21 research outputs found

    Surface segmentation for improved remeshing

    Get PDF
    Many remeshing techniques sample the input surface in a meaningful way and then triangulate the samples to produce an output triangulated mesh. One class of methods samples in a parametrization of the surface. Another class samples directly on the surface. These latter methods must have sufficient density of samples to achieve outputs that are homeomorphic to the input. In many datasets samples must be very dense even in some nearly planar regions due to small local feature size. We present an isotropic remeshing algorithm called ÎşCVT that achieves topological correctness while sampling sparsely in all flat regions, regardless of local feature size. This is accomplished by segmenting the surface, remeshing the segmented subsurfaces individually and then stitching them back together. We show that ÎşCVT produces quality meshes using fewer triangles than other methods. The output quality meshes are both homeomorphic and geometrically close to the input surface.postprin

    Robust surface segmentation and edge feature lines extraction from fractured fragments of relics

    Get PDF
    AbstractSurface segmentation and edge feature lines extraction from fractured fragments of relics are essential steps for computer assisted restoration of fragmented relics. As these fragments were heavily eroded, it is a challenging work to segment surface and extract edge feature lines. This paper presents a novel method to segment surface and extract edge feature lines from triangular meshes of irregular fractured fragments. Firstly, a rough surface segmentation is accomplished by using a clustering algorithm based on the vertex normal vector. Secondly, in order to differentiate between original and fracture faces, a novel integral invariant is introduced to compute the surface roughness. Thirdly, an accurate surface segmentation is implemented by merging faces based on face normal vector and roughness. Finally, edge feature lines are extracted based on the surface segmentation. Some experiments are made and analyzed, and the results show that our method can achieve surface segmentation and edge extraction effectively

    A PDE approach to centroidal tessellations of domains

    Full text link
    We introduce a class of systems of Hamilton-Jacobi equations that characterize critical points of functionals associated to centroidal tessellations of domains, i.e. tessellations where generators and centroids coincide, such as centroidal Voronoi tessellations and centroidal power diagrams. An appropriate version of the Lloyd algorithm, combined with a Fast Marching method on unstructured grids for the Hamilton-Jacobi equation, allows computing the solution of the system. We propose various numerical examples to illustrate the features of the technique

    Automatic mesh generation and adaptive remeshing for geological modelling

    Get PDF

    On Volumetric Shape Reconstruction from Implicit Forms

    Get PDF
    International audienceIn this paper we report on the evaluation of volumetric shape reconstruction methods that consider as input implicit forms in 3D. Many visual applications build implicit representations of shapes that are converted into explicit shape representations using geometric tools such as the Marching Cubes algorithm. This is the case with image based reconstructions that produce point clouds from which implicit functions are computed, with for instance a Poisson reconstruction approach. While the Marching Cubes method is a versatile solution with proven efficiency, alternative solutions exist with different and complementary properties that are of interest for shape modeling. In this paper, we propose a novel strategy that builds on Centroidal Voronoi Tessellations (CVTs). These tessellations provide volumetric and surface representations with strong regularities in addition to provably more accurate approximations of the implicit forms considered. In order to compare the existing strategies, we present an extensive evaluation that analyzes various properties of the main strategies for implicit to explicit volumetric conversions: Marching cubes, Delaunay refinement and CVTs, including accuracy and shape quality of the resulting shape mesh

    Waterpixels

    No full text
    International audience— Many approaches for image segmentation rely on a 1 first low-level segmentation step, where an image is partitioned 2 into homogeneous regions with enforced regularity and adherence 3 to object boundaries. Methods to generate these superpixels have 4 gained substantial interest in the last few years, but only a few 5 have made it into applications in practice, in particular because 6 the requirements on the processing time are essential but are not 7 met by most of them. Here, we propose waterpixels as a general 8 strategy for generating superpixels which relies on the marker 9 controlled watershed transformation. We introduce a spatially 10 regularized gradient to achieve a tunable tradeoff between the 11 superpixel regularity and the adherence to object boundaries. 12 The complexity of the resulting methods is linear with respect 13 to the number of image pixels. We quantitatively evaluate our 14 approach on the Berkeley segmentation database and compare 15 it against the state-of-the-art

    Deformable Simplicial Complexes

    Get PDF
    In this dissertation we present a novel method for deformable interface tracking in 2D and 3D|deformable simplicial complexes (DSC). Deformable interfaces are used in several applications, such as fluid simulation, image analysis, reconstruction or structural optimization. In the DSC method, the interface (curve in 2D; surface in 3D) is represented explicitly as a piecewise linear curve or surface. However, the domain is also subject to discretization: triangulation in 2D; tetrahedralization in 3D. This way, the interface can be alternatively represented as a set of edges/triangles separating triangles/tetrahedra marked as outside from those marked as inside. Such an approach allows for robust topological adaptivity. Among other advantages of the deformable simplicial complexes there are: space adaptivity, ability to handle and preserve sharp features, possibility for topology control. We demonstrate those strengths in several applications. In particular, a novel, DSC-based fluid dynamics solver has been developed during the PhD project. A special feature of this solver is that due to the fact that DSC maintains an explicit interface representation, surface tension is more easily dealt with. One particular advantage of DSC is the fact that as an alternative to topology adaptivity, topology control is also possible. This is exploited in the construction of cut loci on tori where a front expands from a single point on a torus and stops when it self-intersects

    Generalized Anisotropic Stratified Surface Sampling

    Full text link

    Courbure discrète : théorie et applications

    Get PDF
    International audienceThe present volume contains the proceedings of the 2013 Meeting on discrete curvature, held at CIRM, Luminy, France. The aim of this meeting was to bring together researchers from various backgrounds, ranging from mathematics to computer science, with a focus on both theory and applications. With 27 invited talks and 8 posters, the conference attracted 70 researchers from all over the world. The challenge of finding a common ground on the topic of discrete curvature was met with success, and these proceedings are a testimony of this wor
    corecore