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Abstract 

 

An increase in commercial availability of 3D scanning technology has led to an increase 

of 3D perception for a variety of applications. High quality scanners require to be stationary 

and so multiple scans are required and subsequently need to be registered. A new error 

metric for registration based on the deviation of registered planar surfaces is introduced here 

and compared with a commonly used metric: mean square point-to-point distance. Four 

different sets of features are used to register six scans, the point-to-point errors are compared 

to the new error metric, planar surface deviation, and a disparity is observed for certain sets 

of features. The two metrics agree as to which sets of features gave the best registration but 

disagree as to which set produced the worst registration. It is concluded that further analysis 

and evaluation is required to determine which metric is more meaningful as a representative 

measure of registration accuracy and to also investigate other error metrics. 
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1 Introduction 
 

LIDAR is a remote sensing technology that measures direction and range, similar to RADAR, except 

that it uses a laser. The laser beam from the LIDAR illuminates a surface; the surface may scatter some 

of the light back to the LIDAR from which the distance is determined using either phase-shift or time 

information. Stationary LiDARs perform a sweeping scan of their environment creating a point in 3D 

space for each range measurement; such a collection of points is referred to as a point cloud. For a 

dense, high resolution and accurate point cloud at relatively long ranges, LIDAR is type of technology 

typically used though there are other options available. The increase in commercial availability of such 

technologies means that 3D perception continually gains importance in applications such as 3D 

mapping and navigation, architecture, augmented reality, robotics and gaming.  

A LiDAR scanner is used here to collect point cloud data due to its cost, accuracy and 

availability. Like many other similar technologies it is a stationary unit and so multiple scans are 

required from multiple vantage points to attempt to reduce of impact of occlusions and capture a 

complete or near-complete point cloud. The multiple scans lead to the common problem in computer 

vision of registration. The task of registration is to place the individual point clouds in the same spatial 

reference frame by estimating rigid body transformations between the datasets. The problem is difficult 

because the correspondences of the datasets and the precise location of the scanner are unknown a priori; 

the difficulty in obtaining this information accurately means that it is problematic to evaluate 

meaningful and truly representative registration errors.  

The purpose of finding such transformations is to acquire a more complete dataset which 

increases its usability and reliability which is important for many applications. Due to the relatively 

high accuracy of 3D laser scanning technology (typically ±2 mm at 25 m), the importance of accurate 
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registration becomes of greater significance since the range accuracy is a key limiting factor of 

registration accuracy. The required registration accuracy is ultimately specified by the client and the 

application. The point cloud data may be used to provide an approximate representation of the scanned 

environment for visualisation applications or it may be used for some other application where metrology 

is of greater importance such as BIM (Building Information Modelling). BIM is one of the most 

significant drivers for 3D scanning technology and 3D imaging [1], and in the UK, government mandate 

states that by 2016, public sector centrally procured construction projects will be delivered using level 

2 BIM [2].  

Scanning processes in BIM have a required minimum accuracy, however, the ‘Client Guide to 

Scanning and Data Capture’ published by the BIM Task Group [3] advocate a functional performance 

approach rather than a prescriptive approach to establishing this number. This essentially means that 

considering the technology used for data capture, construction tolerances, budgetary restrictions and 

other constraints the best achievable accuracy should be sought. 

In the next section, we discuss point cloud registration error metrics associated with the most 

popular registration methods such as ICP (Iterative Closest Point) [4]. ICP often requires good initial 

alignment typically achieved by feature-based registration. We also introduce our new error metric 

which measures the deviation of planar or near-planar surfaces in registered scans. We address the 

problem of registration error metrics of point clouds in scenarios where the true value is not observable. 

In real-world applications, an accurately and precisely measured true value is too difficult to obtain so 

we resort to measuring quantities about objects from the scene from which we can infer the degree of 

registration accuracy. Typically this may be corresponding points or nearby points and planes, however, 

since we work with indoor 3D scans in which there is typically an abundance of planar features, we use 

these to assess the degree of registration accuracy. 

Real point clouds with planar regions have some surface deviation arising from range noise 

(ranging accuracy), surface profile and poor registration. In the ideal case, truly planar surfaces produce 

point clouds restricted to two dimensions such that there is no surface deviation; furthermore, perfectly 

registered ideal point clouds would also return no surface deviation. If we can account for range noise 

and surface profile in our error metric then planar surface as an error metric should provide 

representative registration errors. 

 

2 Registration Error Metrics 
 

A method which is often used for registration of two point clouds is ICP (Iterative Closest Point); in 

this algorithm, one point cloud, the reference or the target is kept constant, while the other one is 

transformed to minimise the distance of the closest points between the reference and target. The rigid 

body transformation is iteratively evaluated for the revised closest points. ICP is very popular due to its 

simplicity, however, it only works very well in ideal cases, subsequently there are a very large number 

of ICP variants (around 400 papers in the past 20 years with ICP in the title or abstract) [5] which enable 

it to be more robust or faster but the basic principal remains the same which is that the distance between 

iteratively revised closest points are minimised.  

A paper by Rusinkiewicz and Levoy [6] reviews some of the efficient variants of ICP and 

classifies these as affecting one of the 6 stages of the algorithm: selection, matching, weighting, 

rejecting, assigning an error metric and minimising the error metric. Most of the variants aim to add 

speed and robustness to the algorithm, but here we are concerned with the accuracy of registration which 

is ultimately determined by the error metric. The metric specified in the original ICP paper [4] is the 

sum of squared point-to-point distances, other metrics include a combination of point-to-point and 

difference in colour [7], point-to-plane [8] and point-to-line [9] distances. Certain metrics may behave 

better than others in certain cases in terms of converging to the ground truth but their limitations are 

intrinsic to ICP. Whether the ICP variant uses points, planes, lines or anything else, the limitation lies 

in the fact that corresponding references are chosen by proximity. After numerous iterations the error 

may converge, but it may or may not converge to the true value; in either case, this cannot be known 

from summing squares distances between points which are not truly corresponding. 

Another limitation of ICP is that it converges monotonically to local minima and the final result 

is very dependent on the initial conditions, for this reason, most ICP variants require a good initial 



estimate to increase the likelihood of converging to a global minimum. The initial estimate is typically 

evaluated using methods which are more robust to range noise such as feature-based registration. 

Feature-based registration algorithms attempt to identify truly corresponding points and to minimise the 

sum of these squared point-to-point distances. They are limited in accuracy due to range noise and on 

the premise that corresponding points are only truly corresponding within a certain tolerance. 

Nonetheless, they are a popular tool in determining coarse registration which is typically followed by 

fine registration performed by ICP. 

Even with a good initial estimate, ICP is very susceptible to range noise which is something 

which is typical of real data; Low and Lastra [10] have shown that rate of convergence and likelihood 

of convergence to a global minimum can be improved by supressing noise through smoothing of 

smoothly varying surfaces. In our collected data, as mentioned previously, the data is relatively low in 

noise though there are many points which are perturbed by noise (44 million points per scan), the 

accuracy of range measurements is accurate within a standard deviation of 2 mm at 25 m. This level of 

noise and number of points may prove to inhibit ICPs likelihood of converging to the global minimum 

[11]. 

Recently there has been a re-emergence and increased interest in registration of point clouds 

represented as Gaussian mixture models [12]–[14], these models do not require pair-wise 

correspondences in the same way as ICP or feature based registration algorithms but instead use a 

probabilistic approach to reduce correspondence mismatch errors. Due to the simplicity and popularity 

of ICP, here we compare our metric with point-to-point/plane only and analysis on the mixture model 

registration errors is reserved for future work. 

 

3 Planar Surface Deviation (PSD) 
 

There are a number of advantages to using planar surfaces for an error metric. Particularly in our 

application of indoor 3D scanning, planar surfaces such as walls, ceilings and furnishings are typically 

found in abundance. Also, planar regions are identified by many points, at least hundreds if not 

thousands within a 25 cm radius depending on the distance of the scanner to the surface. Such a large 

number of points can be utilised to supress noise (by averaging or plane-fitting, for example) without 

deforming the structure by smoothing or other pre-processing. Lastly, unlike feature points, planes are 

localised in one dimension; relatively small variations in the other two dimensions do not alter the 

distance normal to corresponding registered planes and subsequently do not significantly affect the error 

metric. As a result, errors on planar surfaces should be calculated on multiple orthogonally orientated 

samples. 

To evaluate the surface deviation of planar regions in combined registered scans, knowledge of 

the surface normal is required first; the normal is the direction in which we determine the surface 

deviation. First we identify the query points, which are the points which lie at the centre of the regions 

of interest; such points can be identified using shape detection algorithms such as RANSAC [15] and 

Hough transforms [16], however, for simplicity and proof of concept we identify such points manually 

here.  

Next we identify points in the neighbourhood of our query point and use these to calculate the 

normal. Surface normal estimation can be achieved in many different ways (see [17]), the simplest is 

based on first order 3D plane fitting outlined in [18], which is essentially a least-square plane fitting 

estimation problem. The surface estimation problem is reduced to an eigenvector and eigenvalue 

analysis (or principal component analysis) of a 3D covariance matrix created from the neighbourhood 

of points around the query point. The surface normal is then estimated by the eigenvector corresponding 

to the smallest eigenvalue which corresponds to the direction of smallest variance [19]; additionally, 

the square root of the eigenvalue determines the standard deviation along the corresponding 

eigenvector. By comparing the standard deviation of individual planar regions to the registered and 

combined region, we obtain our planar surface deviation metric. 

PSD is well suited to our application of indoor 3D scanning due to the typical abundance of 

planar surfaces in many buildings, however, scenes that lack plentiful planar surfaces would deem this 

metric far less useful. Since most new scanning applications are concerned with buildings and large 

structures, it is fair to say that PSD would be suited for many applications. Additionally, it should be 



noted that this is metric, currently, does not identify corresponding planes but only evaluates errors for 

nearby planes which are assumed to be corresponding; this means that the usefulness of the metric is 

determined by reasonably well registered scans which will depend on the search radius for 

neighbourhood points and the size of the plane itself. For example, if the registration returns planes 

which are not very close together then they may be excluded from the neighbourhood around your query 

point and provide an overly optimistic registration error. Another limitation of PSD depends upon the 

surfaces themselves, the surface may have a certain profile which cannot easily be known from the scan 

data, such a profile would manifest as surface deviation. Additionally the surface profile will be 

measured differently depending on the position of the scanner relative to the surface normal; this would 

cause misinterpretation of the true position of the surface. 

 

4 Method 
 

We scanned the nanotechnology laboratory in the Department of Electronic and Electrical Engineering 

at UCL from 6 vantage points (see Figure 1). The main types of features used for registration here are 

checkerboard targets which are strategically placed on walls and planar surfaces which are also used 

for registration. The first step of registration is to identify the features, 3 sets of features are extracted 

from the scans (automatically identified checkerboards (AI CHB), manually identified checkerboards 

(MI CHB) and automatically identified planes (AI Planes)) and a 4th set is acquired by using total 

station surveying instruments (total station identified checkerboards (TSI CHB)). To register two scans, 

the correspondences are identified between features from sets A and B. These correspondences are then 

used to determine the transformation required to minimise the distance between the corresponding 

features. Following this, the correspondences are then used to perform fine registration to minimise the 

distances further. We then compared the mean correspondence distance (also referred to as CD or point-

to-point distance) after fine registration with the planar surface deviation (PSD) of a number of planar 

regions. Since the laboratory is rectangular, we take the mean PSD of five regions (typically containing 

many thousands of points) from the long walls, short walls and the ceiling, respectively labelled X, Y 

and Z. The errors, in both cases, are evaluated for the final registration of the 6 scans. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method Feature Set A Feature Set B 

Manual CHB MI CHBs MI CHBs 

Automatic CHB AI CHBs AI CHBs 

Total Station CHB AI CHBs TSI CHBs 

Automatic Planes AI Planes AI Planes 
Table 1 – Table identifying the features used in each registration method. MI – Manually Identified, AI – 

Automatically Identified, TSI – Total Station Identified and CHB – Checkerboard. 

 

 

Figure 1 – Laboratory layout indicating workbenches, scanner 

position and camera angle for Figure 2. 



5 3D Scans and Results 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Manual CHB Automatic 

CHB 

TSI CHB Automatic 

Planes 

 Correspondences 38 218 33 100 
 

CD Mean (mm) 0.8 0.6 2.7 6.7 

 Deviation (mm) 0.4 0.7 1.8 6.9 
 

PSD X (mm) 0.8 0.8 16.3 1.3 

 Y (mm) 0.9 1.2 10.0 3.2 

 Z (mm) 10.2 10.1 4.0 6.2 
Table 2 - Table of alignment errors measured by CD (correspondence distance or point-to-point distances of 

corresponding points) and PSD (planar surface deviation) for the 4 methods. Mean and deviation of all 

correspondences are determined for CD. PSD is evaluated for a set of 3 orthogonal surfaces. 

6 Conclusion 
 

It can be seen from Table 2 that CD and PSD agree that Manual and Automatic CHBs provide good 

alignment. CD states that Automatic planes produce the worst alignment while PSD states that Total 

Station CHBs produce the worst alignment. Though both alignment error measures agree as to which 

sets of features produce the best alignment, they disagree as to which produce the worst alignment. 

Further testing and evaluation is required to determine which method is the more meaningful measure 

of error. The CD error method hides variations in error in X, Y and Z so multiple checkerboards on the 

walls reduce the misalignment error in X and Y while hiding the much larger misalignment error in Z. 

This work attempts to assess the accuracy of registration in a novel way by using the spatial 

deviation in the direction of the surface normal of overlapping planar regions from different scans. 

Planar features are found in abundance indoors, and using additional information from these planar 

regions gives for a more detailed analysis of the final registration. In the future, we intend to include 

more information in PSD, to also extend the method to better account for the type of surface in question 

and to analyse a wider range of metrics. 

 

 

 

 

Figure 2 - Screenshot of the six registered scans of the laboratory. Top right-hand 

corner of the room opposite the single door. 
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