18 research outputs found

    Constructing streak surfaces for 3D unsteady vector fields

    Get PDF
    Visualization of 3D, unsteady flow (4D) is very difficult due to both perceptual challenges and the large size of 4D vector field data. One approach to this challenge is to use integral surfaces to visualize the 4D properties of the field. However the construction of streak surfaces has remained elusive due to problems stemming from expensive computation and complex meshing schemes. We present a novel streak surface construction algorithm that generates the surface using a quadrangular mesh. In contrast to previous approaches the algorithm offers a combination of speed for exploration of 3D unsteady flow, high precision, and places less restriction on data or mesh size due to its CPU-based implementation compared to a GPU-based method. The algorithm can be applied to large data sets because it is based on local operations performed on the quad primitives. We demonstrate the technique on a variety of 3D, unsteady simulation data sets to show its speed and robustness. We also present both a detailed implementation and a performance evaluation. We show that a technique based on quad meshes handles large data sets and can achieve interactive frame rates

    Visualization of intricate flow structures for vortex breakdown analysis

    Get PDF
    Journal ArticleVortex breakdowns and flow recirculation are essential phenomena in aeronautics where they appear as a limiting factor in the design of modern aircrafts. Because of the inherent intricacy of these features, standard flow visualization techniques typically yield cluttered depictions. The paper addresses the challenges raised by the visual exploration and validation of two CFD simulations involving vortex breakdown. To permit accurate and insightful visualization we propose a new approach that unfolds the geometry of the breakdown region by letting a plane travel through the structure along a curve. We track the continuous evolution of the associated projected vector field using the theoretical framework of parametric topology. To improve the understanding of the spatial relationship between the resulting curves and lines we use direct volume rendering and multi-dimensional transfer functions for the display of flow-derived scalar quantities. This enriches the visualization and provides an intuitive context for the extracted topological information. Our results offer clear, synthetic depictions that permit new insight into the structural properties of vortex breakdowns

    Mesh-Driven Vector Field Clustering and Visualization: An Image-Based Approach

    Get PDF

    Vortex Characterization for Engineering Applications

    Get PDF
    Realistic engineering simulation data often have features that are not optimally resolved due to practical limitations on mesh resolution. To be useful to application engineers, vortex characterization techniques must be sufficiently robust to handle realistic data with complex vortex topologies. In this paper, we present enhancements to the vortex topology identification component of an existing vortex characterization algorithm. The modified techniques are demonstrated by application to three realistic data sets that illustrate the strengths and weaknesses of our approach

    Computation of Localized Flow for Steady and Unsteady Vector Fields and its Applications

    Get PDF
    We present, extend, and apply a method to extract the contribution of a subregion of a data set to the global flow. To isolate this contribution, we decompose the flow in the subregion into a potential flow that is induced by the original flow on the boundary and a localized flow. The localized flow is obtained by subtracting the potential flow from the original flow. Since the potential flow is free of both divergence and rotation, the localized flow retains the original features and captures the region-specific flow that contains the local contribution of the considered subdomain to the global flow. In the remainder of the paper, we describe an implementation on unstructured grids in both two and three dimensions for steady and unsteady flow fields. We discuss the application of some widely used feature extraction methods on the localized flow and describe applications like reverse-flow detection using the potential flow. Finally, we show that our algorithm is robust and scalable by applying it to various flow data sets and giving performance figures
    corecore