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Abstract. In this paper we report on the evaluation of volumetric shape
reconstruction methods that consider as input implicit forms in 3D.
Many visual applications build implicit representations of shapes that are
converted into explicit shape representations using geometric tools such
as the Marching Cubes algorithm. This is the case with image based re-
constructions that produce point clouds from which implicit functions are
computed, with for instance a Poisson reconstruction approach. While
the Marching Cubes method is a versatile solution with proven efficiency,
alternative solutions exist with different and complementary properties
that are of interest for shape modeling. In this paper, we propose a novel
strategy that builds on Centroidal Voronoi Tessellations (CVTs). These
tessellations provide volumetric and surface representations with strong
regularities in addition to provably more accurate approximations of the
implicit forms considered. In order to compare the existing strategies, we
present an extensive evaluation that analyzes various properties of the
main strategies for implicit to explicit volumetric conversions: Marching
cubes, Delaunay refinement and CVTs, including accuracy and shape
quality of the resulting shape mesh.

1 Introduction

Visual computing applications usually consider explicit representations for 3D
shapes, in the form of surface or volume meshes in general. This is true for most
visualization applications and also for applications that require local neighboring
information within the shape or on its surface, as often the case with shape op-
timization or shape deformation applications for example. In order to generate
such explicit representations from visual observations many methods consider
as input an implicit representation that identifies the shape as being a region V
within an observation domain Ω ∈ R3. Such implicit representation is typically
given as a scalar function f : Ω → R which takes different values inside and
outside V, for instance an indicator function or a distance function in 3D. These
implicit representations f are often encountered in reconstruction applications
that consider point clouds, as obtained with for instance stereo, multi-stereo and
depth scanning apparatus, e.g. [1] [2] (see Fig. 1). They can also be built directly
from image primitives, for instance the implicit visual hull form, e.g. [3] with
image silhouettes. The conversion then from implicit to explicit representations
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Fig. 1. The Gargoyle multi-view point cloud and the associated Poisson reconstructions
with Marching Cubes and CVT. Distances to the implicit form are color encoded on
the right, from low (blue) to high (red).

usually consists in the polyhedrization of the region V, where both the resulting
polyhedral volume and the associated polygonal surface approximations are po-
tentially considered by vision and graphics applications e.g. [4] [5] [6]. In this
paper we report on a novel approach to solve for this important conversion step
and we provide a comparative study of the main strategies available.

Existing approaches for such 3D implicit form conversions into volumetric
tessellations can be roughly divided into two categories. A first category, that
includes the Marching Cubes method [7] and its extensions, adopts a fixed-grid
strategy where the observation domain Ω is discretized into cells that are tra-
ditionally cubic. Inside and outside cells are identified with respect to the input
implicit function and the boundary cells can be further polygonized into a tri-
angle mesh approximating the shape surface. This strategy is efficient and fast
and has been very widely used in vision and graphics applications over the last
decades. However the 3D shape discretization into cubic cells with constrained
orientations produces a poor shape tessellation which can result in surface ap-
proximations with elongated or small triangles. Thus, an additional re-meshing
step is consequently often required. In addition, attaching the grid to Ω makes
the tessellation changing with any shape transformation, even rigid. A second
category of approaches, such as [8] with the Delaunay tetrahedrization, dis-
cretizes instead the inside region V. These approaches usually provide better
shape tessellations which are as well independent of rigid shape transformations
and hence plausibly better suited for dynamic scene modeling. Still, they require
expert control to monitor the cell refinement step that is performed. Moreover,
as the boundary of a tetrahedral structure can present non manifold parts it
is difficult to guarantee a correct topology for the boundary mesh approximat-
ing the surface. In this paper, we explore a different strategy that also belongs
to the second category and discretizes V instead of Ω. The approach builds on
Centroidal Voronoi Tessellations (CVTs) that provide regular shape tessellations
which boundaries are obtained by clipping frontier cells with the given implicit
boundary form. In contrast to Delaunay-based methods, the boundary surface
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of the output volume is, by construction, manifold and the approach has only a
few parameters.

In order to highlight the main features of the proposed CVT approach, in-
cluding its limitations, we propose in this paper a comprehensive evaluation that
compares all methods with respect to consistent criteria: the topology correct-
ness of the produced volumetric model; The accuracy with respect to the input
implicit form; The quality of the volumetric tessellation; And the computation
times. The main result of this evaluation is that the CVT approach provably
outperforms the other strategies in terms of accuracy and cell regularity, how-
ever to the price of higher computation times with respect to Marching Cubes.
To summarize, our main contribution is twofold:

1. We introduce a CVT approach to polyhedrize implicit shape representations
and provide a practical algorithm for that purpose.

2. We present a qualitative and quantitative comparison of Marching Cubes-,
Delaunay- and CVT-based strategies to produce volume and surface shape
approximations.

These contributions are detailed in Sections 3 and 4 respectively, after a presen-
tation of related works in Section 2.

2 Related Work

As mentioned earlier methods for the polyhedrization of implicit forms fall into
two main categories: first, Eulerian methods that consider a grid discretizing
the observation domain Ω and second Lagrangian methods which perform a
discretization of the shape volume V.

Eulerian strategies. Originally designed for isosurface extraction, i.e. esti-
mating the implicit surface defined by {x ∈ Ω, f(x) = cst}, the Marching cubes
(MC) algorithm introduced in [7] is the most prominent approach in this cat-
egory as a result of its efficiency and versatility of applications. It considers a
regular cubical grid that partitions Ω, where Ω is typically a bounding box. For
each cube within the grid that intersects the shape, the algorithm determines
the intersection faces by linearly interpolating, along cube edges, the f values
at the cube vertices. Many methods have then been proposed that adapt this
strategy to sharp features, e.g. [9], or to resolve topological ambiguities induced
by the original method, see [10] for a survey. Other methods have also proposed
more complex interpolation schemes [11] [12] to better locate surface points along
cube edges. To speed up computations, which may be slow since the complexity
is cubic with respect to the grid size, several authors have suggested to replace
the grid by an adaptive structure such as an octree, e.g. [13]. Marching Cubes
methods focus on the polygonization of the shape boundary surface and not
on the volumetric tessellations which is irregular by construction: interior cells
are cubic while boundary cells are not. Extensions to other subdivision schemes



4 Li Wang & Franck Hétroy-Wheeler & Edmond Boyer

including tetrahedral, octahedral and hexahedral subdivisions, e.g. [14] [15] [16]
have also been proposed that provide more isotropic polyhedral cells. However
the discretization grid in these schemes is still fixed.

Lagrangian strategies. Instead of subdividing Ω, approaches in this cate-
gory tessellate the shape volume. The interest is first to reduce the complexity,
which allows for better accuracies than MC at similar resolutions. This can be
an important feature when modeling large scenes, e.g. [2]. Second, attaching
the subdivision to the shape eases the implementation of kinematic models that
can be defined over volumetric representations. This can help modeling dynamic
scenes as in [5]. In this category, shape tetrahedrization is widely used to gener-
ate a volumetric tessellation. For example, the isosurface stuffing algorithm from
[17] creates a regular tetrahedrization from a body-centered cubic (BCC) grid.
As for the Marching cubes approaches described above, the resulting tessella-
tion depends however on the orientation of the grid. The Delaunay refinement
technique, as in [8], also generates Delaunay tetrahedrizations with guarantees
on tetrahedron shapes. However, degenerate tetrahedra, typically slivers, can
still appear, although their number can be reduced by global [18] or local [19]
optimization techniques.

Centroidal Voronoi Tessellations (CVTs) are a special type of Voronoi tes-
sellations with regular Voronoi cells [20]. Such tessellations are known to be
optimal quantizers [21] and their cells, mostly truncated octahedra, are more
isotropic than cubes or tetrahedra. Consequently, CVTs have been used to dis-
cretize 2D and 3D shapes in many scientific domains [22]. While methods have
been proposed to clip a CVT to a surface mesh [20] [23] [24], to the best of our
knowledge, none is able yet to handle implicit forms. We introduce therefore in
the next section a new clipping method for CVTs.

Surface reconstruction. We focus in this paper on methods for the poly-
hedrization of implicit forms however it is worth mentioning approaches that
reconstruct the zero-set surface of an implicit form, see e.g. [25] for a review.
Approaches in this category focus on surface tessellation where we consider vol-
umetric tessellations.

Evaluation. In the literature, 2D and 3D shape reconstruction techniques are
mostly evaluated according to the quality of the constructed cells. This is indeed
crucial for applications such as Finite Element Modeling. Quality is usually de-
fined with respect to the shape of the cell [26]. In some cases the quality metrics
reflect the fact that the cell should stay away from degenerate configurations. For
instance, tetrahedra with at least one small angle are usually to be avoided [27].
In other cases, an ideal shape is defined, and the quality metrics are defined as
distance to this ideal. This is the case with CVTs, for which the ideal cell shape
is known to be a truncated octahedron as mentioned in [21]. In this work, the
dimensionless second moment of a polytope is introduced and can be used as a
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measure of the regularity of a CVT cell [20]. Metrics have also been proposed for
other types of cells, such as hexahedra [26], as well as algebraically for general
cells [28].

A few works have investigated the geometric accuracy of a given reconstruc-
tion. Geometric accuracy can be defined as a distance between the boundaries of
the given input form and of the volumetric reconstruction obtained. Metro [29],
introduced in the context of mesh simplification, is a common tool to evaluate
the distance between two triangulated surfaces. More recently and focusing on
surface reconstruction, Berger et al. [30] have recently introduced better metrics
based on discrete differential geometry concepts in order to quantitatively eval-
uate distances between an implicit surface and a surface mesh. We build on this
work for accuracy evaluation.

In Section 4, we compare the shape tessellations obtained with Marching
Cubes, Delaunay refinement and CVT approaches using both shape quality and
geometric accuracy criteria. We also discuss the theoretical guarantees given by
each approach, as well as their computation times.

3 CVT for Implicit Forms

Centroidal Voronoi Tessellations are used in shape modeling to discretize 2D
and 3D shapes into polygonal and polyhedral cells, respectively, centered around
points called sites and distributed inside the shapes. CVT cells optimally par-
tition the input domain in the sense of k-means clusters minimizing a vari-
ance or quantification error [22]. To this purpose, CVT algorithms alternatively
re-estimate site locations and their associated cells, in an iterative manner.
Approaches exist that compute CVTs given explicit forms for shapes, usually
meshes as in [20] [23] [24]. We consider here the case of shapes defined by im-
plicit forms in 3D and also, more specifically, implicit forms obtained from point
clouds, a frequent case when modeling shapes with visual observations.

3.1 Background

Given a finite set of n points X = {xi}ni=1 in R3, called sites, the Voronoi cell
or Voronoi region Ωi of xi is defined as follows:

Ωi = {x ∈ R3 | ‖x− xi‖ ≤ ‖x− xj‖, ∀j 6= i},

where ‖.‖ denotes the Euclidean distance. The partition of R3 into Voronoi cells
is called a Voronoi tessellation. A clipped Voronoi tessellation is then the inter-
section between the Voronoi tessellation and a volume V ∈ R3 and a centroidal
Voronoi tessellation (CVT) is a special type of clipped Voronoi tessellation where
the site of each Voronoi cell Ωi is also its center of mass or centroid, i.e. :

xi =

∫
Ωi
x dx∫

Ωi
dx

.
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This property ensures that CVTs are local minima of the quantization error
E : R3n → R below, also called the CVT energy function or the distortion [22].

E(X) =

n∑
i=1

Ei(X) =

n∑
i=1

∫
Ωi

‖x− xi‖2 dx. (1)

3.2 Algorithm overview

Implicit form Initialization Clipping Optimization

Fig. 2. The different steps of the CVT algorithm. The clipping and optimization steps
are iterated until the sites are stabilized.

Our CVT algorithm considers as input an implicit function f : Ω → R defined
over a domain Ω ∈ R3 and such that f(x) = 0 on the boundary surface S of a
shape V. In the case of an indicator function, f has zero values outside V and
the value 1 inside. The algorithm takes also as input the number of sites-cells n
and follows the traditional CVT scheme below:

1. Initialization: find initial positions for the n sites inside V.

2. Clipping: compute the Voronoi tessellation of the sites, then restrict it to V
by computing its intersection with S.

3. Optimization: update the position of the sites by minimizing the CVT energy
function (1).

Steps 2 and 3 are iterated several times where the number of iterations is
a user-defined parameter. Any initialization can, in principle, be applied here.
In our experiments, the sites are randomly positioned inside V. At the first
iteration, the cells of the clipped Voronoi tessellation constructed after step 2
are not uniform nor regular (see Fig. 3 (a)) and do not minimize the CVT energy
(1). Step 3 optimizes therefore the site locations in order to minimize E. In the
literature, the two main strategies for such minimization are Lloyd’s gradient
descent method and the L-BFGS quasi-Newton method [31]. In our approach,
we choose the latter since it is known to be faster [31]. As shown in Fig. 3 (b),
once convergence is reached, the clipped Voronoi cells are almost uniform and
regularly spaced. Besides, they yield a better approximation of the shape V, as
shown in Section 4.
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(a) (b)

Fig. 3. Voronoi tessellations of a torus with and without optimization. (a) A clipped
Voronoi tessellation with random initial positions for the sites. (b) Clipped CVT after
optimization.

3.3 Clipping

In order to clip a Voronoi tessellation with the implicit function f describing
the shape V, we introduce an algorithm that consists of the following main steps
(see Fig. 2):

1. Given the unbounded Voronoi tessellation
⋃
i

Ωi of the sites {xi}, identify

which cells Ωi intersect the implicit surface S bounding V.
2. For each of these boundary cells Ωj ,

(a) Compute the intersection between the edges of Ωj and S, this intersec-
tion being represented as a set of points Pj (red dots in Fig. 2 CVT1&CVT2).

(b) Build the boundary clipped Voronoi cell Ω′
j as the convex hull of the

intersection points in Pj and the vertices of Ωj that are inside V (CVT1
in Fig. 2 CVT1&CVT2).

(c) (CVT-2 only) Add to each boundary cell the point at the intersection
between S and the ray along the normal to Ω′

j . Rebuild Ω′
j by connecting

it with other intersection points of Pj (CVT2 in Fig. 2).

Step 1 is carried out by first converting infinite Voronoi cells into finite cells
using a bounding surface around V and second by detecting boundary cells as
cells with at least one vertex outside V. Step 2 is discussed below.

Intersections of Ωj with S. Boundary cells are convex polytopes composed
of bounded polygons and segments. We first interpolate f values along segments
to find their intersections with f . To this purpose, several strategies can be con-
sidered depending on the information available on f . When both function values
and derivatives are available, Hermite interpolation can be used, as advocated
in [12]. It provides fast and accurate interpolated values as long as the local
approximation is valid. When only function values are available, linear interpo-
lation, with for instance the false position algorithm, can be used to iteratively
locate the intersection. In any cases, the bisection method can be applied. It is
slower than the previous strategies but more robust. A combination of the bisec-
tion and Hermite methods can also be considered to first reduce the search space
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so that the Hermite approximation becomes more valid. Note that polyhedriza-
tion approaches are independent of the interpolation scheme and can all consider
any of them. For the purpose of evaluation, and without loss of generality, we
use the bisection method with all approaches in the comparisons presented in
the evaluation section 4.

Convex hull. Once the edge intersection points are determined, the clipped
Voronoi cell is computed as the convex hull of the intersection points and the
cell vertices inside the surface. Since Voronoi cells are convex, this is guaranteed
to provide a boundary surface with a correct topology (see CVT1&CVT2 in
Fig. 2).

Sharp features. Sharp features, in case they occur, are not preserved by default
by the clipping algorithm CVT1 (see Fig. 4 (a) for instance). This also true for
Marching Cubes and Delaunay strategies for which specific solutions have been
proposed, e.g. [9] and [32] respectively. CVT easily adapts to sharp features when
identified as a list of points that can be simply assigned to their closest sites be-
fore the convex hull computation. This is a nice feature of the CVT strategy that
is flexible and allows for such additional points without significantly increasing
the complexity (only slightly modifying the convex hull computation) and while
keeping the topological guarantees. This would be difficult to implement with
the Marching Cubes or Delaunay strategies without fundamentally modifying
the associated algorithms. Fig. 4 (b) shows an example of such a reconstruction.

(a) (b)

Fig. 4. Tessellations of the characteristic function of a cube: (a) CVT1 algorithm
without additional points. (b) CVT2 algorithm with sharp feature points added.

4 Evaluation

In order to compare the different strategies for shape modeling mentioned dif-
ferent criteria can be considered. As emphasized in [33] for a similar evaluation,
a given method will easily favor one of these criteria at the cost of the others,
depending on the targeted application. In this work, our target is the reconstruc-
tion from implicit functions. This includes theoretical guarantees, the accuracy
of the approximation with respect to the input implicit boundary surface, the
quality of the resulting cells, and the time complexity.
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4.1 Methodology

Methods. The four different methods we compare are the following:
- MC: the implementation of the Marching Cubes algorithm with topological
guarantees [34];
- CGAL: the CGAL [35] implementation of the Delaunay tetrahedrization based
algorithm, which uses the Delaunay refinement technique followed by mesh op-
timization to remove degenerated tetrahedra [36];
- CVT11: a first proposed implementation of the clipped CVT algorithm, i.e.
only Voronoi edge intersections with the surface are considered as surface points
(see Section 3.3);
- CVT21: an extension of CVT1 where an additional point which is the inter-
section between the surface and a ray estimated by boundary clipped Voronoi
cell is added. (see Section 3.3).

To compare shape tessellations on a fair basis, similar resolutions, i.e. cell
numbers, are required. While the resolution is easily imposed with CVT, which
can be an advantage when similar shape discretizations are required, it is less
easy with MC and space discretizations. In practice, we first compute the March-
ing Cubes tessellation. We then use

√
3/2 times the length of a cube as the tar-

geted radius of a tetrahedron’s circumsphere for the Delaunay tetrahedrization
approach, in order for the size of this circumsphere to be similar to the size of
the cube’s circumsphere. For the CVT approaches, we simply sample randomly
as many sites as the number of cubes inside the shape.

Data. Methods are first evaluated on a set of 97 object meshes, from the Prince-
ton Segmentation Benchmark [37], for statistical comparisons on the accuracy
(see Fig. 6). We next consider point clouds obtained from vision reconstructions
and from which implicit forms are built. The Dancer (Fig. 5) was obtained
with a multiview system followed by a Poisson implicit function estimation [35].
Gargoyle (Fig. 1) was obtained with [30] and the three other shapes, Kneel-
ingLady, Aquarius and Skull, were obtained with [1] followed by the same
Poisson estimation [35] (other implicit function estimation could be considered).
Dancer’s MC results are extracted from 50 x 50 x 50 and 100 x 100 x 100 voxel
grid for different resolution tests. Others’ MC results are from 100 x 100 x 100
voxel grid.

4.2 Theoretical guarantees

Two theoretical guarantees are in practice often required: the manifoldness of the
output volumetric mesh and the topological correctness with respect to the input
form. A k-manifold is a k-dimensional object which is locally homeomorphic
to a k-dimensional disk. A k-manifold allows for non ambiguous definitions of
geometrical quantities such as the local geodesic neighborhood of any point,
which is critical in many shape processing applications. It allows for instance to

1 Source code will be released.
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smooth and deform shapes in a consistent way. Topological correctness is the
fact that input and output shapes present the same topology, for example the
same number of components. This is an important property when considering
properties over sets of shapes.

The original Marching Cubes algorithm [7] is known to produce surface
meshes which can be non-manifold and which topology can differ from the input
implicit surface. Many methods have been proposed to solve for non-manifoldness
and topological ambiguities, see [10] for a survey. 2D Delaunay triangulations
are known to be, under some sampling assumptions, good geometrical and topo-
logical approximations of the input shape [38]. This has been used for instance
in order to robustly model surfaces evolving over time [39]. However, this is
not the case in higher dimensions [40]. Thus, an additional post-processing step,
such as [41], is required to guarantee manifoldness in the case of Delaunay tetra-
hedrizations. In contrast, a 3D CVT is manifold by construction: it is composed
of convex 3D cells and on its surface every edge which is generated by the in-
tersection of a bisector of CVT and the implicit surface is shared by exactly 2
faces because it belongs to a bisector.

4.3 Accuracy

The accuracy measures how close the estimated shape approximation is to the
implicit form. To this aim we compare shape surfaces. The geometric similarity
between two surfaces can be defined in several ways. Following the evaluation in
[30], we consider distances between shapes in both directions and the following
metrics:
- Dmean: the mean of distances between the input shape and the reconstructed
surface in both directions;
- Drms: the root-mean-square (RMS) of these distances;
- Nmean: the mean angle deviation;
- Nrms: the RMS angle deviation.
Distances are estimated at points regularly distributed on both shapes and by
searching for the closest point on the other shape in the facet normal directions.
The same principle applies for normal angles that are estimated between closest
points in the evaluation sets on both the input and the reconstructed surfaces. In
order to build regular evaluation point sets, we use a particle system to sample
implicit surfaces [30], and we compute 2D CVTs on the reconstructed boundary
surface to generate sample points regularly distributed on both surfaces. Using
a particle system and 2D CVTs to regularly distribute evaluation points on the
surface ensures that we do not estimate distances between two discretizations of
the input implicit surface at different scales, as can be the case with Metro [29].

4.4 Shape Quality

Besides the accuracy of the approximation, tessellations can also be compared
with respect to the cell shape properties. Compactness, that ensures regularity,
is for instance desirable for, e.g. , local discrete operations on shapes such as
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deformations or quantification optimality. We first assess cell regularity for the
Marching Cubes and CVT approaches (Delaunay tetrahedra are not compact by
construction). For Delaunay tetrahedrizations, we compare them to CVTs using
the dual tetrahedrizations of CVTs and boundary triangle quality metrics. Dual
tetrahedrizations are computed by projecting the sites of the boundary Voronoi
cells on the surface and then optimizing their position as in [23].

Cell regularity. Marching Cubes-generated tessellations are mostly made of
cubes, however the boundary cells may be very irregular. In order to assess cell
regularity, following [20] we use the criterion G3 for polytopes referred to as
the dimensionless second moment of the cell by Conway and Sloane [21]. The
definition of G3 for a cell Ω is:

G3(Ω) =

∫
Ω
‖x− x̂‖2 dx

3V ol(Ω)5/3

where x̂ is the centroid of the cell and V ol(Ω) its volume. G3(Ω) reflects how
far Ω is from the optimal quantizer in three dimensions. Hence, this criterion
intuitively accounts for the compactness of the cell.

Tetrahedron quality. We use four standard quality metrics for tetrahedra
[23]:
- V Q1: minimum dihedral angle of the tetrahedron;
- V Q2: maximum dihedral angle;
- V Q3: radius-ratio, defined as 3ri

rc
, where ri and rc are the radii of the inscribed

and circumscribed spheres, respectively;

- V Q4: meshing quality, defined as 12
3√
9V 2∑
l2i,j

, where V is the volume of the tetra-

hedron and li,j is the length of an edge i, j of the tetrahedron.

Boundary triangle quality. Four similar criteria are used for boundary tri-
angles:
- SQ1: minimum angle of the triangle;
- SQ2: maximum angle;
- SQ3: radius-ratio, defined as 2ri

rc
, where ri and rc are the radii of the inscribed

and circumscribed circles, respectively;

- SQ4: meshing quality, defined as 4
√
3S∑
l2i,j

where S is the area of the triangle and

li,j is the length of an edge i, j of the triangle.

4.5 Results and discussion

Accuracy. We first compare methods on a set of various shapes: 97 meshes
taken from the Princeton Benchmark [37]. These meshes belong to 5 different
categories and the algorithms have been run with a fixed resolution for a given
category, which can however vary over categories: 503, 803 and 1003 for the
Marching Cubes. The number of sites for CVT is taken as the number of inner
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cubes with MC, this for each mesh. Results in Fig. 6 show method rankings
with respect the accuracy criteria defined previously. It demonstrates that CVT
approaches are statistically significantly better than MC and Delaunay.

Accuracy quantitative have also been conducted on the mentioned vision
datasets (see Table 2). Additionally, qualitative results are color-coded in Fig. 1
and Fig. 5. In these experiments, 10 iterations are performed for both Delaunay
tetrahedrization and CVT approaches. CGAL failed to compute a tetrahedriza-
tion on the Gargoyle and Skull datasets (the process was stopped after 18
hours of computation). These results show that CVT2 performs better than
other approaches on all our experiments. On point datasets that describe smooth
shapes (Dancer and Gargoyle), CVT1 performs better than Marching Cubes
even without the optimization step.

(MC) (Del) (CVT1) (MC) (CVT1) (Del) (CVT1)

Fig. 5. Accuracy (left), cell regularity (middle) and tetrahedron quality (right) of 3D
implicit form tessellations with MC, Delaunay refinement (Del) and CVT1.

Shape quality. Table 2 shows the maximum Gmax and the mean Gmean
values of the cell regularity G3(Ω) over all cells of Marching Cubes and CVTs
tessellations. These results show the benefit of optimizing site positions to gen-
erate more regular cells. The mean tetrahedron and boundary triangle quality
measures are given in Table 3. According to our experiments, the CVT approach
gives better results than the Delaunay tetrahedrization for all of them.

Computation times. Timings are shown in Table 1. CGAL fails to compute
a tetrahedrization for the Gargoyle and the Skull datasets. The Marching
Cubes algorithm is the fastest of the four tested methods, as a result of the
increased complexity of Delaunay and Voronoi tessellation computations. It has
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Dmean Drms Nmean Nrms

Fig. 6. Accuracy rankings on 100 meshes from the Princeton Benchmark [37]. Implicit
forms were obtained using Poisson reconstructions [35] and accuracies measured on
samples obtained using the particle system approach [30].

to be mentioned that most of the computation time of CVT approach lies in
the 3D Delaunay triangulation (dual of CVT) which is costly and cannot be
avoided (it takes about 70% of the CVT computation time en average). The CVT
approach performs anyway always faster than the Delaunay tetrahedrization.

Method DancerLow Dancer Aquarius KneelingLady Gargoyle Skull

MC 0.1 0.6 1.6 1.1 1.3 1.9
CGAL (10 it.) 1036 1052 162 198 - -
CVT1 (0 it.) 0.4 1.4 7.2 7.4 9.1 18
CVT1 (10 it.) 4.9 25 135 123 160 342
CVT2 (10 it.) 5.1 25 136 125 165 363

Table 1. Computational time (s) for each experiment.

5 Conclusion

We have presented a comparison of different strategies to convert an implicit
form in 3D into an explicit shape representation. This includes a new strat-
egy that uses Centroidal Voronoi Tessellations to build a 3D mesh composed
of convex Voronoi cells around a pre-defined number of sites. The evaluation
shows that CVTs provide the most accurate and the most regular shape tessel-
lations when compared to Marching Cubes and Delaunay refinement strategies.
As such, CVTs are a good alternative to Marching cubes, in particular when
modeling dynamic scenes for which accuracy, regularity and invariance to rigid
transformation are desirable properties of shape tessellation. Delaunay refine-
ment, while providing boundary surfaces with good triangles does not outper-
form CVTs nor Marching cubes in any case. Finally, Marching cubes is always
the fastest strategy, hence a solution for applications requiring fast solutions,
though less accurate and regular than CVTs.
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Dataset Method Dmean Drms Nmean Nrms Gmax Gmean CVT2
(nb of sites)

Dancer MC 27.16 29.72 1.31 1.41 3210 19.30
Low CGAL (10 it.) 27.12 29.72 1.30 1.41 - -

(2365) CVT1 (0 it.) 27.14 29.67 1.31 1.41 1647 11.00
CVT1 (10 it.) 27.13 29.66 1.30 1.41 11.84 8.18
CVT2 (10 it.) 27.05 29.64 1.30 1.41 11.84 8.15

Dancer MC 22.10 25.46 1.14 1.25 5999 14.49
(14474) CGAL (10 it.) 21.72 25.11 1.14 1.25 - -

CVT1 (0 it.) 21.86 25.41 1.13 1.25 75.85 9.75
CVT1 (10 it.) 21.76 25.25 1.12 1.24 9.82 8.07
CVT2 (10 it.) 21.16 25.29 1.12 1.24 9.82 8.03

Aquarius MC 21.64 23.99 1.32 1.42 29825 12.17
(64588) CGAL (10 it.) 21.65 23.99 1.32 1.42 - -

CVT1 (10 it.) 21.83 24.14 1.33 1.42 13.17 8.16
CVT2 (10 it.) 21.59 23.94 1.31 1.41 13.02 8.15

Kneeling MC 2.55 3.98 0.40 0.63 5870 11.80
Lady CGAL (10 it.) 2.60 3.83 0.40 0.63 - -

(73150) CVT1 (10 it.) 2.58 4.00 0.40 0.63 19.05 8.16
CVT2 (10 it.) 2.50 3.93 0.39 0.62 19.05 8.15

Gargoyle MC 0.38 0.54 0.20 0.29 54467 12.65
(106497) CVT1 (10 it.) 0.38 0.54 0.19 0.28 10.20 8.02

CVT2 (10 it.) 0.37 0.53 0.19 0.28 10.19 8.00

Skull MC 7.12 9.76 0.82 1.00 82716 11.26
(225034) CVT1 (10 it.) 7.15 9.81 0.83 1.00 17.87 8.07

CVT2 (10 it.) 7.07 9.67 0.82 1.00 17.56 8.06

Table 2. Accuracy and regularity results on the datasets. (Dmean, Drms, Gmax,
Gmean) ×10−2.

Dataset Method V Q1 V Q2 V Q3 V Q4 SQ1 SQ2 SQ3 SQ4

Dancer CGAL (10 it.) 50.75 96.48 0.84 0.90 47.92 75.13 0.93 0.94
CVT1 (10 it.) 51.32 95.49 0.85 0.91 52.56 69.23 0.97 0.97

Aquarius CGAL (10 it.) 51.35 95.89 0.83 0.90 47.73 75.37 0.92 0.94
CVT1 (10 it.) 51.55 95.33 0.84 0.92 52.56 69.23 0.97 0.97

Kneeling CGAL (10 it.) 51.54 95.71 0.83 0.90 48.32 74.59 0.93 0.94
Lady CVT1 (10 it.) 51.63 95.16 0.84 0.92 50.95 71.27 0.96 0.96

Table 3. Mean tetrahedron quality measures over all cells of the tessellation and mean
triangle quality measures over all boundary triangles of the tessellation (best result in
bold).
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