〉dSi

=
∑

Si∈Dk

〈e,Ni〉
∫∫

Si

(1 − u − v)f(Si(u, v))dSi.

If we introduce a time variable t and evolve coordinates

(xi, yi, zi) in the gradient directions given above, we obtain

the following gradient flow for the vertex vk,

dvk

dt
=

∑

Si∈Dk

∫∫

Si

(1 − u − v)f(Si(u, v))dSiNi(6)

= A(vk)

Equation 6 is an ordinary differential equation that describes

the vertex motion of the active polyhedron. This equa-

tion can be computed using MK2 operations, where K is

the number of samples (in one dimension) on a triangle at



which the integration occurs. Note that Equation 6 is sig-

nificantly different than previous models as the function f
is integrated over triangular faces rather than applied point-

wise. As we shall see, this integration of f provides added

robustness to noise. Also note that the image-based data

term f in Equation 6 is completely general, allowing one to

design different flows for solving various problems.

2.1 Electrostatic Regularization

The flow of an active polyhedron may, under the sole

influence of a data term, become irregular when a vertex

becomes infinitesimally close to a non-neighbor face of the

polyhedron. To address this issue, we incorporate a natural

regularization term introduced in [13] that is based on elec-

trostatic principles. However, the 3D version of this regu-

larization requires special attention so that it achieves the

desired effect.

The electrostatic regularization technique models a uni-

form charge density λ along each surface triangle. This

charge density induces a global electric field G ∈ R
3

that applies a repulsive force at each vertex. To compute

the electric field at a general point p ∈ R
3, we must

consider the differential electric field dG(p) exerted by a

charged particle at location xi on triangle Si. As given by

Coulomb’s law [7], the electric force is inversely propor-

tional to the square of the Euclidean distance ||p − xi||2
between the charged particles, and directed along the vector

(p − xi)/ ||p − xi||.

G(p) =
N

∑

i=1

∫∫

Si

λ
p − xi

||p − xi||n
dSi, (7)

where xi = (v1i +ue1i +ve2i) is a point on Si, and n = 3.

While using n = 3 in Equation 7 will impart a repul-

sive force to a surface vertex, it fails to become singular

as the vertex approaches the surface. This can be easily

demonstrated if one considers a vertex p = [0, 0, z]T di-

rectly above a disk of uniform charge and radius r as de-

picted in Figure 2. In this case, basic electromagnetics tells

us the electric field is

G(p) = 2πλ

(

1 − z√
z2 + r2

)

ẑ, (8)

and thus

lim
z→0

G(p) = 2πλẑ. (9)

Instead, we would prefer an electric field that goes

to infinity in the limit as the vertex moves towards the

charged surface in order to prevent the surface from self-

intersecting. To accomplish this, we set n = 4 in Equa-

tion 7. It is simple to verify that using n = 4 satisfies this

requirement.

Figure 2. Electric field of a disk of charge.

There are several ways to make use of the electrostatic

force to displace vertex vk to regularize the surface. Per-

haps the most thorough method would be to integrate the

field G at each point p ∈ Dk, weighted by (1 − u − v) so

that points closer to vk contribute more to the regulariza-

tion, i.e.,

dvk

dt
=

M
∑

j=1,Sj∈Dk

∫∫

Sj

(1 − u − v)G(xj)dSj , (10)

where each G(xj) is computed over the L triangles Ck =
S \ Dk (to avoid unwanted infinities). However, for

each vertex, such an approach requires solving sums of

quadruple integrals, which has computational complexity of

LMK4 operations.

To reduce the computational load, we instead choose to

compute the vertex displacement as

dvk

dt
= B(vk) =

L
∑

i=1,Si∈Ck

∫∫

Si

λ
p − xi

||p − xi||4
dSi, (11)

which, for each vertex, has computational complexity of

LK2 operations. We have found that in practice this simpli-

fied approach offers sufficient regularization and is reason-

ably fast. This electric force is designed to be insignificant

when vk is not very close to the surface triangles in Ck, but

becomes influential, even dominant, when the vertex gets

very close to triangles in Ck.

Note that this regularization approach differs signifi-

cantly from standard methods such as Laplacian smoothing,

which tend to shrink the surface and often produces overly

smooth rounding at points of high curvature.

3 Implementation

3.1 Flow

We combine Equations 6 and 11 to yield the vertex flow

dvk

dt
= αA(vk) + (1 − α)B(vk), (12)



where α is a constant that weights the data term relative to

the regularization term. In practice, we have found a value

of α = 0.95 to offer good performance. With this heavier

weight on the data term, the regularization only contributes

significantly to the flow when degeneracy occurs, allowing

for the data term to govern the evolution during most of

the evolution. Since updating a single vertex requires (L +
M)K2 = NK2 operations, the computational complexity

of our model is N2K2 operations for each time step.

3.2 Mesh Operations

While the surface is deforming, it is necessary to perform

some mesh operations to ensure that the mesh has a proper

vertex distribution. Towards this goal we implement some

standard mesh operations:

1. Edge split. This operation splits any edge whose

length goes above a maximum length. A new vertex

is placed at the center of the edge, and each triangle

that included the edge is split into two, as shown in

Figure 3.

2. Edge collapse. This operation collapses any edge

whose length goes below a minimum length. The two

vertices that comprise the edge are merged to one ver-

tex, as shown in Figure 3.

3. Face split. During evolution, the magnitude of the im-

age force applied to each face is computed. If face

splitting is enabled, the triangle with the largest mag-

nitude force is split into three triangles by placing a

new vertex at the triangle center, as shown in Figure 3.

The intuition here is that the edges with higher image

speeds are close to image structures that may require

finer details. Face splitting is enabled periodically dur-

ing the surface flow.

These operations allow the surface to grow and to shrink;

however, topological changes are not currently supported in

our implementation. For many applications this is an advan-

tage rather than a disadvantage. Techniques such as [5] re-

quire special algorithms to keep the topology of the level-set

surface simple because it is very easy for implicit surfaces to

break or leak to surrounding unrelated regions while prop-

agating. This is not a problem for our model. On the other

hand, topology adaptivity can be added to an active polyhe-

dron as has been done in other mesh-based approaches such

as [8, 11].

3.3 Speed term

3.3.1 Region-based functional for segmentation

As mentioned previously, the image-based speed term f de-

scribed in Equation 6 has a general form that can be cus-

Figure 3. Mesh operations. The topmost
mesh is refined using the edge split opera-
tor (lower left), edge collapse operator (lower
center) and face split operator (lower right).

tomized for specific tasks. For image segmentation, we em-

ploy the piecewise constant region-based energy functional

that uses mean statistics [3],

f(x) = −(I(x) − mi)
2 + (I(x) − mo)

2, (13)

where I is the 3D image, x is a point on the surface, mi and

mo are the mean values of I inside and outside the poly-

hedron, respectively. This speed function is well suited to

the segmentation of noisy images, as it does not rely on the

image gradients. The voxels inside and outside the surface

are found via scanline rasterization of the polyhedron.

3.3.2 Boundary-based functional for reconstruction

from unorganized points

For reconstructing surfaces from unorganized points, we

follow the example of [15] who implement a gradient flow

on a distance volume to find the minimal distance surface.

That is,

f(x) = −∇D(x) · N(x), (14)

where D is a distance volume formed by placing the un-

organized points into a volumetric grid and computing the

unsigned distance at each voxel to the closest unorganized

point, and N is the surface normal.

4 Experimental Results

We now present experimental results showing an active

polyhedron’s ability to segment 3D image data and to re-

construct surfaces from unorganized points.

4.1 Validation

First, we validate the active polyhedron using ground

truth data. For comparison, we also produce results using

continuous active surfaces implemented with level set meth-

ods.



Our first example consists of a 1283 volume of synthetic

ultrasound data. The data suffers poor contrast and corrup-

tion by speckle noise, a common form of ultrasound noise

resulting from coherent backscattering of echo signals. In-

side the volume is a darker cylindrical structure of radius

10 units and height 64 units that simulates a blood vessel.

We segment this data by placing a cube inside and at one

end of the vessel, and evolve the active polyhedron using

the speed term of Equation 13 and the electrostatic regu-

larizer. Figure 5 shows the evolving active polyhedron for

t = 0, 10, 20, 30, and 35 iterations, upon which the sur-

face converged. On the right of Figure 5 we show the seg-

mentation result achieved with the same data term and a

curvature-based regularizer using a continuous active sur-

face implemented with level set methods. Notice that result

obtained with the active polyhedron is much smoother due

to the integration of the data term along each triangle face,

compared to the pointwise motion of the continuous active

surface, which suffers multiple topology changes and leak-

ing due to the speckle. Although it is possible to increase

the regularization of the continuous active surface, doing so

results in unsatisfactory results as the data term becomes

ineffective in being attracted to target image features. The

active polyhedron model produces better segmentation re-

sults, as is visually apparent in 2D slices of the volume,

shown in Figure 4. Furthermore, in Table 1 we compute

the surface area and volume of the segmentation results and

compare them to the ground truth. The erratic shape of the

continuous active surface results in over twice the actual

surface area, while the active polyhedron more faithfully

represents the shape.

In Figure 6 we reconstruct sphere from point cloud data.

We generated a “clean” set of 625 points by sampling the

equation of radius = 15 sphere to produce the point cloud

on the top left of the figure, and in the bottom left of the fig-

ure we perturbed each point by adding zero-mean Gaussian

distributed noise in the range [−10, 10] to each coordinate

of each vertex and adding 5% outliers uniformly distributed

in the volume to produce a “noisy” point cloud. We embed-

ded the point cloud in a 643 grid and formed an unsigned

distance volume. The middle figures show the result of re-

constructing a surface from the unorganized points using a

level set implementation and Equation 14 with a curvature-

based regularizer, while the right figures show the result of

using the active polyhedron, Equation 14, and the electro-

static regularizer. As expected, the reconstruction of the

clean data results in a polyhedral representation of a sphere.

The reconstruction of the noisy data shows the susceptibil-

ity of the continuous active surface to local noise variations.

However, the active polyhedron produces a smoother, more

spherical surface due to its integration of the speed terms on

the polygonal faces.

(a) (b)

(c) (d)

Figure 4. 2D slices showing the segmenta-
tion results of Figure 5. In (a) and (b) we
show slices 50 and 90 used with the polyhe-
dral model. In (c) and (d) we show the same
slices from the segmentation result using a
continuous active surface implemented with
level set methods.

4.2 Applications

The active polyhedron excels at representing polyhedral

shapes, but since triangle meshes are such a powerful shape

representation, the method also is useful for representing

more organic shapes, such as those found in medical imag-

ing. The improved robustness to noise helps prevent erro-

neous segmentations.

In Figures 7 and 8 we demonstrate a segmentation of

a darker structure in breast ultrasound data. Such struc-

tures are often candidates for tumor analysis in computer

aided diagnosis applications. In (a) and (b) of each figure,

we show the segmentation using a continuous active sur-

face implemented with level set methods. As with the syn-

thetic example in the previous subsection, the continuous

surface breaks apart and takes on an irregular shape due to

the speckle noise; so much so in Figure 8 that the result is

nearly unusable. In (c) and (d) of each figure we show the

result using the active polyhedron. As expected, the active

polyhedron produces a much less ragged result due to its in-

creased robustness. We have observed similar results with

other noisy ultrasound images.

We used an active polyhedron to segment an atrial cham-

ber from a 2563 volume of cardiac ultrasound data. The re-

sults are shown in (a) and (b) of Figure 9. In (a), we show

the 3D polyhedral surface overlaid with a slice through the

volume, and in (b), we show the corresponding 2D slice.



Figure 5. 3D segmentation using an active polyhedron. Left to right: 0, 10, 20, 30, and 35 iterations
(using a time step of 1.0). For comparison, on the far right is the segmentation result using a
continuous active surface implemented with level set methods (using a time step of 0.125 to satisfy
CFL conditions).

Approach Volume (units3) Surface Area (units2)
Ground Truth 20106 4649

Continuous (Level sets) 21096 11510

Discrete (Active polyhedron) 19230 4867

Table 1. Volume and surface area, ground truth and estimated, for the ultrasound example of Figure 5.

(a) (b)

Figure 6. Reconstructing a polyhedral sphere from clean (a) and noisy (b) point cloud data. Left to
right: Point cloud data, continuous reconstruction using level sets using a time step of 0.125, discrete
reconstruction using the active polyhedron using a time step of 1.0.

As another example, we used an active polyhedron to seg-

ment the trachea from a 256 x 256 x 319 volume of lung CT

data. The results are shown in (c) and (d) of Figure 9. In

(c), we show the 3D polyhedral surface overlaid with a slice

through the volume, and in (d), we show the corresponding

2D slice.

We reconstruct a surface of part of the human ear canal

from point cloud data obtained by laser scanning a mold

formed in a person’s ear. The point cloud data was placed

into a 1283 volume and the active polyhedron was used re-

construct the surface at different resolutions, as shown in

Figure 10. We run a similar experiment for reconstructing

the Stanford bunny in Figure 11, that later of which shows

an example with more interesting geometry. As the resolu-

tion of the surface increases, more details emerge. As one

further increases the resolution of the active polyhedron,

finer surface details are modeled. However, for regularity

and robustness to noise, the active polyhedron prefers well-

separated vertices.

5 Conclusion

In this paper we presented a novel deformable surface, an

active polyhedron, for 3D medical image segmentation, and

additionally show its use in reconstructing surfaces from un-

organized points. Starting with the general theory of surface



(a) (b) (c) (d)

Figure 7. Using an active polyhedron to segment breast ultrasound data. We show a 3D segmentation
using a continuous surface implemented with level set methods (a) and a slice through segmented
volume (b). We repeat the experiment using the active polyhedron and show the results in (c) and
(d).

(a) (b) (c) (d)

Figure 8. Another breast ultrasound example. Continuous surface (a) and (b), and active polyhedron
(c) and (d). Note that the active polyhedron solution is much more robust.

(a) (b) (c) (d)

Figure 9. Using an active polyhedron to segment 3D medical data. In (a) and (b) we show a segmen-
tation of an atrial chamber from ultrasound data, and in (c) and (d) we show a segmentation of the
trachea from CT data. A time step of 1.0 was used in both evolutions.

evolution, we derived the equation of motion of a polyhe-

dral surface by minimizing an energy functional using gra-

dient descent. We also described an electrostatic regularizer

that preserves sharper features but prevents the surface from

self-intersecting. We then demonstrated the usefulness of

an active polyhedron in segmenting noisy 3D medical im-

ages, as well as reconstruction from unorganized points, and

offered a comparison to a continuous active surface imple-

mented with level set methods. While more in-depth exper-

imentation is required, from our results we conclude that

the integration of the speed term over the active polyhe-

dron’s faces results in significant robustness to noise. The

increased time step one can use in the active polyhedron

framework is an additional benefit that, depending on the

number of triangles used in the mesh, can result in faster

evolutions than narrowband level set methods. However,

due to space constraints, we do not present runtime results

in this paper.

Like many deformable surfaces, the active polyhedron

described in this paper is capable of mesh refinement, but

does not support topological changes. This is not neces-

sarily a disadvantage, as in many applications the topology



Figure 10. Using an active polyhedron to reconstruct a portion of a human ear canal shape. Left:
point cloud. Next: reconstruction with edge length = 40, 25, and 10 units. Right: slice going through
distance volume upon convergence.

Figure 11. Different resolutions of reconstruc-
tions of the Stanford Bunny from point cloud
data. A time step of 1.0 was used.

of the object being segmented is known a priori, and topo-

logical changes are undesirable [5]. However, it would be

possible to incorporate topological operations [4, 8, 11] into

our model. This is left for future work.

The quality of the results of presented in this paper

are dependent on the image-based terms we implement to

evolve the active polyhedron, particularly for segmentation.

More advanced functions that rely on higher order statistics,

probabilistic measures, and textural properties [2, 13] will

likely be required to further improve results. We believe

that the active polyhedron framework is very promising and

could also be applied to problems in object recognition, 3D

tracking, and multi-view stereo reconstruction.
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