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Abstract 

 

Structures of faults, fractures and geomaterial interfaces are complex, making their behaviour 

difficult to predict. The ability to simulate geomechanical, geochemical and hydrogeological 

behaviours with these structures is required for better engineering process ahead of design. A 

pivotal step of geological simulation using the commonly applied finite element method is the mesh 

generation which is the subdivision of spatial objects into small elements.  When complicated 

constraints such as faults, fractures and interfaces are present existing mesh generation methods are 

still far from feasible solutions for geological modelling. This thesis addresses this key issue and 

demonstrates how to generate high-quality mesh for representation of geo-objects with 

heterogeneous structures. 

 

This thesis focuses on proposing a comprehensive solution for meshing and remeshing for 

geological modelling. The primary contributions are summarized as follows: 

 

1. A boundary focused quadrilateral mesh generation method has been developed to produce high-

quality mesh models for 2D multi-material geological data. Together with geodesic isolines, a 

valence clear-up pattern “Pisces” developed in this thesis is employed to improve the mesh quality. 

Hence the proposed method has more advantages in generating high-quality elements compared 

with algorithms developed by previous researchers (Park et al. 2007, Lee et al. 2003.) In the 

application to meshing images of coal plugs and fractured rocks, layers of well-aligned elements 

parallel to the material interfaces are generated and thus the average element quality of the 

generated mesh is close to that of a regular quadrilateral; 

 

2. An effective 3D meshing method has been proposed and implemented towards generating mesh 

representations for fractured rocks. A high-resolution image can capture fracture structures in detail 

but it leads to a huge data set. To reduce the data size, surface meshes (served as constraints within 

volume meshes) rather than traditional volume meshes are utilized to represent fractures in this 

research. A simplified Voronoi diagram based on a proposed pseudo-surface assumption is 

developed to extract fractures, identify fracture junctions and indirectly generate high-quality 

meshes. Subsequent numerical experiments showed that the generated mesh representing a 

fractured rock has a high shape similarity 64.57% and its data size is merely 1/6000 as much as that 

of the image data.  
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3. A strategy has been carried out for meshing 3D geological reservoirs with arbitrary stratigraphic 

surface constraints. To achieve this, a geodesic-based procedure is designed to provide a robust 

implementation for handling geometrical heterogeneity on stratigraphic surfaces (i.e. stratum 

interfaces). The procedure also contributes to a well-designed advancing front technique which 

achieves the generation of high-quality elements and adaptive meshes. The effectiveness of the 

proposed strategy is demonstrated by meshing a reservoir geological model of Lawn Hill in 

Queensland, Australia. 

 

4. A 3D remeshing approach conforming to stratum interfaces has been developed for simulating 

dynamic geo-engineering processes by finite element applications. To preserve stratum interfaces 

and clearly represent geological models, 2D and 3D stratum preservation algorithms are integrated 

to carry out a complete solution for remeshing with the consistency of interfaces. A near well bore 

drilling and a long wall caving model are utilized to demonstrate the capability of the proposed 

remeshing approach application in both the petroleum and coal mining industry. 

 

In summary, the thesis presents both 2D and 3D strategies for generating high-quality mesh 

representations of geo-objects with heterogeneous structures in reality. This provides a link between 

geological data and numerical analysis. The methods and algorithms developed in this study are 

quite general thus can be widely applied to bring various geological data into numerical simulations 

for both geo-science and geo-engineering.  
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Chapter 1 

1 

 

Chapter 1 Introduction 

 

 

 

This thesis focuses on research and development of meshing and remeshing for geological 

modelling. In this chapter, the research background and research aims are introduced, then followed 

by a literature review including geocomputing, meshing, imaging, geological modelling and 

remeshing. Based on this review, challenges and problems are pointed out. Finally, an outline is 

provided to give readers an overview of the thesis. 

 

1.1 Background  

 

Geological processes are always complex and may change through time or due to man’s 

intervention. Researchers have recognised the need to improve our knowledge of such processes 

through simulating reality. One vital step of geological simulation is the subdivision of spatial 

objects into small elements, which is well known as the Mesh Generation [1]. Mesh generation 

converts geological data to mesh models which are accepted by numerical simulation applications. 

Generally the various methods for obtaining geological data have been well developed and 

numerical simulations themselves are relatively mature, but the mesh generation in geology is still 

relatively new and quite challenging [2]. The key problem here is how to generate a high-quality 

mesh for a representation of geo-objects with heterogeneous structures including fractures. 

 

Advanced imaging techniques are ubiquitously applied to obtain geological data and visualize rock 

samples in an intuitive way [3]. It can clearly identify mineral composition and fracture structures 

through high-resolution digital images. Geological packages such as GoCAD 

(http://www.gocad.org), GSI3D (http://gsi3d.org), Petrel (http://www.slb.com), have been 

developed over decades to achieve the determination of the spatial variation of a broad suite of data 

sources from mining, engineering, hydrogeology and environmental restoration fields. In general, 

current visualizing and static modelling toolkits are sophisticated to effectively describe both rocks 

in core-plug scale and geo-objects in basin/reservoir scale. 

 

The finite element method (FEM), finite volume method (FVM), finite difference method (FDM) 

and lattice Boltzmann method (LBM) are employed to provide numerical solutions for problems in 
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geology [4]. FEM is perhaps the most widely applied numerical method over fields of both science 

and engineering. FEM provides flexibility for the treatment of material heterogeneity, non-linear 

deformability, complex boundary conditions, in situ stress as well as gravity. Moreover, the 

extensions of FEM such as extended FEM (XFEM) and generalized FEM (GFEM) are adopted to 

simulate fracture propagation which is recognized as one of the most difficult issues in rock 

mechanics. FDM has also been widely used but it cannot be used in domains with arbitrary shapes; 

thereby FVM accepting unstructured meshes is developed to overcome this difficulty. LBM using 

structured meshes is applied to single and multi-phase flow simulations and its applications are 

limited to fluid flow problems.  

 

Mesh generation is the corner-stone of many simulations of geoscience processes and the bridge 

between geological data and numerical simulation. Due to the simple implementation, structured 

meshes are adopted by most geological software packages to represent geological models. 

Numerical methods such as FDM and LBM benefit from using this direct and intuitive modelling 

technique. However use of only structured mesh has drawbacks. Its inability to accurately represent 

complex geometries leads to difficulty in describing constraints such as fractures in rocks and object 

interfaces in geological models. Unstructured meshes are an ideal choice for depicting complex 

constraints. FEM based on unstructured meshes are advantageous over methods based on structured 

meshes for geomechanical analysis, especially for those with complicated constraints [2]. However, 

mesh generation consisting with these constraints is difficult and a bottle neck for numerical 

simulations in geology. Therefore, this Ph.D. thesis focuses on the automatic mesh generation and 

adaptive remeshing for geological modelling, which provides a link between geological data and 

numerical simulation.  

 

 

1.2 Research aims 

 

The purpose of this PhD project is to develop solutions for meshing heterogeneous structures within 

geo-objects and provide an interface between geological data and numerical simulation. The 

proposed meshing approaches take the practical geo-objects as input and focus on generating high-

quality meshes with surface/line constraints representing the faults, fractures and stratum 

boundaries/interfaces. The proposed approaches can also be utilized to generate unstructured 

meshes for geological data generated by using commercial software (e.g. GoCAD). This method is 

the applied to a remeshing strategy conforming to stratum interfaces for simulating geo-engineering 



Chapter 1 

3 

 

processes such as caving and well drilling. Specifically, the primary objectives of this research are 

to: 

 

(1) study 2D quadrilateral mesh generation methods and develop a boundary focused approach for 

meshing multi-material structures with quadrilateral mesh; 

 

(2) develop a 3D surface mesh generation method for extracting and meshing fractures in digital 

rock images;  

 

(3) develop a 3D mesh generation method for meshing geological reservoirs; 

 

(4) design a remeshing strategy for simulation of caving and well drilling processes. 

 

 

1.3 Geocomputing by finite element method 

 

The finite element method [5] is a numerical technique for solving partial differential equations and 

routinely applied in studying deformation, temperature, fluid flow and coupled multi-physics 

problems. The basic idea of finite element method is achieving an approximation to continuum 

problems by the following two steps: (1) dividing the continuum into a finite number of elements 

and (2) solving the complete system consisting of its elements by the same rules of dealing with 

standard discrete problems [5]. The primary element shapes include triangle/quadrilateral for 2D 

domain and tetrahedron/hexahedron for 3D domain. Quad/hex elements could achieve a higher 

accuracy, while tri/tet elements have the advantages of representing complex geometries. Over the 

last two decades, the applications of FEM have been widely applied in the field of coal mining, 

geothermal exploration, CO2 geo-sequestration, nature disaster prediction, rock property 

estimation, etc.  

 

In coal mining, Valliappan and Wohua [6] utilized a finite element model to simulate the 

distribution of pressure and the concentration of methane gas due to gas migration in coal seams. 

Islam et al. [7] employed finite element analyses to evaluate stress redistribution, strata failure, and 

water inflow enhancements that result from these coal extraction operations in Bangladesh. They 

demonstrated that multi-slice extraction of coal would ultimately lead to a major water inflow 

hazard in the mine. Toraño et al. [8] simulated the behaviour of a longwall coal mining installation 

as well as the roof supporting through a virtual reality model approach. Zhu et al. [9] built a model 
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to simulate the coal–gas interaction under different temperatures. They suggested taking account of 

the thermal impact on coal-gas interactions especially for the domain with high temperature.   

 

In geothermal exploration and CO2 geo-sequestration, researchers usually focus on studying 

temperature and fluid flow within reservoirs. Ghassemi et al. [10] presented a 3D integral equation 

formulation to calculate heat extraction-induced thermal stress in enhanced geothermal reservoirs. 

They announced the proposed system can provide solutions for the injection/extraction in an 

arbitrarily shaped fracture. Zhou et al. [11] studied the poroelastic and thermoelastic effects of cold 

water injection in enhanced geothermal reservoirs. The application example shows that the rock 

cooling increases fracture conductivity, whereas fluid leakoff indirectly decreases fracture aperture. 

In CO2 geo-sequestration, Shukla et al. [12] introduced a review of caprock integrity in geo-

sequestration of carbon dioxide. Meanwhile, a FEM-based model of the CO2 geosequestration 

system is developed to simulate coupled processes governed by highly nonlinear partial differential 

equations.  

 

In the field of nature disaster prediction, the geomechanical behaviour of fault systems attracts a 

number of on-going researches. Xing et al. [13] studied the interacting fault systems through a finite 

element model and carried out a numerical simulation of the fault system in Southern California. 

Hsu et al. [14] utilized FEM models to examine the impact of fault slip, topography and variations 

in an elastic module on surface displacements. They also applied this model to analyse the 2005 

Mw 8.7 Nias-Simeulue, Sumatra earthquake. Manasa et al. [15] employed FEM to simulate the 

2004 Great Indian Ocean Tsunami. And the model they built includes Bay of Bengal, Arabian Sea 

and Indian Ocean.  

 

 

1.4 Unstructured mesh generation  

 

Geological models are naturally complicated concerning their geometry. Unstructured meshes are 

appropriate for the description of such complex geological structures, which can be analysed by 

FEM, XFEM and FVM applications.  

 

Automatic unstructured meshing method has been developed for decades [16], and a number of 

commercial and non-commercial meshing applications have been ubiquitously utilized in the field 

of engineering, medicine, geology, visualization and so on. These applications cover various issues 

in the mesh generation community, including mesh generation, optimization, parameterization, 
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reconstruction, remeshing, repairing, to name a few. A comprehensive introduction of all these 

topics is out of the scope of this thesis. Therefore, in the following context, the introduction of 

meshing techniques is grouped by the widely used element shapes in practical applications: triangle, 

quadrilateral, tetrahedron and hexahedron.  

 

Triangular mesh generation is not only used for representing objects in 2D but also employed to 

describe surfaces in 3D. 2D triangular mesh generation is not an open issue and most of its 

problems have been well studied and resolved [17-19]. Regarding to 3D surface triangular mesh 

generation, surface remeshing is a key component and a number of methods [20] have been 

proposed. The motivation of surface remeshing is that meshes generated by scanning devices or by 

implicit representations could not satisfy the element quantity criteria of FEM applications. Hence 

remeshing techniques based on such pre-existing mesh models are carried out. Approaches [21-24] 

based on a joint parameterization are usually implemented by parameterizing the models on a base 

domain (e.g. sphere). To make joint parameterization more general, researches [25-27] split mesh 

into matching patches with identical connectivity boundaries, and then parameterize these patches 

into planar domain respectively. Praun et al. [27] yielded a Voronoi-based scheme which iteratively 

inserts a sample point as far as possible from current placed ones. Alliez et al. [28] proposed an 

interactive remeshing approach, allowing users to control the sampling density over the surface 

patch (see Figure 1.1). The approach benefits from the centroidal Voronoi tessellation proposed by 

Du et al. [29]. The above remeshing approaches may fail due to the distortion in the process of 

parameterization. Alternatively, geodesic-based remeshing using fast matching method [30] attracts 

the interest of researchers. One advantage of geodesic-based remeshing is that it implements on 

surface meshes directly without parameterization. Peyre and Cohen [31] advocated a geodesic 

remeshing using a front propagation. They [32] also employed Geodesic Centroidal Tesselation to 

address the problem of mesh partition. Sifri et al. [33] proposed a geodesic-based surface remeshing 

in a manner similar to ‘advancing front’ approach. It starts from an arbitrary point to segment the 

initial mesh into regions. After the segmentation, all regions are remeshed and connected to 

construct a new mesh. Compared with the parameterization-based methods, these approaches are 

usually slow and the element quality is usually low.  
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Figure 1.1: Weighted centroidal Voronoi tessellation built with 100 iterations of Lloyd relaxation 

(left), and final remeshing with 50k vertices (right) [28]. 

Quadrilateral meshes normally perform more efficiently and accurately than its triangular 

counterparts concerning FEM analysis. Generally, automatic quadrilateral mesh generation can be 

grouped into the following two categories: the direct approach and the indirect approach [16]. The 

direct approach is likely to generate well-aligned quadrilaterals parallel to the boundary of the 

domain or line constraints, such as ‘Paving’ [34, 35] and mapping-based approach [36]. The quality 

of the mesh generated in this way is usually better than that in the indirect approach. However, the 

direct approaches are not always achievable once boundaries or line constraints have complicated 

geometries. With regard to the geometry complexity, the indirect approach is more robust than the 

direct approach. The simplest indirect approach [37] is splitting a triangle into three quadrilaterals. 

This method guarantees an all-quad mesh, but the element quality is poor due to a number of 

irregular nodes [38] produced in the mesh. An alternative strategy is combining two triangles into 

one quadrilateral. Johnston et al. [39] and Lee and Lo [40] further developed this method to 

guarantee an all-quad mesh generation if the edge numbers of the input boundary are even. 

Borouckaki [41] proposed an adaptive meshing approach which firstly combines adjacent triangles 

and then splits triangle and quadrilateral into three and four quadrilaterals respectively. In contrast 

to the above indirect approaches, Owen et al. [42] designed the Q-Morph algorithm, which utilizes 

an advancing front method to generate quadrilaterals through existing triangular meshes. Lee [43] 

extended the Q-Morph for generating a quadrilateral mesh with line constraints. The advantage of 

Q-Morph-based methods is the maintenance of the desirable features of both boundaries of a 

domain and constraints inside. However, these methods rely on a well-generated triangular mesh 

capturing the model feature. Otherwise, they will crash or generate extremely bad quality 
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quadrilaterals in the connection of layers. 

 

Hexahedral mesh generation has been an active research area in field of mesh generation for 

decades. As hexahedral elements can produce more accurate solutions than other elements, 

whenever it is possible hexahedral meshes are adopted in FEM-based simulations.  However, 

automatic hexahedral mesh generation for arbitrary polyhedrons is difficult, which is well known as 

the “Holy Grail” in the meshing community. The most popular solutions of hexahedral mesh 

generation include: sweeping [44, 45], mapping [46-48], plastering [49-51], whisker-weaving [52-

54], and octree-based algorithms [55-60]. Generally, sweeping methods [44, 45] can efficiently 

generate hexahedral mesh with high-quality elements for assembly geometries. However, these 

methods are limited to simple shapes and thus manually decomposing work is required to 

decompose models with complex structures into components with simple geometries. Although 

sweeping approaches are far from automatic mesh generation, they are undertaken by most of 

computer aided engineering packages to construct hexahedral meshes. Mapping is another popular 

hexahedral meshing technique which also requires manual interventions. The process of mapping 

approaches [46-48] mainly include two steps: (1) approximating model geometry structures by 

simplified configures and (2) mapping these configures to model boundaries. For instance, Nieser et 

al. [48] proposed the CubeCover method which designs a frame field for models and then 

undertakes the corresponding meshing process. Li and Tong [47] requested an initial hexahedral 

mesh inside models as the beginning of their inside-out advancing front technique. Plastering [49-

51] can be recognized as an automatic hexahedral mesh generation methods, but they suffer from 

internal voids which lead to a convergence problem. Compared to plastering from a local view to 

generate meshes, the whisker-weaving approaches [52-54] attend to achieve automatic hexahedral 

mesh generation from a global view. The upside of whisker-weaving methods is they could 

generate elements parallel to boundaries, while the downside is they rely on the topology structure 

on the surface mesh and are difficult to apply to complex structures. Octree-based algorithms [55-

57] is being used today to generate hexahedral meshes for a wide variety of models in medicine. 

Although these algorithms have the ability of automatically meshing complex geometries, it is 

impossible for them to construct well-aligned layers of elements parallel to model boundaries. The 

poor element quality around boundaries reduces the accuracy of the corresponding FEM analysis, 

which limits applications of octree-based mesh generation approaches. 

 

Tetrahedral meshes can represent arbitrary volume geometries, which benefits from the mathematic 

properties of tetrahedron. The most popular tetrahedral meshing methods are the Octree mesh 

generation, the Delaunay mesh generation and the Advancing Front Technique (AFT). The Octree 



Chapter 1 

8 

 

mesh generation was firstly developed by Mark Shephard et al. [61, 62]. They employed an octree-

structure to subdivide the geometric model till the desired mesh size is obtained. There are two 

major drawbacks of this approach: (1) generated meshes are not consistent with boundary surface 

meshes and (2) element quality close boundaries with high currency and sharp corners are poor. 

Although researchers [63-68] undertook optimization methods to improve the element quality, 

tetrahedral meshes generated by the Octree method is still not comparable to that generated by AFT 

or Delaunay triangulation. Delaunay-based methods are the most popular techniques in the 

tetrahedral mesh generation community. Delaunay triangulation is the geometric dual of a Voronoi 

tessellation. Delaunay [69] introduced the theory of this configuration in 1934 with the property of 

empty circumsphere criterion. In 3D domain, the empty circumsphere criterion can be depicted as 

below: for every tetrahedron there are no vertices in its circumsphere except for its own vertices. In 

1981, Bowyer [70] and Watson [71] proposed the method based on incremental insertion, which is 

proven as a simple and efficient Delaunay triangulation. Although the 3D Delaunay triangulation 

can automatically recover boundaries of a convex polyhedron, there is no guarantee for a concave 

or multi-connected polyhedron. The study of recovering polyhedron boundaries is undertaken by 

researches [72-74]. Besides, the removal of sliver or kite elements with zero volume is another 

crucial issue for Delaunay triangulation. Related refinement and optimization algorithms [75, 76] 

have been carried out to resolve this problem. AFT is another popular category of tetrahedral 

meshing. It is mainly contributed by Rainald Lohner [77, 78] and S. H. Lo [79, 80]. The concept of 

AFT is tetrahedrons are created layer by layer starting from polyhedron boundaries towards inner, 

which naturally generates layers of high-quality elements aligned to the boundaries. However, the 

drawback of AFT is there is no theoretical guarantee for the convergence and a typical case is 

schonhardt configuration [81]. To overcome this difficulty, George [82] utilized a revisit approach 

to enhance the convergence of AFT. Schöberl [83] optimally chose inserted nodes to avoid 

generating schonhardt-like polyhedron. Frey [84] innovatively combined Delaunay 

tetrahedralization with advancing-front approach to resolve the convergence problem. Compared to 

the hexahedral mesh generation, the tetrahedral mesh generation is more robust and thus widely 

applied to automatically construct models with complicated geometry boundaries and surface 

constraints. Although tetrahedral mesh generation is relatively mature, it is merely one stage of the 

object meshing process and cannot guarantee generating reasonable meshes for FEM applications 

independently. For instance, the generation of a high-quality tetrahedral mesh depends on an 

adequate triangular mesh input which is hard to obtain in some cases.  
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1.5 Imaging and meshing  

 

With regard to geological models in core-plug scale, advantaged imaging techniques are 

ubiquitously utilized to obtain constructive minerals as well as fracture structures in rocks. Mesh 

generation based on rock images is crucial to study rock geomechanical, geochemical and 

hydrogeological behaviours. In this section, both imaging techniques and image-based meshing 

methods are introduced in detail. 

 

Imaging technique is a part of computer vision which is a rich and rewarding topic. Traditional 

feature extractions [85] are based on 2D images acquired from an electronic camera and the 

applications are widely utilized in the field of face recognition [86], biometric identification [87] 

and Object categorization [88]. With the development of advanced imaging techniques such as 

nuclear magnetic resonance (NMR), X-ray computed tomography (CT) and scanning electron 

microscopy (SEM), 3D images and image-based modelling strategies [89] are studied by numerous 

researchers. In the field of medical science, heart [90], vessel [91] and brain [92] segmentations 

based on CT scanned 3D images are well studied and applied in the diagnosis and treatment by a 

skilled professional.  In geo-science, advanced imaging technologies have been applied to observe 

rock structures (e.g. fractures [93], voids [94] and networks [95]) and study rock geomechanical, 

geochemical and hydrogeological behaviours. For instance, methane and other coal seam gases will 

flow out of pores of coal through these networks if there is a pressure gradient acting as a driving 

force. Therefore, the geometric properties of the networks have an essential impact on the flow 

behaviour gases in coal seams. Close and Mavor [96] stated that the main flow, by “Darcy-flow” 

through a coal bed, is determined by the cleat attributes: size, spacing, connection, aperture, mineral 

filling, and orientation pattern. Liu et al. [97] developed a fully-coupled hydrological–mechanical–

chemical model to study fracture sealing and preferential opening and employed CT images to 

provide redundant constraints on fracture evolution by dissolution and precipitation. Methews et al. 

[98] utilized high-resolution CT images to observation the thermal drying processes of lump-sized 

subbituminous coal and studied new fracture propagation during this procedure.  

 

Concerning rock images, rocks are usually made up of many constituents, ambiguities may happen 

if there is no prior knowledge about the constructive minerals. The partial volume effect is another 

reason for generating poor quality digital images. Digital imaging of such geomaterials is difficult 

in itself but is becoming more achievable [99-101]. Segmentation algorithms [102], together with 

the CT imaging techniques, are critical for labelling different rock objects and describing fracture 

structures. Such algorithms may be sensitive to the local image noise and may not produce 
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reasonable results for fractures with small thickness if the resolution is not high enough [103]. 

Therefore, high-resolution volumetric images are utilized to capture such geometric features (see 

Figure 1.2), but such high resolution images lead to a huge dataset, which may be out of current 

computer capabilities to analyse and even visualize [1, 104].  

 

 

Figure 1.2: CT scan volumes of (a) Berea sandstone and (b) carbonate sample. The sizes of (a) and 

(b) are 724×724×724 and 1024×1024×1024 respectively. [3] 

The most popular model for representing pore-scale rock samples is pore network. The model is 

proposed by Bryant and co-workers [105-107] and extended by Øren and Bakke [108, 109], which 

is utilized to predict relative permeability, electrical conductivity and capillary pressure of rock 

samples. Algorithms for extracting pore networks from images could be grouped into the axis based 

method and the maximal ball method. Readers interested in this topic are referred to [110]. 

Compared with methods based on pore network models, FEM has more advantages for complicated 

structure analysis, which is especially useful for studying the mechanical behaviours such as 

pressure, displacement, contact, conflict etc. An accurate FEM-based analysis relies on an 

adequately generated unstructured mesh model, and thus effective image meshing algorithms are 

desired. 

 

The mesh generation for 3D images has been an active subject of a number of on-going studies [99, 

111-115]. For meshing 3D images, the simplest way is to directly convert voxels into brick 

elements [111]. Such mesh models contain a huge dataset and jagged boundaries accounting for 

poor results and even errors in simulations [116]. Another strategy of image meshing is the octree-

based approach, which is innovatively proposed by Zhang et al. [55, 99]. The advantage of their 

approach is the ability of creating quality hexahedral elements from images. However, like the other 
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grid-based approaches, it could not provide well-aligned elements parallel to interfaces, which are 

generally required by numerical simulations using hexahedral meshes.  

 

 

Figure 1.3: Marching Cube [117]. 

Currently the most popular image meshing approaches are based on the Marching Cubes (MC) 

method [117]. The MC considers voxels in an image as a lattice within a cubic cell and constructs 

local triangulation based on labels on the eight corners of the cell (see Figure 1.3). Although the 

MC method is robust and efficient, its drawbacks include: (1) the element size is uniform and 

depends on image resolutions, (2) staggered interfaces cannot smoothly represent sharp features and 

(3) interface ambiguities engender topological defects concerning meshing multi-material images. 

Coarsening methods [118, 119] are usually employed as a post-process for MC to indirectly 

generate adaptive meshes. However, the element quality is usually poor and geometry and 

topological flaws such as self-intersections and singular edges will emerge in the coarsening 

process. With regard to reproducing sharp features, the dual marching cubes method is proposed. 

Approaches [120, 121] based on this method introduce a representative vertex for each cells and 

then systematically connect these vertexes to construct meshes. Concerning multi-material images, 

as there are 88 or 16,777,216 possible cases of a cube with 8 vertexes, it is impossible to construct 

patterns for each of these cases. Efforts [112, 122, 123] have been made to extend MC to meshing 

images with different materials. One of these remarkable approaches is carried out by Wu et al. 

[112]. In their multi-material MC algorithm, they firstly constructed edges on the six faces of a 

cube, and then designed three different local facet generation methods according to the number of 

face-centred nodes. Consequently, the continuity and integrity of material boundary meshes are 

ensured by their robust approach. One important extension of MC is called the marching tetrahedra 

(MT) which is proposed by Shirley and Tuchman [124]. As the number of vertexes in a tetrahedron 

is 4, the quantity of possible marching patterns is smaller comparing to MC. For a 3D image, its 
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rectilinear grids are firstly subdivided into tetrahedral grids and then the MT is applied. Bonnell et 

al. [125] utilized the MT method to reconstruct material interfaces of volume fractions and their 

applications include a human brain data set from practice. d'Otreppe et al. [126] focused on 

producing triangle surface meshes from multi-tissue segmented medical images and applied the 

proposed algorithm to a femur, a set of lumbar vertebrae and a mandible together with its teeth. In 

general, MC-based image meshing approaches are robust, but their lack of an adaptive control of 

element size and a guarantee of high element quality restricts the range of their applications. 

 

Recently, image based meshing algorithms aiming at adaptive mesh generation with high quality 

have been studied by researchers. These algorithms could be roughly grouped into the AFT-based 

and the Delaunay-based techniques. The AFT-based methods [127-129] start from a set of seed 

points, i.e. front, which are previously created on model feature lines or domain boundaries. The 

progress of the front is achieved by choosing an edge in the front and constructing a new element 

attached to it. The basic approach is fast and effective in producing high-quality elements. 

However, self-intersections must be detected and avoided during the front progressing procedure, 

which will be acute when fronts are colliding from opposite directions. Thus, heuristically front 

detecting and smoothing strategies [130] always come with the AFT-based approaches to deal with 

collapsing or colliding, often at the expense of element quality in these areas. The Delaunay-based 

methods [131-134] firstly identify character nodes on material interfaces and then generate meshes 

preserving the interfaces. The character nodes are named as 0-cells, 1-cells and 2-cell, which 

represent nodes located on junctions, junction edges, and interfaces respectively. Meyer et al. [131, 

132] proposed an image meshing approach for sampling and meshing material interfaces using a 

dynamic particle system. They sample nodes in a sequence of 0-cells, 1-cells and 2-cells. During the 

sampling process, a set of projection operators are carried out to enforce constraints of material 

interfaces. Based on the results from the level set literature [135], they indicated that the adequate 

angles between 1-cells are 120º at the 0-cells. In order to satisfy all the constraints and guarantee 

high-quality results, their sample scheme will cost a long computation times. Dey et al. [114, 134] 

achieved the meshing interface of multi-material data by Delaunay refinement. Specifically, they 

associated each sample a real valued weight as the radius of its protecting ball and proposed a 

restricted Delaunay triangulation aiming at preserving material interfaces. Concerning the 

refinement, they established a disk condition which request a topological disk formed by triangular 

elements around each node. The refining operations will be invoked whenever local mesh could not 

satisfy the disk condition. The idea of involving protecting balls is also employed by Boltcheva et 

al. [136] to preserve sharp features such as surface patches, edges and corners in multi-material 

images. In essence, the above Delaunay-based approaches benefit from the theory of surface 
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reconstruction by Voronoi filtering [137]. The material interfaces could be naturally extracted if 

there is a sufficient sampling density and local feature size is a vital aspect as far as preserving 

sharp features are required.  

 

Concerning mesh generation for rock images, it is relatively new and challenging for the 

conventional image meshing techniques [117, 131-134]. Although these methods can create mesh 

models for rock masses with different constituents, they remain a lack of capability to adequately 

describe fractures. Due to the thin feature of fracture, the conventional methods generate a huge 

number of elements for fractures, which is difficult or impossible to use in FEM simulations. 

Alternatively, approaches [138-140] utilize a small number of elements to directly represent 

fractures through lines/surfaces in 2D/3D. Such approaches could naturally describe the geometry 

properties of fracture and significantly reduce the element quantity. However, the drawbacks of 

these methods is fractures within rocks can meet at arbitrary angles and with complex topologies, 

causing topological defects, geometric errors and local connectivity flaws on mesh models. 

 

 

1.6 Geological packages and meshing 

 

In terms of geological models in basin/reservoir scale, geological packages have provided an 

intuitive way of visualize stratum and fault structures. Although some of these packages can 

generate meshes for geological models, they do not have functions to handle structures with 

complicated constraints. In this section, several geological suites are introduced and capacities of 

current mesh generation methods based on geological models are discussed. 

 

Geological packages have been developed and widely used for decades to meet the request of 

geologists in modelling geographic information system (GIS), geostatistical analysis, seismic depth 

conversion, visualization, and property modelling. Interpolation and intersection engines are widely 

employed in these packages to deal with complicated fault systems. Several of the most popular 

geological suites are introduced as below. (1) GoCAD (http://www.gocad.org) is one of the most 

popular geological software. It provides customers high flexibility to depict complex geo-objects 

[141, 142]. A number of studies [142-144] have benefited from its geometry handling ability as 

well as various data formats. (2) 3D Geomodeller (http://www.geomodeller.com) is a popular 

geological modelling software, which is developed by BRGM (French Geological Survey) and 

commercialized by Intrepid Geophysics. It directly uses geological observation data to construct 

models and automatically constructs intersections and volumes of geo-objects [145, 146]. (3) 
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GSI3D (http://gsi3d.org) developed by the British Geological Survey is a methodology and 

associated software for geological modelling [147, 148]. In this suite, cross sections are required to 

be established in a structured manner to construct staggered geological surfaces. (4) Move 

(http://www.mve.com) by Midland Valley Software focuses on designing structural geology 

models. It is a modelling and analysis toolkit, which is with functions such as structurally 

constrained static modelling, kinematic analysis, deterministic modelling, as well as process 

modelling. (5) Petrel (http://www.slb.com) by Schlumberger is widely used in petroleum industry 

for accurate, high-resolution geological modelling of the reservoir structure and stratigraphy. It has 

sophisticated capabilities in generating well correlation panels, performing traditional mapping, 

plotting techniques as well as 3D reservoir modelling. A geological model created by Petrel is 

shown in Figure 1.4.  

 

 

Figure 1.4: A geological model created by Petrel (http://www.slb.com) 

Computer Aided Engineering (CAE) systems always provide well developed meshing functions for 

applications in mechanical engineering, but it cannot be applied to model geo-objects. Unlike the 

mechanical parts which consist of regular shapes, geo-objects include: complex geometry and 

topology, vague boundaries/interfaces defined by spatial variations and anisotropy of most 

subsurface features [2] (see Figure 1.4). Furthermore fault systems involved in basin/reservoir scale 

models compound the difficulties present in the corresponding mesh generation. Most geological 

numerical simulation software such as CMG (http://www.cmgl.ca), ECLIPSE 

(http://www.slb.com), FLAC3D (http://www.itascacg.com) et al. are based on finite difference 

methods using structured mesh models. However, structured meshes cannot adequately describe 

complicated structures (e.g. fault systems) especially in stress analysis, which limit applications of 

geological packages. Therefore, unstructured mesh generation is in high demand for description of 

complex geo-objects. Courrioux et al. [149] developed a volumetric reconstruction method for 



Chapter 1 

15 

 

modelling the main domains of the Cadomian collisional orogenic belt of Panafrican age in 

Northern Brittany (France). Wu et al. [150, 151] focused on constructing models from geological 

data which are generally sparse and undersampled. They applied the modelling method with data 

from boreholes, cross-sections, geological maps, etc. and generated meshes for complex faults 

through lag insertion and local reconstruction. Riard et al. [151] proposed an implicit approach to 

handle unconformities in restoration for eroded surfaces and onlap layer geometries. They showed 

how their approach could generate less mesh elements than the conforming mesh. Liu et al. [152, 

153] studied the method of preserving line constraints within the process of quadrilateral mesh 

generation and applied it to create mesh models for fault systems. Overall there is still a lack of 

effective unstructured mesh generation methods for current geological packages, which restricts the 

capability of FEM-based simulations in geology. 

 

 

1.7 Remeshing in geocomputing 

 

In geological modelling, remeshing is utilized to achieve modifications of the mesh geometry and 

topology, which is an essential technique for simulation of dynamic processes in geological 

engineering. Remeshing for geological modelling is challenging since constraints such as stratum 

interfaces and faults increase its difficulties. We will discuss issues related to remeshing in 

geocomputing further in this section.  

 

With the development of geological modelling and computing techniques, the geological structure 

of reservoirs can be described in more detail and the corresponding numerical simulations allow for 

better engineering of the processes ahead of design [2]. Remeshing has been studied for decades to 

simulate large deformation and crack propagation by finite element method applications [154-159]. 

However, it is still quite challenging when applied to geological models. This is mostly because 

geological mesh models with strata are different from traditional meshes with uniform material 

properties. Geological mesh models contain stratum interfaces which need to be clearly represented 

and preserved as interior constraints at any step of the numerical simulation. Besides, element size 

gradation on a geological model should be maintained and extended on the corresponding stratum 

interfaces in the remeshing process.   

 

3D geological models have gained significant interest because of the rise of complex construction 

projects and natural hazard assessments which utilize them [2]. Due to the structural heterogeneity 

of the strata, triangular meshes are often used to represent stratum interfaces, which can accurately 
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construct geological models concerning visualization and numerical simulation for geo-science and 

geo-engineering. Frank et al. [160] developed an implicit triangular surface reconstruction method 

for complex geological interfaces such as horizons and salt domes.  Durand-Riard et al. [161] 

focused on preserving stratum interface constraints and achieved a balanced restoration of 

geological volumes by a finite element method. Xing and Liu [162] proposed a method to generate 

surface meshes from voxel data and achieved meshing 3D geological reservoirs with arbitrary 

stratigraphic surface constraints. However, all the above algorithms are static mesh generation 

which are not suitable for simulate dynamic processes in petroleum and coal engineering.  

 

In terms of simulation drilling and caving processes in geo-engineering, remeshing techniques are 

required to couple with finite element applications. During the last two decades, a number of 

remeshing algorithms [154-159] have been developed for simulating metal forming processes and 

fracture propagations. The research includes large deformation [154, 155], crack tips prediction 

[156, 157], remeshing error estimation [158, 159, 163] etc. Although the above methodologies 

provide excellent solutions for damage and crack simulation in mechanical engineering, they are not 

suitable for numerical simulations in geology due to the maintenance requirement of stratum 

interfaces. Braun and Sambridge [164] included the strata and proposed a dynamical Lagrangian 

remeshing approach to simulate large strain and apply the algorithm to fault-propagation folding. 

They preserved strata by attaching material properties on nodes and without changing the number of 

nodes during the remeshing process. The drawback of this method is the lack of the ability to 

adaptively remesh the area of interest with different element size and node density.  Wang et al. 

[165] provided a soil interface conforming mesh refinement method for geological structures. The 

method could automatically insert extra nodes in problem domains while preserving soil interfaces. 

However, there are two limitations of this approach: there is no theoretical guarantee of adaptive 

features and it is difficult to extend to 3D.  Pellerin et al. [166] proposed an automatic surface 

remeshing for 3D geological structural models. Concerning geological structures very close to each 

other, they locally inserted sufficient nodes to describe corresponding features. Globally, a 

centroidal Voronoi optimization is employed to generate mesh with high quality elements. It is 

noteworthy that the surface remeshing they proposed is used for subsequent volumetric meshing 

thus not a comprehensive approach for dynamic geo-engineering processes such as drilling and 

caving. Indeed, adaptive remeshing for 3D geological structures is challenging and it is necessary to 

develop an effective remeshing approach for both geo-engineering and geo-science. 
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1.8 Summary of findings 

 

With the development of computational geo-science and geo-engineering, the mesh generation and 

its applications are increasingly important in studying geomechanical behaviours as well as coupled 

geomechanical and flow processes. Based on the above literature review, the problems in meshing 

for geological modelling are listed as below: 

 

 For 2D domains using quadrilateral mesh generation with arbitrary line constraints, it is still 

difficult to construct well-aligned elements parallel to the constraints. 

 

 Fractures in rocks are complex. Meshes generated by contemporary image meshing 

techniques have a large data set and cannot be utilized in FEM-based applications. So far, 

there is not an acceptable mesh method for generating a representation with a small data set 

for fractures.  

 

 Hexahedral meshes have difficulty with mesh generation for rocks and representing complex 

geometries and tetrahedral meshes are highly reliant on the quality of the surface mesh in 

describing fracture structures. However, adequate surface mesh generation for fractures is 

difficult, as fractures can meet with each other at arbitrary angles with complicated 

topological structures.  

 

 Unstructured meshes are better than structured meshes in terms of describing complicated 

geometries. The lack of effective unstructured mesh generation functions limits applications 

of contemporary geological packages. 

 

 In simulations of dynamic processes in geo-engineering, remeshing with the preservation of 

stratum interfaces is still challenging. 

 

In general, it is essential to develop a meshing system which can interface between geological data 

and numerical simulations in geology. Therefore, this thesis is focused on developing such a 

meshing system and providing solutions for the above problems. For 2D domains, a quadrilateral 

mesh generation method based on geodesic isolines is developed to create layers of well-aligned 

elements parallel to line constraints. With regard to fractures in rocks, a simplified Voronoi diagram 

based on a proposed pseudo-surface assumption is proposed to extract fractures, identify fracture 

junctions and generate high-quality mesh models with small data size. Concerning reservoir models 

generated by geological suites, a geodesic-based procedure is designed to provide a robust 
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implementation for handling geometrical heterogeneity on stratigraphic surfaces and generating 

unstructured meshes. Additionally, a 3D remeshing approach conforming to stratum interfaces is 

developed for simulation of dynamic geo-engineering processes by finite element applications. 

 

 

1.9 Thesis Outline 

 

The following presentation of this thesis is divided into six chapters. Chapter 2 describes a 2D 

image meshing algorithm. The emphasis of the algorithm is generating high-quality quadrilateral 

elements constrained by the material interfaces. Chapter 3 focuses on the development of 3D rock 

image meshing techniques. The sheet-like structure extraction method and the fracture surface mesh 

generation strategy are proposed and developed respectively. Chapter 4 provides a solution for 

generating unstructured meshes for reservoir models from static geological modelling software. 

Chapter 5 proposes an adaptive remeshing approach for geological structure with stratum interface 

constraints. Finally, conclusions and future work based on the above outcomes are drawn in Chapter 

6. 
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Chapter 2 Two-Dimension Mesh Generation for 

Heterogeneous Rock 

 

 

2.1 Overview 

 

Digital images are nowadays widely accepted and used in many areas to describe the complicated 

structures within heterogeneous rocks. Researchers are always interested in convert digital images 

to analysable meshes which can be utilized in finite element/volume simulations [1, 13, 16, 167]. 

Concerning mesh generation for heterogeneous rock there are two difficulties: (1) heterogeneous 

rock in reality have complex material boundaries and (2) it is hard to generate layers of well-aligned 

elements parallel to the boundaries. 

 

In this chapter, section 2.2 is a published paper describing a boundary focused quadrilateral mesh 

generation method, which is developed to produce high-quality mesh models for 2D heterogeneous 

rock. In the paper, a phase-based boundary smoothing method is proposed to remove jagged 

features and smooth material boundaries. Geodesic isolines are employed to indirectly generate 

well-aligned elements parallel to material boundaries. Moreover, a valence clear-up pattern Pisces is 

designed to improve the element quality.  

 

Based on the numerical applications, the proposed method has been proven that it has more 

advantages in generating high-quality elements over algorithms developed by Park et al. [168] and 

Lee et al.[43]. Besides, the method is applied to generate mesh for images of a coal plug and a 

fractured rock, which demonstrates its effectiveness of handle data from practice. 
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2.2 The paper 

 

 

 

 

 

 

 

 

 

A boundary focused quadrilateral mesh generation algorithm for multi-material structures 

Yan Liu, H.L. Xing 

Journal of Computational Physics  

Volume 232, Issue 1, 1 January 2013, Pages 516-528 
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2.3 Conclusions 

An automatic quadrilateral mesh generation algorithm is proposed here for heterogeneous rock. The 

algorithm overcomes difficulties in meshing rock images by (1) a phase-based smoothing strategy 

which is designed to remove staggered features on material boundaries and (2) geodesic-isoline-

aided meshing scheme which is utilized to indirectly guarantee well-aligned elements parallel to the 

boundaries. Examples from practice demonstrate the effectiveness of the proposed method. 

Concerning the element quality, the proposed Pisces valence clear-up pattern is effective in 

reducing the number of irregular inner nodes and improving the element quality across the mesh 

including close to the boundaries. Moreover, compared with the methods of Lee et al. [43] and Park 

et al. [168], the proposed meshing method can generate elements with a higher quality. The 

numerical examples also yield high quality meshes around material boundaries superior to those 

generated by the methods of Liu et al. [152] and Catmull-Clark [37]. 
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Chapter 3 Three-Dimensional Mesh Generation for 

Fractured Rock  

 

 

3.1 Overview 

 

With the development of advanced imaging techniques, structures of fractured rock mass can be 

clearly captured by high-resolution digital images in 3D [3, 4]. However, such images have a huge 

data set, which is difficult and even impossible to be applied in both visualization [103] and 

simulation [1, 104]. A substitute for digital images is meshes whose data set is small but the 

generation process is challenging.  

 

This chapter focuses on developing an effective mesh generation algorithm for 3D rock masses with 

arbitrary fractures. Fractures in rocks are naturally complicated. As they may meet at arbitrary 

angles at junctions, and the topological defects, geometric errors and/or local connectivity flaws 

could be derived on mesh models. Regarding mesh generation for fractures, there are two major 

problems: (1) how to identify junctions of different fractures and (2) how to construct elements on 

fractures.  

 

In terms of junction identification, we assign each fracture voxel a junction weight by a disk 

scanning method and then recognize fracture junctions by an adequate threshold. In terms of 

element construction, we propose a pseudo-surface assumption together with a simplified centroidal 

Voronoi diagram to initially generate surface meshes representing fractures and design an 

innovative umbrella operation to further repair mesh topology structures. The fractured rock mass is 

represented by a tetrahedral mesh model with the above fracture surface mesh constraints. 

Compared with the digital image models, the generated mesh models can significantly reduce the 

data size and well preserve the fracture features. 

 

Three practical fractured rocks are taken as application examples to be analysed in this chapter to 

demonstrate the usefulness and capability of the proposed meshing approach. Numerical 

experiments show that the proposed meshing algorithm is effective to handle complicated fracture 
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structures. Moreover, the generated mesh representing a fractured rock has a high shape similarity 

64.57% and its data size is merely 1/6000 as much as that of the image data.  

 

3.2 Digital rock imaging 

 

Rocks are naturally inhomogeneous materials which consist of various constituents such as 

minerals, grains, voids, fractures, et al. The digital imaging process for rocks is difficult. This is 

because during the production of the images, ambiguities may happen if there is no prior knowledge 

about the constructive minerals [100]. Besides, partial volume effect is another reason of generating 

poor quality digital images. Once the rock images are obtained, segmentation is performed for 

identification and labelling mineral phases and rock structures, which includes spatial filtering, 

noise removal, morphological operations and cluster analysis. With regard to fractured rocks, the 

fracture thickness is usually much smaller than the sample mass scale. Thus high resolution images 

together with adequate segmentations are required to achieve an accurate quantitative description of 

the fractures [103]. For a comprehensive review of imaging techniques and related segmentations, 

readers are referred to [3, 101, 102]. 

 

3.3 3D Fracture junction identification  

 

3D fractured rock images obtained from scanning electron microscopy are utilized as input of our 

image meshing approach. One key character of fractures is that the thickness is much smaller than 

the length and width. Based on this character, we can assume that fractures are somehow surfaces, 

but such a pseudo-surface assumption is not always satisfied as far as fracture junctions are 

concerned. Therefore, one key process of our meshing approach is to identify junctions and adapt 

them to the pseudo-surface assumption in the related mesh generation as detailed below.  

 

3.3.1 Fracture medial surface extraction 

 

Voxel is the basic unit of 3D digital images, which has a position and a scalar value describing its 

material property. In practice, as fractures in the form of voxels have different thicknesses, a 

thinning method [169] is employed to represented fractures by their medial surfaces which share a 

same thickness. To carry out a robust implementation, a 26-connection is used here and we release 

the surface point identification conditions in [169] by Formula 3.1.  
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Definition 1. A voxel v is a surface voxel if },8,1{,  ii  

6)(2 vN i                                                                   (3.1) 

Where N(v) denotes neighbours of v, )(2 vNi is the ith octant of N(v) and   is the number of voxels 

in the octant. 

 

Figure 3.1 (a) is a part of fractures obtained from a rock mass, where fractures have different 

thicknesses and intersect with each other.  The fracture medial surfaces Figure 3.1 (b) are extracted 

under the condition in Formula 3.1 and their thicknesses are almost even everywhere. The thinning 

process is necessary, as it could reduce numeric errors caused by the thickness difference 

concerning the junction identification and mesh generation.  

 

Figure 3.1: Medial surface extraction: (a) fractures extracted from a rock and (b) the medial surface 

 

3.3.2 Disk scanning method for fracture junction identification 

 

In this paper, a Junction Weight (JW) is designed to identify whether a fracture voxel locates at the 

junctions or not. For a voxel v, the calculation of its JW is achieved by Formula 3.2. 

 

JW = (1.0 – W2)W1                                                            (3.2) 

 

Here, W1 is the number of fracture voxels within a cubic of 5×5×5 voxels surrounding v. W2 is 

calculated by a disk scanning process which will be described in details as below. 
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For each voxel on fractures, a scanning disk is created by the Breadth First Search (BFS) with a 

volume criterion in Formula 3.3. 

 

Disk Volume < t(1+2r(r-1))                                                 (3.3) 

 

Where t is the fracture thickness and r is the disk radius. On the disk, m triangles  mT are randomly 

generated by two rules: (1) each vertex is on the disk border and (2) the length of each edge is larger 

than √3r. We associate  jiTjinnW mji  ,}{,|)min(2


 with all the voxels on the disk. A voxel 

on fractures will be associated with W2 for a couple of times, and thus the average value is adopted. 

The property of W2 is the flatter the disk, the higher the W2. For instance, a flat disk in Figure 3.2 (a) 

on fracture surfaces has a higher W2 compared to a staggered or bended disk in Figure 3.2 (b) at 

fracture junctions.  

  

 

Figure 3.2: Scanning disks with different W2 values: W2 of a flat disk (a) is higher than that of a 

non-flat disk (b). 

 

JWs of fractures for Figure 3.1 (b) are obtained through Formula 3.2 and demonstrated in Figure 3.3 

from two different view angles. Obviously, JW values decrease form junctions to surfaces, or in 

other words, voxels having higher JW are closer to junctions. 
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Figure 3.3: Junction identification: left and right are the same fractures with different view angles 

and colours indicate different JWs on the fractures. 

 

3.4 Simplified centroidal Voronoi diagram and mesh generation  

 

Based on the pseudo-surface assumption for fractures, Voronoi diagram is expected to be 

constructed on fractures to achieve the corresponding mesh generation. However, one difficulty of 

the Voronoi diagram construction on a voxel-based surface is the distance calculation. Here, an 

alternative approach is designed for generating the Voronoi diagram, which avoids calculating 

distance between two points. 

 

3.4.1 Simplified Centroidal Voronoi Diagram (SCVD) construction for fractures 

 

Given an open set
NR , and n different generators n

iiz 1}{  . Let dis(·) denote the distance function 

on NR , the Voronoi diagram (whose dual is well-known as Delaunay triangulation) is defined as 

n

iiV 1}{  : 

},,,1),(),(|{ ijnjforzxdiszxdisxV jii                                (3.4) 

Centroidal Voronoi diagram is firstly proposed by Du et al. [29] where the generator zi is also the 

mass centroid of its Voronoi cell: 
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                                                             (3.5) 

Where ρ(x) is a density function of Vi. 
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We propose a simplified centroidal Voronoi diagram to construct Voronoi diagram on fractures. In 

3D rock images, fractures are represented by a set of voxels sharing the same volume and density, 

so in the proposed SCVD construction ρ(x)=1 for Formula 3.5. According to the pseudo-surface 

assumption, the Voronoi diagram is generated by propagating Voronoi cells from their generators in 

the manner of BFS. Formula 3.4 is automatically satisfied in the process of BFS and the distance 

calculation dis(·) is thereby avoided. Pseudo-code in Algorithm 3.1 describes the simplified 

Voronoi diagram construction where 6-voxel connectivity is employed. Take a patch in Figure 3.4 

for example, Figure 3.4 (a)-(c) are three stages from the generators to the final Voronoi cells.  

 

Algorithm 3.1: Simplified Voronoi diagram construction 

Treat voxels linked with zi as the initial Voronoi cell Vi 

WHILE there is a voxel not belonging to n

iiV 1}{   

    FOR EACH Vi in n

iiV 1}{   

        Progress Vi by one voxel in the manner of BFS 

    END 

END  

 

SCVD is an approximate implementation of centroidal Voronoi diagram, which bases on the theory 

proposed by Du et al. [29]. Firstly, n Voronoi generators n

iiz 1}{   are randomly selected from the 

voxels on fractures. Then locations of these generators are iteratively optimized by Formula 3.5 

until the energy error [29] is achieved. The generator number n is calculated by the following 

formula. 

))1(21(,  rrtV
V

C
n vol

vol

vol                                                (3.6) 

Where Cvol is the total volume of the structure, t is the average thickness and r is the customized 

radius of a Voronoi cell. As Cvol and t are known, r is the only variable to define the generators as 

well as the SCVD.   
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Figure 3.4: Simplified Voronoi diagram construction: (a) a patch and its generators; (b) the growing 

Voronoi cells; (c) the finial Voronoi diagram. 

 

Directly involving SCVD to construct a triangular mesh for fractures may lead to a number of 

topology defects and geometric errors at fracture junctions. Alternatively, we enhance the SCVD 

construction process through three steps: (1) identifying junctions through a JW threshold, (2) 

separately constructing SCVD at fracture junctions and surfaces and (3) merging them together. The 

enhanced process is demonstrated in Figure 3.5, and (a)-(c) are the SCVD at fracture junctions, the 

SCVD at fracture surfaces and the result combining (a) with (b). As fracture surfaces without 

junctions could satisfy the pseudo-surface assumption, the enhanced SCVD construction will reduce 

the chance of deriving connectivity flaws at the corresponding initial triangular mesh.  

 

Figure 3.5: The enhanced construction of SCVD for fractures: (a) the SCVD at fracture junctions, 

(b) the SCVD at fracture surfaces and (c) the SCVD for the fractures. 
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3.4.2 Mesh generation for fractures 

 

The surface mesh generation for fractures is based on the SCVD. The generating route is similar to 

the Delaunay triangulation but ambiguities caused by the fuzzy cell boundaries need to be further 

refined. In Figure 3.6, A, B, C and D represent IDs of Voronoi cells and the dots represent voxels 

within a cubic. For a regular case, in Figure 3.6 (a), there are only three IDs in the cubic and a 

triangle is constructed by connecting the corresponding generators. For an ambiguous case, in 

Figure 3.6 (b), more than three IDs exist in the cubic and the constructed triangles will cause a 

topological defect.  

 

 

Figure 3.6: Triangular element construction: (a) a regular case and (b) an ambiguous case 

 

As fractures are represented by surface meshes rather than volume meshes, dual contouring-based 

meshing methods [170, 171] are not suitable to resolve the topology ambiguity here. Therefore, an 

amending strategy is proposed to remove such ambiguity in triangular element construction.  As 

shown in Figure 3.7 (a), the SCVD has four generators A, B, C and D and the ambiguity is 

highlighted in a black circle. The amending strategy is processed during the SCVD construction. 

Specifically, two generators are connected whenever their corresponding Voronoi cells meet each 

other in the propagation. In Figure 3.7 (b)-(e), B-D, C-D, A-C and A-B are connected serially and a 

polygon ABCD is constructed simultaneously. Based on the polygon, triangles ACD and ABD in 

Figure 3.7 (f) are created. 
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Figure 3.7: Amending strategy for triangular element construction: (a) the SCVD with ambiguity; 

(b)-(f) the proposed amending processes based on the proposed strategy 

 

3.5 Mesh repairing 

 

Due to the inherent discreteness of the voxel models, topological and geometric errors are not 

avoidable in the generated mesh model. Especially at fracture junctions, ambiguously connected 

triangles lead an incorrect mesh representation of fractures. Hence, an effective mesh repairing 

algorithm is desired. 

 

Before a detailed description of the mesh repairing method, the following definitions and notions 

have to be clarified: 

 

Manifold edge: an edge shared by at most two triangles. 

Non-manifold edge: an edge shared by more than two triangles. 

Junction edge: an edge with two junction nodes. 

Junction triangle: a triangle with three junction nodes. 

2D disk of a node: the incident triangles parameterized to a 2D domain. 
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Conventional criteria [172] of a valid mesh are not suitable for a mesh representing fractures. As 

holes, non-manifold edges, inconsistent orientation (caused by the Mobius strip) are reasonable 

structures for fractures. Focusing on adequately representing fractures by mesh models, we propose 

three criteria for a valid surface mesh of fracture. 

 

Valid Mesh Criterion (VMC):  

(a) Any edge with a fracture surface node must be manifold; 

(b) Any junction edge must distinctly describe the corresponding fracture junction; 

(c) There are no self-intersections.  

 

3.5.1 Umbrella operation 

 

An umbrella operation is proposed here to reconstruct topology structure around a fracture surface 

node. The input for an umbrella operation is a surface node N and edge constraints  EC . The 

initial  EC  are junction edges.  

 

Algorithm 3.2: Umbrella Operation 

Step 1: Collect incident triangles  T  for a surface node N and collect related edge constraints  ec  

from  EC  

Step 2: Parameterize  T  to  t  in a 2D domain 

Step 3: Break edges  e  in  t  by their intersections i , then update  e  

Step 4: Taking  e  as line constraints, generate a mesh M from i  and nodes in  t  by a 2D 

constrained Delaunay triangulation   

Step 5: Suppress i  in M and recovery  ec ; If  ec  are not fully recovered, then return FALSE 

Step 6 : Reconstruct  T  by the topology of M; push edges on the 2D disk of N into  EC  

Step 7 : Return TRUE  

 

We demonstrate the process of an umbrella operation in Figure 3.8. Firstly, the incident triangles in 

Figure 3.8 (a) of a surface node N are parameterized to a 2D domain in Figure 3.8(b). As some 

triangles overlap with each other, one of the edge constraints in red is broken on the 2D disk. 

Secondly, to reconstruct the disk mesh, we invoke a 2D constrained Delaunay triangulation together 

with the intersection node suppression and the edge constraint recovery. Finally, the reconstructed 

mesh Figure 3.8 (c) is projected back to the original surface as shown in Figure 3.8 (d). It is 
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worthwhile to note that only edges (the blue ones in Figure 3.8 (d)) on the 2D disk of node N is 

utilized to update the edge constraints  EC . 

 

 

 

Figure 3.8: An umbrella operation on a surface node N:  (a) incident triangles and edge constraints 

in red, (b) the parameterized mesh in 2D domain, (c) the 2D mesh with recovered edge constraints 

and (d) reconstructed triangles and new generated edge constraints in blue. 

 

3.5.2 Effectiveness evaluation  

 

In this section, the effectiveness of the umbrella operation is further evaluated by both its 

advantages and limitations.  

 

If all the umbrella operations for the surface nodes are successful, the following propositions are 

drawn. 
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Proposition 3.1: An edge with two surface nodes is manifold. 

 

Proof: As the umbrella operations on both of the edge nodes are successful, the maximum number 

of triangles connected with the edge is two. In other words, the edge is manifold.  

Q.E.D. 

 

Proposition 3.2: If a junction node has no more than two junction neighbours, then there are no 

overlaps on the 2D disks of its surface neighbours.  

 

Proof: There are three cases. (1) A junction node has no junction neighbours. The umbrella 

operation guarantees the correctness of the proposition. (2) A junction node has only one junction 

neighbour. If there are overlaps, only the junction edge has a chance of intersecting with an edge on 

one of the 2D disks. However, as a constraint in the umbrella operation, no edges will intersect with 

the junction edge. (3) A junction node has two junction neighbours. There are at most three junction 

edges which consist of the junction node and its two junction neighbours. As the three nodes have 

different locations, the junction edges cannot intersect with each other on any of the 2D disks. Thus 

Proposition 3.2 is correct.  

Q.E.D. 

 

Evidently, the VMC (a) and (b) are guaranteed by Propositions 3.1 and 3.2. Concerning VMC (c), 

we assume an edge ab intersect with a triangle ABC in the initial fracture mesh. Since the mesh is 

generated from a volumetric image, the five nodes a, b, A, B and C must connect with each other by 

triangles. The VMC (c) is satisfied if there are not junction triangles overlapping with each other. In 

summary, to satisfy VMC (a), (b) and (c), two conditions must be achieved: (1) all the surface node 

umbrella operations are successful and (2) there are no overlapped junction triangles. 

 

In practice, the failure of umbrella operation is mainly caused by the intersection of junction edges. 

As shown in Figure 3.9 (a), junction edges in red are intersected on the 2D disk of node N. The 

corresponding umbrella operation fails as it is impossible to recover all junction edges. Besides, 

three overlapped junction triangles ABC, ACD and BCD are also demonstrated in Figure 3.9 (b). 

Due to these structures, manual procedure is still required to fix the repaired surface mesh of 

fracture. 
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Figure 3.9: Cases failed to satisfy the VMC: (a) a failed umbrella operation; (b) overlapped junction 

triangles. 

 

3.6 Mesh optimization 

 

To further improve the element quality, we proposed a local optimization method for the repaired 

mesh. The junctions and surface boundaries are firstly smoothed. For each junction, the smoothing 

procedure is achieved by the following steps: (1) detaching incident element patches from the 

junction edges, (2) parameterizing these patches to a 2D domain and smoothing the junction 

respectively and (3) projecting the patches back to 3D and assembling them together. The surface 

boundary smoothing is similar with the junction smoothing. Concerning the optimization of surface 

elements, it is implemented by extracting N-ring elements of a surface node and optimizing these 

elements through the isotropic remeshing algorithm in [28]. 

 

3.7 Numerical applications 

 

We use three application examples to demonstrate the effectiveness of the proposed meshing 

approach. The first one is a rock with four fractures, which is utilized to illustrate the workflow of 

meshing fractures intersecting with each other. The second one is utilized to choose an optimal 

Voronoi cell radius r based on a shape similarity measurement. The last example is a rock mass 

with complicated structures (216 fractures). Based on this rock mass, issues such as the choice of 

JW threshold, the effectiveness of the umbrella operation as well as the element quality of the mesh 

representation are discussed.  
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3.7.1 The workflow of  the proposed algorithm 

 

The first example, Figure 3.10 (a), is fractures within a box of 160×175×200. The fractures have 

four patches intersecting with each other. We demonstrate the workflow of the meshing strategy as 

below. At the first stage, our mesh approach extracts medial surfaces (in Figure 3.10 (b)) of the 

fractures and calculates JW values for the surfaces. In Figure 3.10 (c), high JWs are represented by 

red and low JWs are represented by blue. Fracture junctions are roughly depicted by red lines, while 

there are also several red spots which are caused by local uneven structures. We use JW=11 to 

distinguish fracture junctions from surfaces and Voronoi cell radius r=7 to create a SCVD (in 

Figure 3.10 (d)) on the fractures. At the next stage, an initial surface mesh is generated from the 

SCVD. The mesh is demonstrated in Figure 3.10 (e), where junction nodes are in red and surface 

nodes are in blue. The proposed umbrella operations are applied to the surface nodes to repair the 

mesh topology. In this sample, all the umbrella operations are successfully processed. Thus the 

mesh model in Figure 3.10 (f) is a valid mesh which satisfies VMC (a), (b) and (c). To further 

improve the element quality, we optimize the surface mesh and smooth the fracture junctions 

highlighted by red lines in Figure 3.10 (g). The close-ups in Figure 3.10 (e)-(g) demonstrate the 

structure changing of a part of fracture junctions in the processes of mesh generation, repairing and 

optimization. At the last stage, taking the surface mesh Figure 3.10 (g) as constraints, a volume 

mesh is generated and shown in Figure 3.10 (h), where the surface mesh of fracture is consistent 

with the volume mesh. 
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Figure 3.10: Fractures of a rock mass: (a) the fractures in voxel format, (b) medial surfaces of the 

fractures, (c) the JW diagram, (d) the SCVD, (e) the initially generated mesh, (f) the repaired mesh, 

(g) the optimized mesh and (h) the volume mesh for the fractures. 

 

3.7.2 The choice of an optimal Voronoi cell radius 

 

The purpose of this example is to find an optimal Voronoi cell radius concerning a shape similarity. 

Hence, the similarity measurement is firstly introduced, which evaluates how the generated mesh 

model is close to the input 3D image. For a surface mesh, each element has a thickness value, which 

is gained from the input image. Specifically, each fracture voxel has a thickness value, obtained by 

the smallest thickness in its three directions. The thickness of a triangular element is the average 

thickness of voxels intersecting with it. Letting the triangle be the mid plane and its thickness be the 

height, a prism is constructed for the element. We convert each element of the surface mesh to a 

volumetric representation by labelling voxels within its prism. Then a volumetric description of the 

surface mesh is generated. Compared with the input image, voxels of the mesh volumetric 

representation could be grouped into two sets: in

meshC coincident with the input image and out

meshC  

different from the input image. Taking into account both in

meshC  and out

meshC , a similarity measurement 

is defined as: 

image

out

mesh

in

mesh

C

CC
Similarity


                                                            (3.7) 

Where imageC  is the set of fracture voxels in the input image and operator   calculates the number 

of voxels.  The range of the similarity is [1.0, -∞] and a larger value denotes better matching with 

the original data. 

 

The first example in Figure 3.11 (a) is a rock image and its size is 1012×1024×931. The rock has 

complex internal structures that are individually shown in Figure 3.11 (b). The major fractures 

extracted in Figure 3.11 (c) are utilized to represent the model as they primarily affect the 

mechanical behaviour of the rock and are focus of the further numerical analysis. Additionally, 

models built based on the major fractures improve our understanding of the rock structure and 

reduce the scale of dataset. Figure 3.11 (d)-(f) show the ability of the proposed method to control 

element size and quantity in meshing rock images (where fractures are in white and rock boundaries 

are in golden). Table 3.1 gives an overview of element size, number and similarity between the 

meshes and its 3D image model in Figure 3.11 (c). Consequently, the features of the generated 
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mesh is controlled by Voronoi cell radius r in Formula 3.6, where with the increasing of r the 

element number is reduced but the similarity is decreased as well.  

 

 

 



Chapter 3 

52 

 

 

Figure 3.11: A 3D rock image meshed with different element sizes: (a) the 3D rock image with a 

size of 1012×1024×931; (b) the internal structures; (c) the major fractures; (d)-(f) are triangular 

meshes generated by different Voronoi cell radii where the major fractures are shown in white 

colour and the outside rock boundaries in golden.  

 

Table 3.1: Summary for surface meshes in Figure 3.11 (d)-(f) 

Figure 3.11 (d) (e) (f) 

Voronoi Cell Radius 11 51 107 

Element Size 14.88 66.49 135.75 

Element Number 40,204 1,777 368 

Similarity 63.28% 29.46% 11.66% 

 

A chart in Figure 3.12 is obtained through meshing the fractures in Figure 3.11 (c), which further 

reveal the relationship between Voronoi cell radius r and the corresponding mesh similarity. On one 

hand, once r is close or less than the thickness the pseudo-surface assumption is not true and thus 

fractures cannot be correctly represented. On the other hand, if r is large then some details of 

fractures are lost. According to Figure 3.12, Voronoi cell radius r=7 is the best choice with respect 

to the highest shape similarity 64.57%, which generates a surface mesh with  69,394 elements. 

Considering the image models in the form of grids, evenly sampling the grids to reduce image 

resolution could simplify the model and reduce its dataset scale, but the similarity will drop 

dramatically as shown in Table 3.2. Additionally, the resolution reduction approach is not as 

effective as the proposed image meshing algorithm in representing fractures for visualization. 
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Compared with the mesh model with r=7, grid models whose sampling rates are larger than 2 have 

a lower similarity and a larger grid number. Although the similarity of grid model with sampling 

rate 2 is comparable with the mesh mode similarity, its grid quantity is 9.6×108 which is 1.4×104 

times as much as that in the mesh model.  

 

 

Figure 3.12: Relationship between shape similarity and Voronoi cell radius: the highest similarity is 

64.57% when the Voronoi cell radius is 7 

 

Table 3.2: Grid model for Figure 3.11 (c) with different sample rates 

Sample Rate 1 2 3 4 ≥5 

Similarity 100.0% 65.5% 37.8% 15.4% ≤0.0% 

Grid Quantity 9.6×108 1.2×108 3.6×107 1.5×107 7.7×106 

 

Besides visualization, another important application of the proposed method is numerical 

simulation, which needs a volume mesh model rather than a surface mesh to describe the rock and 

its fractures. Mesh with shape similarity above 60% could be considered as an acceptable 

approximation of the rock image. According to the chart in Figure 3.12, we choose surface meshes 

generated by r=15 where the similarity is 60.3% and the mesh for the major fracture structure is 

individually shown in Figure 3.13 (a). In fact, the proposed similarity calculation method is a strict 

measurement. Figure 3.13 (b) includes both the surface mesh Figure 3.13 (a) and the input 3D 

image Figure 3.11 (c), where the mesh almost completely approximates the structure from the 

aspect of visualization. Figure 3.13 (c) is the surface mesh with its thickness property. Elements 

with 0 thickness indicate holes or gaps for the input image model. Taking the surface mesh and 

corresponding rock boundaries as constraints, a tetrahedral mesh Figure 3.13 (d) is constructed by 
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the own in-house developed mesh generator. The surface mesh is consistent with the volume mesh, 

shown in the close-up in Figure 3.13 (d). The volume mesh has 28,631 nodes as well as 143,901 

elements. In general, compared with grid models, the generated volume mesh achieves a better 

similarity with fewer elements with respect to Table 3.2. 

 

 

 

Figure 3.13: Mesh generation for a rock image: (a) surface mesh of the main structure; (b) surface 

mesh with the input image; (c) surface mesh with thickness property and (d) the volume mesh with 

28,631 nodes and 143,901 elements. 
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In Table 3.3, four methods [173, 174] are adopted to measure the element quality of the generated 

volume mesh in Figure 3.13 (d). Statistics in Table 3.3 show that the average element qualities of 

the generated mesh are close to the regular tetrahedron. Consequently, the generated volume mesh 

model is considered as analysis-suitable for finite element simulation.  

 

Table 3.3: Element quality for Figure 3.13 (d) 

Quality Measurement Minimum Quality Average Quality Regular tetrahedron 

Minimum Dihedral Angle 8.18º 49.06º 70.53º 

Gamma Quality 0.14 0.81 1.00 

Edge Aspect 0.20 0.66 1.00 

Radius Aspect 0.06 0.84 1.00 

 

3.7.3 The application to a complicated fracture structure 

 

The last example is a 3D fractured rock with a complicated fracture structure. There are 216 major 

fractures with different thicknesses. Concerning the image of the rock, the resolution is 4 µm and 

the image size is 1012×1024×609. The fractures within the rock are demonstrated in Figure 3.14 (a) 

and one slice of the rock fractures is shown in Figure 3.14 (b). According to the above outcomes, 

Voronoi cell radius r=7 is utilized to generate SCVDs for the fractures. 

 

 

Figure 3.14: Fractures of a rock mass: (a) 216 fractures within the rock and (b) one slice of the 

fractures. 
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An appropriate JW threshold is crucial to correctly detect fracture junctions. Moreover, it has a 

significant impact on the success of umbrella operations. Based on the fractures in Figure 3.14 (a), a 

serial of numerical experiments are carried out to reveal the relationship between the JW threshold 

and the percentage of failed umbrella operations. In these experiments, different JW thresholds 

slightly affect the node quantity in initial meshes, but the amount is approximately 37,000. As 

shown in Figure 3.15, the percentage of failed umbrella operations rises with the increasing of the 

JW threshold. The fundamental reason of this trend is that an umbrella operation tends to be 

successfully implemented to a node if the incident triangles are approximately on a flat disk. A low 

JW threshold restricts umbrella operations to fracture surface nodes, where the corresponding disks 

are flat. Therefore, the chance of failure is low. For instance, only 0.1% umbrella operations are 

failed when the JW threshold is 5. In contrast, high JW threshold leads nodes at junctions involved 

in umbrella operations. Hence, the operations are likely to fail due to the uneven geometry at 

junctions. For instance, when JW=15 is used as the threshold, the percentage of failed umbrella 

operations increases to 1.92%. 

 

 

Figure 3.15: Relationship between the JW threshold and the percentage of failed umbrella 

operations 

 

Besides failed umbrella operations, overlapped junction triangles are the other reason that induces 

topology and geology flaws concerning VMC (a), (b) and (c). The solution we adopted is discarding 

all junction triangles of the surface mesh. On the one hand, this solution will remove all possible 

overlapped junction triangles, but on the other hand, some structures are eliminated from the 
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junctions. Therefore, a higher junction residual ratio is required concerning the choice of a better 

JW threshold. Figure 3.16 illustrates the trend of junction residual ratio with the increasing of JW 

thresholds. A low threshold will identify a large junction zone, thereby leading a low junction 

residual ratio. On the contrary, a high threshold restricts junction nodes to thin and long areas where 

fractures meet, and thus the junction residual ratio is high. As seen in the chart, once junction 

residual ratio is higher than 90%, it increases much slower than that lower than 90%. This 

phenomenon implies that some common structures are removed from the mesh in spite of the 

increasing of the threshold. In fact, the removed structures are fracture blocks which should be 

represented by volume elements rather than surface elements. Therefore, it is reasonable to discard 

them during the surface meshing process. For this rock mass, junction residual ratios higher than 

90% are accepted. 

 

 

Figure 3.16: Relationship between the JW threshold and the junction residual ratio. 

 

An appropriate JW threshold should satisfy two conditions: lower percentage of failed umbrella 

operation and higher junction residual radio. Based on the charts in Figure 3.15 and Figure 3.16, a 

JW threshold between 10 and 12 is considered as a reasonable choice for this example. It is because 

the percentage of failed umbrella operations is from 0.22% to 0.32% and the junction residual radio 

is over 90%. JW thresholds within this range significantly reduce the manually repairing work and 

preserve the key geometry features of the fracture junctions. Therefore, we use JW=11 as the 

threshold to generate a surface mesh for representing the fractures in Figure 3.14 (a). The surface 

mesh result is demonstrated in Figure 3.17 (a) and (b) in different view angles. In the mesh, there 

are 37,707 nodes including 1897 junction nodes and 35,810 surface nodes. 0.23% umbrella 

operations are failed during the mesh repairing process. We fix the failed operations manually and 
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take the surface mesh as constraints to construct a volume mesh for the rock mass. The generated 

volume mesh Figure 3.17 (c) contains 193,144 nodes and 1,089,010 elements and a close-up is 

shown in Figure 3.17 (d) to demonstrate the consistency concerning the surface mesh.  

 

 

 

Figure 3.17: Mesh models for the fractures in Figure 3.14: (a) and (b) are the surface meshes with 

different view angles, (c) is the corresponding volume mesh containing 193,144 nodes and 

1,089,010 elements and (d) is a close-up of the part marked in (c). 

 

Concerning the manual repairing work, it is easy to handle as locations where umbrella operation 

fail can be directly detected by the corresponding surface node indexes. For instance, N in Figure 

3.18 (a) is one of nodes with failed umbrella operations and Figure 3.18 (b) is the local mesh which 
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has been repaired manually. As only the mesh topology is required to be repaired and failed 

operations are rare, the repairing can be achieved by either directly modifying the data file or using 

software with mesh repairing functions. 

 

 

Figure 3.18: Manually repairing a failed umbrella operation: (a) the local mesh before repairing and 

(b) the local mesh after repairing. Junction node is red and surface node is blue. N is the node where 

the umbrella operation fails. 

 

In Table 3.4, the element quality of the volume mesh in Figure 3.17 (c) is measured by four 

different methods [173, 174]. In terms of the average element qualities, they are close to a regular 

tetrahedral. Thus the mesh model for the fractures could be recognized as an analysis-suitable 

model for finite element simulation. The minimum element qualities for this model are low, 

probably due to fractures meeting at sharp angles. 

 

Table 3.4: Element quality for Figure 3.17 (c) 

Quality Measurement Minimum Quality Average Quality Regular tetrahedron 

Minimum Dihedral Angle 6.87º 47.55º 70.53º 

Gamma Quality 0.07 0.78 1.00 

Edge Aspect 0.16 0.64 1.00 

Radius Aspect 0.02 0.81 1.00 
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3.7.4 Time efficiency analysis  

 

All the numerical experiments in this chapter are carried out on a super computer in the Centre for 

Geoscience Computing (http://earth.uq.edu.au/centre-geoscience-computing). Table 3.5 

demonstrates the computing time used by SCVD construction, surface meshing and volume 

meshing respectively. Evidently, SCVD construction cost most of the computing time. It is because 

the 3D images have a huge dataset which requires a long time to process. 

 

Table 3.5: Time efficiency (unit: s) 

Dataset SCVD Construction Surface Meshing Volume Meshing 

Figure 3.10 6 0.3 2 

Figure 3.13 552 10 10 

Figure 3.17 303 6 108 

 

3.8 Conclusions 

 

In this chapter, an effective image meshing method is proposed to generate finite element mesh 

models for rocks with arbitrary fractures. The application examples in real world demonstrate its 

usefulness and effectiveness.  

 

In terms of data set reduction, the proposed algorithm can generate meshes with less element 

number than image grids to approximate fractures. For the rock sample, the ratio between the 

tetrahedral mesh element number and the grid number is 1:6704. A shape similarity measurement is 

also proposed and the optimal Voronoi cell radius used for generating surface mesh for the rock 

sample is 7 with the corresponding similarity 64.57%. In practice, surface meshes with shape 

similarity above 60% are considered as close approximations for fractured rocks.  

 

In terms of effectiveness, we prove that if umbrella operations are successfully implemented to all 

surface nodes, the generated surface mesh is valid concerning preserving mesh topology structure 

and representing geometry features of fracture. Although umbrella operations could fail around 

junctions in extremely complicated fracture structures, an adequate JW threshold can reduce the 

chance of failure. Based on the numerical experiment results, the range of an appropriate JW 

threshold is from 10 to 12. We involve JW=11 as the threshold to generate a surface mesh for 

fractures in the rock mass. As a result, 0.23% of the 35,810 umbrella operations fail and the 

junction residual ratio is above 90%. Although manually repairing work may be required, it is 
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limited to the vicinity of failed nodes and easy to achieve. Constrained with the above fracture 

surface mesh, a tetrahedron mesh model consisting of 193,144 nodes and 1,089,010 elements is 

constructed and evaluated to represent the rock mass with 216 fractures inside. 

 

The generated surface mesh can be utilized as constraints to generate corresponding volume mesh. 

The element quality of the volume mesh is high concerning a variety of measurements and the 

element quantity is reasonable for future finite element simulations. In general, the generated mesh 

models are competitive with grid models and have wide applications in both visualization and finite 

element simulation. 
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Chapter 4 Three-Dimensional Mesh Generation for a 

Geological Reservoir 

 

 

4.1 Overview 

 

With the advanced field observation, image and drilling technology, geological structure of 

reservoirs can be described in more details. Geological reservoirs in voxel format are popular and 

somewhat 3D digital images. Concerning application of such reservoir models to FEM-based 

applications, there are two difficulties: (1) the complicated stratigraphic surfaces and (2) the huge 

data set of reservoir models.  

 

In this chapter, we carry out a strategy for meshing 3D geological reservoirs with arbitrary 

stratigraphic surface constraints. To handle complicated geometries on stratigraphic surfaces, a 

geodesic-based procedure is designed to provide a robust implementation. Regarding reduction of 

data set, an advancing front technique is proposed to achieve adaptive surface remeshing, which not 

only decreases the element quantity but also increases the element quality. 

 

The implementation of the proposed strategy includes the following steps: model import, stratum 

interfaces and constraints extraction, background mesh generation, surface remeshing and volume 

mesh generation. The workflow is shown in Figure 4.1. 

 

Figure 4.1: Workflow of the proposed method.  
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A reservoir geological model of the Lawn Hill in Queensland, Australia is converted to a mesh by 

the proposed method. The data set of the original model is reduced from 7.1×107 voxels to a volume 

mesh with only 1.7×105 nodes. Moreover, the element quality of the generated mesh is high, which 

is analysable for FEM-based applications.  

 

 

4.2 Background mesh generation 

 

The background mesh generation begins with a surface extraction. Because surfaces representing 

interfaces of strata are essential for describing geo-objects and generating mesh models, they are 

initially extracted by multi-material marching cubes algorithm [175]. As shown in Figure 4.2, 

surfaces are extracted in the format of triangular meshes and their junctions (i.e. constraints) are 

indicated by bolder lines. Along these constraints, the initial meshes are separated from each other.  

 

 

Figure 4.2: Surfaces extracted from a reservoir model. The border lines indicate surface junctions. 

 

Concerning a separated surface mesh, its topology structure is manifold. The above junctions 

become boundaries of the surface mesh and constraints in the downstream processes. To remesh 

current surface with a desired element quality and quantity, a size field is required which could be 

constructed on the surface mesh. Specifically, junction lines are firstly segmented by a customized 

size Sseg which is also the size of nodes on the constraints and then size hi for node i within the 

background mesh is calculated by the following function. 



Chapter 4 

64 

 

                




ji

jij

i
l

ls
h

,

,

/0.1

/
 , jj httSs  )0.1(max ,  

qSh

ql
t

j

ji






max

, )0.1(
                       (4.1) 

Where node j is one of the vicinities of i, li,j is the distance between node i and j, hj is the size of 

node j, Smax is the expected maximum size, q is the gradation ratio. Once a size field is obtained, the 

length ei,j of edge (i , j) is defined by the sizes of its two ends (i.e. node i and j). 
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4.3 Surface remeshing 

 

The basic idea of the surface remeshing approach is iteratively creating geodesic isolines [30] from 

boundaries to the interior of the stratigraphic surface mesh. In the iteration, the coming isolines are 

named as fronts. The key technique of the remeshing is the generation of fronts, which includes the 

following steps: (1) detection zone generation; (2) front mergence; (3) front construction and (4) 

surface mesh generation. 

 

4.3.1 Detection zone generation 

 

Region between two adjacent fronts is somewhat a belt and its width is defined by a customized 

parameter ζ. A layer of nodes in front of the current front forms a detection zone (DZ) and the width 

of DZ is ξ. Although ξ must be larger than ζ concerning the later collision detection, large ξ could 

induce heavy geodesic distance calculation and cost long CPU time. Therefore, it is crucial to 

choose an appropriate choice of ξ with regard to the efficiency of the detection zone generation.   

 

 

Figure 4.3: The appropriate choice of ξ for front generation. 
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As shown in Figure 4.3 (a), AB and CD are current fronts and the angle between them is 2α. With 

nodes on AB and CD as source (where geodesic distance is 0), front AB and CD are propagated by a 

distance ζ. P is the intersection of new fronts. If 2α is too sharp, the quality of elements around P 

will be poor. To smooth the new front and improve element quality, nodes around P will be utilized 

as new source to update related geodesic distances in DZ. It is expected that the updated nodes are 

still in DZ. As shown in Figure 4.3 (b), when P is taken as a new source, E is the farthest node 

affected by P and the distance between them is ξ. Therefore, ξ could be calculated by the following 

formula.  

                                                             
)sin(1 





                                                            (4.3) 

In this document, we choose α=45ﾟ, hence ξ is approximately 3.4 ζ.  

 

A mesh example is illustrated to demonstrate the geodesic distance updating process with different 

ξ. As shown in Figure 4.4 (a) and (b), current fronts are the legs of a isosceles triangle; DZ is 

represented by colours from light-blue (low distance) to light-red (high distance); nodes in deep 

blue are non-calculated; the green point is the intersection point P; area in deep red indicates nodes 

updated by P. Figure 4.4 (a) is the result of ξ= ζ and a portion of the nodes in red are not in DZ. In 

contrast, if ξ= 3.4ζ, the updated nodes are all in the DZ as shown in Figure 4.4 (b). 

 

 

Figure 4.4: geodesic distance updating with different DZ widths: (a) ξ= ζ; (b) ξ= 3.4ζ 

 

 

4.3.2 Front mergence 

 

The front mergence process is utilized to address collisions when two fronts encounter, which is 

indirectly achieved by DZ updating. Specifically, a set of collision nodes in DZ are firstly detected 

by their geodesic distance information. Then the collision-related nodes are treated as new source to 
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update DZ. The detection and updating process are invoked alternatively until no collisions exist in 

DZ.   

 

Collision detection 

 

After generating DZ by ξ, every node n in DZ contains a geological distance G(n). For instance, 

node P (in Figure 4.5) has 8 vicinities vi (i=1, 2,…8). Vector Vi (i=1, 2,…8) are the geological 

distance increasing speed from vi  to P and are defined as below: 
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The collision detector vector (CDV) of node P is defined by C(P). 
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Figure 4.5: A node P and its 8 vicinities vi (i=1, 2,…8). 

 

As shown in Figure 4.6 (a), the two green points are the source where geological distance is 0. DZ 

is generated by ξ and colours indicate the magnitude of node CDVs. The close-up in Figure 4.6 (b) 

reveals that potential collision nodes always have small CDVs. Therefore, the detection of 

collisions is achieved by checking the magnitude of CDV. Based on our numerical experiments, a 

node P is a collision node if it satisfies the following criteria: 
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Figure 4.6: collision detection: (a) DZ is generated according to the source points which are in 

green. Colours indicate the magnitude of node CDVs; (b) a close-up of (a). 

 

Detection zone updating 

 

The updating process has two functions: (1) merging fronts and (2) smooth new front. In Figure 4.7, 

the current fronts are AB and CD while P is the collision node. PE is the perpendicular to AB 

through E and PF is the perpendicular to CD through F. Nodes on EF are collision-related, which is 

utilized as new source to update DZ. As a result, AB and CD are merged together by EF. Besides, 

the next front will be parallel to polyline BEFD, which avoids generating sharp angles.  

 

 

Figure 4.7: DZ mergence. 

 

Geodesic path is utilized to calculate EF (in Figure 4.7) for the implementation of DZ mergence to a 

triangular surface. As shown in Figure 4.8 (a), the two green points are the initial source and the DZ 

is generated by ξ= 3.4ζ, where ζ=8.5 is the customized belt layer width. New belts are indicated by 
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bright blue and they encounter around the middle of the source points. To achieve the front merging 

operation, collision-related nodes are collected as new source to update the DZ and the result is 

shown in Figure 4.8 (b). Consequently, the two belts in Figure 4.8 (a) are merged into one in Figure 

4.8 (b) and the fronts are merged together as well. 

 

 

Figure 4.8: Front mergence: (a) the green points are source and bright blue zones are current layer; 

(b) the result of detection zone updating. 

 

4.3.3 Front construction 

 

Boundaries of the belts are actually the new fronts. As shown in Figure 4.9 (a) and (b), the two 

green points are source nodes. The fronts are constructed based on ζ=8.5 and ζ=4.3 respectively. In 

Figure 4.9 (b), there are two fronts in the first two layers. In the third layer, the fronts encounter 

with each other and then the mergence happens as shown in Figure 4.9 (b). 

 

 

Figure 4.9: Front construction: (a) two green points are source and belt width is ζ=8.5; (b) belt 

width is ζ=4.3 

 

4.3.4 Surface mesh generation 

 

The generated geodesic isolines divide the surface into a number of belts. Triangular elements are 

independently constructed for each belt, which is based on the background mesh established by 

Formulas 4.1 and 4.2. Specifically, boundaries of a belt in Figure 4.10 (a) are firstly segmented with 
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length 1 and the belt width is set as ζ =2. In the next stage, a front propagation method [31] is 

employed to generate a Voronoi diagram (in Figure 4.10 (b)) for the belt. As shown in Figure 4.10 

(c), a triangular mesh is created in the final step according to the Voronoi diagram. 

 

 

Figure 4.10: Triangular mesh generation for belts: (a) the segmented fronts; (b) the Voronoi diagram 

for the belt; (c) triangular mesh of the belt. 

 

4.4 Volume mesh generation 

 

Taking the above surface meshes as constraints, a tetrahedral mesh is generated to represent the 

corresponding reservoir model. Based on tetrahedral mesh techniques[73, 84], our own in-house 

developed mesh generator is employed to adaptively create elements from the boundaries to the 

interior.  

 

4.5 Numerical applications 

 

A reservoir geological model of Lawn Hill in Queensland of Australia is utilized to demonstrate the 

capability of the proposed meshing method.   

 

4.5.1 Lawn Hill and its geological model 

 

Lawn Hill platform lies in the Northwestern Queensland, Australia. The Isa superbasin within this 

platform hosts the world-class Century Zn-Pb-Ag deposits and is also well known for the Iron 

Oxide Copper and Gold deposits. The mineral exploration and related subjects attract interests of 

numerous researchers [176-178]. Integration of the knowledge- and data-driven models is 

considered as an effective way to assist the resource exploration and environmental assessment. 
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Lawn Hill model constructed by using GoCAD (Figure 4.11) is taken here as an application 

example.  It covers 140.5×161.5×19.4 km3 (where depth is doubled in the visualization data) and is 

described by a 3D digital image with 7.1×107 voxels (Figure 4.11).  

 

 

Figure 4.11: The Lawn Hill model which is built by GoCAD with 7.1×107 voxels. 

 

4.5.2 Surface remeshing for the Lawn Hill model 

 

In Figure 4.12 (a), a stratigraphy surface is utilized to demonstrate the proposed surface remeshing 

approach. The initial surface mesh is extracted by the marching cube method [175] and shown in 

Figure 4.12 (b). Due to the inherent of 3D images, the mesh is staggered, which is shown in its 

close-up in Figure 4.12 (d). Besides, it contains a huge number of elements which is 2.8×106. 

Compared with Figure 4.12 (b), there is only 1.5×104 elements in the mesh (Figure 4.12 (c)) 

generated by the proposed remeshing method. Moreover, as the remeshing method takes the 

advantages of geodesic isolines highlighted by bold lines in Figure 4.12 (c), the created elements 

are aligned and parallel to the boundaries. To demonstrate the process of front mergence in detail, a 

close-up of Figure 4.12 (c) is shown in Figure 4.12 (e). Isolines in blue independently propagate 

from the boundaries of two holes towards the interior. When these two isolines encounter with each 

other, the front mergence is invoked to merge them into one which is highlighted in red. 
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(a) 

 

(b)                                                                 (c) 

 

(d)                                                                 (e) 

Figure 4.12: Remeshing for a rock stratum interface: (a) is a stratigraphy surface; (b) is the surface 

mesh (2.8×106 elements) extracted by the marching cube method [175]; (c) mesh (1.5×104 

elements) created by the proposed remeshing method; (d) and (e) are the close-ups of (b) and (c) 

respectively. 
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Figure 4.13 shows the ability of adaptive mesh generation which are controlled by parameters in 

Formula 4.1 and 4.2. The surface mesh in Figure 4.12 (a) is remeshed by three groups of parameters 

and Figure 4.13 (a)-(c) and their close-ups (d)-(f) are the meshes affected by the parameters. 

Comparing Figure 4.13 (a) with (b), they have the same Smax=20 and Sseg=2.5 but different q which 

is 1.1 in (a) and 1.2 in (b). As small q leads to a low gradation, the element size in Figure 4.13 (a) 

increases slower than that in Figure 4.13 (b). In terms of the parameters Smax and Sseg, they affect the 

element size and quantity of meshes. For instance, Figure 4.13 (c) is generated by Smax=30 and 

Sseg=5 which are larger than that of Figure 4.13 (a) and thus the mesh is sparser compared to the 

mesh of Figure 4.13 (a). Additionally, the element numbers of Figure 4.13 (a) and (c) are 12,872, 

and 5,639 respectively. 

 

 

 

Figure 4.13: Remeshing by different size fields: (a) Smax=20, q=1.1 and Sseg=2.5; (b) Smax=20, q=1.2 

and Sseg=2.5; (c) Smax=30, q=1.1 and Sseg=5; (d), (e) and (f) are the close-ups of (a), (b) and (c) 

respectively. 

 

4.5.3 Volume mesh generation for the Lawn Hill model 

 

Stratigraphy surface meshes are utilized as constraints to generate a volume mesh for the reservoir 
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model. As shown in Figure 4.14 (a) and (b), they are two adjacent strata which are meshed by the 

proposed method respectively. Figure 4.14 (c) is a close-up of the volume meshes demonstrates the 

mesh consistency.  

 

 

(a) 

 

(b) 
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(c) 

Figure 4.14: Volume mesh generation for the reservoir model: (a) and (b) are two adjacent strata; (c) 

is a close-up of the volume meshes. 

 

4.5.4 Integrated meshing process for the Lawn Hill model 

 

We achieve the process of meshing the Lawn Hill model on a super computer in the Centre for 

Geoscience Computing (http://earth.uq.edu.au/centre-geoscience-computing). In total, the surface 

mesh generation costs 106 minutes and the volume mesh generation costs 77 seconds. The 

integrated process of mesh generation for the Lawn Hill model is demonstrated as below. Firstly, 

the interfaces of rock strata are extracted and meshed by the proposed method. One of such 

interface meshes is shown in Figure 4.15 (a). Secondly, these interface meshes are combined 

together according to constraints. Figure 4.15 (b) is the combined surface mesh with 9.0×104 nodes 

and 1.9×105 elements. Lastly, taking Figure 4.15 (b) as input, the tetrahedral volume mesh is 

generated in Figure 4.15 (c). The volume mesh has only 1.7×105 nodes and 9.7×105 elements, 

which is much smaller than the original voxel model (7.1×107 voxels). Additionally, the 10 

components of this model and their volume meshes can be identified in the volume meshing 

process, which are illustrated in Figure 4.15 (d).  

 

 

http://earth.uq.edu.au/centre-geoscience-computing
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(a) 

 

 

(b) 

 

(c) 
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(d) 

Figure 4.15: Lawn Hill geological model: (a) a rock stratum interface remeshed by the proposed 

method; (b) the surface mesh; (c) the volume mesh with 1.7×105 nodes and 9.7×105 elements; (d) 

10 meshed components of the geological model. 

 

 

In Table 4.1, four methods [173, 174] are adopted to measure the element quality of the generated 

volume mesh in Figure 4.15 (c). The average element qualities of the volume mesh are close to that 

of a regular tetrahedron, which are considered as analysis-suitable for future FEM-based 

applications. 

 

Table 4.1: Element qualities of mesh in Figure 4.15 (c) 

Quality Measurement 
Minimum 

Quality 
Average Quality 

Regular 

tetrahedron 

Minimum Dihedral Angle 3.18º 44.43º 70.53º 

Gamma Quality 0.03 0.74 1.00 

Edge Aspect 0.08 0.61 1.00 

Radius Aspect 0.01 0.77 1.00 

 

 

4.6 Conclusions 

 

This paper proposes an approach for meshing 3D geological reservoir models with arbitrary 

stratigraphic surface constraints. The approach has been successfully applied to generate mesh for a 

Lawn Hill reservoir model. Based on the numerical results, the following conclusions are drawn: 

 

(1) The proposed geodesic-based surface remeshing approach is effective in generating aligned 
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elements parallel to surface junction lines. The front mergence technique together with detection 

zone generation can robustly generate elements on stratigraphic surface with complicated 

geometries.  

  

(2) The remeshing process can be flexibly controlled customized parameters such as the gradation 

ratio q, the allowable maximum mesh size Smax and the allowable maximum boundary segment size 

Sseg. Specifically, large gradation ratio q leads to a high gradation. Maximum element size Smax and 

boundary segment size Sseg control the element quantity and the larger they are, the less the element 

quantity is.  

 

(3) Compared with the model in voxel format, the generated mesh model has smaller data set. For 

instance, the data set of the Lawn Hill model is reduced from 7.1×107 voxels to a volume mesh with 

only 1.7×105 nodes. Besides, the element quality of the generated mesh is high concerning four 

different measurements, which is analysable for FEM-based applications.  
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Chapter 5 An Adaptive Remeshing Approach for 

Geological structure with Stratum Interface Constraints  

 

 

5.1 Overview 

 

With the development of geological modelling and computing techniques, geological structure of 

reservoirs can be described in more details and the corresponding numerical simulations allows for 

better engineering process ahead of design [2]. Different from meshes with a single material, 

geological mesh models have several strata and the stratum interfaces are needed to be clearly 

represented and preserved at any steps of numerical simulation. Regarding remeshing, it is difficult 

in itself [154-159] and the requirement of maintaining stratum interfaces makes it more challenging. 

Besides, working areas in geo-engineering always introduce fine elements to describe area of 

interesting in the corresponding mesh model. How to adapt these elements to the existing model is 

another issue of remeshing for geological analysis. Therefore, the objective of this chapter is to 

develop an adaptive remeshing approach which is conformable to stratum interfaces. 

 

Particularly, both 2D and 3D algorithms are carried out to achieve a comprehensive solution for 

remeshing with the consistency of stratum interfaces. In 2D, nodes close to interfaces are 

repositioned on these interfaces during the centroidal Voronoi diagram construction. In 3D, the 

stratum interfaces are remeshed respectively, which take account of effects of working areas in geo-

engineering. A volumetric mesh generation is proposed, which consists of a constrained Delaunay 

triangulation and an adaptive long-edge breaking strategy. As the remeshing for a geological 

structure is complicated, a number of current meshing techniques such as surface remesh [28], 

centroidal Voronoi diagram [29], boundary recovery [74, 179] as well as mesh optimization 

methods [180-182] are integrated into our approach to achieve the goal of adaptive remeshing. At 

the end of this chapter, remeshing applications in a near well bore drilling and a long wall mining 

model are utilized to demonstrate the capability of the proposed remeshing approach.. 
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5.2 Mesh density control and centroidal Voronoi diagram  

 

5.2.1 Mesh density control 

 

To simulate dynamic processes such as drilling and caving in geo-engineering, the adaptive 

remeshing should have an ability to effectively involve bore holes or working faces into geological 

models. Concerning areas of interest,a relatively small element size is expected to achieve an 

accurate analysis. An appropriate size map is applied to adapt these small element size to the 

existing mesh model. In this chapter, the size map H is an association of a global structure size map 

Hg and a local size map Hl. Besides, H is restricted by a customized minimum size Smin. Formally, 

the element size of a point P is defined as below. 

 

H(P) = min(Hg(P), Hl(P)), if H(P) < Smin, then H(P) = Smin                       (5.1) 

 

The detection of remeshing zone is an essential issue. In 3D domain, this zone is governed by an 

elliptic cylinder as shown in Figure 5.1.  On its surface ellipse, 2f is defined by the length of 

diameter of a well or the width of a working face. The semi-major axis a and the cylinder height h 

are obtained by the following equation. 

q

SqS
bbfabdh






1
,, maxmin                                               (5.2) 

Where Smax is the customized maximum size, q is the adaptive gradation and d is the length of 

drilling or caving. Elements whose barycentre is within this elliptic cylinder are collected to be 

remeshed.  

 

 

Figure 5.1: An elliptic cylinder for the governing remeshing zone 
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Moreover, the elliptic cylinder is also utilized to define the local size map Hl. Specifically, we a 

point P in this zone is mapped onto the base and then its size is calculated by  

q

Sqf
PFPF

S

PH l

min

21

min )1()
2

(

)(






                                      (5.3) 

In terms of the definition of size map Hg, we assume that }{ iN  and }{ iT  are respectively the sets of 

nodes and elements within the governing elliptic cylinder. For a node Ni of }{ iN , its size Hg(Ni) is 

the average length of its incident edges. For a point P, we firstly locate it in one element Ti of 

}{ iT and then obtain the interpolated value by: 

ijjgjg TNNHaPH  ,)()(                                                   (5.4) 

Where Nj are the nodes in Ti and aj are the volume coordinates of Ti. 

 

 

5.2.2 Centroidal Voronoi diagram based on mesh density control 

 

Given an open set NR , and n different generators n

iiz 1}{  . Let dis(·) denote the distance function 

on NR , the Voronoi diagram (whose dual is well-known as Delaunay triangulation) is defined as 

n

iiV 1}{  : 

},,,1),(),(|{ ijnjforzxdiszxdisxV jii                               (5.5) 

Centroidal Voronoi diagram is firstly proposed by Du et al. [29] where the generator zi is also the 

mass centroid of its Voronoi cell: 



 


i
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                                                             (5.6) 

Where ρ(x) is a density function of Vi. 

 

An approximation of Formula 5.6 adopted here is: 



 


j

jj

i
T

TC
z                                                                (5.7) 

Where  
jT are the elements discretising the Voronoi cell (a 2D case is shown in Figure 5.2) and Cj 

is the barycentre of Tj. jT  is the area/volume of Tj, which is calculated by Heron-type formula. 

Specifically, the length of an edge ab of Tj is calculated by: 
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Figure 5.2: A Voronoi cell in 2D domain 

 

5.3 2D remeshing with confirmed stratum interface 

 

Stratum interfaces in 2D domain are represented by constraint lines. In this chapter, the 2D 

remeshing process consists of the following two major steps: (1) node reposition and (2) edge 

removal.  

 

5.3.1 Node reposition  

 

We consider a triangular mesh patch MPold (Figure 5.3 (a)), where red lines are constraint lines 

}{CL representing stratum interfaces. Based on the size map H, an isotropic surface remeshing [28] 

is firstly employed to generate a new mesh MPnew (Figure 5.3 (b)) within the domain defined by 

MPold. In this model, a long wall mining process is undertaken and the remeshing result is 

demonstrated in Figure 5.3 (b). Obviously, mesh in Figure 5.3 (b) is not consistent with stratum 

interface constraints. Hence, the following algorithms are involved to recovery these constraints. 
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Figure 5.3: remeshing for a patch of geological mesh model: (a) is an old mesh to be remeshed; (b) 

is an isotropic remeshing result based on the proposed size map H. 

 

To represent }{CL in MPnew, there must be a set of nodes on the constraints. Therefore, a reposition 

algorithm is proposed here to adjust nodes around }{CL . Specifically, the algorithm is implemented 

as below: 

 

Algorithm 5.1: Node reposition  

STEP 1: Assign each node ni in MPnew an array NPi 

STEP 2: Detect candidate points 

FOR EACH edge ei in MPnew 

The ends of ei are node ni and nj 

IF ei is intersected with }{CL  on a point P THEN 

    IF P is closer to ni THEN 

        Push P into NPi 

    ELSE 

        Push P into NPj 

    ENDIF 

END IF 
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END FOR 

STEP 3: Reposition 

    FOR EACH node ni in MPnew 

        IF NPi is empty; THEN CONTINUE; END IF 

        Choose a point closest to ni in NPi to update ni 

    END FOR 

 

It is necessary to reposition nodes based on the closet intersection points. As }{CL  are curves, the 

operation of arbitrarily repositioning a node to an intersection point may lead to a long distance 

moving, which will be blocked by mesh topological structures.  

 

To further improve element quality, a mesh optimization method based on Formula 5.7 is 

performed after Algorithm 5.1. As Formula 5.7 will offset nodes from }{CL , an amending step is 

mapping the calculated position onto }{CL . Consequently, }{CL  could still be described by a set of 

nodes in MPnew. Algorithm 5.1 and the mesh optimization method are iteratively invoked to 

guarantee a high quality mesh with stratum interface constraints. It is worthwhile to note that the 

mesh topological structure needs to be updated during the node reposition to satisfy the Delaunay 

triangulation criterion [75]. 

 

5.3.2 Edge removal 

 

Due to the property of Delaunay triangulation, nodes close to each other are automatically 

connected in the generated triangular mesh. Consequently, most of the nodes on }{CL  are linked 

with its neighbours to make up the stratum interfaces. However, there is still no theoretical 

guarantee that the stratum interfaces are fully recovered. The recovery of stratum interfaces is 

achieved by remove edges intersected with }{CL . We collect the intersected edges and randomly 

flip them. Based on the theory in [183], these edges will be finally removed by flipping operations 

and then the stratum interfaces are recovered. 

 

Figure 5.4 is the result of the proposed node reposition and edge removal algorithms. Obviously, 

compared with Figure 5.3 (b) the stratum interfaces are well represented in the mesh. 
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Figure 5.4: A remeshed model conforming to stratum interfaces 

 

5.4 3D remeshing with confirmed stratum interface 

 

The above 2D remeshing technique cannot be extended to the 3D case. It is because the node 

reposition in 3D is more difficult than that in 2D concerning the correctness of mesh topological 

structure. In our 3D remeshing algorithm, a set of nodes and facets are generated and inserted into 

the volumetric model according to 3D stratum interfaces as well as human intervention in geo-

engineering. Combining these facets with the surface of remeshing zone as constraints, a long-edge-

breaking operation is developed to generate a tetrahedral mesh and then fit it into the global model.  

 

5.4.1 Stratum interface remeshing 

 

In geo-engineering such as the drilling and caving, cross-sections of the working faces are usually 

regular geometries and convex, which can be automatically recovered in the Delaunay triangulation.  

 

In terms of well drilling, a well will pass through stratum interfaces and cut a hole on the 

corresponding surfaces and rock mass. Figure 5.5 is a case of well drilling, where the bore hole is a 

circle. We choose the points on the circle to be inserted in the corresponding surface remeshing. As 

a result, the boundaries are recovered after the adaptive remeshing. 
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Figure 5.5: A well pass through a stratum interface 

 

In terms of the long wall mining, the working face will parallel to a coal seam. Therefore, the mode 

of the modification of stratum interfaces is different from the one of drilling. As seen in Figure 5.6, 

the stratum interface is eroded from its boundary rather than centre. However, the caved zone is still 

convex, which can be easily recovered in the corresponding surface remeshing. The remeshing 

result is demonstrated in Figure 5.6. 

 

Figure 5.6: A long wall mining example 

 

5.4.2 Volumetric mesh generation 

 

Let VMold of R3 be the local mesh detected by an elliptic cylinder defined by Formula 5.2, which is 

going to be remeshed according to the size map H defined by Formula 5.1. We suppose the 

corresponding new mesh is VMnew.  Nodes in the new mesh VMnew consist of two parts: (1) nodes 

Nconstraint on constraints including mesh boundaries and stratum interfaces and (2) nodes Nin within 
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VMnew. Since Nconstraint is known, the amount of interior nodes can be calculated through an 

assessment of the node quantity in VMnew.  

 

We consider a domain Ω of R3 filled with V cubes with the same edge length. As shown in Figure 

5.7, a cube can be divided into five tetrahedral and thereby the number of tetrahedral elements is 

NE=5V. Regarding the number of nodes in Ω, it is approximately NN≈V, since a cube has 8 nodes 

and most of nodes are shared by 8 cubes. Therefore, the relationship between NE and NN is defined 

as aNENN 2.0 , where a is a relaxation factor. In this paper, a=0.94 is adopted.  

 

 

Figure 5.7: A cube consists of five tetrahedra 

 

Let }{ iT be the set of tetrahedral elements within the remeshing zone. The size map is defined by the 

Formula 5.1 and the number of tetrahedral elements in the new mesh is calculated by 

 iTNE 26 . Hence, the number of nodes within VMnew is  

 int22.1 constraiin NTaN                                                            (5.9) 

Where jT is the volume of Ti, which is calculated by Heron-type formula based on Formula 5.8. 

The generation of VMnew is achieved by the following algorithm. 

 

Algorithm 5.2: Mesh generation by breaking long-edges 

STEP 1: Generate a constrained Delaunay triangulation based on the VMold boundaries and 

stratum interfaces; 

STEP 2: Insert interior nodes 

WHILE Nin is greater than 0 

    Collect edges }{ iEL whose lengths are greater than 1.0 concerning Formula 5.8 and then sort 

them in a decreasing order. 
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    FOR EACH edge ELi 

        IF ELi does not exist THEN  

            CONTINUE 

        ELSE 

            Insert a node at the middle of ELi and decrease Nin by 1 

        END IF 

    END FOR 

END WHILE 

STEP 3: Optimize the element quality by Formula 5.7 

 

 

5.5 Numerical applications 

 

We use two application examples to demonstrate the capability of the proposed adaptive remeshing 

technique for geological structures. The first one is a vertical well drilling process. As a well will 

vertically drill through stratum interfaces, the process only involves 3D remeshing with confirmed 

stratum interfaces. The second example is for a horizontal long wall caving. Therefore, both 2D and 

3D interface preservations are utilized to maintain the integrity of stratum interfaces in the 

corresponding adaptive remeshing process.  

 

5.5.1 Remeshing for a vertical well drilling 

 

Firstly, one step of a well drilling is described to demonstrate the remeshing process in detail. As 

shown in Figure 5.8 (a), the existing mesh model have an average element size of 1.0 and there are 

five strata indicated by different colours. We adopt a well with a circular bore hole and thus the 

corresponding remeshing zone is approximately a cylinder. The parameters for the detection of 

remeshing zone are defined as Smin=0.125 the element size on the well, Smax=1.0 the average 

element size in the model and q=1.5 the gradation. The mesh highlighted by light green in Figure 

5.8 (a) is the remeshing zone. Figure 5.8 (b) is the interface between the first and second stratum 

from the top of the model, which is required to be preserved in the remeshing process. Based on 

Formula 5.1, a size map in Figure 5.8 (c) is generated to control element sizes as well as adaptive 

features in the remeshed model. In Figure 5.8 (d), the stratum interface is remeshed and a hole is 

created in the area where the well passes through. Figure 5.8 (e) is the remeshed result for the 

remeshing domain. Obviously, the geometry of the stratum is maintained. Moreover, the element 

size distribution obeys the size map in Figure 5.8 (c), which increases from bore hole to the model 
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boundary. Finally, the new generated mesh in Figure 5.8 (e) is integrated into the original model to 

complete this drilling step.  
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Figure 5.8: one step of a well drilling process: (a) the well and remeshing zone, (b) stratum interface 

within the remeshing zone, (c) the size map, (d) the stratum interface after remeshing and (e) the 

volumetric mesh after remeshing. 

 

In Figure 5.9, the whole process of a well drilling is demonstrated. The size of the mesh model in 

Figure 5.9 (a) is 16×16×35m3 and a well with a diameter of 0.8m will be created in the model. 

Figure 5.9 (b) is the stratum interfaces which need preservation in the remeshing for drilling. We 

adopt the minimum dihedral angle [174] as the element quality measurement and attach a chart with 

every volumetric meshes. From top to bottom, the drilling work is achieved by the proposed 

adaptive remeshing algorithm. As demonstrated in Figure 5.9 (c)-(f), the remeshing algorithm 

maintains all the stratum interfaces when the bore hole passes through them. Besides, the element 

size of the mesh is adapted from the bore hole to the model boundary. Additionally, the high 

element quality is kept in each step of drilling as required by geocomputing applications. 
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Figure 5.9: A well drilling process: (a) the well model, (b) the stratum interfaces and (c)-(f) the well 

drilling steps. The charts are element quality measured by the minimum dihedral angle in 

tetrahedral elements. 

 

5.5.2 Remeshing for a horizontal long wall caving 

 

Compared with the above well drilling process, the remeshing for a long wall caving is more 

complicated. As a long wall caving horizontally amends the structure of a stratum, the 

corresponding remeshing requires stratum interface preservation techniques in both 2D and 3D. 

Figure 5.11 (a) is the volumetric mesh model whose size is 200×100×48m3.  There are five strata as 

well as four interfaces. Figure 5.10 (a) is one side of the mesh model. The caving process is 
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undertaken in the second stratum from the bottom. The size of working face is 80×3m2. The 

parameters of remeshing used here are Smin=1.3, Smax=8.0 and q=1.5. In terms of the 2D adaptive 

remeshing, the result is shown in Figure 5.10 (b). The geometries of the stratum interfaces in the 

new mesh are the same as that of old mesh. Besides, the element sizes in the mesh follow the 

defined size map based on Formula 5.1.  

 

 

 

Figure 5.10: 2D adaptive remeshing conforming to stratum interfaces: (a) is the old mesh model and 

(b) is the remeshed result.  

 

Meshes in Figure 5.11 shows the complete process of a long wall caving by the proposed remeshing 

algorithm. Similar as the well drilling case, every step of the caving comes with a chart of element 

quality measured by the minimum dihedral angle [174]. Figure 5.11 (b) shows a half of the original 

mesh model, where the node quantity is just 8,083. Based on the customized shape of working face 

and length of caving step, the model is automatically remeshed from Figure 5.11 (c) to (f), where 

the caving process keep the same speed. Finally, the node quantity increases to 35,921 in Figure 

5.11 (f). Although the stratum interfaces consist of different facets in each caving step, their 

geometrical features are preserved. Moreover, the proposed remeshing algorithm guarantee a 

generation of high-quality elements in each of these caving steps. 
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Figure 5.11: 3D adaptive remeshing conforming to stratum interfaces: (a) is the original mesh 

model and (b) is a half of it. (c)-(f) are the caving steps driven by the proposed remeshing method, 

where the charts are element quality measured by the minimum dihedral angle in tetrahedral 

elements. 

 

5.6 Conclusions 

 

In this paper, an adaptive remeshing approach is proposed for geological structure with stratum 

interface constraints. The numerical examples of remeshing for both drilling and caving processes 
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have validated the proposed algorithm and proven its usefulness. Therefore, the following 

conclusions are drawn: 

 

(1) Both 2D and 3D conforming strategies are effective to preserve stratum interfaces in terms of 

the geometry. 

  

(2) The proposed definition of the mesh size map is appropriate for adapting element size from 

working areas to model boundary as demonstrated in the above drilling and caving processes.  

 

(3) The proposed volumetric mesh generation method can effectively create high-quality elements 

with a gradation consistent with the corresponding size map for further geological engineering 

analysis 
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Chapter 6 Conclusions and Future Work 

 

 

 

This thesis proposed new automatic mesh generation algorithms and an adaptive remeshing method 

to provide a link between geological data and numerical analysis. Strategies in both 2D and 3D are 

carried out to generate high-quality meshes for representation of geo-objects, which take into 

account fractures and material interface constraints. In this chapter, the conclusions of this thesis are 

summarized and the future work based on current outcomes is discussed.  

 

6.1 Conclusions  

 

Based on the research work carried out in this PhD project, the following conclusions are drawn: 

 

(1). An arbitrary boundary constrained quadrilateral mesh generation method has been developed to 

produce high-quality mesh models for 2D multi-material geological structure. The proposed 

meshing approach significantly improves the element quality and creates layers of well-aligned 

elements around complex image boundaries. Compared with algorithms developed by Park et al. 

[168] and Lee et al. [43], the method has more advantages in generating high-quality elements and 

reducing irregular nodes. The effectiveness of the method has been validated using examples from 

practice such as images of coal plugs and fractured rocks. 

 

(2). An effective 3D meshing algorithm has been proposed and implemented towards generating 

mesh representations for fractured rocks. When compared with 3D digital images of fractured 

rocks, the meshes generated by the proposed algorithm can represent fractured rocks through 

smaller data sets and reasonable shape similarities. The application example showed that the ratio 

between the tetrahedral mesh element number and the digital image grid number is 1:6704 and the 

corresponding shape similarity is 60.3%. Based on our numerical experiments, the optimal Voronoi 

cell radius used for generating surface mesh for the rock sample is 7 and surface meshes with shape 

similarity above 60% are considered as close approximations for fractured rocks. In terms of 

effectiveness, it was proved that if the proposed umbrella operations are successfully implemented 

to all surface nodes, the generated surface mesh is valid with regard to preserving mesh topology 

structure and representing geometry features of fracture. A junction weight threshold is introduced 
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to reduce the number of failed umbrella operations and its appropriate range is from 10 to 12. Even 

if the umbrella operation fails, the manual repair work is limited only to the vicinity of failed nodes 

and easy to achieve. 

 

(3). A mesh generation method for 3D geological reservoirs with arbitrary stratigraphic surface 

constraints is proposed, which has been successfully applied to generate mesh for the Lawn Hill in 

Queensland, Australia. The proposed geodesic-based surface remeshing approach is effective in 

generating aligned elements parallel to surface junction lines. The front mergence technique 

together with detection zone generation can robustly generate elements on a stratigraphic surface 

with complicated geometries. Compared with the Lawn Hill model in voxel format, the data set is 

reduced from 7.1×107 voxels to a volume mesh with only 1.7×105 nodes. Besides, the element 

quality of the generated mesh is high concerning four different measurements [173, 174], which is 

suitable for FEM-based applications. 

 

(4). An adaptive remeshing approach conforming to stratum interfaces has been developed for 

geological structures towards simulation of geo-engineering processes by the finite element method. 

Both 2D and 3D stratum preservation algorithms are proposed and implemented to carry out a 

complete solution for remeshing with the consistency of interfaces. The proposed definition of the 

element size map is appropriate for adapting element size from working areas to model boundary. 

The proposed volumetric mesh generation method can effectively create high-quality elements with 

a gradation consistent with the corresponding size map. Applications in a well drilling and a long 

wall caving model demonstrate the potential capability of the proposed remeshing approach in both 

the petroleum and coal mining industry. 

 

 

6.2 Future work 

 

The majority of the work completed in this study focuses on generating static mesh models for geo-

objects. One of the most important objectives of our future work is extending the developed 

algorithms to resolve dynamic problems for geological modelling. In addition hexahedral mesh 

generation for geological modelling is highly sought after due to its capacity for increased 

numerical accuracy. Besides, parallelization of the current SCVD construction is important to 

increase the speed of the proposed meshing algorithms for 3D images. Hence, the future research 

areas include: 
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(1) Extending the proposed mesh generation for fractured rocks in Chapter 3 to further describe 

fracture propagation within the current mesh model promises to powerful tool. Challenges such as 

fracture mesh remeshing, fracture path detection and integration with corresponding numerical 

methods will need to be addressed.  

 

(2) A crucial step for the remeshing method proposed in Chapter 5 is the capability to couple the 

current size map with a stress field for many potential applications in geo-engineering. It is also 

worthwhile to resolve fractures into well mesh models so that effects such as near-wellbore effects 

on fracturing can be studied. 

 

(3) As demonstrated in Chapter 2 and 4, geodesic isolines can generate elements parallel to line 

constraints. Therefore it is reasonable to consider an extension of the proposed quadrilateral mesh 

generation method to achieve an automatic hexahedral mesh generation for geo-objects in 3D 

domain.  

 

(4) The time efficiency analysis in Chapter 3 reveals that the bottle neck of current mesh generation 

method is the SCVD construction. Fractures in rocks could be divided into several individual pieces 

and then utilize our algorithm to generate mesh for these sub-fractures simultaneously. Hence such 

a divide-and-conquer scheme should be further developed to improve the time efficiency of current 

image-based meshing method.  
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