

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Deformable Simplicial Complexes

Misztal, Marek Krzysztof; Anton, François; Bærentzen, Jakob Andreas

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Misztal, M. K., Anton, F., & Bærentzen, J. A. (2010). Deformable Simplicial Complexes. Kgs. Lyngby, Denmark:
Technical University of Denmark (DTU). (IMM-PHD-2010-241).

http://orbit.dtu.dk/en/publications/deformable-simplicial-complexes(df4bfb96-476b-4eee-8904-1cf70597cc28).html

Deformable Simplicial Complexes

Marek Krzysztof Misztal

Kongens Lyngby 2010
IMM-PHD-2010-241

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Summary

In this dissertation we present a novel method for deformable interface tracking
in 2D and 3D—deformable simplicial complexes (DSC). Deformable interfaces
are used in several applications, such as fluid simulation, image analysis, recon-
struction or structural optimization.

In the DSC method, the interface (curve in 2D; surface in 3D) is represented
explicitly as a piecewise linear curve or surface. However, the domain is also
subject to discretization: triangulation in 2D; tetrahedralization in 3D. This
way, the interface can be alternatively represented as a set of edges/triangles
separating triangles/tetrahedra marked as outside from those marked as inside.
Such an approach allows for robust topological adaptivity. Among other ad-
vantages of the deformable simplicial complexes there are: space adaptivity,
ability to handle and preserve sharp features, possibility for topology control.
We demonstrate those strengths in several applications.

In particular, a novel, DSC-based fluid dynamics solver has been developed
during the PhD project. A special feature of this solver is that due to the fact
that DSC maintains an explicit interface representation, surface tension is more
easily dealt with.

One particular advantage of DSC is the fact that as an alternative to topology
adaptivity, topology control is also possible. This is exploited in the construction
of cut loci on tori where a front expands from a single point on a torus and stops
when it self-intersects.

ii

Resumé

I denne afhandling beskrives en ny metode til at følge deformerbare grænse-
flader mellem to stoflige faser i 2D og i 3D. Metoden kaldes for DSC, Deformer-
bare Simplicial Complexes. Deformerbare grænseflader har mange anvendelser,
herunder simulering af væsker, rekonstruktion af overflader, strukturel optimer-
ing, billedanalyse, m.m.

I DSC metoden repræsenteres grænsefladen (kurve i 2D, flade i 3D) eksplicit
som en stykvist lineær kurve eller stykvist plan flade. Dog er selve domænet
som kurven eller fladen befinder sig i ogs̊a diskretiseret via et simplex net: I 2D
er der tale om en triangulering og i 3D en tetrahedralisering. P̊a denne m̊ade
kan man alternativt se grænsefladen som en mængde af kanter (trekanter) der
adskiller trekanter (tetraeder) som er markeret som havende forskellig fase (som
regel er faserne blot “indenfor” og “udenfor”). Denne fremgangsm̊ade tillader
robust topologisk tilpasning. En anden fordel ved DSC er rumlig tilpasning - vi
kan have forskellig detaljering af grænsefladen forskellige steder. desuden er det
muligt at h̊andtere skarpe kanter og det er muligt at kontrollere topologien, d.v.s.
forhindre topologiske forandringer, hvis dele af grænsefladen støder sammen. Vi
demonstrerer disse styrker ved metoden i forbindelse med en række anvendelser.

Specielt præsenteres en ny DSC baseret løser til fluiddynamiske problemer, som
er udviklet under PhD projektet. En særlig egenskab ved denne løser er at,
fordi DSC bevaerer en eksplicit repræsentation af overfladen, s̊a er det lettere
at h̊andtere overfladespænding end ellers.

En særlig fordel ved DSC er det faktum at man i stedet for at tillade topologiske
forandringer kan forhindre dem i at ske. Dette udnyttes i forbindelse med kon-
struktionen af “cut loci” p̊a en torus, hvor en grænsekurve ekspanderer langs

iv

overfladen p̊a en torus ud fra et enkelt punkt og stopper n̊ar kurven rammer sig
selv.

Preface

This thesis was prepared at Informatics Mathematical Modelling, the Technical
University of Denmark in partial fulfillment of the requirements for acquiring
the Ph.D. degree in engineering.

The thesis deals with mathematical modelling using deformable interface track-
ing methods. The main focus is on introducing a novel, unstructured grid based
method, significantly different from the existing deformable models. Several
applications are also presented.

The thesis consists of a summary report and a collection of four research pa-
pers written during the period October 2007–September 2010, and elsewhere
published (or submitted for publication).

Kongens Lyngby, September 2010

Marek Krzysztof Misztal

vi

Papers Included in the Thesis

[3] Marek Krzysztof Misztal, Jakob Andreas Bærentzen, François Anton
and Kenny Erleben. Tetrahedral Mesh Improvement Using Multi-face Re-
triangulation. In Proceedings of the 18th International Meshing Roundtable,
Salt Lake City 2009. Published.

[4] Marek Krzysztof Misztal and Jakob Andreas Bærentzen. Deformable
Simplicial Complexes. Submitted to ACM Transactions on Graphics.

[5] Marek Krzysztof Misztal,, Jakob Andreas Bærentzen and Steen Markvorsen.
Cut Locus Construction using Deformable Simplicial Complexes. Submit-
ted to Experimental Mathematics.

[6] Marek Krzysztof Misztal, Robert Bridson, Kenny Erleben, Jakob Andreas
Bærentzen and François Anton. Optimization-based Fluid Simulation on
Unstructured Meshes. In Proceedings of VRIPHYS 2010: The 7th Work-
shop on Virtual Reality Interaction and Physical Simulation, Copenhagen
2010. Accepted.

viii

Acknowledgements

This little book would not appear if it was not for my advisor, Jakob Andreas
Bærentzen. Andreas came up with the deformable simplicial complexes idea
and is the author of the initial, 2D implementation of the method. Besides
that, Andreas has been an excellent mentor, always ready to share his insight
and good advice and showing an enormous amount of patience.

I would also like to thank my co-advisor François Anton and my frequent collab-
orator Kenny Erleben (Department of Computer Science, University of Copen-
hagen) for several good ideas and inspiring conversations.

I could not overestimate the role of Robert Bridson from University of British
Columbia, where I spent my external research stay. Robert helped me polish
the details of the deformable simplicial complexes method and offered his great
insight in fluid dynamics while guiding me through developing a novel fluid
solver.

My thanks go to all the researchers whom I had pleasure to meet and who
had offered me their advice and help, especially Jeppe Revall Frisvad, Steen
Markvorsen, Matthias Stolpe, Carl-Ollivier Gooch and to my colleagues and
fellow PhD students, especially Vedrana Andresen, Katarzyna Gȩbal, Vesselin
Perfanov, Ojaswa Sharma, Peter Stanley Jørgensen and Lasse Farnung Laursen
for ongoing support and inspiration. I am also grateful to Eina Boeck, the
secretary of the IACG group, for her incredible patience while helping me deal
with the administrational issues.

Last, but not least, I thank my parents Urszula and Robert Misztal, my sister

x

Anna and other family members, as well as my friends in Poland, Denmark,
Canada and other places for having faith in me and being there for me during
the ups and downs of my PhD study.

xi

p,u,v, . . . points and vectors from R2 or R3

α, β, γ, . . . scalar values (real numbers), scalar functions

A, D, S, . . . matrices

v1,v2, . . . vertices (0-simplices)

e1, e2, . . . edges (1-simplices)

f1, f2, . . . faces (2-simplices)

t1, t2, . . . tetrahedra (3-simplices)

σ1, σ2, . . . arbitrary dimension simplices

σd arbitrary d-simplex

〈v1, . . . ,vk+1〉 k-simplex spanned by the vertices v1, . . . , vk

[v1, . . . ,vk+1] oriented k-simplex spanned by the vertices v1, . . . , vk

Σ1,Σ2, . . . arbitrary, unordered set of simplices

|Σ| number of elements in a simplex set Σ

vert(σ) set of vertices of a simplex σ

dim(σ) dimension of a simplex σ

dim(Σ) dimension of a simplex set Σ

filterk(Σ) k-subset of a simplex set Σ

K Euclidean simplicial complex

V (K) vertex set of a simplicial complex K

Bp,q(σ
p) boundary relation of a p-simplex σp ∈ K

Cp,q(σ
p) coboundary relation of a p-simplex σp ∈ K

Ap(σ
p) adjacency relation of a p-simplex σp ∈ K

st(σ) star of a simplex σ ∈ K

st(Σ) star of a simplex set Σ ⊂ K

cl(σ) closure of a simplex σ ∈ K

cl(Σ) closure of a simplex set Σ ∈ K

lk(σ) link of a simplex σ ∈ K

Table 1: Notation used in this document.

xii

Contents

Summary i

Resumé iii

Preface v

Papers Included in the Thesis vii

Acknowledgements ix

1 A Short Introduction to Deformable Interfaces 1
1.1 Deformable Models . 5
1.2 Deformable Simplicial Complexes 6

2 Preliminaries 9
2.1 Mathematical Background . 10
2.2 Implementation . 19

3 Tetrahedral Mesh Improvement Using Multi-face Retriangula-
tion 25
3.1 Introduction and Motivation . 26
3.2 Related Work . 28
3.3 Tetrahedral Mesh Quality Improvement 31
3.4 Implementation . 34
3.5 Tests and Results . 35
3.6 Discussion and Future Work . 41

4 Deformable Simplicial Complexes 45
4.1 Introduction . 46

xiv CONTENTS

4.2 Related Works . 47
4.3 Deformable Simplicial Complexes 49
4.4 Applications . 54
4.5 Conclusions and Future Work . 61

5 Cut Locus Construction Using Deformable Simplicial Complexes 63
5.1 Introduction . 64
5.2 Method Description . 67
5.3 Tests and Results . 72
5.4 Discussion . 74

6 Optimization-based Fluid Simulation on Unstructured Meshes 77
6.1 Introduction . 78
6.2 Related Works on Fluid Solvers 79
6.3 Deformable Interface Tracking . 80
6.4 Fluid Simulation . 82
6.5 Tests and Results . 91
6.6 Conclusions and Future Work . 93

7 Conclusions and outlook 95

Chapter 1

A Short Introduction to
Deformable Interfaces

We deal with curves and surfaces deforming at various rates in everyday situa-
tions (as shown in Figure 1.1). The examples of those include: surface of water,
clothes, coastlines, surface of blown glass or modelling clay in the hands of a
sculptor. Besides that, for many years we have been using deforming curves
and surfaces in a more abstract setting, in order to describe natural phenom-
ena. Those useful abstractions include, for example: progressing wavefronts
and contour lines in meteorological maps. However, in this work we restrict our
interest to a group of curves and surfaces called interfaces. A curve or surface
is an interface if it separates a region distinguished by a certain property from

Figure 1.1: Examples of deforming curves and surfaces in everyday life: free
surface of water; veils of the Chinese dancers (courtesy of wikipedia.org); contour
lines on a weather map (courtesy of Danmarks Meteorologiske Institut).

2 A Short Introduction to Deformable Interfaces

Figure 1.2: To the left – original volume, middle and right – results of sculping
using volumetric deformation tools, courtesy of Andreas Bærentzen.

other regions. A water surface is obviously an interface (it separates water from
other phases); so are contour lines in maps (they separate regions where the
values of a given, continuous quantity is greater or smaller than the value on
the contour line); so are wavefronts (they separate region already visited by the
wave from the region that the wave has not yet reached). A piece of cloth is
not an interface as it does not separate two regions of different properties. We
restrict our attention even further to a group of interfaces which are closed or
watertight. This is the case when the region defining the interface is bounded.

It is not surprising that there has been demand for robust and efficient numer-
ical methods for deformable interface tracking (deformable models), as we both
want to represent familiar deformable objects in virtual environments, as well
as use them as a description method in more abstract applications. First de-
formable models began to appear in late 1980ties (active contours [46] in 1987,
level set method [74] in 1988). Research in this field has been booming ever since,
as increasing computational power opened doors for new applications and im-
provement of the interface tracking algorithms. Several excellent methods have
been developed, often custom tailored for the requirements of specific areas of
use.

Geometric modelling. The interface is the boundary between modelling ma-
terial and empty space. While traditional geometric modelling methods do not
normally employ deformable models per se, use of deformable interfaces in more
recent techniques, such as sculpting [6] (see Figure 1.2) allowed for developing
more intuitive interfaces. Deformable models used in sculpting should han-
dle changes in the topology of an interface robustly, allow details of different
magnitude and sharp details. Another property, crucial in this application, is
interactivity – the chosen method should not introduce too much time overhead.

Image analysis. One of the important tasks in 2D and 3D image analysis is

3

Figure 1.3: Segmentation of the CT scan of a human thoracic cage, courtesy of
Ojaswa Sharma [84].

Figure 1.4: Results of segmentation of the porosity in a Solid Oxide Fuel Cell
sample, performed in order to localize the triple phase (pore, nickel and YSZ)
boundaries in the structure. Courtesy of Peter Stanley Jørgensen [45].

4 A Short Introduction to Deformable Interfaces

segmentation – partitioning the image into multiple, meaningful segments (e.g.
by labelling the pixels), in order to localize objects within the image (as shown
in Figures 1.3, 1.4, see also [14]). This can be done using deformable models,
especially when the images are noisy and using traditional clustering methods
would lead to semantically wrong results (e.g. by creating too many compo-
nents). Topological adaptivity is often desired, although in some applications,
when we have prior knowledge about the topology of the segments, we might
want to preserve it – a classic and challenging example is reconstruction of the
cortical surface of a brain, which is topologically equivalent to a sphere [8]. An-
other important application of deformable models in image analysis are in image
restoration (denoising, deblurring) [63,81]

Reconstruction. One step further from segmentation is reconstruction of ob-
jects from images or discrete point-sets (e.g. [102]). The interface naturally sep-
arates the reconstructed object from its exterior. Topological adaptivity might
be desired, but if we have prior knowledge about the topology of the object, we
might want to preserve it. We also expect deformable model to handle details
of different magnitudes and, in some cases, to handle sharp features properly.

Fluid simulations. In fluid simulations, deformable models are normally used
to track contact surface between two fluids (e.g.: water and air, smoke and
air, etc. [11]). Robust topological adaptivity is required, since the volume of
water tends to split and merge with ease, while sharp detail preservation is
of lesser importance (although space adaptivity is often needed). In case of
pre-rendered simulations time restrictions are lenient, but in case of real-time
simulations time efficiency is crucial. In some applications we might also want
to have direct access to the surface parametrization (e.g. showing the effects of
significant surface tension; properly handling solid boundaries). We present our
own, novel fluid solver in Chapter 6.

Structural optimization. There are two main sub-problems in structural op-
timization: topology optimization and shape optimization [7,56]. In the former,
an optimal distribution of material in the design domain is sought (so that e.g.
the strength of the structure is maximized). In the latter, optimal shape of the
structure boundary is found, without changing its topology. Deformable mod-
els can be used in both stages of optimization and in both cases the interface
separates material from the empty space. In the first stage, robust topological
adaptivity is important [94]. In the second stage – space adaptivity, explicit
interface representation and robust handling of sharp features.

Summarizing, depending on an application, we might be interested in the fol-
lowing properties of deformable models:

1.1 Deformable Models 5

Figure 1.5: Interface evolution in the level set method (courtesy of Andreas
Bærentzen).

• topological adaptivity – ability of the method to automatically change
the topology of the interface (merge or split parts of the interface), when-
ever collision occurs;

• topology control – ability of the method to preserve the topology of the
interface;

• scale adaptivity – ability of the method to efficiently and accurately
represent details of different magnitude;

• sharp detail preservation – some deformable models introduce signifi-
cant numerical diffusion leading to smoothing out sharp details. In some
cases the representation alone is not able to capture sharp details (e.g.
voxel grid);

• availability of explicit interface representation;

• interactivity;

1.1 Deformable Models

Traditionally, deformable interface tracking methods, also known as deformable
models, fall into two groups: explicit (or Lagrangian) and implicit (or Eulerian).
Lagrangian methods, such as snakes, use parametrisation of the interface and
apply the deforming velocity field (u) directly to the interface points (v):

dv

dt
= u(p).

6 A Short Introduction to Deformable Interfaces

This approach is effective for small deformations, but leads to trouble when parts
of the interface collide and the topology of the interface changes. Reparametri-
sation is needed, along with surgical cuts and efficient collision detection mech-
anism. Those problems do not occur in Eulerian methods, such as the level set
method (LSM, Figure 1.5, for detailed description of the method see [75, 83]).
LSM represents an interface as the 0-level set of a function φ defined over the
whole space. The deformation of an interface is produced by evolving the func-
tion φ. Such an evolution is rather non-trivial: if we want to produce the de-
formation of the interface due to the veolocity u, the evolution of the function
φ is given by the following partial differential equation:

∂φ

∂t
+ u · ∇φ = 0,

also known as level set equation. What we earn this way is trivial and robust
topological adaptivity, as the changes in the topology of the 0-level set happen
automatically. The signed distance function (the shortest distance from the
interface, positive outside the interface and negative inside the interface) is the
usual choice for φ. One can easily notice how simple it is to produce the interface
offsetting – motion in the normal direction – in this setting. If the interface is
given as the 0-level set of a signed distance function φ, its offset produced by
moving in the normal direction at unit speed in time τ is simply the 0-level set
of a function φτ = φ− τ .

However, the LSM also exhibits several drawbacks: it is bound to a certain
scale dictated by the resolution of the underlying grid; it suffers from significant
numerical diffusion due to the constant re-sampling of the interface and also the
properties of the numerical methods used to solve the level set equation 1; it
does not allow explicit interface representation, but the interface has to be recon-
structed at every time step using an implicit surface polygonization algorithm
such as marching cubes [60, 72]. These shortcomings could be avoided while
keeping robust topological adaptivity by using deformable simplicial complexes.

A more detailed description of the state-of-the-art in the field of deformable
models can be found in Chapter 4.

1.2 Deformable Simplicial Complexes

Deformable simplicial complexes (DSC) represent the interface in an explicit,
discretised way – as a piecewise linear curve in 2D, or a piecewise linear (trian-

1For more information on the properties of Hamilton-Jacobi equations (such as level set
equation) and grid-based finite difference methods for solving them see [26,58].

1.2 Deformable Simplicial Complexes 7

Figure 1.6: Interface representation in deformable simplicial complexes (2D on
the left, 3D on the right). Exterior triangles (tetrahedra) are light gray, interior
– blue. Simplices belonging to the interface (edges and vertices in 2D; faces,
edges and vertices in 3D) are highlighted in dark blue. On the left, the red
arrow indicates where topology changes take place. Note also the difference in
scale between the largest and the smallest triangles.

gulated) surface in 3D. However, also the whole embedding space (or rather, an
interesting part of it, which is usually a box containing the interface) is a subject
to a discretization – triangulation in 2D or tetrahedralization in 3D, fulfilling
two conditions:

1. Simplicial complex criterion – the intersection of two simplices can be
either empty or be their common face (e.g. in 3D two tetrahedra can
intersect only at the common face, edge or vertex; in 2D two triangles can
intersect only at the common edge or vertex);

2. It conforms to the interface – the interface is represented as a set of bound-
ary edges (faces) between the triangles (tetrahedra) marked as outside and
inside;

In other words, the whole domain is divided into simplices (triangles in 2D,
tetrahedra in 3D): interior and exterior (see Figure 1.6) in such a way, that the
interface is given as a set of simplex boundary faces (edges in 2D; triangles in
3D) dividing the interior from the exterior. This implies, that the interface is in
fact given implicitly and the method is oblivious of the parametrisation of the
interface. The interface deformation is performed via displacements of the in-
terface vertices, while keeping the simplicial complex criterion of the underlying
triangulation (tetrahedralization) all the time.

As vertices move, some of the triangles (tetrahedra) become degenerate and are
simply removed by DSC’s mesh quality improvement procedures. For instance, if
a vertex from one component of the interface comes close to another component,
a very degenerate triangle appears (as exemplified in 1.6). This triangle is

8 A Short Introduction to Deformable Interfaces

removed by edge flipping which causes the two components to merge. In fact all
interface collisions are detected and resolved this way – locally – on individual
triangle (tetrahedron) level. That means, there is no external collision detection
mechanism needed in this framework, and the changes in the topology of the
interface are automatic, transparent to the user.

This approach allows DSC share the biggest advantage of the level set method:

• robust topological adaptivity;

while preserving the advantages of the explicit methods:

• little numerical diffusion;

• availability of the interface parametrisation;

Moreover, use of an unstructured grid yields scale adaptivity, and intrinsic col-
lision detection mechanism allows for topology control.

Chapter 2

Preliminaries

In the first part of this chapter we introduce, rather formally, main mathematical
notions necessary to understand the implementation of the method. Knowing
the implementation details is not necessary to understand the following chapters,
however some of the notions defined in Section 2.1.1 are used throughout the
document (e.g.: simplex, simplicial complex, closure, star, link). Simplicial
complexes are among the most important concepts used in algebraic topology,
so well structured, in-depth description of the subject can be found in many
algebraic topology textbooks (such as [57]).

In the second part of this chapter we briefly describe the implementation of the
3D deformable simplicial complexes. We introduce incidence simplicial data
structure for storing and traveral of simplicial complexes [30] and describe the
alterations we have made to the original structure.

10 Preliminaries

2.1 Mathematical Background

2.1.1 Euclidean simplicial complexes

Let v1, . . . ,vk+1 be points in a n-dimensional Euclidean space En. We call them
affinely dependent if

(∃µ1, . . . , µk+1 ∈ R)

k+1∑
i=1

µi = 1 ∧
k+1∑
i=1

µivi = 0.

Otherwise, v1, . . . ,vk+1 are called affinely independent.

Having p + 1 affinely independent points v1, . . . ,vp+1 in a En we define an
Euclidean simplex σ = 〈v1, . . . ,vp+1〉 as a set of points given by a formula:

v = α1v1 + . . .+ αp+1vp+1,

where αi ≥ 0, α1 + . . .+ αp+1 = 1 (in other words, σ is a convex hull of points
v1, . . . ,vp+1). A simplex defined this way is, of course, a closed set in En. We
say that σ is of dimension p or, equivalently, that σ is an Euclidean p-simplex.
We denote this fact by: dim(σ) = p. We can also write the following relation:

dim(σ) = |vert(σ)| − 1,

where vert(σ) = {v1, . . . ,vp+1} is the undordered set of the vertices of σ.

We call a 0-simplex a vertex, a 1-simplex an edge, a 2-simplex a face and a
3-simplex a tetrahedron. Further, we call each point vi a vertex of σ, and each
simplex 〈vi1 , . . . ,viq 〉 (0 < q ≤ p, 1 ≤ ik ≤ p) a q-face of σ (or simply a face
of σ, if no ambiguity arises). We also call the (p − 1)-faces of a p-simplex σp

its boundary faces. The faces of σ that are not equal to σ itself are called its
proper faces. The union of all the boundary faces of a simplex σ is called the
boundary of σ. The boundary of a p-simplex in En should not be confused with
the topological notion of the boundary of set A defined as

∂A = A ∩ En −A.

If n > p, ∂σp = σp. The boundary of a p-simplex should be interpreted in sense
of p-manifold boundary.

The relative interior of a simplex σ (or the open simplex spanned by the points
v1, . . . ,vp+1) is defined as a set of points:

v = β1v1 + . . .+ βp+1vp+1,

2.1 Mathematical Background 11

where βi > 0, β1 + . . . + βp+1 = 1. An open simplex is an open set within its
affine hull. The affine hull of p + 1 affinely independent points v1, . . . ,vp+1 is
defined as a set of points:

v = γ1v1 + . . .+ γp+1vp+1,

where γ1+. . .+γp+1 = 1. In E3, the affine hull of four affinely independent points
is the whole space, the affine hull of three affinely independent points is a plane
that passes through those points, the affine hull of two affinely independent
points is a straight line that passes through those points, and the affine hull
of one point is a set containing only this point. It can now be noticed that,
although in E3 an open 2-simplex is not an open set, it is open in the plane that
contains it (which is a 2-dimensional affine space). Similarly, an open 1-simplex
is an open set in the straight line that contains it (which is a 1-dimensional
affine space). Lastly, an open 0-simplex, which is a single point, is an open set
within the topological space whose only element is this point (since for every
topological space X, X and ∅ are always open sets).

Clearly, every simplex is a disjoint union of the relative interiors of its faces.

For arbitrary, finite set of simplices Σ we define its dimension, as the maximum
dimension of the simplices in Σ:

dim(Σ) = max{dim(σ) : σ ∈ Σ}.

We also define a k-subset of Σ as a set of all k-simplices in Σ:

filterk(Σ) = {σi ∈ Σ : dim(σi) = k}.

A finite set Σ of Euclidean simplices forms a (finite) Euclidean simplicial complex
(see Figure 2.1) if the following two conditions hold:

1. Σ is closed (which means that for each simplex σ ∈ Σ, all faces of σ are
in Σ),

2. The intersection σi ∩ σj of any two simplices σi, σj ∈ Σ is a face of both
σi and σj .

From this point we denote simplicial complexes with sans-serif capital Latin
letters, e.g.: K. Any subset K′ ⊂ K that is itself a simplicial complex is called
a subcomplex of K. In particular, for any nonnegative integer k, the subset
K(k) ⊂ K consisting of all simplices of dimension less than or equal to k is
a subcomplex, called the k-skeleton of K. The 0-skeleton of K is called a vertex
set of K and denoted V (K).

12 Preliminaries

Figure 2.1: An example of what is (right) and what is not (left) a simplicial
complex. Courtesy of wikipedia.org.

For a p-simplex σp in a simplicial complex K we define the following topological
relations:

• for p > q, the boundary relation Bp,q(σ
p) is the set of all q-faces of σp:

Bp,q(σ
p) = filterq{σ ∈ K : vert(σ) ⊂ vert(σp)},

• for p < q, the coboundary relation Cp,q(σ
p) is the set of all q-simplices

that have σp as a face:

Cp,q(σ
p) = filterq{σ ∈ K : vert(σp) ⊂ vert(σ)},

• for p > 0, the adjacency relation Ap(σ
p) is the set of all p-simplices, which

are (p − 1)-adjacent to σp (which means those simplices, that share a
(p− 1)-face with σp):

Ap(σ
p) = filterp{σ ∈ K : |vert(σp) ∩ vert(σ)| = p},

• the adjacency relation A0(v), where v is a vertex, is the set of all vertices
ṽ connected to v by an edge:

A0(v) = {ṽ ∈ vert(K) : (∃e ∈ K) vert(e) = {v, ṽ}}.

We define the star of a simplex σ (see Figure 2.2, top) as a set of all the simplices
in K, which have σ as a face:

st(σp) = {σ ∈ K : vert(σp) ⊂ vert(σ)} =

n⋃
q=p+1

Cp,q(σ
p).

2.1 Mathematical Background 13

Figure 2.2: Illustration of the notions of star (top), closure (middle) and link
(bottom) of a simplex or set of simplices in a simplicial complex. Courtesy of
wikipedia.org.

14 Preliminaries

For the sake of convenience, we also define a star of an arbitrary subset Σ of K,
as the union of the stars of all simplices in Σ:

st(Σ) =
⋃
σi∈Σ

st(σi).

We also define the closure (see Figure 2.2, middle) of a simplex σp ∈ K as a set

cl(σp) =

p⋃
q=0

Bp,q(σ
p)

and the closure of a simplex set Σ ⊂ K, expressed as a set

cl(Σ) =
⋃
σi∈Σ

cl(σi).

Notice that this combinatorial notion of closure differs from the topological
notion of closure. In terms of point-set topology, for any simplex σ

σ = σ.

Equivalently, we can define the closure of a simplex σ ∈ K (simplex set Σ ⊂ K)
as the smallest subcomplex of K containing σ (including Σ). The link of a
simplex σ (see Figure 2.2, bottom) is defined as the set of all the the simplices
in the closure of the star of σ, which do not have σ as a face:

lk(σ) = cl(st(σ))− st(cl(σ)).

It can be proven that for every simplex σ ∈ K, lk(σ) is a subcomplex.

The carrier ‖K‖ of a simplicial complex K (also called the polyhedron ‖K‖) is a
subset of En defined by the union, as point sets, of all the simplices in K. For
each point v ∈ ‖K‖ there exists exactly one simplex σ ∈ K containing v in its
relative interior. This simplex is denoted by supp(v) and called the support of
the point v.

We say that a point v ∈ A ⊂ En is p-manifold if there exists a neighbourhood
U of v such that A∩U is homeomorphic to Rp or R(p−1) × (0,+∞). Otherwise
we call v non-manifold. We say that a simplex σ ∈ K is p-manifold, if every
point of the relative interior of this simplex is p-manifold with regard to the
carrier of K. E.g. obviously each n-simplex is n-manifold, each (n− 1)-simplex
is n-manifold if it is a face of at least one n-simplex, etc. We also say that an
n-dimensional simplicial complex K in En is manifold, if each of its simplices is
n-manifold.

2.1 Mathematical Background 15

We say that a (n−1)-simplex σn−1 ∈ K is boundary in n-dimensional simplicial
complex K if it is not n-manifold or is a face of only one n-simplex in K. We say
that a p-simplex σp ∈ K (p < n−1) is boundary in K if it is not n-manifold or is
a face of at least one boundary (p+ 1)-simplex in K. The union of all boundary
simplices in K forms the topological boundary of K according to the Euclidean
topology in En.

2.1.2 Abstract simplicial complexes

Alongside Euclidean simplicial complexes, we define abstract simplicial com-
plexes, which provide a purely combinatorial description of Euclidean simplicial
complexes, regardless of their geometry. In other words, abstract simplicial
complexes describe the connectivity of Euclidean simplicial complexes. They
are important from a software engineer’s point of view, because while designing
a data structure to represent simplicial complexes, we often want to decouple
geometric data from the connectivity information. Many of the notions used to
describe Euclidean simplicial complexes generalize easily to abstract simplicial
complexes.

An abstract simplicial complex (compare [57, p. 96-101]) K is a collection of
nonempty finite sets (called abstract simplices), such that:

σ ∈ K ∧ ∅ 6= σ′ ⊂ σ ⇒ σ′ ∈ K.

A set K′ ⊂ K, for which the condition above also holds, is called a subcomplex of
K. We call the set V =

⋃
σ∈K σ a set of vertices of K, any element of a simplex

σ ∈ K a vertex of σ, and any subset of a simplex σ ∈ K a face of σ (we assume
equivalence between a vertex v and the face {v}). For σ ∈ K we define:

dim(σ) = |σ| − 1.

The dimension of K is the maximum dimension of any simplex in K, if it exists,
otherwise we say that K is infinite-dimensional. We say that K is a finite complex
if K is a finite set. We can easily generalize the notions of closure, star and link
for the abstract simplicial complexes. The closure of a simplex σ ∈ K is the
smallest subcomplex of K that contains σ, that means:

cl(σ) = {σ′ ∈ K : σ′ ⊂ σ}.

The star of σ ∈ K is the set of all simplices that have σ as a face:

st(σ) = {σ′ ∈ K : σ′ ⊃ σ}.

The link of σ ∈ K can be defined as follows:

lk(σ) = cl(st(σ))− st(cl(σ)).

16 Preliminaries

Having a finite Euclidean simplicial complex K we can easily construct an ab-
stract simplicial complex K by identifying each simplex σ ∈ K with the set of
its vertices.

2.1.3 Orientations and orientability

We introduce the following equivalence relation in the set Pσ of all orderings
(vi1 , . . . ,vip+1

) of the vertices of σ = 〈v1, . . . ,vp+1〉:

(vi1 ,vi2 , . . . ,vip) ∼ (vπ(i1),vπ(i2), . . . ,vπ(ip))
m

π : {1, 2, . . . , p+ 1} → {1, 2, . . . , p+ 1} is an even permutation operator.

We call each element of the quotient set Oσ = Pσ/∼ (that means each equiva-
lence class in Pσ with regard to equivalence relation ∼) an orientation of a sim-
plex σ. It is easy to notice, that if p > 0, |Oσ| = 2, which means that there are
only two possible orientations for any simplex defined on a set of p + 1 points
from En. If p = 0, obviously |Oσ| = 1.

An oriented simplex is a simplex together with a choice of orientation. We will
write [v1, . . . ,vp+1] for the p-simplex oriented by the vertex ordering (v1, . . . ,vp+1),
and we will let −[v1, . . . ,vp+1] denote the same simplex with the opposite ori-
entation. Thus, for example, for 2-simplices we have

[v1,v2,v3] = [v2,v3,v1] = [v3,v1,v2] = −[v1,v3,v2] = −[v3,v2,v1] = −[v2,v1,v3].

The orderings belonging to the same equivalence class of Oσ are simply those
orderings, for which the sign of the volume of the simplex is the same. We define
an oriented volume of σ = [v1, . . . ,vp+1]

V(σ) = V(v1, . . . ,vp+1) =
1

p!
det(v1 − v2,v2 − v3, . . . ,vp − vp+1,vp+1 − v1).

It can be proven, that for an even permutation operator π

V(vπ(1), . . . ,vπ(p+1)) = V(v1, . . . ,vp+1),

and for an odd permutation operator π′

V(vπ′(1), . . . ,vπ′(p+1)) = −V(v1, . . . ,vp+1),

hence we can see that the combinatorial definition of the orientation corresponds
naturally to the geometric definition (according to which the orientation is de-
termined by the sign of the oriented volume of a simplex). The orientation of
σ, for which V(σ) > 0 is called the natural orientation.

2.1 Mathematical Background 17

The p-simplex [v1,v2, . . . ,vp+1] determines an orientation of each of its (p−1)-
faces, called the induced orientation, by the following rule: the induced ori-
entation on the face σp−1

i = 〈v1, . . . ,vi−1,vi+1, . . . ,vp+1〉 is defined to be
(−1)i+1[v1, . . . ,vi−1,vi+1, . . . ,vp+1]. Now suppose K is an n-dimensional sim-
plicial complex in which every (n − 1)-simplex is a face of no more than two
n-simplices. If σni and σnj are two n-simplices that share an (n− 1)-face σn−1,
we say that orientations of σni and σnj are consistent if they induce opposite

orientations on σn−1. An orientation of K is a choice of orientation of each
n-simplex in such a way that any two simplices that interesect in an (n−1)-face
are consistently oriented. If a complex K admits an orientation, it is said to be
orientable.

2.1.4 Triangle Meshes

A dimension 2 simplicial complex K ⊂ En (where n ≥ 2), such that every 0 or
1-simplex σ ∈ K is a face of a 2-simplex σ2 ∈ K is called a triangle mesh. Trian-
gle meshes inherit the notions of manifoldness and orientability from simplicial
complexes. Let us concentrate on orientable triangle meshes. We recognize the
following useful, local operations on triangle meshes (illustriated in Figure 2.3):

• edge flip (also known as edge swap) – replaces an edge e (and two adja-
cent triangles) with an edge connecting the vertices in the link of e (and
introduces two new triangles);

• edge split – one of the tools for mesh refinement, introduces a new vertex
on the edge which splits the edge and two adjacent triangles;

• triangle split – another tool for mesh refinement, introduces a new vertex
inside a triangle which splits it into 3 new triangles;

• edge collapse – a tool for mesh simplification, removes the edge e and two
adjacent triangles by identifying the vertices of e;

Edge collapse and edge flip have to be used with caution, as they are prone to
destroy the simplicial complex property. Edge collapse might also destroy the
manifoldness of the mesh (the criteria for when edge collapse can be used safely
have been presented in [71]).

18 Preliminaries

Figure 2.3: Operations on triangle meshes, from top to bottom: edge flip, edge
split, triangle split and edge collapse.

2.2 Implementation 19

2.1.5 Tetrahedral Meshes

A dimension 3 simplicial complex K ⊂ En (where n ≥ 3), such that every 0,
1 or 2-simplex σ ∈ K is a face of a 3-simplex σ3 ∈ K is called a tetrahedral
mesh. Tetrahedral meshes inherit the notions of manifoldness and orientability
from simplicial complexes. Again, we concentrate our attention only on ori-
entable tetrahedral meshes. The operations on tetrahedral meshes generalize
aforementioned operations on triangle meshes, e.g.: edge split, face (triangle)
split, tetrahedron split, edge collapse. However an edge flip (reconnection) can
be generalized in several ways. Those and more details on the subject of tetra-
hedral meshes are presented in Chapter 3.

2.2 Implementation

Our implementations of both 2D and 3D deformable simplicial Complexes de-
couple the topological level (connectivity, boundary and co-boundary relations,
traversal, reconnection – abstract simplicial complex) from the geometric level
(spatial positions of vertices, validity check, geometric algorithms). In the 2D
case we are using the popular half-edge data structure [20, 39, 62] (used in e.g.:
CGAL [9] and OpenMesh [10]) to represent triangular meshes (as implemented
in GEL library [5]). Half-edge data structure provides simple mesh traversal,
and allows the performance of topological operations easily. It is, however, not
suitable for representing non-manifold meshes.

The implementation of 3D deformable simplicial complexes was designed in a
way that allows representing non-manifold simplicial complexes and gives a pos-
sibility to undo the changes done to the mesh. We were initially planning to use
the data structure also for other tetrahedral mesh based applications, so we did
not want restrict ourselves to manifold meshes. We were also considering using
try and roll-back approach to mesh quality improvement (first try performing
an operation on the mesh and if it improves the quality locally—accept it, if it
does not—undo), for example by using simulated annealing [49].

We store the traits data for each of the simplices in one of four array-based
kernels: one for vertices, edges, faces and tetrahedra (see Figure 2.4). Simplicial
complex connectivity is recorded in the incidence simplicial data structure [30],
which supports efficient traversal and allows to perform topological operations
quite easily.

20 Preliminaries

Figure 2.4: Main components of the 3D deformable simplicial complexes imple-
mentation.

2.2.1 Kernel

The kernel is a low-level data structure which is responsible for handling memory
allocation, making it transparent to the user. The very basic operations the
kernel should support are creating a new object and deleting an object.

Our generic kernel is array based. Arrays elements (cells) are identified by keys,
which is simply their indices. Each array element consists of:

• type traits – data depending on what kind of object is stored in the kernel;

• label stating whether the element is used, marked for deletion or empty ;

• indices to the previous, and the next element with the same label – mean-
ing that there are doubly-linked lists defined over the array.

Whenever a new object is created, it is stored in an array element taken off
the front of the empty list and added at the end of the used list. If the used list
becomes empty, the array size is doubled. Whenever an object is removed, it is
taken out of the used list and added at the end of the marked list. The marked
list is cleared when we commit the changes. All allocated data stored in marked
cells gets deallocated, all marked cells are added to the empty list, and the lists
are reconnected so that they follow the ordering given by the indices.

2.2 Implementation 21

Undo functionality. Our kernel implementation provides light-weight, multiple-
level undo functionality. Whenever we plan an operation that we might want to
undo, we have to identify the set of objects that might become changed in the
process. We call the kernel to set an undo mark, which consists of a copy of
the tail of the used list, a copy of the tail of the marked list and a list of copies
of cells containing selected objects. An undo mark is added on the top of the
undo stack. Whenever undo command is called, an undo mark is taken off the
top of the undo stack, the lists are reconnected (reconnection scheme utilises
the fact that we always add new elements at the end of used and marked lists)
and saved trait data is restored. We can also call undo all command, which
performs the undo operation as long as the undo stack is not empty. Commit
command, besides the functionality described above, clears the undo stack.

Kernel implementation was delegated to a master student Frederik Gottlieb,
Department of Computer Science, Univeristy of Copenhagen [37].

2.2.2 Incidence Simplicial Data Structure

The incidence simplicial (IS) data structure [30] is a dimension-independent,
compact data structure designed for representing arbitrary simplicial complexes.
However, our implementation restricts to the 3D case, so from this point we
assume that n = 3. In the IS data structure, with each p-simplex σp (for p > 1)
the unordered set of handles to its p+1 (p−1)-dimensional faces σp−1

1 , . . . , σp−1
p+1 is

stored (the boundary relation Bp,p−1(σp)). However, since our implementation
is orientation-aware, we identify an oriented simplex σp with an ordered tuple
of its (p− 1)-faces: [

σp−1
1 , . . . , σp−1

p+1

]
,

which implies:

σp =
[
vert

(
σp
)
− vert

(
σp−1

1

)
, . . . , vert

(
σp
)
− vert

(
σp−1
p+1

)]
,

where:

vert
(
σd
)

=

d+1⋃
i=1

vert
(
σd−1
i

)
,

and we identify {v} with 〈v〉, [v] and v, where v is a vertex handle. In order to
make the traversal efficient, partial coboundary relation C∗p,p+1(σp) is also stored
with every p-simplex σp, for p < n. Partial coboundary relation C∗p,p+1(σp)
consists of (p + 1)-simplices from st(σp) connecting σp with its link, one per
each connected component in lk(σp). Hence, it can be easily seen that:

22 Preliminaries

• C∗2,3(σ2) = C2,3(σ2),

• if σp (p < 2) is 3-manifold, then |C∗p,p+1(σp)| = 1.

Unlike the authors of the original structure, we assume that either full or par-
tial coboundary relation can be stored with the simplex σ, since some of the
topological operations require evaluating the full coboundary relations of cer-
tain simplices, and we would prefer to avoid uncompressing (evaluating the full
coboundary relation) and compressing (evaluating the partial coboundary rela-
tion based on the full coboundary relation) the coboundary relation of a simplex
everytime we perform those topological operations on it. Hence we also need
an one-bit flag indicating whether full coboundary relation (uncompressed state)
or partial coboundary relation (compressed state) is stored. We define the com-
pression rate of a simplicial complex K represented with the IS data structure
as a ratio:

‖{σ ∈ K : σ in compressed state}‖
‖K‖

.

Whenever the compression rate drops below some desired value given by the
user, the simplices in an uncompressed state have their partial coboundary eval-
uated and stored.

We have implemented several operations for traversal and manipulation of the
simplicial complex, including:

• star – evaluation of the star of a simplex;

• closure – evaluation of the closure of a simplex or a set of simplices;

• link – evaluation of the link of a simplex;

• boundary – evaluation of the boundary of the simplex;

• orient faces consistently/oppositely – enforcing a consistent/opposite
orientation on all (p− 1)-faces of a p-simplex σp;

• orient co-faces consistently/oppositely – enforcing a consistent/oppo-
site orientation on all (p + 1)-simplices having a given p-simplex σp as a
face;

Besides those we have implemented all topological operations described in Chap-
ter 3.

2.2 Implementation 23

2.2.3 Discussion

Looking back, we have came to conclusion that a few mistakes in the planning
phase were made. First of all, we are only using manifold tetrahedral meshes
in the deformable simplicial complexes. We could have utilised this fact in sim-
plifying the IS data structure, since in manifold tetrahedral meshes the partial
coboundary relation is fixed size (one element) for vertices and edges, and has
either one or two elements for faces. Moreover, we could have employ manifold-
ness in designing more efficient (and less error-prone) traversal algorithms than
the ones proposed by Hui and de Floriani. Furthermore, it turned out that in
most of the cases, using the try and roll-back approach to some mesh operations
is not time efficient, and we ended up not using the undo functionality of the
kernel. We believe that by designing a kernel without undo functionality we
could have saved quite a lot of time, as this was the most error-prone part of
the implementation. Finally, it turned out that the task of implementing the
kernel exceeded the time frame our student was given to complete his thesis
and we ended up having to test and debug his code ourselves. Nevertheless,
we believe that our perfectly generic kernel could be used in other applications,
where the demand for the roll-back possibility is more evident.

24 Preliminaries

Chapter 3

Tetrahedral Mesh
Improvement Using

Multi-face Retriangulation

Marek Krzysztof Misztal, Technical University of Denmark
Jakob Andreas Bærentzen, Technical University of Denmark

François Anton, Technical University of Denmark
Kenny Erleben, University of Copenhagen

Published in Proceedings of the 18th International Meshing Roundtable, Salt
Lake City 2009.

26 Tetrahedral Mesh Improvement Using Multi-face Retriangulation

Abstract. In this paper we propose a simple technique for tetrahedral mesh im-
provement without inserting Steiner vertices, concentrating mainly on boundary
conforming meshes. The algorithm makes local changes to the mesh to remove
tetrahedra which are poor according to some quality criterion. While the algorithm
is completely general with regard to quality criterion, we target improvement of the
dihedral angle. The central idea in our algorithm is the introduction of a new local
operation called multi-face retriangulation (MFRT) which supplements other known
local operations. Like in many previous papers on tetrahedral mesh improvement,
our algorithm makes local changes to the mesh to reduce an energy measure which
reflects the quality criterion. The addition of our new local operation allows us to
advance the mesh to a lower energy state in cases where no other local change
would lead to a reduction. We also make use of the edge collapse operation in order
to reduce the size of the mesh while improving its quality. With these operations,
we demonstrate that it is possible to obtain a significantly greater improvement to
the worst dihedral angles than using the operations from the previous works, while
keeping the mesh complexity as low as possible.

3.1 Introduction and Motivation

For many types of physical simulation, the tetrahedral mesh representation is
the natural choice. For instance, finite element computations in 3D usually
employ tetrahedral meshes which are far better at adapting to boundaries and
changes in scale than e.g. regular voxel grids.

For 2D triangulations, Delaunay triangulation is often a natural choice since
it leads to a mesh which is optimal in the sense that the minimal angles are
maximized which is a reasonable quality criterion in 2D. In 3D however, it is
less clear what quality criterion we should strive for and a 3D Delaunay tetrahe-
dralization may contain very flat sliver tetrahedra with extreme dihedral angles,
and extreme dihedral angles are often precisely what we wish to avoid since they
may lead to problems, such as great interpolation errors or ill-conditioned stiff-
ness matrices in some finite element computations (although in the anisotropic
case they might be desirable) or problems with interpolation accuracy [88].

Consequently, in this paper and in other recent work [52], the goal is to optimize
a tetrahedralization obtained through either Delaunay or other methods in order
to improve some criterion – particularly dihedral angles. However, little is known
about globally optimal meshes in the sense that the smallest dihedral angle is
maximal or that the largest dihedral angle is minimal. Consequently, one strives

3.1 Introduction and Motivation 27

instead for a set of simple, local transformations which improve the mesh by
removing poorly shaped tetrahedra. The best one can hope for in this case
is a good local minimum, and whether one attains such a minimum is highly
dependent on one’s vocabulary of local transformations. It is this vocabulary
which we extend by the addition of two local transformations which are highly
beneficial to the mesh quality yet have not previously been used in tetrahedral
mesh optimization.

The most powerful way of improving triangle or tetrahedral meshes is through
the insertion of more vertices (as shown in [52]). Indeed this is sometimes
the only way to improve quality. Unfortunately, one pays the price of adding
(sometimes significantly) more tetrahedra, and finding the optimal place to put
a vertex can be hard. Besides, many applications (such as dynamic meshes)
require their own Steiner vertex insertion routines. For these reasons, we opine
that it is very worthwhile to explore to what extent our mesh improvement
vocabulary can be augmented without adding vertices.

Our main contribution is the multi-face retriangulation operation. Assume a
set of tetrahedra which we can divide into upper and lower tetrahedra. Any
upper tetrahedron shares a face with precisely one lower tetrahedron (and vice
versa) and the upper tetrahedra all share a vertex (the upper vertex) as do the
lower tetrahedra (the lower vertex). We can say that the set of tetrahedra is
sandwiched between the upper and the lower vertex (as illustrated in Figure 3.1).
The union of the triangular faces shared between upper and lower tetrahedra
can be seen as a triangulation of a polygon. Our proposed operation simply
retriangulates this polygon to obtain better sets of upper and lower tetrahedra.
Multi-face retriangulation can also be seen as a composition of the known multi-
face removal and edge removal operations (as shown in Figure 3.1) [34, 52].
However, multi-face retriangulation is more powerful than the concatenation
of these two operations: in the case of some configurations multi-face removal
followed by edge removal would never be selected because very poor or inverted
tetrahedra would result from the multi-face removal operation (as illustrated
in Figure 3.2). Additionally, multi-face retriangulation works on boundaries
whereas concatenation of multi-face removal and edge removal does not.

The other contribution is the use of the well known edge collapse operation.
Curiously, to the best of our knowledge, this operation has not been incorporated
into any tetramesh improvement algorithm previously. It significantly reduces
the complexity of the mesh and it also might improve the worst quality within
the set of affected tetrahedra.

28 Tetrahedral Mesh Improvement Using Multi-face Retriangulation

Figure 3.1: Multi-face removal, edge removal and their superposition – multi-
face retriangulation.

3.2 Related Work

Clearly, whether mesh improvement is needed depends on how the mesh was
generated. Broadly speaking, there are three ways of producing tetrahedral
meshes from a boundary representaion of an object. First, if the boundary is a
piecewise linear complex (in particular – triangulated manifold), we could use
constrained Delaunay tetrahedralization to produce a conforming mesh [86,89].
Alternatively, we could use an advancing fronts method which would build the
tetrahedralization out from the boundary. As mentioned, the former approach
will often have problems with sliver tetrahedra even after Delaunay refinement,
unless the boundary satisfies a set of strict conditions [18,86] limiting the prac-
tical applications of this approach, and the latter tends to produce some bad
tetrahedra around areas where the front collides on itself [70]. These prob-
lems are compounded if the boundary mesh has poorly shaped triangles. An
alternative approach is the centroidal Voronoi tessellation based Delaunay tetra-
hedralization [22] which can, however, still leave some poorly shaped tetrahedra.
We conclude that the mesh optimization is likely to be useful as a step following
both Delaunay based methods and also advancing fronts based methods.

A third and alternative strategy is to force the boundary to conform to an iso-
surface of an implicit function rather than a mesh. The spatial domain is first
divided into tetrahedra, and a subset which approximates the shape well is se-
lected. In a subsequent compression step, the boundary vertices of this subset
are forced to lie precisely on the isosurface [69]. However, we note that the
compression step is an optimization procedure because, generally, not only the
boundary vertices are moved but also the interior vertices in order to improve the

3.2 Related Work 29

Figure 3.2: Configuration in which multi-face removal would not be performed.
Vertices a, b, c and d are nearly coplanar. Performing multi-face removal in such
a configuration would lead to creating a very poorly shaped tetrahedron abcd
(highlighted in orange) of extremely low quality. Also, by perturbing vertex
a or b we can easily create a situation in which tetrahedron abcd would be
inverted. In both situations multi-face removal would not be performed by
a greedy algorithm – hence the arrow is crossed out. The strength of multi-
face retriangulation is in tunneling through these kinds of hills in the energy
landscape.

quality of the mesh. In recent work, Labelle and Shewchuk were able to demon-
strate good provable bounds on the dihedral angles using such a method [54].
However, methods which fit meshes to isosurfaces [54,69] cannot be expected to
capture sharp edges and corners because the vertices are not constrained to lie
in particular positions. Consequently, in some cases they simply do not apply.

Most of the existing work for tetrahedral mesh improvement uses the following
three types of mesh operations:

1. Mesh smoothing – relocation of the mesh points in order to improve mesh
quality without changing mesh topology.

2. Topological operations – reconnection of the vertices in the mesh (without
displacing them).

3. Vertex insertion – adding extra vertices into the mesh (through eg. split-
ting of the edges, faces or tetrahedra) and reconnecting affected regions of
the mesh.

30 Tetrahedral Mesh Improvement Using Multi-face Retriangulation

3.2.1 Mesh Smoothing

One of the best known smoothing methods, Laplacian smoothing, in which a
vertex is moved to the centroid of the vertices to which it is connected, is a
popular and quite effective choice for triangular meshes. In tetrahedral meshes,
however, it often produces poor tetrahedra [32]. Optimal (with regard to linear
interpolation error) Delaunay vertex placement has been investigated by Chen
and Xu [15]. More general mesh smoothing algorithms are based on numerical
optimization. One of the most popular local algorithms for mesh smoothing was
suggested by Freitag et al. [33]. This method relocates one vertex at a time.
Given one vertex, its new position is found, so that the minimum quality of all
the tetrahedra adjacent to this vertex is maximized (this requires non-smooth
optimization). This procedure is performed for each vertex in the mesh and can
be iterated until a stable configuration is attained. It can also be performed on
the boundary of the mesh, given extra constraints for the position of the vertex.
Another optimization based approach, using generalized linear programming,
was presented by Amenta et al. [1], but this one is not as general as Freitag’s
and is not well suited for dihedral angles optimization. Mesh smoothing can
also be performed by continuous optimization in the space of coordinates of
all vertices of the mesh (as in [40]), but Freitag’s method has advantages over
this approach – it is easier to use with non-smooth quality measures, and its
characterised by stable behavior even if the initial quality of the mesh is very
low.

3.2.2 Topological Operations

Reconnection of the mesh can be pictured as picking a set of adjacent tetrahedra
and replacing them with another set of tetrahedra, of higher minimum quality,
filling in the same volume. This can be performed in a more or less arbitrary
manner (as small polyhedron re-tetrahedralization in [59]), or can be organized
into a set of topological operations, such as:

• 2-3 flip and its inverse, 3-2 flip, as shown in Figure 3.3.

• 4-4 flip and its version for boundary configuration, 2-2 flip, illustrated in
in Figure 3.3 – ambiguous, requires specifying which edge pair of vertices
is going to be connected after the operation.

• Edge removal is illustrated in Figure 3.1 – generalizes 3-2 flip, 4-4 flip
and 2-2 flip; ambiguous, requires specifying the final triangulation of the
link of the removed edge, which can be performed by using triangulation

3.3 Tetrahedral Mesh Quality Improvement 31

templates, as in [34] or by using Klincsek’s algorithm [50] in order to
maximize the minimal quality of the created set of tetrahedra, as in [52].
Edge removal can be performed for boundary edges.

• Multi-face removal of de Cougny and Shephard [21] is the inverse to the
edge removal, as shown Figure 3.1 – generalizes 2-3 flip and 4-4 flip; re-
quires dynamic programming in order to select the subset of faces sand-
wiched between two vertices, which gives the best improvement.

The original paper of Freitag and Ollivier-Gooch [34] uses the first three opera-
tions. It can easily be noticed, that multi-face removal can actually be decom-
posed into a sequence of a single 2-3 flip followed by a certain number of 3-2
flips. However, this can not always be performed in the hill-climbing approach
(which is usually the choice for the tetrahedral mesh-improvement algorithms)
if one of the operations in the sequence decreases quality locally. Klingner and
Shewchuk [52] use all the operations from the list above.

3.2.3 Vertex Insertion

Klingner and Shewchuk showed in [52] that mesh improvement is far more effec-
tive with the inclusion of transformations that introduce Steiner vertices. Proper
placement of Steiner vertices is a hard problem. Klingner and Shewchuk describe
a sophisticated and rather complex algorithm for vertex insertion which mim-
ics Delaunay vertex insertion and, together with optimization based smoothing
and topological operations, allows them to improve the meshes so that all dihe-
dral angles are between 31◦ and 149◦, or, using a different objective function,
between 23◦ and 136◦.

3.3 Tetrahedral Mesh Quality Improvement

Our mesh improvement algorithm is based on the algorithm proposed by Klingner
and Shewchuk [52] (which in turn extends one by Freitag and Ollivier-Gooch
[34]) which uses vertex smoothing by Freitag et al. [33], edge removal, multi-face
removal and vertex insertion (most of the operations they use can be performed
on the boundary of the mesh). In turn, our algorithm uses the following set of
operations:

• Vertex-smoothing as in Freitag et. al [33],

32 Tetrahedral Mesh Improvement Using Multi-face Retriangulation

• Topological operations:

– edge removal,

– multi-face removal,

– multi-face retriangulation.

• Edge collapse.

Vertex smoothing and edge removal can be performed for the boundary vertices
and edges, if the boundary is sufficiently flat around them. Additionally, vertex
smoothing can be performed along straight ridges on the boundary of the mesh,
if the surface patches separated by the ridge are sufficiently flat. Multi-face
removal and edge removal are implemented essentially the same way as in [87].

3.3.1 Multi-face Retriangulation

Multi-face retriangulation can be seen as a composition of multi-face removal
and edge removal, however, it can be also performed on the boundary of the
mesh. It includes the 4-4 and 2-2 flips. Multi-face retriangulation does not
change the number of tetrahedra in the mesh. So far as we know, it has never
appeared in the literature.

The reasons in favor of using MFRT alongside multi-face removal and edge
removal are:

• In some cases, the configuration produced by multi-face removal is of lower
quality, as illustrated in Figure 3.2. Thus a greedy approach would not
select that configuration even if the subsequent edge removal led to a state
of lower energy than the initial configuration.

• In some cases the configuration produced by multi-face removal includes
inverted tetrahedra, and no approach would select that (also shown in
Figure 3.2). However, MFRT cannot produce inverted tetrahedra, as the
best triangulation of the multi-face cannot be worse than the initial one
and we assume we run our algorithm on valid tetrahedral meshes.

• MFRT can be applied to boundary configurations. To see this, let us only
consider a set of lower tetrahedra in Figure 3.1. In such a configuration,
multi-face consists of boundary faces and it cannot be removed using multi-
face removal, but it can easily be retriangulated. However, if the multi-
face is not sufficiently flat, which is the case when the angles between the

3.3 Tetrahedral Mesh Quality Improvement 33

normals to the faces are greater than 0◦, MFRT can change the geometry
of the boundary of the mesh, which is usually not desirable.

• MFRT does not change the number of tetrahedra. This property is a direct
consequence of a well known fact that every triangulation of a polygon has
the same number of triangles.

In our implementation, the input is a single face f we wish to remove. We find
the apices a and b of the two tetrahedra adjoining f . Among the set of all faces
sandwiched between a and b we find the connected component that contains
f . For the multi-face defined like that, we find the optimal triangulation of
its bounding polygon using Klincsek’s algorithm. The routine is similar for a
boundary face f , although in this case we have to make sure that the retriangu-
lated multi-face is sufficiently flat (otherwise geometry of the boundary might
change).

3.3.2 Edge Collapse

Edge collapse (also known as edge contraction or half-edge contraction) is a well
known mesh operation which has been used as a primary tool for simplifying
2D and 3D meshes in numerous works, such as [19, 71]. It identifies one of
the vertices of an edge e with the other, removes e and all faces and tetrahedra
which contain it. This can, however, lead to invalid configurations (violating the
simplicial complex criterion) or alter the surface geometry of the mesh, unless
certain conditions are fulfilled, described in detail by Natarajan and Edelsbrun-
ner in [71]. If edge collapse is not performed for the boundary edges, which is
the case in our implementation, those conditions simplify to the following:

Lk(e) = Lk(a) ∩ Lk(b),

where a and b are the vertices of the edge e, and Lk(σ) denotes the link of a
simplex σ which, in tetrahedral meshes, can be defined as a set of those simplices
(vertices, edges and faces) in the mesh, that do not intersect with σ, but are
contained by the one of the tetrahedra containing σ. In our implementation
this is performed if the minimum quality of the set of tetrahedra affected by the
operation increases, or if it does not decrease below a certain quality threshold
qmin, which is a global parameter of our algorithm.

34 Tetrahedral Mesh Improvement Using Multi-face Retriangulation

3.3.3 Quality Measures

Both the smoothing algorithm and the topological operations which we are
using are indifferent to the tetrahedron quality measure. In order to be able to
compare our results to those provided in [52] and [34], we are using:

• The minimum sine measure – the minimum sine of a tetrahedron’s six
dihedral angles, penalizes both small and large dihedral angles.

• The minimum biased sine measure, which is like the minimum sine mea-
sure, but if a dihedral angle is obtuse, its sine is multiplied by 0.7 (before
choosing the minimum). This quality measure penalizes large angles more
aggressively than the small angles.

Many quality measures have been proposed for tetrahedral meshes reviewed
by [88], [40]. Our two choices are well behaved and very intuitive, although
non-smooth.

3.4 Implementation

Our mesh improvement schedule follows that of Klingner and Shewchuk [52]
(pseudo code is shown in Algorithm 1). Same as in their work, we use a short
list of quality indicators in order to measure progress in lowest quality tetrahedra
improvement. Those are: the quality of the worst tetrahedron in the entire mesh
and seven thresholded means of the qualities of all the tetrahedra in the mesh.
A mean q̄θ with threshold θ is computed the following way:

q̄θ =
1

#{tetrahedra in M}
∑
t∈M

min(q(t), θ),

where M is the mesh and q is the tetrahedron quality measure we use. For
our quality measures we use thresholded means with thresholds sin(1◦), sin(5◦),
sin(10◦), sin(15◦), sin(25◦), sin(35◦) and sin(45◦). A quality indicator designed
like that is a good measure of how narrow the distribution of the tetrahedron
qualities is and allows us to detect the quality improvement even if the minimum
quality does not change. The minimum quality alone is much less efficient
as a mesh quality indicator – it leads to premature termination of the mesh
improvement algorithm and significantly worse final results. We consider the
improvement in the mesh quality sufficient if either the quality of the worst
tetrahedron improves, or if one of the thresholded means increases by at least
0.0001.

3.5 Tests and Results 35

We begin mesh improvement with a vertex smoothing pass, followed by a topo-
logical pass. In the topological pass, pseudo code of which is shown in Algorithm
2, we first obtain the list of all the tetrahedra in the mesh and then try to re-
move every tetrahedron t on the list by first trying to remove its edges using the
edge remove operation and then, if we have not succeeded, by trying to remove
its faces using multi-face retriangulation followed by multi-face removal. Such
an ordering of the operations is justified by the fact that first performing multi-
face retriangulation still leaves room for extra improvement through multi-face
removal, while it does not work the other way round. The optimal multi-face
for multi-face removal is chose using dynamic programming, accordingly to an
algorithm described in [87]. Any of those operations are performed only if they
locally improve the quality. If that happens, we proceed to the next tetrahedron
on the list. Every topological operation that we use can destroy more tetrahe-
dra than the one for which it was called, so before attempting to remove any
tetrahedron we have to make sure that it still exists in the mesh.

After two initial passes we begin the main loop, in which we first smooth all
the vertices until there is no more improvement detected by our mesh quality
indicators. Then we start the topological pass again. If it improves the quality
of the mesh sufficiently, we start the loop again, otherwise we start the thinning
pass (pseudo code is shown in Algorithm 3). In the thinning pass we attempt to
collapse every edge which is not a boundary one, does not connect two bound-
ary vertices and fulfills the edge collapse feasibility condition. We perform the
collapse only if it improves the quality locally or if the quality of the affected
tetrahedra after the operation is not smaller than a threshold value q0 = 0.5.
If the thinning pass improved the quality of the mesh sufficiently, we start the
loop again, otherwise we record that the sequence of smoothing, topological
and thinning passes did not manage to improve the quality of the mesh. If that
happens three times in a row, the algorithm stops.

3.5 Tests and Results

We tested our schedule on the following meshes:

• Boid, Teapot and Deer are Delaunay tetrahedralizations generated by
TetGen [89] with extremely bad dihedral angles due to the lack of interior
vertices.

• Rand1 – used by Freitag and Ollivier-Gooch and also by Klingner and
Shewchuk to evaluate their mesh improvement algorithms.

36 Tetrahedral Mesh Improvement Using Multi-face Retriangulation

Boid Teapot Deer

0 30 60 90 120 150 180

0.0 180.0

0 30 60 90 120 150 180

0.0 180.0

0 30 60 90 120 150 180

0.1 179.8

2179 tets 3677 tets 2678 tets

0 30 60 90 120 150 180

0.5 179.2

0 30 60 90 120 150 180

1.0 177.5

0 30 60 90 120 150 180

0.9 178.5

1831 tets 3123 tets 2342 tets

0 30 60 90 120 150 180

0.9 178.7

0 30 60 90 120 150 180

2.2 176.2

0 30 60 90 120 150 180

2.4 173.6

1854 tets 3060 tets 2327 tets

Table 3.1: Mesh quality improvement results for meshes: Boid, Teapot and
Deer. Minimum biased sine measure was used for the first two and minimum
sine quality measure was used for the last one. Pictures in the first row show the
initial surface geometry of our meshes. Surface geometry remains the same after
the mesh improvement, although the tesselation might change in flat regions.
Histograms show, from the top to the bottom, the distribution of all dihedral
angles in the original mesh, mesh improved without MFRT and mesh improved
using MFRT.

3.5 Tests and Results 37

P Rand1

0 30 60 90 120 150 180

1.3 177.9

0 30 60 90 120 150 180

0.3 179.0

926 tets 5104 tets

0 30 60 90 120 150 180

22.0 142.7

0 30 60 90 120 150 180

10.9 163.9

0 30 60 90 120 150 180

11.2 168.3

855 tets 5736 tets 5730 tets

0 30 60 90 120 150 180

24.9 139.7

0 30 60 90 120 150 180

14.2 158.9

0 30 60 90 120 150 180

14.2 163.3

855 tets 4739 tets 4574 tets

0 30 60 90 120 150 180

24.9 139.7

0 30 60 90 120 150 180

15.1 157.6

0 30 60 90 120 150 180

15.8 162.4

782 tets 3358 tets 3327 tets

Table 3.2: Mesh quality improvement results for meshes: P (using minimum
biased sine quality measure) and Rand1 (left column – using minimum biased
sine quality measure, right column - using minimum sine quality measure). His-
tograms show, from the top to the bottom, the dihedral angle distribution in
the original mesh, mesh improved without MFRT, mesh improved using MFRT,
meshed improved using MFRT and thinning. Red bars indicate particularily
abundant dihedral angles and were scaled down to increase the readability of
the histograms.

38 Tetrahedral Mesh Improvement Using Multi-face Retriangulation

Glass TFire

0 30 60 90 120 150 180

0.8 172.2

0 30 60 90 120 150 180

19.5 144.4

77632 tets 1104 tets

0 30 60 90 120 150 180

2.5 175.7

0 30 60 90 120 150 180

25.0 139.0

0 30 60 90 120 150 180

25.0 144.8

72542 tets 1099 tets 1101 tets

0 30 60 90 120 150 180

2.4 175.1

0 30 60 90 120 150 180

27.4 138.3

0 30 60 90 120 150 180

25.0 144.3

71016 tets 1095 tets 1094 tets

0 30 60 90 120 150 180

3.3 175.1

0 30 60 90 120 150 180

27.4 138.4

0 30 60 90 120 150 180

25.0 144.3

69776 tets 1071 tets 1034 tets

Table 3.3: Mesh quality improvement results for meshes: Glass (using mini-
mum biased sine quality measure) and TFire (left column – using minimum bi-
ased sine quality measure, right column - using minimum sine quality measure).
Histograms show, from the top to the bottom, the dihedral angle distribution in
the original mesh, mesh improved without MFRT, mesh improved using MFRT,
meshed improved using MFRT and thinning.

3.5 Tests and Results 39

Algorithm 1 Improve(M)
{M is a mesh}

1: Smooth each vertex of M .
2: TopologicalPass(M)
3: failed⇐ 0
4: while failed < 3 do
5: Smooth each vertex of M .
6: if M improved sufficiently then
7: failed⇐ 0
8: else
9: TopologicalPass(M)

10: if M improved sufficiently then
11: failed⇐ 0
12: else
13: ThinningPass(M)
14: if M improved sufficiently then
15: failed⇐ 0
16: else
17: failed⇐ failed+ 1
18: end if
19: end if
20: end if
21: end while

Algorithm 2 TopologicalPass(M)

1: Create the list of all tetrahedra in M .
2: for each tetrahedron t on the list, that still exists in M do
3: for each edge e of t (if t still exists) do
4: Attempt to remove edge e.
5: end for
6: for each face f of t (if t still exists) do
7: Attempt to remove face f by first using multi-face retriangulation

followed by multi-face removal.
8: end for
9: end for

• P and TFire – used by Klingner and Shewchuk to evaluate their mesh
improvement algorithm.

• Glass – medium size mesh generated using TetGen [89] with few interior
vertices and low quality boundary triangles.

40 Tetrahedral Mesh Improvement Using Multi-face Retriangulation

Algorithm 3 ThinningPass(M)

1: for each edge e ∈M that is not on the boundary do
2: if e still exists then
3: Find the vertices a and b of e.
4: if b is not a boundary vertex then
5: Attempt to collapse edge e: a← b.
6: if success then
7: Smooth a.
8: end if
9: end if

10: if a is not a boundary vertex and e still exists then
11: Attempt to collapse edge e: b← a.
12: if success then
13: Smooth b.
14: end if
15: end if
16: end if
17: end for

Unfortunatelly, Klingner and Shewchuk published the results of mesh improve-
ment without vertex insertion only for a very few meshes, so the possibility of
comparing our results to theirs was limited.

The results of mesh improvement for those meshes are presented in the Tables
3.1, 3.2 and 3.3. For the Boid mesh we tried to maximize the minimum biased
sine quality measure for this mesh. The boundary of the mesh is nowhere flat so
smoothing and topological operations are not allowed on the boundary. There
are no interior vertices, so in fact smoothing and thinning cannot take place
at all, as they would alter the surface geometry. Not much improvement can
be achieved without vertex insertion in this case, but still we can see that the
topological pass with MFRT is significantly more effective at fighting the worst
dihedral angles than the topological pass without MFRT. The situation and the
results are similar in the case of the Teapot mesh. We also obtain a significant
extra improvement (6.4◦) by the use of MFRT for the Deer mesh, while in this
case we tried to maximize the minimum sine quality measure.

For Rand1 the use of MFRT allows us to narrow the dihedral angles range by
as much as 8◦ for both sine and biased sine quality measures. Additionally,
edge collapse allows us to decrease the complexity of the meshes by almost 35%
and to narrow the dihedral angles range by almost 3◦ for sine quality measure –
ultimately we obtain 15.8◦–162.4◦, and by 2◦ for biased sine quality measure –
ultimately we obtain 15.1◦–157.6◦. For comparison, the best results Freitag and

3.6 Discussion and Future Work 41

Ollivier-Gooch [34] obtained for the same mesh was 15.0◦–166.7◦ for minmax
cosine quality measure (and 12.5◦-167.3◦ for sine quality measure). Mesh P
also benefits significantly from the use of MFRT – it narrows the dihedral range
by 6◦, but in this case the thinning pass does not improve the extreme quality
values.

The TFire mesh also benefit from adding the MFRT and the edge collapse
operation, although not as significantly as the previous ones. Still, our result
24.9◦–139.7◦ is better than 21.3◦–147.1◦ obtained by Klingner and Shewchuk
[52].

In case of the Glass mesh, we can notice that our mesh improvement algorithm
actually expands the dihedral angles range. This is due to the lack of extremely
obtuse angles in the original mesh, and due to the fact, that the mesh operations
we use choose to “sacrifice” good quality tetrahedra in order to locally improve
the worst tetrahedron. However, we can notice that the we still benefit from
inclusion of MFRT and thinning in the mesh improvement algorithm.

3.6 Discussion and Future Work

Our results show that using the multi-face retriangulation operation alongside
smoothing and topological operations from the previous works can lead to better
improvement of the dihedral angles and should be included in the standard
repertoire of the topological operations for tetrahedral meshes. For the meshes
we tested, we obtained a narrowing of the range of dihedral angles by up to 8◦

without inserting a single Steiner vertex. Additionally, edge collapse can also
improve the worst dihedral angles and decrease the complexity of the mesh by
up to 35%, esspecially when the initial quality of the mesh is very poor.

However, during our experiments we have noticed that the mesh improvement
algorithm is still prone to get stuck in the local minima, even if we use multi-
face retriangulation – in a few cases, running the algorithm with some mesh
operations “switched off” (for instance operations on the boundary of the mesh)
leads to better results than running the algorithm with the full repertoire of mesh
operations. This is, of course, a consequence of using a greedy, hill-climbing
approach. This could possibly be improved by applying a randomized approach.

It is also important to notice that our algorithm is designed for valid input
meshes. If the initial mesh has inverted tetrahedra the algorithm might fail to
remove them. Also, the tetrahedron quality measures we used are not particu-
larily well suited for meshes with inverted tetrahedra, since they lose continuity

42

as the tetrahedron gets inverted.

In the future we are going to further investigate the possibilities of mesh im-
provement without Steiner vertex insertion, also with other quality measures,
such as the volume-length measure [76] V/l3rms, where V is the signed volume of
a tetrahedron and lrms is the root-mean-squared edge length.

Acknowledgments

We thank Frederik Gottlieb for the implementation of the core part of the data
structure that we are using, Bryan Klingner, Jonathan Richard Shewchuk and
Mads Fogtmann Hansen for meshes, geometric models and discussion. We would
also like to thank Vedrana Andersen for helping us give this paper its final shape
and anonymous reviewers for useful suggestions.

43

Figure 3.3: Simple topological operations.

44

Chapter 4

Deformable Simplicial
Complexes

Marek Krzysztof Misztal, Technical University of Denmark
Jakob Andreas Bærentzen, Technical University of Denmark

Submitted to ACM Transactions on Graphics.

46 Deformable Simplicial Complexes

Abstract. We present a novel, topology adaptive method for deformable inter-
face tracking, called the deformable simplicial complexes (DSC). In the DSC, the
interface is represented explicitly as a piecewise linear curve (in 2D) or surface
(in 3D) which is a part of a discretization (triangulation/tetrahedralization) of the
space, such that the interface can be retrieved as a set of faces separating trian-
gles/tetrahedra marked as inside from the ones marked as outside (so it is also given
implicitly). This representation allows robust topological adaptivity and, thanks to
the explicit representation of the interface, it suffers only slightly from numerical
diffusion. Furthermore, the use of an unstructured grid yields robust space adaptiv-
ity. Also, topology control is simple in this setting. We present the strengths of the
method in several examples: Simple geometric flows, fluid simulation, point cloud
reconstruction and cut locus construction.

4.1 Introduction

Deformable interfaces are useful in a great many applications, such as fluid
dynamics where we need to track the interface between fluids, 3D modelling
where the interface is the surface of the object, and image analysis where such
methods are used in segmentation and object recognition.

Topological adaptivity – meaning that interface components may split and
merge – is crucial to many applications of deformable interface methods, and
whenever this is the case, Eulerian methods, such as the well known level set
method and its numerous variations are often employed. While many of these
methods are powerful, they tend to work by sampling on a regular grid a function
whose 0-level set represents the interface. This sampling, in turn, tends to in-
troduce numerical diffusion and makes small details infeasible. In this project,
it has, therefore, been our goal to avoid regular grids altogether but without
loosing the most important advantages of the Eulerian outlook.

The main contribution of this paper is that we introduce deformable simpli-
cial complexes, DSC, a generic method for tracking deformable interfaces which
combines many of the advantages of Eulerian and Lagrangian mehods. In par-
ticular, the method suffers from little numerical diffusion, allows for transparent
topology changes, and provides an explicit triangles mesh (in 3D) representa-
tion of the interface which changes only where needed between time steps. We
investigate several applications: Fluid dynamics, point cloud reconstruction and
cut locus construction.

4.2 Related Works 47

4.2 Related Works

Traditionally, methods for deformable interface tracking fall into two categories:
explicit (Lagrangian) and implicit (Eulerian). Traditional Lagrangian methods,
such as active contours or snakes, use parametrisation of the interface and apply
the deforming velocity field (v) directly to the interface points (p):

dp

dt
= v(p).

This approach leads to trouble once the topology of the interface changes. An
efficient collision detection mechanism is needed to detect self-intersections of
the interface, and once it happens, costly reparametrisation is needed, along
with surgical cuts (as in [36], although in recent work by [13] this problem is
mitigated by not allowing self-intersections). Those problems do not occur in
Eulerian methods, such as the level set method (LSM, [75]). LSM represents
a n-dimensional interface as the 0-level set of a (n + 1)-dimensional function
u(x1, . . . , xn, xn+1) (signed distance function is usually the choice), defined on
the nodes of a regular grid. The evolution of the interface due to the velocity
field v is then described by the following partial differential equation, also known
as that level set equation:

∂u

∂t
+ v · ∇u = 0.

This approach provides trivial and robust topological adaptivity. However, the
LSM also exhibits several drawbacks: it is bound to a certain scale, it suffers
from significant numerical diffusion for features near the sampling rate irrespec-
tive of discretization, it does not allow explicit interface representation and it
relies on calculations in one dimension greater than the interface itself.

In order to address the disadvantages of purely Lagrangian or Eulerian methods,
several hybrid methods emerged. Some methods are based on triangle meshes,
but use voxel grids to resolve topological changes. One of the earliest examples
is the topologically adaptive snakes method by [64]: the interface is represented
with a triangle mesh, but a voxel grid is used to resolve topological changes,
leading to many of the issues of Eulerian methods, and moreover movement of
the interface is restricted to pure expansion or contraction. In more recent work,
[96] use a Lagrangian approach and voxel grid-based method only to locally
resolve topological changes (and simplify complex areas). Since the changes are
only local and as needed, the method is able to pass the Enright test [25] with
no visible changes to the rotating geometry. However, the method does require
building a signed distance field each time step and the scale of the voxel grid
affects the results.

Some authors detect intersections using collision detection and resolve topology

48 Deformable Simplicial Complexes

Figure 4.1: Interface representation in deformable simplicial complexes (2D on
the left, 3D on the right). Exterior triangles (tetrahedra) are light gray, interior
– blue. Simplices belonging to the interface (edges and vertices in 2D; faces,
edges and vertices in 3D) are highlighted in dark blue. On the left, the red
arrow indicates where topology changes take place. Note also the difference in
scale between the largest and the smallest triangles.

changes using mesh transformations. [55] propose a method where violation of
an edge length constraint indicates an intersection or self-intersection, and a so-
called axial transformation is used to create a tunnel if two components merge,
and, if a component splits, an annular transformation is used to disconnect the
pieces. [99,100] propose a method where self-intersections are removed from an
evolving triangle mesh at each time step using a method that greatly resembles
Boolean operations on meshes.

The work most directly related to ours is the method due to [79]. The authors
proposed a method which is based on a triangle mesh representation of the
interface, but once the vertices have been moved, a restricted Delaunay tetra-
hedralization of the interface is performed. A test is performed on each of the
new tetrahedra in order to label them as interior or exterior. If a vertex is
found to be shared only by identically labeled tetrahedra, it is removed. This
method shares a number of advantages with our method. In particular, it can
be extended to multi-phase simulations, and it suffers only little from numerical
diffusion, but there is no detection of what happens between time steps. Ar-
guably a small object could pass through a thin wall if the time step was not
properly tuned, and the precise points where interface collisions occur are not
detected. Lastly, it would be difficult to extend their method to do topology
control which is simple with our approach.

4.3 Deformable Simplicial Complexes 49

4.3 Deformable Simplicial Complexes

Like the level set method [75], DSC is a method for dealing with deformable
interfaces. In DSC, the interface is represented explicitly as a set of faces of
simplices belonging to a simplicial complex one dimension higher. These sim-
plices belong either to the object or the exterior. Simplices never straddle object
boundaries. Thus, in 2D, the computational domain is divided into triangles,
and the deforming interface is the set of line segments which divide interior
triangles from exterior triangles. Similarly, in 3D, the interface is the set of tri-
angles dividing interior tetrahedra from exterior tetrahedra. Both the 2D and
3D case are illustrated in Figure 4.1.

The interface deformation is performed by moving the vertices, and this means
that the method preserves the advantages of the Lagrangian methods: It suffers
from little numerical diffusion, and there is an explicit representation of the
interface which, furthermore, does not change gratuitously between time steps.
Moreover, the simplicial complex does not have to be regular meaning that we
can allow details of significantly different scale in the same grid (c.f. Figure 4.1
left).

On the other hand, our approach also shares what we perceive as the biggest
advantage of the Eulerian methods. Whenever the interface moves, the tri-
angulation is updated to accommodate the change. If two different interface
components collide, this change causes them to merge. Thus, topology is al-
lowed to change transparently to the user—although with our method it is also
possible to disallow topological changes.

4.3.1 Method description

We will first describe the DSC method in 2D. The basic idea is to compute the
new position for the interface vertices in each time step (using a user defined
velocity function) and then attempt to displace the interface vertices to the new
positions, one after another. If the displacement of a vertex does not invert any
triangle in its star (1-ring) then it is performed. Otherwise, it is moved in a
straight line as far as possible. When all vertices have moved, we perform a mesh
improvement routine and the displacement of the vertex to its final position is
continued in the next substep, taking as many substeps as required to reach the
end of the time step.

The outline of the DSC algorithm (both 2D and 3D version) is given by the
following pseudocode:

50 Deformable Simplicial Complexes

Algorithm 4 DeformableSimplicialComplexes(M,v)
{M is a triangle/tet mesh conforming to the initial interface}
{v is a velocity function for the interface vertices}

1: t⇐ 0
2: while t < T do
3: for each marked (interface) vertex pi do
4: compute final vertex position p̃i ⇐ pi + v(pi) ·∆t
5: end for
6: complete⇐ false
7: counter ⇐ 0
8: while not complete and counter < 10 do
9: complete⇐MoveVerticesStep(M, {p̃i})

10: improve mesh quality
11: counter ⇐ counter + 1
12: end while
13: t⇐ t+ ∆t {∆t is a time-step}
14: end while

Algorithm 5 MoveVerticesStep(M, {p̃i})
{{p̃i} is a set of the new positions of the interface vertices}

1: complete⇐ true
2: for each marked vertex pi do
3: if ‖pi − p̃i‖ > 0 then
4: compute the intersection t0 of the ray pi + t · (p̃i − pi) with the

link of the vertex pi
5: if t0 > 1 then
6: pi ⇐ p̃i
7: else
8: move the vertex pi to the intersection point pi + t0 · (p̃i−pi)
9: complete⇐ false

10: end if
11: end if
12: end for
13: return complete

The mesh improvement step (Algorithm 4, Step 10) aims at improving the
quality of the mesh in order to decrease the likelihood of situations where the
displacement of a vertex to its final position is not possible and to remove
the degenerate triangles created when such situations occur. The following
operations are used in the 2D mesh improvement routine:

4.3 Deformable Simplicial Complexes 51

• Mesh quality improvement: Moving vertices tends to introduce degenerate
triangles (tetrahedra) and, in general, it almost invariably reduces the
quality of the simplices. Consequently, we need to improve the quality
– both because poorly shaped triangles (tetrahedra) are the most likely
to be inverted as we move the interface vertices (and hence we cannot
displace them in one go) and also because we often want to use the mesh
as a computational grid and the quality of elements might significantly
affect the accuracy of the results. We perform Laplacian smoothing of
the non-interface vertices. Edge flips are performed for all non-Delaunay
edges in the mesh which are not interface edges.

• Interface topology changes: Edge flips are also performed when an interface
edge is the longest edge of a cap (nearly degenerate triangle with its obtuse
angle greater than a certain threshold value θcap, cos θcap ≈ −1) and if the
vertex of the cap opposite to this edge (cap tip) lies on the interface as
well; the newly created triangles are labeled according to the other triangle
adjacent to the flipped edge (see Figure 4.1 left).

• Detail control: In order to make the mesh improvement effective, we need
some degrees of freedom – extra non-interface vertices, also known as
“Steiner” vertices. However, we must also make sure that we do not intro-
duce too many vertices, otherwise the complexity of the mesh might grow
dangerously high. Non-interface edges are removed if this can be done
without changing the interface and without introducing degenerate trian-
gles or triangles with a minimum angle smaller than a given threshold.
This also removes a non-interface vertex. We add non-interface “Steiner”
vertices by inserting vertices in the barycenters of needles (triangles with
one extremely small angle). This will produce two triangles with even
smaller angles, but these are removed by edge flips.

• Degeneracy removal: Whenever we move a vertex as far as it is possible
without inverting the triangles in the mesh, we introduce degenerate tri-
angles (area of which is close to 0). Hence we have to remove triangles
smaller than a certain threshold area adegenerate or with one of the angles
smaller than a certain threshold angle θdegenerate through edge collapse of
the shortest angle (if it produces a valid mesh).

4.3.2 3D deformable simplicial complexes

The outline of the 3D version of DSC follows the main steps of the 2D algorithm.
However, some of the tools useful in the 2D case exhibit mediocre performance
in the 3D. Laplacian smoothing may produce inverted tetrahedra in 3D despite
working quite well in 2D. Likewise, while in the 2D case Delaunay meshes are

52 Deformable Simplicial Complexes

usually high quality, in 3D they often contain numerous, nearly-flat tetrahedra
(called slivers), which easily get inverted due to a small displacement of their
vertices and introduce significant errors in finite element computations [88].

To overcome the first difficulty, we use smart Laplacian smoothing (moving a
vertex towards the barycenter of its neighbors only if it improves mesh quality
locally) supported by L. Freitag’s optimization based smoothing, [33]. Also,
Delaunay tetrahedralization is used only to create the initial tetrahedralization
of the domain (using Tetgen [89]), which then undergoes mesh improvement
(analogous to the mesh improvement algorithms described in [34] and [52]).
Instead of using the Delaunay quality measure of a tetrahedron (minimum solid
angle), we aimed for a quality measure which would penalize both slivers and
long, needle-shaped tetrahedra, characterized by near-zero volume despite the
fact that the distances between their vertices (edge lengths) might be large. We
decided to use the volume-length ratio [76]:

Q(σ) = 6
√

2
V (σ)

l3rms

,

where V (σ) is the oriented volume of a tetrahedron t, and lrms is the average
(root-mean-squared) edge length:

lrms =

√
l212 + l213 + l214 + l223 + l224 + l234

6
.

This function is scale-indifferent and measures how different a tetrahedron is
from the regular tetrahedron (it equals 1 for the regular tetrahedron, and it
is close to 0 for slivers and needles). This is of course not the only quality
measure having those properties (for other options see [40, 88]), we chose it for
its simplicity and smoothness.

4.3.2.1 3D Mesh Improvement

Analogously to the 2D case, the tetrahedral mesh used in the 3D DSC needs to
be improved after each step of the deformation. The following operations are
used in the mesh improvement step:

• Mesh quality improvement:

– Smart Laplacian smoothing of the non-interface vertices and optimi-
zation-based smoothing, which moves the vertex in a way that maxi-
mizes the minimal quality of the tetrahedra in its coboundary (this is
clearly a non-smooth optimization problem, for the details see [33]).

4.3 Deformable Simplicial Complexes 53

– Likewise, we perform topological operations on the 3D meshes (gen-
eralizations of the edge flip in the 2D case): edge remove, multi-face
remove, multi-face retriangulation (for more detail see Chapter 3, and
also [34,52,68]) if they improve minimal quality locally.

• Interface topology changes: Topology changes occur when vertices from
one component of the interface touch another part of the interface. In
this case the two interface parts will be separated only by one or more
degenerate tetrahedra. Those tetrahedra are either re-labelled (switched
from inside to outside, or the other way round) or removed as a part of
the degeneracy removal (discussed below).

• Detail Control: Non-interface edges are collapsed if it does not produce
degenerate nor inverted tetrahedra, if it does not alter the interface and if it
does not create tetrahedra of quality smaller than a certain threshold value
qcollapse after the operation. Edges which do not belong to the interface
are split if the edge connects the domain boundary with the interface or
two interface vertices and is longer than a certain threshold value lsplit.
This ensure the interface has enough freedom to move.

• Degeneracy removal: The topology of the interface changes when vertices
from one part of the interface collide with another part of the interface.
This introduces degenerate tetrahedra, and when these are removed as
described below, the topology changes occur. Tetrahedra: If a tetrahe-
dron’s vertices are nearly coplanar (if the tetrahedron’s minimum dihe-
dral angle is smaller than a value θdihedral) its largest face is found and a
tetrahedron removal strategy is chosen accordingly to the position of its
opposite vertex. Faces: If a face is a cap with its obtuse angle greater
than θcap, the opposite edge is split and the edge connecting the new ver-
tex and the cap tip is collapsed; if the face is a needle with smallest angle
smaller than a threshold value θneedle, the edge opposite to this angle is
collapsed (both collapses are performed if they produce a valid mesh).
Edges: Finally, we collapse edges shorter than a certain threshold value
lmin if it produces a valid mesh.

Balancing edge collapses and edge splits is crucial for the optimal performance
and the robustness of the method. While we are trying to keep the complexity of
the embedding mesh reasonable (ideally proportional to the number of triangles
in the interface mesh), we try to avoid creating edges that directly connect
the interface with the domain boundary or connect two different parts of the
interface, as the resulting tetrahedral mesh is too inflexible (difficult to improve)
and prone to contain degenerate tetrahedra or faces and removing those might
lead to significant alteration of the interface.

54 Deformable Simplicial Complexes

4.3.2.2 Surface Mesh Improvement

The success of a Lagrangian method often depends on the quality of the tri-
angulation of the interface [13], especially when the velocity field computation
depends on the geometry of the interface. Moreover, the quality of the tetrahe-
dralization benefits from better shaped triangles in the interface [18, 86]. How-
ever, even if we start with a high quality triangular mesh, it might quickly
deteriorate as we advect the interface. To prevent this we include several inter-
face improvement operations which do not significantly alter the geometry of
the interface:

• Null-space smoothing by [44]: moving each vertex only in the null space
of its local quadric metric tensor. This way it smoothing does not change
the geometry of the interface mesh. However, in our implementation we
allow slight changes to the geometry in smooth regions.

• Edge flip of the interface edges: this can be seen as a special case of
the edge removal (swap) operation in the ambient tetrahedral mesh. We
perform the edge flip if its adjacent triangles do not fulfill 2D Delaunay
criterion, if it does not lead to creating inverted tetrahedra in the mesh, if
the edge is not a feature edge and if the volume of the tetrahedron spanned
by its adjacent triangles is sufficiently small.

• Edge split for edges longer than a certain threshold value.

• Edge collapse for non-feature edges shorter than a certain threshold value.

4.4 Applications

4.4.1 Simple Geometric Flows

The benchmark tests for deformable models are simple geometric flows: Rota-
tion, mean curvature flow and offsetting (motion in the normal direction) [75].

4.4.1.1 Rotation.

Rotation with an angular velocity ω around an axis e is performed by multi-
plying the interface vertices’ positions by a rotation matrix R(e,∆θ) (where
∆θ = ω · ∆t, ∆t is the time step) in every time-step. This simple geometric

4.4 Applications 55

Figure 4.2: Rotation in the DSC framework. Changes to the interface mesh are
minimal, mainly due to the surface mesh improvement operations.

flow poses a challenge for level set method, as the numerical diffusion causes
the interface to lose sharp details and volume [75] and requires elaborate fixes
to prevent it. Deformable simplicial complexes, like Lagrangian methods, does
not suffer from such problems, as can be seen in Figure 4.2.

4.4.1.2 Mean Curvature Flow.

We compute the mean curvature of the interface using the cotangent formula
[78]. The results are shown in Figure 4.3.

4.4.1.3 Offsetting.

Motion in the normal direction is performed using face offsetting [44]. Displac-
ing the triangle mesh vertices by constant distance in the normal direction gives
incorrect results. Instead, we offset the planes containing faces of the trian-
gular mesh in the normal direction and find new vertices’ positions from the
intersections of these planes. The results are presented in Figure 4.4.

4.4.2 Cut Locus Construction

We utilize the possibility to preserve the topology of a front and to give the
domain other topology than that of a disk in our cut locus construction method
for Riemannian 2-manifolds, described in detail in [66]. The cut locus of a point
p in a manifold (M,g) is essentially a set of all those points which are connected

56 Deformable Simplicial Complexes

Figure 4.3: Mean curvature flow quickly erases high frequency details of the
surface. A close-up of the ears in the lower row shows an important property
of the DSC – the interface mesh only changes in the regions where it is needed,
in order to accomodate the deformation; one can notice that most of the trian-
gulation remains essentially unchanged between the frames, except for the ears,
where the triangulation changes a lot (as this part of the mesh is affected the
most by the mean curvature flow).

Figure 4.4: Interface offsetting: outwards (upper row) and inwards (lower row).

4.4 Applications 57

Figure 4.5: 2D DSC-based cut locus construction algorithm results for tori:
Left – cut locus of a standard torus of revolution with circular generator
r1(u, v) = ((2 + cos(v)) cos(u), (2 + cos(v)) sin(u), sin(v)), for a point (u, v) =
(0, 0); middle and right – cut loci of a stand torus of revolution with elliptic
generator r2(u, v) = ((2 + cos(v)) cos(u), (2 + cos(v)) sin(u), 2 sin(v)), for points
(u, v) = (0, 0) and (0, 0.15π).

to p by more than one minimizing geodesic [82]. This can be also seen as a set
of those points, where equidistance circles centered at p form cusps and self-
intersect. Our algorithm utilizes the second approach. We advect the circle
centered at p along the geodesics connecting its points with p with constant
speed. The advection takes place in the coordinate chart (parametric domain,
(u, v)-space) discretized using 2D deformable simplicial complexes and the 2D
DSC mesh is given torus topology. Whenever the front is about to collide with
itself (when this happens, degenerate triangles appear in the mesh) the interface
stops. Some examples of cut locus construction results for tori are presented in
Figure 4.5.

4.4.3 Point Cloud Reconstruction

In order to demonstrate space the adaptivity of the deformable simplicial com-
plexes, we implemented a simple, topology adaptive point cloud reconstruction
method. Our method vaguely resembles the algorithm proposed by Hoppe et
al. [41], which is not topology adaptive. The initial interface is the triangulation
of a bounding sphere of the point cloud. In every time step we compute a new
desired configuration for each face f :

• if the vicinity of the face does not contain any point from the point cloud,
we offset it in the normal direction, inwards;

• if the vicinity of the face contains points from the point cloud (and f is the

58 Deformable Simplicial Complexes

Figure 4.6: Reconstruction of an artificial point cloud – a box with a cylindrical
tunnel.

Figure 4.7: Upper row: The original data set (vertices of the mesh on the left,
about 116k points) and the DSC-based reconstruction result. Lower row: A few
steps of the reconstruction.

4.4 Applications 59

Figure 4.8: An example of fluid simulation using 3D example – two droplets
colliding obliquely.

Figure 4.9: An example of fluid simulation using 3D DSC – two spherical vol-
umes of fluid splashing inside a spherical vessel.

closest face for these points), we compute their least squares minimizing
plane;

New vertices’ positions are found from the intersections of those plane. When-
ever the plane containing f does not approximate the points assigned to it
accurately enough, we subdivide it. This extremely simple approach turns out
to give decent results: it handles the sharp features correctly (unlike Poisson
reconstruction [47] or early approached based on Radial Basis Functions [93] un-
less normal constraints are used [85]), and subdivision occurs only when needed
(see Figures 4.6, 4.7).

4.4.4 Fluid Simulation

One of the main applications of deformable models is to track the free surface
in fluid simulations. The free surface of a fluid undergoes drastic deformation
and frequent changes in topology, so robust topological adaptivity is crucial.

60 Deformable Simplicial Complexes

Figure 4.10: An example of fluid simulation using 3D DSC – Stanford bunny
splashing inside a spherical vessel.

Traditionally, the level set method has been used alongside regular grid-based
Navier-Stokes equation solvers [11]. This approach has proven to be extremely
successful and is widely used in multiple practical application, but it has its
limitations. Many of them, such as volume loss or difficulty handling curved
solid boundaries have been addressed by numerous, often very elaborate patches.
The lack of explicit interface representation makes it quite difficult to simulate
surface phenomena and incorporating them in a fluid simulation framework
requires fairly complex operations on the sub-grid scale meshes used for tracking
fluid’s surface [92,97].

In [67] we present a completely new, finite element method-based approach
to fluid simulation, utilizing the DSC mesh as an FEM mesh. Our solver
rephrases incompressible Euler equations (inviscid flow equations) as an op-
timization problem with the surface energy term explicitly incorporated into
the objective function. Besides that, the method automatically handles curved
solid boundaries.

Some results are presented in Figures 4.8, 4.9, 4.10.

4.4.5 Scalability and Performance

The complexity of all the mesh improvement operations used in the 3D DSC
algorithm is linear with respect to the number of tetrahedra in the mesh. Our

4.5 Conclusions and Future Work 61

experiments suggest that also the number of tetrahedra in the DSC mesh is at
most a quasi-linear function of the number of the interface triangles. Additional
tests performed during the simple geometric flow examples have shown, that
the DSC mesh is dominated by tetrahedra adjacent to the interface (out of
approximately 80k tetrahedra, more than 70% are adjacent to the interface).
The initial number of interface triangles in those examples was about 14k. In
most of our experiments, the ratio of the total number of tetrahedra to the
number of interface triangles fluctuates around the values 7-8.

Single iteration time might depend on the size of the displacement. If the dis-
placements are large compared to the interface mesh edge size, several collisions
might need to be resolved and bringing all interface vertices to their final po-
sitions might require more than just one or two executions of the main loop in
Algorithm 4. On average, the time step seems to scale linearly with respect to
the number of tetrahedra in the mesh. In the simple fluid examples, the size
of the mesh is on the order of 10k and we could perform about 10 to 30 itera-
tions per minute. In the Stanford bunny examples, the size of the DSC mesh is
around 80k, and we could perform 1 to 4 iterations per minute, for reasonable
displacement size (on 64-bit Intel R© Xeon R© CPU W5590 @ 3.33 GHz, 6 GB
RAM).

4.5 Conclusions and Future Work

Our results show that deformable simplicial complexes can be an interesting
alternative to the level set method. It shares the main advantage of the level set
method: robust topological adaptivity, but is free of LSM’s main drawbacks:
significant numerical diffusion and poor scale adaptivity. Topology control is
natural and simple in the DSC and the domain can have other topology than
disk, as demonstrated by the cut locus application. Moreover, the DSC mesh
can be used for finite element computations and provides fast collision detection
mechanism.

The main drawback of the DSC in its current form is its speed. We were trying
to optimize the performance while designing the method, however the in-depth
analysis of it is still to be done. We believe that this way, and also by optimiz-
ing lower-level structures implementation, we could improve the performance
significantly. Until then it is difficult to quantatively compare the DSC against
other deformable interface tracking methods at this moment. For this reason we
aimed at presenting the applicability of the DSC in the problems other methods
have troubles dealing with. For the tasks requiring superior time performance,
we would of course recommend simpler deformable models.

62 Deformable Simplicial Complexes

We would also like to continue working on the applications mentioned in Section
4.4 and explore the applicability of the DSC in another problems.

Acknowledgements

We are grateful to the following people for resources, discussions and suggestions:
François Anton, Jeppe Revall Frisvad (Technical University of Denmark), Kenny
Erleben (University of Copenhagen), Robert Bridson and Carl Ollivier-Gooch
(University of British Columbia).

Chapter 5

Cut Locus Construction Using
Deformable Simplicial

Complexes

Marek Krzysztof Misztal, Technical University of Denmark
Jakob Andreas Bærentzen, Technical University of Denmark

Steen Markvorsen, Technical University of Denmark

Submitted to Experimental Mathematics.

64 Cut Locus Construction Using Deformable Simplicial Complexes

Abstract. In this paper we present a method for appproximating cut loci for a given
point p on Riemannian 2D manifolds. This is done by advecting a front of points
equally distant from p along the geodesics originating at p and finding the lines of
self-intersections of the front in the parametric space. This becomes possible by
using deformable simplicial complexes (DSC, [65]) method for deformable interface
tracking, since DSC provides a simple collision detection mechanism, allows for
interface topology control and does not require the domain to have disk topology.
We test our method for tori of revolution and compare our results to the benchmark
ones from [38]. The method, however, is generic and can be easily adapted to
construct cut loci for other manifolds of genera other than 1.

5.1 Introduction

5.1.1 Problem definition

The cut locus from a point p in a Riemannian manifoldM is essentially a set of
points in M, which are connected to p by more than one minimizing geodesic.
For example: in Euclidean space, the cut locus of a point is empty; on an n-
sphere, the cut locus of a point consists of the point opposite to it (antipodal
point); on an infinitely long cylinder, the cut locus of a point consists of the line
opposite to that point. For a more mathematically rigorous definition, see [82].

Let us define the distance circle of a point p in a Riemannian manifold M and
radius r as a set of points in M whose geodesic distance from p equals r. One
can alternatively look at the cut locus of a point p as a set of points where
the distance circle centered at p forms cusps and self-intersects as its radius
increases.

Cut loci are among the main objects of study in differential geometry, with
applications in diverse problems, like for example: recognition in computer vi-
sion [77] or forest fire modelling [35].

For the sake of clarity, in this paper we are primarily interested in 2-dimensional
manifolds, embedded in R3, defined by a parametrization:

r : U → R3,

where U ⊂ R2. However, proposed method is applicable to any Riemannian
2-manifold, given a metric tensor. The method could also be extrapolated to
3-dimensional cases.

5.1 Introduction 65

5.1.2 Torus setting

Figure 5.1: Standard torus with geodesics and equidistance circles in parameter space.
The conjugate locus is clearly visible (2 places where the geodesics show first time
reconvergence.)

The standard torus of revolution with circular generator in R3 is given by the
following parametrization, where we have chosen specific values of diameter and
tube radius:

r(u1, u2) = ((2 + cos(u2)) cos(u1), (2 + cos(u2)) sin(u1), sin(u2)), (5.1)

where (u1, u2) ∈ R2. Periodicity identifies points in the image. The parameter
plane R2 is the universal cover. The fundamental domain is only, e.g. (u1, u2) ∈
[−π, π]× [−π, π].

The corresponding metric tensor is in this representation:

g(u1, u2) =

[
(2 + cos(u2))2 0

0 1

]

If we work and operate in the parameter plane, when pushing a front forward to
next level by a unit vector (a1, a2) at the position given by coordinates (u1, u2),
then “unit” means that the length ‖(a1, a2)‖ of (a1, a2) must be 1:

‖(a1, a2)‖2 = (a1, a2)g

(
a1

a2

)
= (a1, a2)

[
(2 + cos(u2))2 0

0 1

](
a1

a2

)
= 1,

that is:

(2 + cos(u2))2a2
1 + a2

2 = 1.

66 Cut Locus Construction Using Deformable Simplicial Complexes

So, if at the position (u1, u2) we want to go with unit speed in the direction given
by the vector (cos(θ), sin(θ)), then in the (u1, u2)–plane we should go with the
velocity vector given by:

V =
(cos(θ), sin(θ))√

(2 + cos(u2))2 cos2(θ) + sin2(θ)
(5.2)

Similarly, if we want to go in a direction orthogonal to a given (front) vector
(b1, b2) then the angle θ must be chosen, so that

(b1, b2)

[
(2 + cos(u2))2 0

0 1

](
cos(θ)
sin(θ)

)
= 0 ,

which gives essentially two values of θ.

Going with velocity 1 away from the point p = (0, 0) along geodesics in a number
of equally distributed directions gives Figure 5.1, where also the distance circles
reached at given distances from p are indicated in a rough grid. The cut locus
C(p) consists of those points where the distance circle front creates cusps and
begin (locally) thereafter to cross itself together with those points where the
distance circle front meets itself head-on and crosses itself.

5.1.3 Related work

The first generic tools allowing to numerically evaluate cut loci in Riemannian
2-manifolds began to appear in the early years of the last decade. R. Sinclair’s
and M. Tanaka’s Loki [90] allowed to construct cut loci of genus 1 surfaces with
very high accuracy (it was used in, e.g.: numerical evaluation of cut locus of
a torus of revolution [38]). It is, however, very difficult to apply to surfaces of
other genera, and its complexity is very high, even when a rough approximation
of a cut locus is sought. J. Itoh and R. Sinclair developed Thaw [43] which
addressed the problem of finding approximate (“quick and dirty” as the authors
say) cut loci in a short time using a triangulation of a surface. It turned out
to be an useful tool, giving reasonable results for almost arbitrary surfaces, but
its computational cost increases exponentially with the level of subdivision of
the triangular mesh and hence is not suitable for applications requiring higher
accuracy. Neither of those tools is generalizable to solving a problem of finding
cut loci in 3-dimensional Riemannian manifolds.

5.2 Method Description 67

Figure 5.2: Interface representation in 2D deformable simplicial complexes.
Exterior triangles are light gray, interior – blue. Simplices belonging to the
interface (edges and vertices) are highlighted in dark blue. On the left, the red
arrow indicates where topology changes take place. Note also the difference in
scale between the largest and the smallest triangles.

5.2 Method Description

5.2.1 Deformable simplicial complexes

Like the level set method [75], DSC is a method for dealing with deformable
interfaces. In DSC, the interface is represented explicitly as a set of faces of
simplices belonging to a simplicial complex one dimension higher. These sim-
plices belong either to the object or the exterior. Simplices never straddle object
boundaries. Thus, in 2D, the computational domain is divided into triangles,
and the deforming interface is the set of line segments which divide interior
triangles from exterior triangles (as illustrated in Figure 5.2).

The interface deformation is performed by moving the vertices, hence it suffers
from little numerical diffusion, and there is an explicit representation of the
interface which, furthermore, does not change gratuitously between time steps.
Moreover, the simplicial complex does not have to be regular meaning that we
can allow details of significantly different scale in the same grid (c.f. Figure 5.2
left).

Whenever the interface moves, the triangulation is updated to accommodate the

68 Cut Locus Construction Using Deformable Simplicial Complexes

change. If two different interface components collide, this change causes them to
merge. Thus, topology is allowed to change transparently to the user—although
it is equally simple to stop the interface and disallow topological changes. This
is due to the fact that the DSC provides an intrinsic and immediate collision
detection mechanism (whenever collision is about to happen, degenerate edges
and triangles whose vertices are nearly collinear appear), which allows us to stop
the deformation before the topological change occurs. We are going to utilize
this topology control property in our cut locus construction algorithm.

The basic idea is to compute the new position for the interface vertices in each
time step (using an arbitrary velocity function) and then attempt to displace the
interface vertices to the new positions, one after another. If the displacement
of a vertex does not invert any triangle in its star (1-ring) then it is performed.
Otherwise, it is moved in a straight line as far as possible. When all vertices
have moved, we perform a mesh improvement routine and the displacement of
the vertex to its final position is continued in the next substep, taking as many
substeps as required to reach the end of the time step.

The mesh improvement step aims at improving the quality of the mesh in order
to decrease the likelihood of situations where the displacement of a vertex to
its final position is not possible, provided that no self-collision of the interface
occurs. The following operations are used in the mesh improvement routine:

• Mesh quality improvement: We perform Laplacian smoothing of the non-
interface vertices. Edge flips are performed for all non-Delaunay edges in
the mesh which are not interface edges.

• Detail control: Non-interface edges are removed if this can be done with-
out changing the interface and without introducing degenerate triangles
or triangles with a minimum angle smaller than a given threshold. This
also removes a non-interface vertex. Sometimes we also need to add non-
interface “Steiner” vertices. We do so by inserting vertices in the barycen-
ters of needles (triangles with one extremely small angle). This will pro-
duce two triangles with even smaller angles, but these are removed by edge
flips.

DSC does not require the underlying mesh to have disk (or [0, 1]×[0, 1]) topology.
In fact, in our algorithm for genus 1 manifolds, we give it torus topology, which
allows us to detect all self-intersections of the growing distance circles.

5.2 Method Description 69

5.2.2 Cut locus construction overview.

We are given a 2-dimensional Riemannian manifoldM defined by a parametriza-
tion

r : U → R3,

and a point on this manifold p (the cut locus generator). At every time step the
advecting front is represented as a piecewise linear curve in the coordinate chart.
For each vertex of the discretization of the front we store another piecewise
linear curve connecting it with the cut locus generator p, approximating the
minimizing geodesic. In every time step, we advect the front along the geodesics
by a distance V ·∆t, where ∆t is the size of a time step and V is the velocity
vector in the parameter space (this way, the front moves by a distance ∆t
on the manifold; compare with Equation 5.2). We add new positions of the
vertices to the discretizations of the minimizing geodesics connecting them with
p. However, due to the discretization error, those new curves might not be
geodesic any longer. We have to re-compute the geodesic distances of the new
vertex positions from p (using an algorithm described in Section 5.2.3, which
also produces a minimizing geodesic curve from an input, piecewise linear path)
and, if it does not equal to the desired value d (which is the radius of the distance
circle at the current time step) – correct the position of the vertices. We iterate
those steps until all new vertex positions have geodesic distance d from p.

Having new vertex positions we displace the vertices in the DSC framework (see
Figure 5.3). Head-on self-collision of the interface is detected by apperance of
very short, non-interface edges connecting two interface vertices or caps (very
flat, obtuse triangles, base of which is an interface edge, and the apex of which
is an interface vertex), we then stop the motion of the interface, in the former
case by marking both vertices of an edge as locked, in the latter – by splitting
the base of a cap at the point closest to the apex, and marking both the apex
and the new vertex as locked. Local self-collision of the interface is detected
by the interface edge becoming tangent to the geodesics connecting its vertices
with p. In this case we mark both vertices of such an edge as locked.

It is possible to add new vertices to the interface by splitting an interface edge
at half when e.g. its length in the coordinate chart is larger than a certain
threshold value, or when the geodesic distance between its vertices is larger
than another threshold value. For an initial approximation of a geodesic for
a vertex introduced this way we can choose the average of the geodesics of its
neighbors (of course, such an approximation might not be geodesic, so it has
to be corrected the same way as described above). Once all vertices of the
interface are locked, it gives us an approximation of the cut locus of the point
p in manifold M.

70 Cut Locus Construction Using Deformable Simplicial Complexes

Figure 5.3: Growth of the distance circle in the DSC setup. The minimiz-
ing geodesics connecting the interface vertices with the cut locus generator are
shown in blue.

5.2.3 Geodesic distance computation.

The details of the following method can be found in [61] and [4]. Let c : s ∈
[0, 1]→ (x1(s), x2(s)) ∈ U be a smooth map. Then the curve r ◦ c is geodesic if
it fulfills the following equations:

∂2xk
∂s2

+
∑
i,j

Γki,j
∂xi
∂s

∂xj
∂s

= 0, k = 1, 2 (5.3)

where Γki,j are the second kind Christoffel symbols [2].

For a pair of points xA = (xA1 , x
A
2) and xB = (xB1 , x

B
2) in U we want to find

a geodesic on M connecting r(xA) and r(xB). We solve the Equation 5.3
using the finite differences method. We approximate a geodesic as a piecewise
linear curve (x0,x1, . . . ,xN), where x0 = xA, xN = xB and xp = c(ph) for
p = 1, 2, . . . , N − 1, where h = 1

N . Then, by substituting:

∂xk
∂s

(ph) ≈
xp+1
k − xp−1

k

2h
,

∂2xk
∂s2

(ph) ≈
xp+1
k + xp−1

k − 2xpk
h2

,

5.2 Method Description 71

and multiplying by h2 we obtain the following finite difference scheme:

xpk =
xp+1
k + xp−1

k

2
+

1

8

∑
i,j

Γki,j(x
p)(xp+1

i − xp−1
i)(xp+1

j − xp−1
j). (5.4)

We can solve it by finding a fixed point of a transformation H : UN−1 → UN−1,
transforming the approximation of a geodesic into a better approximation of a
geodesic in Gauss-Seidel method iteration [3]:

H(x1,x2, . . . ,xN−1) = (y1,y2, . . . ,yN−1),

where:

ypk =
xp+1
k + xp−1

k

2
+

1

8

∑
i,j

Γki,j(x
p)(xp+1

i − xp−1
i)(xp+1

j − xp−1
j).

We do that by finding a zero of H(x)−x, using Newton-Raphson algorithm [80].
Starting with an initial guess (z1, z2, . . . , zN−1), we iterate:

Y(1) = (z1, z2, . . . , zN−1) (5.5)

Y(i+ 1) = Y(i)− (∇Y(i)H − I)−1 · (H(Y(i))−Y(i)). (5.6)

Given a good initial guess, the algorithm converges in a few iterations. This
is, of course, the case in our algorithm, since we only make a small error as we
move one step forward along the geodesic line, which was correct in the previous
step.

5.2.4 Initialization

In order to obtain the initial front L0 of points whose distance from p equals
a small value dinit we start with a piecewise linear approximation of a circle
L̃0 = {v0,v1, . . . ,vN0

} centered at p. The initial approximation of the geodesic
connecting vertex vi on the circle with p is a piecewise linear curve:

Ỹi = {u0,u1, . . . ,uM0−1,uM0
},

where:

uj =
j

M0
· p +

M0 − j
M0

· vi.

In order to push vi onto the distance circle at dinit, we compute its geodesic
distance di from p (as shown in Section 5.2.3), with Ỹi as an initial guess.
We then push it along the geodesic by a distance of dinit − di. We then iter-
ate geodesic distance computation and vertex displacement until it lies on the
desired distance circle.

72 Cut Locus Construction Using Deformable Simplicial Complexes

Figure 5.4: Cut locus construction results for (u1, u2) = (0, 0) and (0, 0.2π)
(circular generator).

5.3 Tests and Results

5.3.1 Standard torus of revolution, circular generator

Cut loci of a torus defined by Eq. 5.1 for different positions of the point p on
the generating circle are shown in Figures 5.4, 5.5.

5.3.2 Standard torus of revolution, elliptic generator

An elliptic cross section generator gives a different metric and a different geodesic
spray. For a parametrization:

rλ(u1, u2) = ((2 + cos(u2)) cos(u1), (2 + cos(u2)) sin(u1), λ sin(u2)),

where (u1, u2) ∈ [−π, π]× [−π, π], λ ∈ R+, the corresponding metric is then:

gλ(u1, u2) =

[
(2 + cos(u2))2 0

0 1 + (λ2 − 1) cos2(u2)

]
.

The results for λ = 2 are shown in Figure 5.6.

5.3 Tests and Results 73

Figure 5.5: Cut locus construction results for (u1, u2) = (0, 0.5π) and (0, 0.9π)
(standard torus of revolution, circular generator).

Figure 5.6: Cut locus construction results for (u1, u2) = (0, 0) and (0, 0.15π)
(standard torus of revolution, elliptic generator).

74 Cut Locus Construction Using Deformable Simplicial Complexes

5.3.3 Performance

Computation time in all our experiments was on the order of 10000 seconds (on
Intel R© CoreTM Duo CPU T2350 1.86 GHz, 2 GB RAM).

5.4 Discussion

5.4.1 Accuracy and Complexity

The accuracy of our method depends on two factors: the level of subdivision of
the advancing front and the size of the time step. In principle, the maximum
error of the vertex position on the cut locus (in the parametric space) is bounded
by the time step and maximum velocity in the coordinate chart:

ε < ‖V‖2 ·∆t.

The accuracy could be improved by computing exact collisions, which is not
available in our implementation yet. We also believe, that even better results
could be obtained, if more sophisticated interface refinement schemes are applied
– for example, refinement based on the curvature of the front in the manifold –
and we intend to investigate that.

The most costly operation in our algorithm is geodesic distance computation.
Its cost is a quadratic function of the number of vertices in the piecewise linear
approximation of the geodesic curve (because the matrix in the scheme 5.5 is
banded). We perform a constant amount of geodesic distance computation calls
per vertex in one time step. Since we add one vertex to the approximation of
the geodesic curve in each time step, the size of it is inversely proportional to
∆t. The time complexity of our algorithm is also proportional to the maximum
number of vertices in the discretization of the front. Hence, the performance
could be further optimized by, again, implementing a smarter front refinement
scheme and by slower adding new vertices to the approximations of the geodesics
(which are very densely sampled in the current implementation).

5.4.2 Generality of the method

We presented the results of our cut locus construction method for genus 1 Rie-
mannian 2-manifolds, embedded in R3. However, careful reader might have

5.4 Discussion 75

noticed that the method itself is generic, and can be easily adapted to han-
dle other 2-manifolds. If a Riemannian 2-manifold M cannot be embedded in
R3, it can alternatively be defined by three functions E(u1, u2), F (u1, u2) and
G(u1, u2) defining the metric tensor:

g(u1, u2) =

[
E(u1, u2) F (u1, u2)
F (u1, u2) G(u1, u2)

]
.

This representation is, of course, just as appropriate for our algorithm in its
current form.

Our method also gives a possibility to track the evolution of the distance circles
not in the parametric space U , but in the manifold itself. The DSC mesh would
be a triangulation of the manifold M in this case. Most of the steps of the
algorithm would not change in such a setting – however, we might need to
use a different geodesic distance computation algorithm, e.g. [48] or some other
approach to geodesic curvature minimization.

Since a 3D deformable simplicial complexes implementation exists [65], it would
also be interesting and relatively straight-forward to use it in cut locus construc-
tion for Riemannian 3-manifolds.

76 Cut Locus Construction Using Deformable Simplicial Complexes

Chapter 6

Optimization-based Fluid
Simulation on Unstructured

Meshes

Marek Krzysztof Misztal, Technical University of Denmark
Robert Bridson, University of British Columbia

Kenny Erleben, University of Copenhagen
Jakob Andreas Bærentzen, Technical University of Denmark

François Anton, Technical University of Denmark

Accepted to Proceedings of VRIPHYS 2010: The 7th Workshop on Virtual
Reality Interaction and Physical Simulation, Copenhagen 2010.

78 Optimization-based Fluid Simulation on Unstructured Meshes

Abstract. We present a novel approach to fluid simulation, allowing us to take
into account the surface energy in a precise manner. This new approach com-
bines a novel, topology-adaptive approach to deformable interface tracking, called
the deformable simplicial complexes method (DSC) with an optimization-based,
linear finite element method for solving the incompressible Euler equations. The
deformable simplicial complexes track the surface of the fluid: the fluid-air interface
is represented explicitly as a piecewise linear surface which is a subset of tetrahe-
dralization of the space, such that the interface can be also represented implicitly
as a set of faces separating tetrahedra marked as inside from the ones marked as
outside. This representation introduces insignificant and controllable numerical dif-
fusion, allows robust topological adaptivity and provides both a volumetric finite
element mesh for solving the fluid dynamics equations as well as direct access to
the interface geometry data, making inclusion of a new surface energy term feasible.
Furthermore, using an unstructured mesh makes it straightforward to handle curved
solid boundaries and gives us a possibility to explore several fluid-solid interaction
scenarios.

6.1 Introduction

Since the mid-nineties of the previous century, fluid simulation has been exten-
sively used in computer animated sequences of major motion pictures. Moreover,
fluid simulation is important in many scientific applications, and simplistic fluid
dynamics is even beginning to appear in real-time graphics applications.

Despite this rapid development, some problems remain with existing methods.
Most existing methods are based on Eulerian simulations on fixed grids. These
are prone to introducing gratuitous artificial viscosity in the simulations, volume
loss, grid artifacts and, due to the lack of an explicit surface representation,
surface tension is not easy to incorporate.

In the present paper, we propose a novel method for free-surface fluid simulation
based on an irregular grid which dynamically adapts to the fluid volume. Our
method is based on another recent technique for deformable interface tracking
which we call deformable simplicial complexes (DSC, [65]). The gist of the
DSC method is that the tracked surface is represented as a subcomplex (e.g.
triangle mesh) of a simplicial complex (tetrahedral grid) which covers the entire
computational domain. Tetrahedra are labelled according to which side of the
interface they reside in, and the surface (interface) itself is the set of faces shared
by a pair of tetrahedra belonging to opposite sides.

6.2 Related Works on Fluid Solvers 79

In this paper, we focus on how fluid simulation can be implemented on top of
the DSC method, using the tetrahedral grid of the DSC method also as the
computational grid for the fluid simulation. Our new method has at least two
important benefits compared to previous methods:

• Because the grid changes only little to adapt to the changes in the water
volume, we have very little numerical diffusion.

• Since we have an explicit representation of the water-air interface, it is
very easy to add a surface energy term.

6.2 Related Works on Fluid Solvers

Many works are based on regular grids; as a general reference to grid-based in-
compressible flow in graphics we refer to the book [11]. Some of the foundations
for grid-based works include an Eulerian approach to 3D fluid simulation [31]
that demonstrated advantages over earlier work using particle systems, and 2D
simulations and a semi-Lagrangian implicit time stepping method [91]. Recent
work addresses irregular boundaries on grids [12].

Fluid animation on unstructured meshes, like our method, has been gaining pop-
ularity in the last five years. [27] simulated gases on static tetrahedral meshes
to model the interaction of fluids with irregularly shaped obstacles, based on a
finite volume method discretization of the divergence operator with a projec-
tion method to enforce incompressibility. On their staggered mesh only normal
components of velocities are stored at the face centers, making it easy to apply
solid boundary conditions. The main difficulty is the nontrivial reconstruction
of the full velocity field from the face normal components. In comparison we use
a finite element approach on a moving and deforming tethrehedral mesh and we
store the full velocity vector at the vertices.

Deforming unstructured tetrahedral meshes were introduced in [28]. Here a
moving mesh is used where the deformation is limited to preserve mesh quality.
Our approach to advection uses the same generalized semi-Lagrangian method
from this work. In comparison to our work we emphasize the topological oper-
ations needed when deforming the mesh.

Remeshing of the entire computational domain in each simulation step was
used in [51]. The authors addressed two-way coupling of fluids and rigid bodies.
Heuristics were used to generate high resolution meshes in visually important
regions; our mesh refinement and improvement are based on mesh quality only.

80 Optimization-based Fluid Simulation on Unstructured Meshes

(The coupling was later extended to deformable objects as well [17]; in our paper
we do not address two-way coupling.)

Liquid simulation on unstructured tetrahedral meshes is presented in [16]. A
semi-Lagrangian contouring method is used to extract the free surface and re-
build a tetrahedral mesh in every time step, and a body centered cubic lattice
is used for the structure of the tetrahedral mesh. The liquid surface is embed-
ded as a discrete submanifold in the tetrahedral mesh as in our case. However,
rather than completely rebuilding a new mesh in each time step our approach is
based on making local topological changes to remesh and improve mesh quality.

In [23] a new fluid simulation method is presented. A static staggered grid is
used where velocities are stored at vertices and scalar fields at volume centers.
The auhors apply a vorticity formulation of the Navier–Stokes equation whereas
we use a momentum formulation. The authors employ discrete differential meth-
ods to guarantee a circulation-preserving flow, but do not handle liquids/free
surfaces.

Another finite volume method is presented in [95]. Here full velocity vectors are
stored at the face centers which add some problems to the pressure correction,
necessitating an additional projection each time step.

While not strictly a fluid solver (focusing instead on elastoplastic materials)
the work presented in [98] combines a highly detailed surface mesh with a
non-conforming tetrahedral finite element simulator that makes frequent use of
remeshing. In constrast we use a boundary-conforming tetrahedral mesh in our
fluid solver.

In summary, past work is based on staggered meshes using face-centered velocity
grid layouts. Most work on unstructured meshes deal with free surfaces using
contouring and complete remeshing. Deforming meshes have been considered to
control visual quality but in a deformation-limited manner; our approach follows
the physical simulation and has no such limits. Further our work uses a finite
element method for fluid simulation whereas previous work on fluid simulation
on unstructured mehses use finite volume methods.

6.3 Deformable Interface Tracking

Traditionally, methods for deformable interface tracking fall into two categories:
explicit (Lagrangian) and implicit (Eulerian). Traditional Lagrangian methods,
such as active contours or snakes, use parametrisation of the interface and apply

6.3 Deformable Interface Tracking 81

Figure 6.1: Interface representation in deformable simplicial complexes (2D on
the left, 3D on the right). Exterior triangles (tetrahedra) are light gray, interior
– blue. Simplices belonging to the interface (edges and vertices in 2D; faces,
edges and vertices in 3D) are highlighted in dark blue. On the left, the red
arrow indicates where topology changes take place. Note also the difference in
scale between the largest and the smallest triangles.

the deforming velocity field (u) directly to the interface points (x):

dx

dt
= u(x).

This approach leads to trouble once the topology of the interface changes. An
efficient collision detection mechanism is needed to detect self-intersections of
the interface, and once it happens, costly reparametrisation is needed, along
with surgical cuts (as in [36], although in recent work by [13] this problem is
mitigated by not allowing self-intersections). Those problems do not occur in
Eulerian methods, such as the level set method (LSM, [75]). LSM represents
a n-dimensional interface as the 0-level set of a (n + 1)-dimensional function
f(x1, . . . , xn, xn+1) (signed distance function is usually the choice), defined on
the nodes of a regular grid. The evolution of the interface due to the velocity
field u is then described by the following partial differential equation, also known
as that level set equation:

∂f

∂t
+ u · ∇f = 0.

This approach provides trivial and robust topological adaptivity. However, the
LSM also exhibits several drawbacks: it is bound to a certain scale, it suffers
from significant numerical diffusion for features near the sampling rate irrespec-
tive of discretization, it does not allow explicit interface representation and it
relies on calculations in one dimension greater than the interface itself.

The work most directly related to ours is the method presented in [79]. The
authors proposed a method which is based on a triangle mesh representation
of the interface, but once the vertices have been moved, a restricted Delaunay
tetrahedralization of the interface is performed. A test is performed on each of
the new tetrahedra in order to label them as interior or exterior. If a vertex

82 Optimization-based Fluid Simulation on Unstructured Meshes

is found to be shared only by identically labeled tetrahedra, it is removed.
This method shares a number of advantages with our method. In particular,
it can be extended to multi-phase simulations, and it suffers only little from
numerical diffusion, but there is no detection of what happens between time
steps. Arguably a small object could pass through a thin wall if the time step
was not properly tuned, and the precise points where interface collisions occur
are not detected. Lastly, it would be difficult to extend their method to do
topology control which is simple with our approach.

In the deformable simplicial complexes (DSC), the interface is represented ex-
plicitly as a set of faces of simplices belonging to a simplicial complex one
dimension higher. These simplices belong either to the object or the exterior.
Simplices never straddle object boundaries. Thus, in 2D, the computational
domain is divided into triangles, and the deforming interface is the set of line
segments which divide interior triangles from exterior triangles. Similarly, in
3D, the interface is the set of triangles dividing interior tetrahedra from exterior
tetrahedra. Both the 2D and 3D case are illustrated in Figure 6.1.

The interface deformation is performed by moving the vertices, and this means
that the method preserves the advantages of the Lagrangian methods: It suffers
from little numerical diffusion, and there is an explicit representation of the
interface which, furthermore, does not change gratuitously between time steps.
Moreover, the simplicial complex does not have to be regular meaning that we
can allow details of significantly different scale in the same grid (c.f. Figure 6.1
left).

On the other hand, our approach also shares what we perceive as the biggest
advantage of the Eulerian methods. Whenever the interface moves, the tri-
angulation is updated to accommodate the change. If two different interface
components collide, this change causes them to merge. Thus, topology is al-
lowed to change transparently to the user—although with our method it would
also be possible to disallow topological changes.

The DSC in described in detail, together with some of its other applications
in [65].

6.4 Fluid Simulation

In DSC we attempt to keep the quality of the volume mesh high for the finite
element computations, so it is natural to use it directly in the incompressible
Euler equations solver. The fluid mass can be represented as the set of interior

6.4 Fluid Simulation 83

Figure 6.2: DSC setup for fluid simulation (observe this is analogical to a stag-
gered mesh). The velocity values u are sampled at the vertices of the DSC mesh
and the pressure values p are sampled per element (triangle in 2D, tetrahedron
in 3D).

simplices, which can be treated as first order, conforming linear elements (mean-
ing that velocity values in a vertex agree for each element sharing that vertex).
These are subject to locking in the incompressible limit [24, 42, 103]. Locking
means inability of a given finite element space to offer good approximate solu-
tions, due to the fact that volume constraint on each tetrahedron may leave us
with a solution space of very low dimension, or even an overconstrained prob-
lem (depending on the boundary conditions). This can manifest itself by, for
example: only allowing globally affine divergence-free deformations of the fluid
volume. However, locking can be avoided by using pressure stabilization [29], as
presented in Section 6.4.4, in exchange for slighly violating the incompressibil-
ity constraint. Meanwhile, the simplicity of the linear elements facilitates easy
implementation of advection and optimization-based implicit surface tension.

In such a setup, presented in the Figure 6.2, fluid velocity values are sampled in
the vertices (both interface and interior ones) and pressure values are sampled
in the centers of volume elements (triangles in the 2D case and tetrahedra in
the 3D case). The velocity field is then defined as:

u(x) =

NV∑
i=1

uiϕi(x), (6.1)

where NV is the number of vertices in the mesh and ϕi is the linear interpolant
(hat function defined on the star of vertex vi).

Our method loosely follows the steps of a fractional step method, known from
the regular-grid based fluid solvers [11].

84 Optimization-based Fluid Simulation on Unstructured Meshes

6.4.1 Advection

In a Lagrangian setup (such as DSC) advection of the mesh vertices is trivial.
Having vertex positions {vti}

NV
i=1 and velocities {uti}

NV
i=1 at the time-step t, one

can compute the positions at the next time-step t + ∆t using simple forward
Euler integration:

vt+∆t
i = vti + uti∆t.

One could also try to use a simple, Lagrangian approach in order to advect the
velocity field. However, since we additionally perform smoothing on the mesh
vertices, we have to use a slightly more complex, semi-Lagrangian method.

In order to advect the velocity field (or any other quantity sampled at the
vertices) we interpolate or extrapolate the values from the previous time-step
at the new vertex positions (see Figure 6.3). If the point vt+∆t

i lies inside the
fluid volume at the time-step t, we localize the element σ inside which it lies
and compute the new velocity value as the linear combination of the velocities
in the vertices of σ with barycentric coordinates of vt+∆t

i as linear coefficients:

ut+∆t
i = ut(vt+∆t

i).

If vt+∆t
i lies outside the fluid volume at the time-step t, we find its projection

v̄t+∆t
i onto the interface and sample the velocity at this point:

ut+∆t
i = ut(v̄t+∆t

i). (6.2)

6.4.2 Enforcing Incompressibility

Incompressibility of the fluid yields that the divergence of the velocity field
vanishes everywhere:

∇ · u = 0.

In our setup (see equation 6.1):

∇ · u =

NV∑
i=1

ui · ∇ϕi.

The gradient ∇ϕi is constant over every element (triangle in 2D, tetrahedron in
3D). Let us denote it by:

∇ϕi ≡ dj,i over element σj .

6.4 Fluid Simulation 85

Figure 6.3: Advection of the velocity field. If the new vertex position is inside
the old fluid volume (vertices e, f , g, h, i and j), we find its new velocity as the
linear interpolation of old vertex velocities at this point. In order to find new
velocity values at the vertices a, b, c and d, we find their projections onto the
interface and sample the velocity there.

The incompressibility condition is then fulfilled iff:

NV∑
i=1

dj,i · ui = 0 for j = 1, . . . , NT ,

where NT is the number of elements (triangles in 2D, tetrahedra in 3D) in the
mesh. The last equation can be written in matrix form:

Du = 0,

where u is a size d ·NV (where the dimension d = 2 or 3) vector containing the
coordinates of the vertex velocities and D is an NT × d ·NV sparse matrix.

To enforce incompressibility of the velocity field {ũi}NV
i=1 after advection, we

introduce a pressure field {pi}NT
i=1, such that:

u = ũ−M−1DTp, (6.3)

where u is divergence free, p is a size NT vector containing the pressure values
in each face and M is a size d ·NV ×d ·NV diagonal mass matrix, with diagonal
values:

Md·i−d+1,d·i−d+1 = . . . = Md·i,d·i = mi,

for i = 1, . . . , NV , where:

mi =
1

3
ρ

∑
σ∈star(vi)

volume(σ),

86 Optimization-based Fluid Simulation on Unstructured Meshes

Figure 6.4: Collision of the fluid with the solid boundary. n is the normal and
t is the tangent vector to the solid boundary at the point of collision. usolid is
the velocity of the solid boundary and ui is constrained in the normal direction:
〈ui,n〉 = 〈usolid,n〉.

with ρ the fluid density. The incompressibility condition yields:

Du = Dũ−DM−1DTp = 0.

Therefore:

DM−1DTp = Dũ,

Ap = b,

where A = DM−1DT and b = Dũ. By solving this linear system, we can
compute the pressure field and then, by using equation 6.3, the divergence-free
velocity field u.

Solid Boundaries Solid boundaries put extra constraints on vertex velocity
values. If the vertex vi is in contact with the solid (see Figure 6.4), we force the
projection of the vertex’s velocity onto the solid normal at the point of collision
to match the projection of the solids own velocity onto its normal:

〈ui,n(pi)〉 = 〈usolid,n(pi)〉, (6.4)

6.4 Fluid Simulation 87

while the tangent coordinates of vi remain unconstrained. In order to compute
the new divergence-free velocity field {u}NV

i=0 we first need to express the global
velocity vector ũ and the matrix D in new coordinates (n and t in 2D or n, t1

and t2 in 3D, whenever a vertex is in contact with the solid). Then we permute
the rows of ũ and the columns of D, so that:

ũ =

[
ũf
ũc

]
, D =

[
Df Dc

]
(6.5)

where ũf contains the free and ũc the constrained coordinates of ũ. The
incompressibility condition 6.3 can be then written as:

Du = 0,[
Df Dc

] [uf
uc

]
= 0,

Dfuf + Dcuc = 0,

but since uc = ũc (as they are forced to match the velocity of the solid projected
onto the solid normal), we obtain:

Dfuf = −Dcũc. (6.6)

In order to ensure incompressibility of the velocity field u, we again introduce
a pressure field p:

uf = ũf −M−1
f DT

fp.

Multiplying both sides by Df and using eq. 6.6 gives:

Dfuf = Df ũf −DfM
−1
f DT

fp,

−Dcũc = Df ũf −DfM
−1
f DT

fp,

which can be used to evaluate p by solving a linear system:

DfM
−1
f DT

fp = Df ũf + Dcũc,

Afp = Df ũf + Dcũc.

Gravity Including gravity in our fluid dynamics solver is trivial and can be
performed by adding g∆t to the velocity field in every time step, where g is the
gravitational acceleration.

6.4.3 Optimization Based Approach

Surface Tension In order to make our fluid simulation more plausible we in-
clude surface tension. Surface tension is derived from surface energy Uγ defined

88 Optimization-based Fluid Simulation on Unstructured Meshes

as:

Uγ = γA,

where γ is the surface energy density (material constant) and A is the free sur-
face area. Surface tension forces alone yield a highly divergent velocity field
and our experiments have shown that integrating them before enforcing incom-
pressibility step can give very poor results. Instead, we fully couple them with
incompressibility by solving the following optimization problem:

minimize 1
2 (u− ũ)TM(u− ũ) + Uγ(x + u∆t),

subject to Du = 0,
(6.7)

which is consistent as the first-order optimality conditions for the optimality of
its solution is the backward Euler step:

u = ũ−∆tM−1∇Uγ(u)−M−1DTp,

where the pressure values p play the role of Lagrange multipliers (see that for
γ = 0 this is identical with eq. 6.3). In our work so far we only use first-order
approximation of the surface energy function:

Uγ(x + u∆t) = γA(x + u∆t) ≈
≈ γA(x) + γ∆tkTu,

where kT is the area gradient ∇A. Substituting this into optimization problem
6.7 and dropping constant terms leads to a simple quadratic programming [73]
problem with linear equality constraints:

minimize 1
2uTMu + (−Mũ + γ∆tk)Tu,

subject to Du = 0.

In this fashion we avoid having to explicitly estimate surface curvature, auto-
matically conserve linear and angular momentum by virtue of translation and
rotation-independence of the objective function and naturally capture minimum-
surface-area equilibrium. We do, however, realize that this setup does not allow
for non-linear surface phenomena in our simulations.

Solid Boundaries Incorporating solid boundaries into the new setting is rel-
atively straightforward. However, one has to take into account the fact that
the surface energy density for the fluid-air surface γ is usually different from
the surface energy density for the fluid-solid surface α1γ and from the surface
energy density for the air-solid surface α2γ. Hence, we multiply the area of the
solid-liquid contact surface by α1 − α2. Using the notation from the previous

6.4 Fluid Simulation 89

section, the zero-divergence constraint is decribed by the eq. 6.6. Also, the
surface energy has to be expressed in the new variables:

Uγ(x + u∆t) = γA(x + u∆t) ≈
≈ γA(x) + γ∆tkT

fuf + γ∆tkT
c uc,

where kf is a vector containing those coordinates of the area gradient ∇A,
which correspond to the free coordinates of u (put together in a vector uf)
and kc contains those cordinates of ∇A, which correspond to the constrained
coordinates of u (put together in a vector uc). Finally, after dropping constant
terms and terms depending only on uc, we can state our optimization problem
in the following form:

minimize 1
2uT

fMfuf + (−Mf ũf + γ∆tkf)Tuf ,

subject to Dfuf = −Dcũc.
(6.8)

Solution For sake of simplicity, let us rewrite the optimization problem 6.8
as:

minimize 1
2uT

fMfuf − buf ,

subject to Dfuf = c,

where b = Mf ũf − γ∆tkf and c = −Dcũc. The solution of this optimization
problem can be found by solving the following linear equation [73]:[

Mf DT
f

Df 0

] [
uf
p

]
=

[
b
c

]
. (6.9)

We are doing this by applying Schur complement method for solving linear
systems with block matrices [101]. It produces the following linear equation:

−DfM
−1
f DT

fp = c−DfM
−1
f b.

Then, having found p:

uf = M−1
f b−M−1

f DT
fp.

This way, we are only required to solve a linear equation with a size NT ×NT
matrix (instead of size d·NV +NT ×d·NV +NT original problem), as computing
the inverse of the diagonal matrix Mf is trivial.

6.4.4 Pressure Stabilization

As we previously mentioned, presented finite element setup is subject to locking.
This problem can be solved by adding a stabilization term S (size NT ×NT) to

90 Optimization-based Fluid Simulation on Unstructured Meshes

the linear equation 6.9:[
Mf DT

f

Df −S

] [
uf
p

]
=

[
b
c

]
. (6.10)

such that:

Sij =

{
−δ · aij if i 6= j
δ ·
∑
k 6=i aik if i = j

(6.11)

where δ is a positive stabilization parameter and aij is the area of the face
shared by tetrahedra i and j, if they do have a common face, or otherwise 0.
Stabilization term of this form acts like Laplacian smoothing of the pressure
field in exchange for slightly violating the incompressibility constraint.

In order to solve equation 6.10, we again apply Schur complement method and
solve the following equation:

−(S + DfM
−1
f DT

f)p = c−DfM
−1
f b.

Then, having found p:

uf = M−1
f b−M−1

f DT
fp.

Even though the velocity field u computed this way is not divergence-free in each
individual tetrahedron, it is still globally volume preserving for a stabilization
term S defined as above. It is easy to notice that the form of stabilization term
6.11 yields that the sum of all coordinates of the vector Sp equals 0. Since:

Sp = Dfuf − c

= Dfuf + Dcũc

= Dfuf + Dcuc = Du,

that means that the integral of the divergence of the velocity field over the fluid
volume equals 0, hence it preserves global volume.

6.4.5 Volume Loss Compensation

If the volume loss due to the truncation errors is visually noticeable, one can
compensate for that by adding a constant term:

τ · V0 − Vc
∆t · Vc

to the desired divergence c, where V0 is the original volume of the fluid, Vc is the
current volume and τ is a relaxation parameter (τ = 0.5 being a good choice).

6.5 Tests and Results 91

Figure 6.5: Head-on collision of two water droplets in 0-gravity conditions.

Figure 6.6: Oblique collision of two water droplets in 0-gravity conditions.

6.5 Tests and Results

Stationary Volume of Fluid We first tested our solver on a regular sphere
model obtained by subdiving an icosahedron 4 times using

√
3-subdivision scheme

[53] and reprojecting the vertices onto a sphere. The initial velocity of all ver-
tices are set to zero and there is no gravity – the only forces in this setup are
due to surface tension and incompressibility.

After 10000 iterations the changes in volume and surface area are below floating
point truncation error and there is no visible displacement of the mesh vertices,
as expected for this symmetric situation.

Droplets Colliding Our next test involves two water droplets in 0-gravity
conditions. In the first experiment (see Figure 6.5) they collide head-on, and
in the second (see Figure 6.6) they collide obliquely. In the first case droplets
merge and the resulting volume begins to oscillate between flattened and elon-
gated shape, according to the energy conservation principle. In the second case

92 Optimization-based Fluid Simulation on Unstructured Meshes

Figure 6.7: Shape aquired by a droplet of liquid put on a flat surface. On the
left-hand side: α1 − α2 = −0.75, and indeed the contact angle θ < 90◦. On the
right-hand side: α1 − α2 = 0.75, and indeed the contact angle θ > 90◦. Note
that the pond shape is more irregular when θ < 90◦. This is the case also in the
physical world, e.g.: ponds of water on the glass usually acquire quite irregular
shapes, while ponds of mercury on the glass are usually round. This is due to
the fact, that increasing the contact surface between water and glass decreases
the total energy of the system, unlike in the latter case.

Figure 6.8: Two drops of water splashing inside a solid sphere.

Figure 6.9: Large drop of water splashing inside a solid sphere. α1 − α2 = 0
(corresponding to contact angle θ = 90◦, characteristic for e.g. water on silver),
surface energy density exagerrated.

6.6 Conclusions and Future Work 93

droplets first merge, but as two big fractions of volume keep moving in original
directions they detach, leaving a trace of small droplets, which soon start to
oscillating around the spherical equilibrium.

Fluid-Solid Interaction In the first test, we examined the behavior of a
droplet of fluid put on a flat surface, subject to gravitational force. Let γ be
the surface energy density for the fluid-air interface, α1γ – for the fluid-solid
interface and α2γ – for the air-solid interface. Then the contact angle θ between
the fluid-air surface and the solid surface equals:

cos θ = −(α1 − α2).

A concave meniscus has contact angle less than 90◦ (e.g. water on glass) and a
convex meniscus has contact angle greater than 90◦ (e.g. water on paraffin wax
or mercury on glass). We ran tests for α1−α2 = 0.75 and α1−α2 = −0.75. The
results, presented in Figure 6.7 demonstrate physical soundness of our method.

We also tested our fluid simulation in scenarios involving curved solid bound-
aries. The results, presented in Figures 6.8 and 6.9, demonstrate that the curved
boundaries are handled correctly in our setup.

Performance In all of our experiments the number of tetrahedra was on the
order of 10000. Simulation time ranged from about 10 to 30 iterations per
minute (on 64-bit Intel R© Xeon R© CPU W5590 @ 3.33 GHz, 6 GB RAM) – not
including rendering which was done in a subsequent step.

6.6 Conclusions and Future Work

In this paper, we have demonstrated the feasibility of fluid simulation in a
framework where the computational grid evolves over time, maintaining the
fluid interface as a subcomplex of the tetrahedral grid. This is in contrast to the
few examples of previous work which used unstructured grids. In these methods,
the computational grid is either fixed or, essentially, rebuilt every time step.

Because of this, we have an explicit fluid surface representation in the form of a
triangle mesh which is also not rebuilt every time step since it is a subcomplex
of the tetrahedral grid. From this we derive one of the big advantages of the
method, namely that we can easily formulate surface energy in terms of the
surface geometry.

94

Since, arguably, this method is qualitatively different from previous unstruc-
tured mesh based methods for fluid simulation, it is unsurprising that there is
room for future improvement.

It is clear from our screenshots and animations that the fluid surface is quite
rough in some cases. This is due to the lack of a viscosity term which should be
straightforward to add and make it faster to reach the equilibrium state. Note
also that in grid based methods, unintentional viscosity is quite common due
to numerical diffusion. In fact, one of the strengths of our method is that there
is very little numerical diffusion since we only change the mesh when parts of
the surface collide (to change topology of the fluid volume) or when we need to
remove poor quality tetrahedra.

One of the direct and straight-forward short term goals is investigating the in-
fluence of using second-order surface energy approximation, which can easily be
included in the existing framework. We are also planning to try using Sequen-
tial Quadratic Programming in order to investigate the influence of higher-order
terms (although we believe this might require using more elaborate mesh refine-
ment schemes).

Furthermore, our method can be extended by adding viscosity, allowing com-
pressible fluids and multiple phases (supported naturally by the DSC). Ulti-
mately, we would like to include solid (rigid, ellastic and deformable) objects in
an unified physis simulation setup.

Acknowledgements

We would like to thank Jeppe Revall Frisvad (DTU Informatics) for providing
us with the water rendering software.

Chapter 7

Conclusions and outlook

We have presented deformable simplicial complexes, a novel method for de-
formable interface tracking, significantly different from existing, state-of-the-art
methods. We have shown that the DSC can address some of the shortcomings
of other topology-adaptive deformable models: difficulties preserving sharp de-
tails, poor space adaptivity, troublesome topology control. Moreover, having
explicit representations of both the interface and the space turned out to give
extra benefits: The DSC mesh can be used as a computational grid for the finite
element method; its structure allows the domain to have topology other than a
disk and it does not have to be Euclidean.

Having said this, we are well aware that the deformable simplicial complexes
have some drawbacks and limitations, one being time complexity. The method,
although scalable, yields significant time overhead compared to the level set
method and so, in its current form, it cannot be applied in real-time applica-
tions. It also seems that unlike the level set method, the DSC might be rather
challenging. This is due to the fact that the DSC is much more complex in its
use of various methods to improve the quality of the underlying mesh. However,
luckily most of the DSC components are local in nature and hence they could
be parallelized. We are planning to inspect this problem in the future.

In this project we concentrated on developing the fundametal method (including
the low-level framework) and exploring the applications. However, there is still

96 Conclusions and outlook

work to be done. We would like to perform more rigorous, systematic analysis
of the properties of the deformable simplicial complexes, in order to better
understand what effect the individual components of the method have on its
performance. This would be the natural, next step of the research process
concerning the DSC.

As long as we were trying to optimize the performance of the method while work-
ing on the first implementation, we believe there is still room for improvement.
Some speed-up could be gained by further modifying the incidence simplicial
data structure, which was used to represent the connectivity of the mesh. We
could make the simplicial complex traversal faster by utilizing its manifoldness
and storing different boundary and co-boundary relations. It has not been done
yet, because it was of higher priority to start investigating the properties of the
method as soon as we had a stable, applicable tetrahedral mesh implementa-
tion. Another way of performance optimization would be through localizing the
mesh improvement operations to the regions where the interface deformation is
significant.

Each of the applications we have worked on gave promising results and could
be further developed. There is room for more experimentation with our fluid
solver. One could easily incorporate more accurate approximation of the surface
energy; it would also be interesting to have more than just 2 phases in the setup.
In longer run, it would be tempting to try implementing a unified physics-
based simulation framework where one could simulate fluids alongside rigid and
ellastic solid bodies. The DSC seem to be very well suited for this kind of
application, since it naturally supports multiple phases, provides an immediate
collision detection mechanism as well as a computational grid.

Our cut locus construction algorithm could also be extended—it would be par-
ticularily tempting to implement it on top of 3D deformable simplicial com-
plexes. Little is known about cut loci on 3-manifolds, so such an application
could generate significant new knowledge. It would also be interesting to apply
the existing, 2D algorithm to real life problems, such as forest fire modelling.

Our simple point cloud reconstruction method, implemented within just a couple
of weeks turned out to be surprisingly effective: It is robustly space-adaptive and
easily captures sharp details. We would like to continue developing this method,
and try applying it to more challenging point-cloud reconstruction problems like,
for example, reconstruction from sparse sets of points.

Finally, we would like to try applying the DSC to other problems, especially in
creating topology adaptive shape models (for example, cranial growth model in
babies with congenital disorders) and to structural optimization.

Bibliography

[1] N. Amenta, M. Bern, and D. Eppstein. Optimal point placement for mesh
smoothing. In Proceedings of the eighth annual ACM-SIAM symposium
on Discrete algorithms, pages 528–537. Society for Industrial and Applied
Mathematics Philadelphia, PA, USA, 1997.

[2] G. Arfken. Mathematical Methods for Physicists. Academic Press, Or-
lando, FL, 3rd ed. edition, 1985.

[3] Kendall Atkinson and Weimin Han. Theoretical Numerical Analysis: A
Functional Analysis Framework. Springer, 2 edition, 2005.

[4] Jongmin Baek, Anand Deopurkar, and Katherine Redfield. Finding
geodesics on surfaces. Unpublished manuscript, 2007.

[5] J. A. Bærentzen. Introduction to GEL, 2010.

[6] Jakob Andreas Bærentzen and Niels Jørgen Christensen. Interactive mod-
elling of shapes using the level-set method. International Journal of Shap-
ing Modeling, 8(2):79–97, 2002.

[7] M. P. Bendsøe and O. Sigmund. Topology Optimization: Theory, Methods
and Applications. Springer, 2003.

[8] Stephan Bischoff and Leif Kobbelt. Topologically correct extraction of the
cortical surface of a brain using level-set methods. In In Proceedings of
BVM 2004, pages 50–54, 2004.

[9] CGAL Editorial Board. CGAL-3.2 User and Reference Manual, 2006.

98 BIBLIOGRAPHY

[10] M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt. Openmesh - a generic
and efficient polygon mesh data structure, 2002.

[11] Robert Bridson. Fluid Simulation. A. K. Peters, Ltd., Natick, MA, USA,
2008.

[12] Tyson Brochu, Christopher Batty, and Robert Bridson. Matching fluid
simulation elements to surface geometry and topology. In ACM SIG-
GRAPH 2010 papers, page XX. ACM, 2010.

[13] Tyson Brochu and Robert Bridson. Robust topological operations for
dynamic explicit surfaces. SIAM Journal on Scientific Computing,
31(4):2472–2493, 2009.

[14] T. Chan and L. Vese. A level set algorithm for minimizing the mumford-
shah functional in image processing. In Proceedings of the 1st IEEE Work-
shop on “Variational and Level Set Methods in Computer Vision”, pages
161–168, 2001.

[15] L. Chen and J. Xu. Optimal delaunay triangulation. J. Comp. Math,
22:299–308, 2004.

[16] Nuttapong Chentanez, Bryan E. Feldman, François Labelle, James F.
O’Brien, and Jonathan R. Shewchuk. Liquid simulation on lattice-based
tetrahedral meshes. In SCA ’07: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 219–
228, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Associa-
tion.

[17] Nuttapong Chentanez, Tolga G. Goktekin, Bryan E. Feldman, and
James F. O’Brien. Simultaneous coupling of fluids and deformable bod-
ies. In SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 83–89, Aire-la-Ville, Switzer-
land, Switzerland, 2006. Eurographics Association.

[18] L.P. Chew. Guaranteed-quality delaunay meshing in 3d (short version).
In Proceedings of the thirteenth annual symposium on Computational ge-
ometry, pages 391–393. ACM New York, NY, USA, 1997.

[19] B. Cutler, J. Dorsey, and L. McMillan. Simplification and improvement
of tetrahedral models for simulation. In SGP ’04: Proceedings of the
2004 Eurographics/ACM SIGGRAPH symposium on Geometry process-
ing, pages 93–102, New York, NY, USA, 2004. ACM.

[20] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geometry: Algorithms and Applications.
Springer-Verlag, 1997.

BIBLIOGRAPHY 99

[21] Hugues L. de Cougny and Mark S. Shephard. Refinement, derefinement
and optimization of tetrahedral geometric triangulations in three dimen-
sions. Unpublished manuscript, 1995.

[22] Q. Du and D. Wang. Tetrahedral mesh generation and optimization based
on centroidal voronoi tessellations. Int. J. Numer. Meth. Eng, 56:1355–
1373, 2002.

[23] Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu Des-
brun. Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph.,
26(1):4, 2007.

[24] E. English and R. Bridson. Animating developable surfaces using non-
conforming elements. In ACM SIGGRAPH 2008 papers, page 66. ACM,
2008.

[25] Douglas Enright, Steve Marschner, and Ronald Fedkiw. Animation and
rendering of complex water surfaces. ACM Transactions on Graphics,
21(3):736–44, 2002.

[26] Lawrence Evans. Partial Differential Equations. American Mathematical
Society, 1998.

[27] Bryan E. Feldman, James F. O’Brien, and Bryan M. Klingner. Animating
gases with hybrid meshes. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Papers, pages 904–909, New York, NY, USA, 2005. ACM.

[28] Bryan E. Feldman, James F. O’Brien, Bryan M. Klingner, and Tolga G.
Goktekin. Fluids in deforming meshes. In SCA ’05: Proceedings of the
2005 ACM SIGGRAPH/Eurographics symposium on Computer anima-
tion, pages 255–259, New York, NY, USA, 2005. ACM.

[29] Joel H. Ferziger and Milovan Peric. Computational Methods for Fluid
Dynamics. Springer, 3rd edition, 2002.

[30] L. De Floriani, A. Hui, D. Panozzo, and D. Canino. A dimension-
independent data structure for simplicial complexes. In Proceedings of
the 19th International Meshing Roundtable, 2010.

[31] Nick Foster and Dimitri Metaxas. Realistic animation of liquids. Graph.
Models Image Process., 58(5):471–483, 1996.

[32] Lori A. Freitag. On combining laplacian and optimization-based mesh
smoothing techniques. In In Trends in Unstructured Mesh Generation,
pages 37–43, 1997.

[33] Lori A. Freitag, Mark Jones, and Paul Plassmann. An efficient parallel
algorithm for mesh smoothing. In Proceedings of the Fourth International
Meshing Roundtable, pages 103–112, 1995.

100 BIBLIOGRAPHY

[34] Lori A. Freitag and Carl Ollivier-Gooch. Tetrahedral mesh improve-
ment using swapping and smoothing. International Journal for Numerical
Methods in Engineering, 40:3979–4002, 1997.

[35] J. Glasa and L. Halada. On elliptical model for forest fire spread modeling
and simulation. Mathematics and Computers in Simulation, 78:76–88,
2008.

[36] James Glimm, John W. Grove, Xiao Lin Li, Keh-Ming Shyue, Yanni Zeng,
and Qiang Zhang. Three dimensional front tracking. SIAM J. Sci. Comp,
19:703–727, 1995.

[37] Frederik Gottlieb. Deformable simplicial complexes. Master thesis, 2008.
Despite the title, this MSc thesis deals almost exclusively with the data
storage kernel of the tetrahedral mesh data structure.

[38] J. Gravesen, S. Markvorsen, R. Sinclair, and M. Tanaka. The cut locus of
a torus of revolution. Asian Journal of Mathematics, 9(1):103–120, 2005.

[39] Leonidas J. Guibas and J. Stolfi. Primitives for the manipulation of gen-
eral subdivisions and the computation of voronoi diagrams. ACM Trans.
Graph., 4(2):74–123, April 1985.

[40] Mads F. Hansen, Jakob A. Bærentzen, and Rasmus Larsen. Generating
quality tetrahedral meshes from binary volumes. In Proceedings of VIS-
APP 2009, 2009.

[41] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh
optimization. In ACM SIGGRAPH 1993 Conference Proceedings, pages
19–26, 1993.

[42] G. Irving, E. Guendelman, F. Losasso, and R. Fedkiw. Efficient simulation
of large bodies of water by coupling two and three dimensional techniques.
ACM Transactions on Graphics (TOG), 25(3):811, 2006.

[43] J. Itoh and R. Sinclair. Thaw: A tool for approximating cut loci on
a triangulation of a surface. Experimental Mathematics, 13(3):309–325,
2004.

[44] Xiangmin Jiao. Face offsetting: A unified approach for explicit moving
interfaces. J. Comput. Phys., 220(2):612–625, 2007.

[45] Peter Stanley Jørgensen, Karin Vels Hansen, Rasmus Larsen, and Jacob R.
Bowen. High accuracy interface characterization of three phase material
systems in three dimensions. Journal of Power Sources, 195(24):8168–
8176, 2010.

BIBLIOGRAPHY 101

[46] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models.
International Journal of Computer Vision, 1(4):321–331, 1987.

[47] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface
reconstruction. In SGP ’06: Proceedings of the fourth Eurographics sym-
posium on Geometry processing, pages 61–70, Aire-la-Ville, Switzerland,
Switzerland, 2006. Eurographics Association.

[48] R. Kimmel and J. A. Sethian. Computing geodesic paths on manifolds.
Proc. of the Natl. Acad. Sciences USA, 95:8431–8435, 1998.

[49] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[50] G.T. Klincsek. Minimal triangulations of polygonal domains. Annals of
Discrete Mathematics, 9:121–123, 1980.

[51] Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and
James F. O’Brien. Fluid animation with dynamic meshes. ACM Trans.
Graph., 25(3):820–825, 2006.

[52] Bryan M. Klingner and Jonathan R. Shewchuk. Agressive tetrahedral
mesh improvement. In Proceedings of the 16th International Meshing
Roundtable, pages 3–23, October 2007.

[53] Leif Kobbelt.
√

3-subdivision. In Proceedings of the 27th annual conference
on computer graphics and interactive techniques, 2000.

[54] François Labelle and Jonathan Richard Shewchuk. Isosurface stuffing:
Fast tetrahedral meshes with good dihedral angles. ACM Transactions on
Graphics, 26(3):57, 2007.

[55] J.O. Lachaud and A. Montanvert. Deformable meshes with automated
topology changes for coarse-to-fine three-dimensional surface extraction.
Medical Image Analysis, 3(2):187–207, 1999.

[56] E. Laporte and P. Le Tallec. Numerical Methods in Sensitivity Analysis
and Shape Optimization. Birkhäuser, 2003.

[57] John M. Lee. Introduction to Topological Manifolds. Graduate Texts in
Mathematics. Springer, 2000.

[58] Randall J. LeVeque. Numerical Methods for Conservation Laws.
Birkäuser, 1992.

[59] Jianfei Liu and Shuli Sun. Small polyhedron reconnection: A new way to
eliminate poorly-shaped tetrahedra. In Proceedings of the 15th Interna-
tional Meshing Roundtable, pages 241–257, 2006.

102 BIBLIOGRAPHY

[60] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolu-
tion 3d surface construction algorithm. Computer Graphics, 21(4), 1987.

[61] T. Maekawa. Computation of shortest paths on free-form parametric sur-
faces. J. of Mech. Design, 118(4):499–508, 1996.

[62] M. Mäntylä. An Introduction to Solid Modeling. Computer Science Press,
1988.

[63] A. Marquina and S. Osher. Explicit algorithms for a new time depen-
dent model based on level set motion for nonlinear deblurring and noise
removal. SIAM J. Sci. Comput., pages 387–405, 2000.

[64] T. McInerney and D. Terzopoulos. T-snakes: Topology adaptive snakes.
Medical Image Analysis, 4(2):73–91, 2000.

[65] M. K. Misztal and J. A. Bærentzen. Deformable simplicial complexes.
Unpublished manuscript, 2010.

[66] M. K. Misztal, J. A. Bærentzen, and S. Markvorsen. Cut locus con-
struction using deformable simplicial complexes. Unpublished manuscript,
2010.

[67] M. K. Misztal, R. Bridson, K. Erleben, J. A. Bærentzen, and F. An-
ton. Optimization-based fluid simulation on unstructured meshes. In
VRIPHYS 2010: Proceedings of the 7th Workshop on Virtual Reality In-
teraction and Physical Simulation, 2010.

[68] Marek K. Misztal, J. Andreas Bærentzen, François Anton, and Kenny
Erleben. Tetrahedral mesh improvement using multi-face retriangulation.
In Proceedings of the 18th International Meshing Roundtable, pages 539–
556, October 2009.

[69] N. Molino, R. Bridson, J. Teran, and R. Fedkiw. A crystalline, red green
strategy for meshing highly deformable objects with tetrahedra. In Proc.
International Meshing Roundtable, 2003.

[70] P. M oller and P. Hansbo. On advancing front mesh generation in three
dimensions. International Journal for Numerical Methods in Engineering,
38(21):3551–3569, 1995.

[71] V. Natarajan and H. Edelsbrunner. Simplication of three-dimensional den-
sity maps. IEEE Transactions on Visualization and Computer Graphics,
10:587–597, 2004.

[72] Timothy S. Newman and Hong Yi. A survey of the marching cubes algo-
rithm. Computers & Graphics, 30(5):854–879, 2006.

BIBLIOGRAPHY 103

[73] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer
Series in Operations Research. Springer, 2 edition, 2006.

[74] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent
speed: Algorithms based on hamilton-jacobi formulations. Computational
Physics, 79:12–49, 1988.

[75] Stanley J. Osher and Ronald P. Fedkiw. Level Set Methods and Dynamic
Implicit Surfaces. Springer, 1 edition, October 2002.

[76] V. N. Parthasarathy, C. M. Graichen, and A. F. Hathaway. A comparison
of tetrahedron quality measures. Finite Elements in Analysis and Design,
15(3):255–261, 1994.

[77] X. Pennec. Toward a generic framework for recognition based on uncertain
geometric features. Journal of Computer Vision Research, 1(2):58–87,
1998.

[78] Ulrich Pinkall and Konrad Polthier. Computing discrete minimal surfaces
and their conjugates. Experimental Mathematics, 2(1):15–36, 1993.

[79] Jean-Philippe Pons and Jean-Daniel Boissonnat. Delaunay deformable
models: Topology-adaptive meshes based on the restricted delaunay tri-
angulation. Computer Vision and Pattern Recognition, IEEE Computer
Society Conference on, 0:1–8, 2007.

[80] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Nu-
merical Recipes in C: The Art of Scientific Computing. Cambridge Uni-
versity Press, 1992.

[81] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D, pages 259–268, 1992.

[82] T. Sakai. Riemannian Geometry, volume 149 of Translations of Mathe-
matical Monographs. American Mathematical Society, 1996.

[83] J. A. Sethian. Level Set Methods and Fast Marching Methods. Evolving In-
terfaces in Computational Geometry, Fluid Mechanics, Computer Vision,
and Materials Science. Cambridge University Press, 1999.

[84] Ojaswa Sharma, Qin Zhang, François Anton, and Chandrajit Bajaj.
Multi-domain, higher order level set scheme for 3d image segmentation
on the gpu. In The 23rd IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, 2010.

[85] Chen Shen, James F. O’Brien, and Jonathan R. Shewchuk. Interpolating
and approximating implicit surfaces from polygon soup. In Proceedings of
ACM SIGGRAPH 2004, pages 896–904. ACM Press, August 2004.

104 BIBLIOGRAPHY

[86] Jonathan R. Shewchuk. Tetrahedral mesh generation by Delaunay refine-
ment. In Proceedings of the fourteenth annual symposium on Computa-
tional geometry, pages 86–95. ACM New York, NY, USA, 1998.

[87] Jonathan R. Shewchuk. Two discrete optimization algorithms for the
topological improvement of tetrahedral meshes. Unpublished manuscript,
2002.

[88] Jonathan R. Shewchuk. What is a good linear finite element? inter-
polation, conditioning, anisotropy, and quality measures. Unpublished
manuscript, 2002.

[89] Hang Si. Tetgen, a quality tetrahedral mesh generator and three-
dimensional delaunay triangulator, v1.3 user’s manual. Technical report,
WIAS, 2004.

[90] R. Sinclair and M. Tanaka. Loki: Software for computing cut loci. Exper-
imental Mathematics, 11(1):1–25, 2002.

[91] Jos Stam. Stable fluids. In SIGGRAPH ’99: Proceedings of the 26th an-
nual conference on Computer graphics and interactive techniques, pages
121–128, New York, NY, USA, 1999. ACM Press/Addison-Wesley Pub-
lishing Co.

[92] Nils Thürey, Chris Wojtan, Markus Gross, and Greg Turk. A multiscale
approach to mesh-based surface tension flows. In SIGGRAPH ’10: ACM
SIGGRAPH 2010 papers, pages 1–10, New York, NY, USA, 2010. ACM.

[93] Greg Turk and James F. O’brien. Modelling with implicit surfaces that
interpolate. ACM Trans. Graph., 21(4):855–873, 2002.

[94] Michael Yu Wang, Xiaoming Wang, and Dongming Guo. A level set
method for structural topology optimization. Comput. Methods Appl.
Mech. Engrg., 192:227–246, 2003.

[95] Jeremy D. Wendt, William Baxter, Ipek Oguz, and Ming C. Lin. Finite
volume flow simulations on arbitrary domains. Graph. Models, 69(1):19–
32, 2007.

[96] C. Wojtan, N. Thürey, M. Gross, and G. Turk. Deforming meshes that
split and merge. In ACM SIGGRAPH 2009 papers, page 76. ACM, 2009.

[97] Chris Wojtan, Nils Thürey, Markus Gross, and Greg Turk. Physics-
inspired topology changes for thin fluid features. In SIGGRAPH ’10:
ACM SIGGRAPH 2010 papers, pages 1–8, New York, NY, USA, 2010.
ACM.

BIBLIOGRAPHY 105

[98] Chris Wojtan and Greg Turk. Fast viscoelastic behavior with thin features.
In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers, pages 1–8, New York,
NY, USA, 2008. ACM.

[99] A. Zaharescu, E. Boyer, and R. Horaud. Transformesh: a topology-
adaptive mesh-based approach to surface evolution. Computer Vision–
ACCV 2007, pages 166–175, 2007.

[100] Andrei Zaharescu, Edmond Boyer, and Radu P. Horaud. Topology-
adaptive mesh deformation for surface evolution, morphing, and multi-
view reconstruction. Technical Report RR-7136, INRIA Grenoble Rhone-
Alpes, December 2009.

[101] Fuzhen Zhang. The Schur Complement and Its Applications. Springer,
2005.

[102] H.-K. Zhao, S. Osher, B. Merriman, and M. Kang. Implicit and nonpara-
metric shape reconstruction from unorganized data using a variational
level set method. Comput. Vision and Image Understanding, 80:295–314,
2000.

[103] O. C. Zienkiewicz, R. L. Taylor, and R. L. Taylor. The finite element
method for solid and structural mechanics. Butterworth-Heinemann, 2005.

	Summary
	Resumé
	Preface
	Papers Included in the Thesis
	Acknowledgements
	1 A Short Introduction to Deformable Interfaces
	1.1 Deformable Models
	1.2 Deformable Simplicial Complexes

	2 Preliminaries
	2.1 Mathematical Background
	2.2 Implementation

	3 Tetrahedral Mesh Improvement Using Multi-face Retriangulation
	3.1 Introduction and Motivation
	3.2 Related Work
	3.3 Tetrahedral Mesh Quality Improvement
	3.4 Implementation
	3.5 Tests and Results
	3.6 Discussion and Future Work

	4 Deformable Simplicial Complexes
	4.1 Introduction
	4.2 Related Works
	4.3 Deformable Simplicial Complexes
	4.4 Applications
	4.5 Conclusions and Future Work

	5 Cut Locus Construction Using Deformable Simplicial Complexes
	5.1 Introduction
	5.2 Method Description
	5.3 Tests and Results
	5.4 Discussion

	6 Optimization-based Fluid Simulation on Unstructured Meshes
	6.1 Introduction
	6.2 Related Works on Fluid Solvers
	6.3 Deformable Interface Tracking
	6.4 Fluid Simulation
	6.5 Tests and Results
	6.6 Conclusions and Future Work

	7 Conclusions and outlook

