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Abstract

Visualization of 3D, unsteady flow (4D) is very difficult due to both
perceptual challenges and the large size of 4D vector field data. One
approach to this challenge is to use integral surfaces to visualize
the 4D properties of the field. However the construction of streak
surfaces has remained elusive due to problems stemming from ex-
pensive computation and complex meshing schemes. We present a
novel streak surface construction algorithm that generates the sur-
face using a quadrangular mesh. In contrast to previous approaches
the algorithm offers a combination of speed for exploration of 3D
unsteady flow, high precision, and places less restriction on data
or mesh size due to its CPU-based implementation compared to a
GPU-based method. The algorithm can be applied to large data sets
because it is based on local operations performed on the quad prim-
itives. We demonstrate the technique on a variety of 3D, unsteady
simulation data sets to show its speed and robustness. We also
present both a detailed implementation and a performance evalu-
ation. We show that a technique based on quad meshes handles
large data sets and can achieve interactive frame rates.

CR Categories: Computer Graphics [I.3.3]: Picture/Image
Generation—Line and curve generation

Keywords: Flow Visualization, Unsteady Vector Fields

1 Introduction
Streaklines are a visualization technique commonly used to depict
complex, time-varying phenomena. A streakline is the line joining
a series of massless particles passing through a common point at
distinct successive times. A streakline corresponds to the use of dye
injection from a fixed point source in laboratory flow visualization.

Streak surfaces are the culmination of continuously seeding a curve
from a fixed spatial location over time. However, despite the ad-
vantages and insight that streak surfaces enable when investigating
flow fields, they are not included into visualization applications.
This is due to the computational complexity involved in generat-
ing their dynamic meshes. The computational cost of constructing
streak surfaces stems from factors including the large number of in-
tegrations required. In contrast to stream and path surfaces, every
vertex in the mesh must be integrated at each time step. For large
meshes this results in a large number of computations per time step.
Another major source of computational expense arises from com-
puting the connectivity of the mesh vertices. Divergence, conver-
gence and shear can occur anywhere in the surface at any time, not
just the surface front. Due to the time-dependent nature of a streak
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Figure 1: A complete streak surface depicting flow past a cuboid computed and
rendered at approximately 3 frames-per-second. This image shows complex regions
illustrating interesting flow structures. Color is mapped to velocity magnitude. The
full animation is given in the supplementary video.

surface a re-triangulation of the surface may be necessary after ev-
ery integration step in order to avoid long, thin triangles resulting
from divergence, convergence, and shear. These factors generally
make the inclusion of streak surfaces into visualization packages
prohibitively expensive. Previous streak surfaces algorithms are ei-
ther (1) GPU-based: very fast but place more restrictions on mesh
size and precision than a CPU-based version or (2) CPU-based but
not fast enough to support interactive exploration of the flow.

We present a novel CPU-based streak surface algorithm (Figure ??)
that can both run at interactive frame rates and places kess restric-
tion on mesh size and precision than a gpu-based implementation.
The main contributions of this paper are:

• The introduction of a novel streak surface algorithm that can
offer both interactive frame rates and high precision.

• An algorithm that is suitable for use on large out-of-core data
sets and relatively simple to implement as a result of the lo-
cal operations performed on quads. Thus, it is suitable for
inclusion in any visualization system.

• A streak surface model and implementation for the explicit
treatment of shear flow.

We provide platform-independent, CPU-based pseudo-code in or-
der to facilitate implementation into any visualization application.
We provide user-controlled parameters that allow the user to trade
off between performance and accuracy. This enables the user to
switch between modes for quick investigation of the flow domain
and high-accuracy representation for presentation and analysis.

The use of quad meshes has increased in recent years, with many al-
gorithms aimed at quad-based re-meshing or simplification of quad-
meshes. Some benefits of quad-based meshes are demonstrated by
Alliez et al. [Alliez et al. 2003] and Tong et al. [Tong et al. 2006].

However in order to generate such an algorithm several challenges
must be overcome such as maintaining a continuous, accurate, quad
mesh under flow convergence, divergence and shear. The rest of
the paper is organised as follows: Section 2 provides a discussion



of previous work related to flow surface construction algorithms.
Section 3 describes the computational model of our algorithm. A
detailed discussion of the implementation is provided in Section 4.
Section 5 presents an evaluation of the algorithm showing it applied
to various simulation data sets. Finally, Section 6 concludes the
paper and identifies areas of future research.

2 Related Work
See McLoughlin et al [McLoughlin et al. 2009a] [McLoughlin et al.
2010] for a complete overview of geometric visualization tech-
niques. Much effort has been focused on construction of stream
surfaces – surfaces everywhere tangent to a steady-state vector
field. Hultquist introduced a method based on an advancing front
[Hultquist 1992]. The sampling rate is adjusted by the insertion or
removal of streamlines. In contrast to the local method of stream
surface presented by Hultquist [Hultquist 1992], Van Wijk presents
a global approach for stream surface generation [van Wijk 1993].
A continuous function f (x,y,z) is placed on the boundaries of the
data set. An iso-surface extraction technique can then be used to
construct the stream surface. Scheuermann et al. devised a method
where the underlying tetrahedral grid is used in the construction of
the stream surface [Scheuermann et al. 2001]. Garth et al. [Garth
et al. 2004] present a method for the construction of stream sur-
faces in areas of complex flow. This is based upon the advancing
front method introduced by Hultquist [Hultquist 1992]. Laramee et
al. [Laramee et al. 2006] combined texture advection with stream
surfaces to provide a more detailed visualization by showing the in-
ner flow structure of the surface. All of these previous methods are
restricted to steady-state flow.

A point-based method for stream surface and path surface construc-
tion was introduced by Schafhitzel et el. [Schafhitzel et al. 2007].
Insertion and removal of points are handled similar to Hultquist’s
method [Hultquist 1992] to maintain sufficient density of points in
order to create an enclosed surface when they are rendered using
point-sprites.

Garth et al. present an improved stream and path surface construc-
tion algorithm focusing on high accuracy [Garth et al. 2008]. This
method decouples the surface integration and the surface render-
ing process. The surface construction comprises of advecting a set
of timelines through the flow field. Connecting curves represent-
ing timelines are then computed. These curves are subject to given
predicates in order to refine them where necessary.

McLoughlin et al. [McLoughlin et al. 2009b] demonstrate a simpli-
fied stream surface construction method using quad primitives. The
refinement of the surface front is performed on a quad-by-quad ba-
sis. Quads may be split or merged to maintain sufficient sampling
of the vector field. Shearing is handled by analyzing the surface
front and processing groups of quads to make them more regular.
This method produces an implicit parameterization of the mesh, al-
lowing for a series of enhancements (such as stream arrows) to be
included.

Schneider et al. [Schneider et al. 2009] present a method of stream
surface construction using a higher-order interpolation scheme.
This method provides very smooth surfaces of fourth-order accu-
racy.

It is important to note that all of the above approaches focus on
stream surfaces and/or path surfaces, whereas our work focuses on
streak surfaces.

Von Funck et al. [von Funck et al. 2008] describes the construction
of smoke surfaces. Smoke surface generation involves coupling the
opacity of the triangles that comprise the mesh to their size and
shape. The more the interior angles of the triangle deviate from 60◦

the more transparent the surface becomes. Mesh re-triangulation
is avoided and this produces a surface approximating the smoke
optical model. However, areas of complex flow become transparent
by definition, thus interesting features may not be visible.

Krishnan et al. [Krishnan et al. 2009] present a novel streak and
time surface algorithm. This technique guarantees a C1 continuous
curve for the integral curves. Three basic operations are defined for
the surface adaptation process, these are edge split, edge flip and
edge collapse. An edge split ensures that no edge on a triangle is
longer than a prescribed threshold. Edge flipping locally refines
an area to maximize the minimum angles within the triangles such
that triangles are more regular. An edge collapse removes edges
from the mesh in regions where the density of triangles is too high.
They present a CPU-based implementation for unstructured meshes
that runs on the order of hours, thus it does not support interactive
visualization of the flow.

Bürger et al. [Bürger et al. 2009] present two streak surface tech-
niques implemented on the GPU. The first technique is based on
quads. Each quadrilateral patch contains four vertices. The same
vertex is stored (and propagated) multiple times. Refinement of
patches is achieved by splitting the longest edge of the quadrilat-
eral and the edge opposite it. This may result in discontinuities
within the mesh. This is resolved during the rendering phase where
the patch vertices are extended along the line that passes through
the centroid and the vertex. A two-pass rendering operation en-
sures that the quads form a smooth surface during the rendering
phase. Both the quad and triangle-based versions of the algorithm
are very fast, e.g., serveral frames per second. However their GPU-
implementation places unnecessary limits on both the size of the
streak surface and the data set: All of which need to fit into GPU
memory. Also, shear flow is not handled.

We present the first streak surface algorithm that combines the prop-
erties of speed, quality and size. It runs at fast frame rates support-
ing exploration of the flow and large data sets that do not have to fit
into memory. It’s also the first streak surface method to explicitly
treat shear flow.

3 Computational Model
Our algorithm consists of a series of operations as illustrated in
Figure 2:

1. Seed a curve using an interactive rake.

2. Update the streak surface by integrating every mesh vertex.

3. Refine the surface according to local deformation, by insert-
ing/removing vertices/quads and updating the mesh connec-
tivity.

4. Update the sampling rate of the vector field, by inserting
and/or removing mesh vertices and joining them together us-
ing a quad-based topology.

5. Test boundary conditions such as object boundary intersection
and zero velocity.

6. Render the surface.

7. This process iterates until the surface exits the space-time do-
main. At which point integration is terminated and the final
surface is rendered.

Local operations are performed on quads and their neighbors which
maintain sufficient sampling of the vector field. Vertex insertion
is introduced when the Euclidean distance of a quad’s edge is too
long. Conversely a vertex is removed if neighboring points are too
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Figure 2: An overview of the streak surface construction algorithm.close. Mesh connectivity is then resolved ensuring all quad prim-
itives are generally regular and that the surface is smooth. What
follows is a description of each stage of our algorithm along with a
description of the technical challenges and how they are addressed.

3.1 Streamlines, Pathlines, Streaklines, and Time-
lines

Trajectories of a vector field are streamlines. They are solutions to:
dx
ds

= v or
dxi

ds
= vi(x1,x2,x3, t) (1)

Where s is a streamline parameter. Integral equation (1) results in
streamlines at the instant t. Intuitively streamlines correspond to
the path a massless particle traverses in steady flow. If we vary the
temporal parameter, t, then we obtain pathlines: the path a single
particle travels in unsteady flow.

The term streakline is used to denote the curve traced by a massless
substance that is injected into the flow at a fixed point continuously
over time. At time t, a streakline passing through a fixed point y,
defines a curve from y to x(y,t). The position of a particle coincides
with this curve if it passes through y between time φ and t. The
equation of a streakline at time t can be given by:

x = x[ζ (y,s), t] (2)
where ζ is the initial coordinates of the point and where the param-
eter s lies in the interval φ ≤ s≤ t. Intuitively a streakline is the line
joining all vertices passing through a position x at successive times.
Dye injection/tracing is a very common method in laboratory flow
visualization and streaklines allow for a direct comparison to this
technique. A timeline is a line joining a series of vertices all re-
leased into the flow at the same time. Note that for steady vector
fields, streamlines, pathlines, and streaklines are the same. We can
view the streak surface mesh as a connected graph G=(V,E) where
V =

⋃
i Vi, V ∈ {VNW ,VNE ,VSE ,VSW } and E ∈ {EN ,EE ,ES,EW }.

A quad is a sub-graph, Q = (VNW ,VNE ,VSE ,VSW ,EN ,EE ,ES,EW )

3.2 Interactive Streak Surface Seeding and Ad-
vancement

We use an interactive seeding curve that allows the user to generate
a variety of streak surfaces at run time and explore the whole do-
main. The user interactively controls the position and orientation of
the seeding curve as well as its length and the number of streaklines

N

E

S

W

Figure 3: Line segments joining points along streaklines can be used to form quads.
Edge lengths are ≤ 1

2 dsample. North is the direction pointing downstream from the
seeding curve.

Figure 4: Our algorithm examines each quad edge. When |VNE −VNW | > dsep a
quad is sub-divided. The same holds for when any quad edge length exceeds dsep.

emanating from it. The default separating distance, dsep, between
streakline seeds is 1

2 dsample i.e., half the distance between neigh-
boring data sample points on the underlying grid. This conforms to
the Nyquist limit, namely, the sampling frequency must be (at least)
twice that of the underlying data frequency for accurate reconstruc-
tion. This formulation is advantageous in that it can automatically
adapt to changes in the data resolution i.e., adaptive resolution sam-
pling. The seeding distance between points may be adjusted by the
user if a more dense sampling is required or if faster performance
is a priority.

As streakline points are integrated, we compute their distance from
the seeding rake. As soon as a point, Si, exceeds a distance of
1
2 dsample from the seeding rake, points SW

i and SE
i are joined to

form a quad (see Figure 3). This allows us to adhere to the Nyquist
limit by setting the advancement length to be half (or less) of the
distance between the sample points of the underlying grid. This
simple scheme allows the connectivity of the quad mesh elements to
be composed of the corresponding points between adjacent streak-
lines, i.e., the points SW

i ,SE
i ,S

E
i+1 and SW

i+1, where i denotes the ith
point on the streakline (see Figure 3). We use the convention that
north is the direction pointing downstream from the seeding curve.

As the streaklines elongate, their shape reflects the underlying char-
acteristics of the unsteady flow. During their evolution, they en-
counter areas of shear, divergent and convergent flows. These areas
require special handling.

3.3 Divergence
Divergence is a common characteristic in flow phenomena. When
visualizing an area of divergent flow with a surface technique, the
surface expands. Divergence in this case is defined when dis-
tance between the underlying flow lines used to construct the sur-
face increases. By flow lines we mean timelines and streaklines.
Streak surfaces present unique challenges for cases of divergent
flow. Streak surfaces are dynamic in their entirety and therefore,
divergence may occur anywhere within the surface. It is not re-
stricted solely to the surface front.

Not only may the distance between adjacent streaklines increase,



Figure 5: (Top) When |VSW −VS|< dtest and |VNW −VN |< dtest , we collapse the two
quads into a single one. (Bottom) When |VW −VSW |< dtest and |VE −VSE |< dtest , we
collapse the two quads into a single one. dtest = dsep− εconv, where εconv is dsep

2 .

Figure 6: This figure shows changes in topology due to convergence. For each case
the left hand side illustrates the state of the topology before the convergence operation
has been applied. The right hand side shows the updated topology after the merge has
taken place.

but the distance between neighboring points on the same streakline
may increase as in Figure 4. In our framework, no distinction must
be made between neighboring streakline or timelines due to the
quad’s symmetry. Our algorithm processes the quad mesh in a local
quad-by-quad fashion. The edge lengths that define the quads are
tested at each time-step to ensure that the streak surface maintains
an optimal sampling frequency, i.e., to prevent under-sampling. To
handle this, we simply divide the quad based on edge lengths longer
than dsep.

3.4 Convergence
Convergence occurs when the distance between flow lines de-
creases. As a consequence regions with a high density of points
occur in the surface mesh. A high concentration of vertices in a
local area may result in unnecessary oversampling. To prevent this
we look at pairs of adjacent vertices and test the edge lengths we
test for very thin quads, collapsing a pair of quads into a single one
as in Figure 5.

Multiple ways of handling convergence are possible. Typically the
removal of vertices is performed. Advancing front-based meth-
ods terminate an individual streamline/pathline and form a ribbon
comprising of the neighbors of the terminated trace line. Garth et
al. [Garth et al. 2008] propose not removing these vertices, claim-
ing that the cost of handling convergent cases offsets the cost of
integrating these additional points. There is also the possibility that
the particular region of the surface may diverge again in future re-
sulting in points being re-introduced, this may be avoided, or at the
very least alleviated, if convergent points are not removed.

When converging the quads together, careful attention must be paid
to the changes in mesh topology. The special cases are shown in
Figure 6. The left-hand side of each case shows the mesh topol-
ogy before mesh convergence is applied while the right-hand side
shows the converged quads. In the implementation we first test to
see which topological case the quad is in before updating the topol-
ogy. More implementation details are given in Section 4 and in the
supplementary material.

d short

d
long

d short

d
long

Figure 7: When a sheared quad is encountered a change in mesh topology results.
In this example, the sheared quad has a T-Junction on its east edge, EE . The Vertex,
VNE , is now updated to produce a more orthogonal quad. In the top row a T-junction is
added to the north quad. θshear = 5◦

3.5 Shear Flow
Shear in the flow field presents difficult challenges when construct-
ing a surface representation. Shear flow is problematic due to warp-
ing of the quad primitives. We define a pair of simple tests to deter-
mine the deformation of the quad. If the test indicates the quad is
malformed we then alter the local topology of the mesh to produce
a more regular mesh while maintaining it’s accuracy. For the first
test we compute the diagonals of the quad. The ratio dshort

dlong
can be

used to quantify the amount of local shear. A perfect quad has a
ratio of 1:1. If dshort

dlong
> εshear we then move onto the second test.

The second test checks the subtending angle VNE . If this angle is
below the threshold θshear we then consider the quad as malformed
and update the mesh connectivity (εshear = 0.3 and θshear = 5◦).

Figures 7 and 8 show how we handle shear flow. In Figure 7, the
simple case, a T-junction is located on the edge EE of the sheared
quad (left column). When dshort

dlong
< εshear and θshear < εθ−shear we

re-connect the north edge, EN , to the T-junction on EE (right col-
umn). In the top row a new T-junction is introduced. In the bottom
row, two T-junctions snap together.

In the second case, Figure 8, the left column shows the sheared
quad before any update is made to the mesh topology while the
right column depicts the updated topology. If dshort

dlong
< εshear and

θshear < εθ−shear, we re-connect the sheared quads north-east ver-
tex to the eastern neighbor’s southwest corner. This forms an inter-
mediate triangle. The triangle is then sub-divided into three quads
– a method inspired by Alliez et al [Alliez et al. 2003]. In the top
row, a new T-junction is created. In the bottom row, a T-junction is
removed. The north direction of the new quad is depicted in Fig-
ure 8. This approach has the advantage that the original streakline
points are re-used to handle the shear. Vertices are not moved, the
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Figure 8: When a sheared quad is encountered a change in mesh topology results.
In this example, the sheared quad has no T-junction on the east edge. The updated
topology forms an intermediate triangle in the mesh. In order to maintain a quad-based
topology we decompose the triangle into three quads using a method adapted from
Alliez et al. [Alliez et al. 2003].

changes lie in the mesh topology.

There are also two possible cases when we subdivide the interme-
diate triangle. For each edge of the original quad we test to see
whether there is a T-junction present. If there is no T-junction we
insert a new vertex on that edge and interpolate it’s position at the
mid-point of the two edge vertices, this case is depicted in terms of
the west neighbour of the original sheared quad in the top row of
Figure 9.

3.6 Surface Discontinuities
It should be noted that handling divergence and convergence as in
Figures 4 and 5 can cause T-junctions – a consequence of using
quad meshes. T-junctions can be handled in a number of ways.
Firstly, the vertices at the T-junction can be snapped to the edge
causing the junction. For example, dragging VS in Figure 5 (top) to
edge ES. Secondly, cracks appearing at T-junctions can simply be
patched with triangles. The triangles are ignored during the integra-
tion and topology update phases. They can be re-applied afterwards
in a separate pass. A third option is to only insert entire streaklines
or timelines. This is recommended by Becker et al. [Becker et al.
1995]. The third option is costly in terms of performance. The first
option involves moving points that have been previously calculated
by the integration scheme and thus introduces error. This error may
also accumulate over time.

In order to handle surface discontinuities we replace a quad that
contains one or more T-junctions with a triangle-fan. The triangle
fan uses one of the T-junctions as it’s central vertex. It then proceeds
clockwise adding vertices. We test each edge to see if it contains
a T-junction, if one exists it’s vertex is used in the triangle fan, if
no T-junction exists we move onto the next quad vertex. Figure 10
illustrates this. If we don’t consider T-Junctions when rendering,

W

E

W
E

Figure 9: Left column: sheared quad, Right column: Updating the topology. When
we subdivide the intermediate triangle, we test for existing T-junctions along its edges.
If no T-junction is present, as in the top row, we insert a new vertex and interpolate it’s
position along the triangle edge. In the bottom row there is a T-junction present on the
west edge of the triangle. In this case we simply use this vertex and it’s position.

Figure 10: The image on the left shows a quad that contains T-junctions that do not
lie on the quad’s edge. The grey areas represent where cracks would be encountered in
the mesh. The right image illustrates how our implementation handles this. A triangle
fan is used, whose base is one of the T-Junction vertices. The triangle fan then proceeds
in a clockwise manner connecting to the available vertices. This configuration allows
for any combination of T-junctions.

discontinuities may appear in the mesh. This happens when the T-
Junction vertex does not lie exactly on the quad edge to which it
belongs. The triangle fan is ignored during the integration and used
for rendering only.

4 Implementation
Our implementation involves three key objects: vertex, quad and
T-junction objects. In this section we discuss these objects and how
they relate to each other. We also provide the pseudo-code neces-
sary for implementing the divergence, convergence and shear oper-
ations in a supplementary PDF file.

4.1 Mesh, Vertex, and Quad Objects
Mesh vertices contain three floats, each representing the x, y and z
spatial components. They are stored in a central list. The ordering
of the vertices may be arbitrary. The ability to compute vertices
in any sequence allows us to add new vertices at the back of the
list without re-ordering. A large number of vertices is typically



Figure 11: A T-Junction object. T-Junctions occur at a transition in mesh resolution
caused by the divergence and convergence operations. The quad, QW stores the T-
Junction object. The T-Junction object contains a pointer to the T-junction vertex,
which can be used when this quad splits. This prevents duplicate vertices being inserted
into the mesh. It also contains a pointer to the extra quad neighbor. The extra neighbor
pointer is used when Q2N splits, the newly inserted quad will point to Q2N . Storing this
explicitly prevents a search within the local region of the mesh, thus speeding up the
computation.

removed from the surface due to convergence and exiting the spatio-
temporal domain. The list structure aids in efficiency in this respect
because we do not move all subsequent elements after the removal
of a vertex.

Our quad objects are used to maintain the surface topology. They
consist of four pointers to mesh vertices (which define the quad in
the physical domain) and four pointers to neighboring quads, one
for each direction: NORTH, EAST, SOUTH and WEST (where a
NULL pointer indicates no neighbor). They also contain pointers
to T-junction objects. A quad has a maximum of one junction and
two quad neighbors per edge. If a pair of T-junctions is added on
opposite edges of the quad, we simply split the quad. Quad objects
are stored in a vector. Like the mesh vertex array, quads can be
stored in any order. All divergence, convergence and shear oper-
ations and rendering are performed on a per-quad basis by simply
iterating over the vector. The order of the operations is important.
Quads are tested in the following order (1) divergence, (2) conver-
gence and (3) shear (as in Fig 2). Also only a single operation is
performed on a quad in a single pass through the surface in order
to simplify implementation: either divergence, convergence, shear
or no operation. A convergence or shear operation may sometimes
result in a divergence operation in the next pass.

4.2 T-Junction Objects

T-junction objects are used to handle the transition in mesh resolu-
tion. A T-junction occurs when a single quad’s edge is neighbored
by two quads. This can occur in cases of convergence and diver-
gence. A T-junction object contains a pointer to the extra neighbor
of the quad and a pointer to the extra vertex, e.g. QW in Figure 11.
When a quad that contains a junction splits we use the T-Junction
vertex to ensure that the split quad shares the relevant vertices with
it’s neighbors. This also serves to prevent the unnecessary insertion
of extra vertices. In the case where we add a T-junction object to a
quad which already contains a T-junction on the opposite edge, we
simply split the quad using the two T-junction points. T-Junctions
are allocated dynamically when needed. They are removed when
the quad is removed or when it splits.

4.3 Updating Mesh Topology

The supplementary PDF file provides a detailed discussion of the
changes to topology that arise due to divergence, convergence and
shear. We provide detailed diagrams and pseudo-code in order to
facilitate implementation by others. Figure 12 depicts a subtle case
where care must be taken when updating the mesh connectivity.
This ensures that each quad is pointing to the correct neighbors.

Figure 12: A subtle divergence case. We test whether the quad to the north is
pointing to this quad or if it has a T-Junction that is pointing to this quad. We then
update that pointer to point to the newly inserted quad. If this is not done the north
quad will point to the incorrect quad.

5 Results
The reader is encouraged to view the accompanying video. In Fig-
ure ??, a complex streak surface is constructed. This surface shows
interesting flow structures that would be difficult to see if only
streaklines were rendered. Surfaces also aid in identifying the tran-
sition of turbulence be showing stretching and folding. Our system
constructs and renders this streak surface at approximately 3 frames
per second (fps).

Figure 13 (top) depicts a complete streaksurface exhibiting a mul-
titude of flow characteristics. This surface contains regions of di-
vergence, convergence and shear as well as the splitting behavior
when an object is encountered. This surface is computed and ren-
dered at roughly 2 fps. Color is mapped to velocity magnitude in all
our examples unless stated otherwise. Figure 13 (bottom) depicts
another semi-transparent streak surface generated from the simula-
tion of flow past a cuboid. The result demonstrates the tearing of
the surface into two independent regions when an object boundary
is encountered. Splitting is detected when the velocity magnitude
of an internal streakline drops below a given threshold. When the
surface tears, the separated wavefront are advanced independently.
Figure 14 shows streak surfaces generated on a time-dependent tor-
nado simulation. The tornado exhibits large regions of shear flow
and is ideal to test the robustness of our shear-handling method.
Our implementation renders this at 10 fps.

Large Data Sets Our system supports out of core memory man-
agement in order to handle large data sets. We adopt a method sim-
ilar to Bürger et al [Bürger et al. 2007]. We store as many timesteps
as possible in main memory. We then employ a sliding window.
When performing the particle advection, we interpolate between a
pair of timesteps. The management of timesteps is performed in a
separate thread. The main thread is dedicated to the computation
of the surface. This provides a benefit on multi-core systems as
the blocking I/O call does not prevent the rendering and construc-
tion of the surface, while the relevant timesteps are loaded. This
enables simultaneous streaming of data and the construction of the
surface. Care must be taken to lock the portion of working memory
in order to prevent incorrect values from being used in the surface
computation.

Figure 15 depicts a streak sheet on the full resolution
(500x500x100x48) Hurricane Isabel simulation. A streak sheet is
created by simply terminating the insertion of new points at the
seeding rake after a period of time. In this case the sheet was re-
leased so that it was captured by the eye of the hurricane. It then
traces the hurricane’s path. Figure 16 depicts a streak surface of
an Ion Front Instability simulation. This is a high resolution turbu-
lent data set with a resolution of 600x248x248 and consists of 200
timesteps.

Performance Table 1 shows performance timings for a sample
streak surface. The table presents the performance timings for the



Update Mesh:
RK2 Divergence, Convergence,

No. Vertices Int. Shear Total
10k 16 15 31

21.5k 47 15 62
50k 109 32 141

78.5k 171 32 203
100k 203 47 250
200k 406 93 499
500k 1030 1310 2340

Table 1: Performance times for our implementation given in milliseconds. We report
both the time taken for the Runge Kutta 2 integration of the vertices and also the time
taken to update the mesh topology after the integration phase. The results show that
the integration process takes a large proportion of the computation time.

integration phase and the subsequent updating of the topology. The
results show that the integration phase comprises a large proportion
of the computational effort – typically 40-80% of the computation
time. The mesh vertex advection is a largely parallel component,
however our implementation performs this operation within a sin-
gle thread. A multi-threaded version of this stage would greatly
reduce the cost of this stage and consequently speed up the algo-
rithm. However even in its current single-threaded state the algo-
rithm generally still performs at interactive rates. While not as fast
as a GPU-based version [Bürger et al. 2009] the mesh does not need
to fit in graphics card memory, and thus handles larger streak sur-
faces. In principle, previous algorithms for unstructured data would
run faster on structured data [Krishnan et al. 2009]. However, no
implementation has been provided that demonstrates this. The bot-
tom row in the table also shows a case of the updating of the mesh
requiring more computational effort than the integration stage, due
to a large number of divergent cases in the simulation data.

6 Conclusion

We present a novel interactive streak surface construction algorithm
for the visualization of 3D unsteady flow. It combines the advan-
tages of both speed and size with an efficient CPU-based, platform-
independent implementation that places less restriction on memory
and precision than a GPU-version. It is this quad-based approach
from which the speed of the algorithm stems. It avoids expensive
mesh re-triangulations. The local nature of the operations applied
to the quad primitives enables the algorithm to be applied to large
data sets (see accompanying video). The algorithm handles flow
divergence, convergence, and shear. The algorithm also allows the
surface to split when it meets object boundaries. The algorithm is
demonstrated on a variety of data sets posing various challenges
such as turbulence and large-scale simulations. A detailed CPU-
based, platform-independent implementation is provided in the sup-
plementary material to facilitate incorporation into visualization ap-
plications.

As future work we would like to treat the case of strongly deformed
non-planar quads. Our model here does not treat them explicitly
because we have not encountered this problem in our current simu-
lation data sets.
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Figure 13: (Top) A streak surface of the simulation of flow past a square cylin-
der. The image shows a late stage into the simulation and shows the complete surface
exhibiting divergence, convergence, shear and splitting behavior. (Bottom) When an
object boundary is encountered the surface tears and moves around the boundary. This
surface encounters a cuboid. As the surface splits the seperate portions are constructed
independently of each other. Colour is mapped to the local deformation of the quad
primitives (how much they deviate from being a regular quad.)

Figure 14: A streaksurface depicting a tornado simulation. The surface encounters
large amounts of shear that accumulate as the simulation progresses.

Figure 15: This image depicts the surface generated from the full resolution
(500x500x100x48) of the Hurricane Isabel simulation. In this image we stop seed-
ing the surface after a period of time and advect the sheet. Here the sheet is caught by
the eye of the Hurricane.

Figure 16: A streak surface on the Ionization Front Instability simulation (from the
IEEE Vis’08 contest). This is a turbulent data set with 200 timesteps at a resolution of
600x248x248.


