30 research outputs found

    Towards automation of forensic facial reconstruction

    Get PDF
    Forensic facial reconstruction is a blend of art and science thus computerizing the process leads to numerous solutions. However, complete automation remains a challenge. This research concentrates on automating the first phase of forensic facial reconstruction which is automatic landmark detection by model fitting and extraction of feature points. Detection of landmarks is a challenging task since the skull orientation in a 3D scanned data cloud is generally arbitrary and unknown. To address the issue, well defined skull and mandible models with known geometric structure, features and orientation are (1) aligned and (2) fit to the scanned data. After model fitting is complete, landmarks can be extracted, within reasonable tolerance, from the dataset. Several methods exist for automatic registration (alignment); however, most suffer ambiguity or require interaction to manage symmetric 3D objects. A new alternative 3D model to data registration technique is introduced which works successfully for both symmetric and non-symmetric objects. It takes advantage of the fact that the model and data have similar shape and known geometric features. Therefore, a similar canonical frame of reference can be developed for both model and data. Once the canonical frame of reference is defined, the model can be easily aligned to data by a euclidian transformation of its coordinate system. Once aligned, the model is scaled and deformed globally to accommodate the overall size the object and bring the model in closer proximity to the data. Lastly, the model is deformed locally to better fit the scanned data. With fitting completed, landmark locations on the model can be utilized to isolate and select corresponding landmarks in the dataset. The registration, fitting and landmark detection techniques were applied to a set of six mandible and three skull body 3D scanned datasets. Results indicate the canonical axes formulation is a good candidate for automatic registration of complex 3D objects. The alternate approach posed for deformation and surface fitting of datasets also shows promise for landmark detection when using well constructed NURBS models. Recommendations are provided for addressing the algorithms limitations and to improve its overall performance

    Absolute orientation based on distance kernel functions

    Full text link
    © 2016 by the authors. The classical absolute orientation method is capable of transforming tie points (TPs) from a local coordinate system to a global (geodetic) coordinate system. The method is based only on a unique set of similarity transformation parameters estimated by minimizing the total difference between all ground control points (GCPs) and the fitted points. Nevertheless, it often yields a transformation with poor accuracy, especially in large-scale study cases. To address this problem, this study proposes a novel absolute orientation method based on distance kernel functions, in which various sets of similarity transformation parameters instead of only one set are calculated. When estimating the similarity transformation parameters for TPs using the iterative solution of a non-linear least squares problem, we assigned larger weighting matrices for the GCPs for which the distances from the point are short. The weighting matrices can be evaluated using the distance kernel function as a function of the distances between the GCPs and the TPs. Furthermore, we used the exponential function and the Gaussian function to describe distance kernel functions in this study. To validate and verify the proposed method, six synthetic and two real datasets were tested. The accuracy was significantly improved by the proposed method when compared to the classical method, although a higher computational complexity is experienced

    Affine registration of point clouds based on point-to-plane approach

    Get PDF
    The problem of aligning of 3D point data is the known registration task. The most popular registration algorithm is the Iterative Closest Point (ICP). This paper proposes a new algorithm for affine registration of point clouds by incorporating the affine transformation into the point-toplane ICP algorithm. At each iterative step of the algorithm, a closed-form solution for the affine transformation is derived.The work was supported by the Ministry of Education and Science of Russian Federation (grant № 2.1743.2017)

    A robust and fast method for 6DoF motion estimation from generalized 3D data

    Get PDF
    Nowadays, there is an increasing number of robotic applications that need to act in real three-dimensional (3D) scenarios. In this paper we present a new mobile robotics orientated 3D registration method that improves previous Iterative Closest Points based solutions both in speed and accuracy. As an initial step, we perform a low cost computational method to obtain descriptions for 3D scenes planar surfaces. Then, from these descriptions we apply a force system in order to compute accurately and efficiently a six degrees of freedom egomotion. We describe the basis of our approach and demonstrate its validity with several experiments using different kinds of 3D sensors and different 3D real environments.This work has been supported by project DPI2009-07144 from Ministerio de Educación y Ciencia (Spain) and GRE10-35 from Universidad de Alicante (Spain)

    Error Metric for Indoor 3D Point Cloud Registration

    Get PDF
    An increase in commercial availability of 3D scanning technology has led to an increase of 3D perception for a variety of applications. High quality scanners require to be stationary and so multiple scans are required and subsequently need to be registered. A new error metric for registration based on the deviation of registered planar surfaces is introduced here and compared with a commonly used metric: mean square point-to-point distance. Four different sets of features are used to register six scans, the point-to-point errors are compared to the new error metric, planar surface deviation, and a disparity is observed for certain sets of features. The two metrics agree as to which sets of features gave the best registration but disagree as to which set produced the worst registration. It is concluded that further analysis and evaluation is required to determine which metric is more meaningful as a representative measure of registration accuracy and to also investigate other error metrics

    Registration between Multiple Laser Scanner Data Sets

    Get PDF
    corecore