14 research outputs found

    A Review of 2D and 3D Plasmonic Nanostructure Array Patterns: Fabrication, Light Management and Sensing Applications

    Get PDF
    Abstract: This review article discusses progress in surface plasmon resonance (SPR) of two-dimensional (2D) and three-dimensional (3D) chip-based nanostructure array patterns. Recent advancements in fabrication techniques for nano-arrays have endowed researchers with tools to explore a material’s plasmonic optical properties. In this review, fabrication techniques including electron-beam lithography, focused-ion lithography, dip-pen lithography, laser interference lithography, nanosphere lithography, nanoimprint lithography, and anodic aluminum oxide (AAO) template-based lithography are introduced and discussed. Nano-arrays have gained increased attention because of their optical property dependency (lightmatter interactions) on size, shape, and periodicity. In particular, nano-array architectures can be tailored to produce and tune plasmonic modes such as localized surface plasmon resonance (LSPR), surface plasmon polariton (SPP), extraordinary transmission, surface lattice resonance (SLR), Fano resonance, plasmonic whisperinggallery modes (WGMs), and plasmonic gap mode. Thus, light management (absorption, scattering, transmission, and guided wave propagation), as well as electromagnetic (EM) field enhancement, can be controlled by rational design and fabrication of plasmonic nano-arrays. Because of their optical properties, these plasmonic modes can be utilized for designing plasmonic sensors and surfaceenhanced Raman scattering (SERS) sensors

    Advanced Biosensing towards Real-Time Imaging of Protein Secretion from Single Cells

    Get PDF
    Protein secretion of cells plays a vital role in intercellular communication. The abnormality and dysfunction of cellular protein secretion are associated with various physiological disorders, such as malignant proliferation of cells, aberrant immune function, and bone marrow failure. The heterogeneity of protein secretion exists not only between varying populations of cells, but also in the same phenotype of cells. Therefore, characterization of protein secretion from single cell contributes not only to the understanding of intercellular communication in immune effector, carcinogenesis and metastasis, but also to the development and improvement of diagnosis and therapy of relative diseases. In spite of abundant highly sensitive methods that have been developed for the detection of secreted proteins, majority of them fall short in providing sufficient spatial and temporal resolution for comprehensive profiling of protein secretion from single cells. The real-time imaging techniques allow rapid acquisition and manipulation of analyte information on a 2D plane, providing high spatiotemporal resolution. Here, we summarize recent advances in real-time imaging of secretory proteins from single cell, including label-free and labelling techniques, shedding light on the development of simple yet powerful methodology for real-time imaging of single-cell protein secretion

    Optical biosensors - Illuminating the path to personalized drug dosing

    Get PDF
    Optical biosensors are low-cost, sensitive and portable devices that are poised to revolutionize the medical industry. Healthcare monitoring has already been transformed by such devices, with notable recent applications including heart rate monitoring in smartwatches and COVID-19 lateral flow diagnostic test kits. The commercial success and impact of existing optical sensors has galvanized research in expanding its application in numerous disciplines. Drug detection and monitoring seeks to benefit from the fast-approaching wave of optical biosensors, with diverse applications ranging from illicit drug testing, clinical trials, monitoring in advanced drug delivery systems and personalized drug dosing. The latter has the potential to significantly improve patients' lives by minimizing toxicity and maximizing efficacy. To achieve this, the patient's serum drug levels must be frequently measured. Yet, the current method of obtaining such information, namely therapeutic drug monitoring (TDM), is not routinely practiced as it is invasive, expensive, time-consuming and skilled labor-intensive. Certainly, optical sensors possess the capabilities to challenge this convention. This review explores the current state of optical biosensors in personalized dosing with special emphasis on TDM, and provides an appraisal on recent strategies. The strengths and challenges of optical biosensors are critically evaluated, before concluding with perspectives on the future direction of these sensors

    Engineering Plasmonic Nanostructures for Light Management and Sensing

    Get PDF
    The two major global problems are to provide health safety and to meet energy demands for ever growing population on a large scale. The study of light interaction with nanostructures has shown a promising solution in improving the fields of bio-sensor and solar energy devices which addresses above mentioned two major global problems. Nanostructures have tunable physicochemical properties such as light absorption, electrical and thermal properties unlike bulk materials, which gives an advantage in applications like bio-sensing and energy harvesting devices. The development of nanofabrication techniques along with the discovery of Surface Enhanced Raman Scattering (SERS) and Plasmon Enhanced Fluorescence (PEF), led to the development of Point of Care (POC) sensing devices. The fundamental understanding of light path in a nanostructured material led to the improvement in solar energy harvesting performance. For both of these applications, engineering nanostructures is the key to improving performance. In this work, different plasmonic nanostructures were designed, fabricated and analyzed for biosensor and light management applications. A new fabrication route, which combines nanosphere lithography with silicon-based clean-room microfabrication processes, has been developed to produce large-area long-range ordered gold nanoring array patterns in a controllable fashion. The developed nanoring structure has SERS enhancement of 2*109 and is used for miRNA detection. A novel pyramid array on gold film 3D plasmonic nanostructure is designed to convert plasmonic light scattering to confined light absorption. This structure generates a cavity mode by hybridization of fundamental modes, which creates a strong electric and magnetic field with a large mode volume. Due to its unique properties pyramids coupled film structure is used for both solar light management device and in Metal Enhanced Fluorescence (MEF). The fabricated structure is used to demonstrate plexiton (plasmon – exciton coupling) generation and is very effective in light trapping in the gap mode. In MEF, the sandwich nanostructure is used for Metal Organic Framework (MOF) fluorescence enhancement and the enhancement factor is around 5*102. With the plasmonic metal nanostructure optimization, the performance of a specific application is improved. However, the metals used for plasmonic applications are noble metals like gold and silver to support strong localized surface plasmon resonance (LSPR), which are expensive. Two-dimensional semiconductor materials have shown plasmon resonance in the visible region, having a lot of applications in sensing and photonics. Heavily doped semiconductors could replace expensive metals without compromising the performance. LSPR in metals is tuned by shape, size and refractive index of surroundings. This restricts plasmon resonance tuning over a narrow wavelength range and need to choose a different metal to exceed the rage of application. In contrast, LSPR in plasmonic semiconductors can be tuned with parameters like carrier density, annealing temperature and doping. This gives an advantage of tuning the plasmon peak over a broad range including visible, Near Infrared (NIR) and Infrared(IR) regions. This is because, for semiconductor materials, the carrier concentration can be varied over a large range. Herein, the molybdenum oxide thin films were directly deposited and nitrogen annealed which showed a tunable localized surface plasmon resonance (LSPR). A chip based 2D semiconductor material is fabricated to study the structural and size dependent plasmon resonance. This work establishes a way to fabricate chip based ordered semiconductor nanostructures, which helps in a systematic study of plasmon properties on nanostructures

    Enhanced upconversion photoluminescence by novel plasmonic structures

    Get PDF
    The emerging field of plasmon-enhanced upconversion photoluminescence has a significant impact on a variety of technologies, including high-efficiency solar energy systems and biotechnology. To date, the upconversion efficiency of best reported rare-earth doped upconversion nanoparticles cannot meet the requirements of practical utilizations in these fields. Therefore, it is of great significance to find new approaches for the enhancement of upconversion efficiency. This thesis mainly aims to explore the enhanced upconversion photoluminescence by several novel plasmonic nanostructures. In this PhD work, I first studied the properties of rare-earth doped upconversion nanomaterials, which are capable of the spectral conversion of the otherwise lost sub-band-gap photons from the solar spectrum. The extra Gd3+ ion doping strategy was introduced in the hydrothermal synthesis process, which can provide an approach to tune the geometry and upconversion efficiency of upconversion nanoparticles (UCNPs). To achieve higher upconversion efficiency, advances in the experimental improvements in plasmon-enhanced upconversion photoluminescence (UCPL) efficiency are explored, by using Au mesoporous film, Au nanotriangle array or nanohole array substrates for the enhancement of upconversion photoluminescence. It is demonstrated that the best plasmonic nanostructures can achieve about 360 times UCPL enhancement. These experimental results demonstrated the great potential of the plasmonic effect for UCPL enhancement. Furthermore, a triplet-triplet annihilation based upconversion nanoparticles (TTA-UCNPs) were synthesized, which have much higher intrinsic upconversion efficiency than the rare-earth based upconversion nanoparticles. A plasmon-enhanced upconversion photoluminescence substrate was designed for high performance photocatalysis applications under solar simulator (AM 1.5 G) irradiation. Five times faster photocatalytic activity rate was achieved by this plasmonic/TTA-UCNPs/Au@TiO2 system, which demonstrates great value of plasmonic and upconversion mechanisms. The combination of excellent plasmonic substrate and high efficiency TTA-UCNPs makes it possible for the realization of industrial level applications of the plasmonic and upconversion in the photocatalytic field.Open Acces

    Large-Area Plasmonics on Self-Organized Wrinkled Nanopatterns

    Get PDF
    The focus of my PhD project consisted in the development of self-organized, large area, industrially scalable physical methods based on wrinkling instabilities to nanopattern and functionalize tunable plasmonic polymeric polydimetilsyloxane (PDMS) and solid-state glass surfaces, both transparent, non-toxic and cheap materials, for applications of significant technological interest in photonics and bio-sensing
    corecore