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Abstract 

Engineering Plasmonic Nanostructures for Light 

Management and Sensing 

Sujan Kasani 

The two major global problems are to provide health safety and to meet energy demands for ever 

growing population on a large scale. The study of light interaction with nanostructures has shown 

a promising solution in improving the fields of bio-sensor and solar energy devices which 

addresses above mentioned two major global problems. Nanostructures have tunable 

physicochemical properties such as light absorption, electrical and thermal properties unlike bulk 

materials, which gives an advantage in applications like bio-sensing and energy harvesting 

devices. The development of nanofabrication techniques along with the discovery of Surface 

Enhanced Raman Scattering (SERS) and Plasmon Enhanced Fluorescence (PEF), led to the 

development of Point of Care (POC) sensing devices. The fundamental understanding of light path 

in a nanostructured material led to the improvement in solar energy harvesting performance. For 

both of these applications, engineering nanostructures is the key to improving performance. 

In this work, different plasmonic nanostructures were designed, fabricated and analyzed 

for biosensor and light management applications. A new fabrication route, which combines 

nanosphere lithography with silicon-based clean-room microfabrication processes, has been 

developed to produce large-area long-range ordered gold nanoring array patterns in a controllable 

fashion. The developed nanoring structure has SERS enhancement of 2*109 and is used for miRNA 

detection. A novel pyramid array on gold film 3D plasmonic nanostructure is designed to convert 

plasmonic light scattering to confined light absorption. This structure generates a cavity mode by 

hybridization of fundamental modes, which creates a strong electric and magnetic field with a 

large mode volume. Due to its unique properties pyramids coupled film structure is used for both 

solar light management device and in Metal Enhanced Fluorescence (MEF). The fabricated 

structure is used to demonstrate plexiton (plasmon – exciton coupling) generation and is very 

effective in light trapping in the gap mode. In MEF, the sandwich nanostructure is used for Metal 

Organic Framework (MOF) fluorescence enhancement and the enhancement factor is around 

5*102.   



 

 

 

With the plasmonic metal nanostructure optimization, the performance of a specific 

application is improved. However, the metals used for plasmonic applications are noble metals 

like gold and silver to support strong localized surface plasmon resonance (LSPR), which are 

expensive. Two-dimensional semiconductor materials have shown plasmon resonance in the 

visible region, having a lot of applications in sensing and photonics. Heavily doped 

semiconductors could replace expensive metals without compromising the performance. LSPR in 

metals is tuned by shape, size and refractive index of surroundings. This restricts plasmon 

resonance tuning over a narrow wavelength range and need to choose a different metal to exceed 

the rage of application. In contrast, LSPR in plasmonic semiconductors can be tuned with 

parameters like carrier density, annealing temperature and doping. This gives an advantage of 

tuning the plasmon peak over a broad range including visible, Near Infrared (NIR) and Infrared(IR) 

regions. This is because, for semiconductor materials, the carrier concentration can be varied over 

a large range. Herein, the molybdenum oxide thin films were directly deposited and nitrogen 

annealed which showed a tunable localized surface plasmon resonance (LSPR). A chip based 2D 

semiconductor material is fabricated to study the structural and size dependent plasmon resonance. 

This work establishes a way to fabricate chip based ordered semiconductor nanostructures, which 

helps in a systematic study of plasmon properties on nanostructures.   
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Chapter 1: INTRODUCTION 

1.1 MOTIVATION 

With huge population growth, proper health care and increase in energy requirements are 

inevitable. In the last two decades, there was tremendous growth in medical diagnosis however 

most of the tools for disease and bio-molecule detection are expensive and time taking. There is a 

demand for economical technologies for early detection of disease to improve health care. An 

accurate device which can detect the health condition and environmental pollutants economically 

and portable can contribute significantly to the development of health care and environmental 

safety. 

Energy requirements are increasing day by day with the ever growing population. There is a 

need to move from a traditional non-renewable source of energy to a clean energy source like solar 

energy. In this aspect, light management is very crucial to improve the performance of 

optoelectronic devices like photodetectors, solar cells and LEDs. Therefore, these two main global 

problems which are health care and energy requirements should be addressed with effective 

solutions.   

 

1.2 OBJECTIVES 

This thesis explains the science of light interaction with nanostructures. Specifically, how to 

engineer plasmonic nanostructures for biosensor and light management applications. The main 

concepts covered in the dissertation are fabrication of highly ordered nanostructure arrays for 

SERS/PEF based biomolecule detection, studying generated plasmon modes, optical path and light 

management in nanostructure arrays. The objectives are listed below 

1. To develop large scale nanofabrication by implementing Nanosphere lithography (NSL) 

technique to fabricate periodic plasmonic array pattern in a controlled fashion.  

2. To study the evolution of the plasmonic and optical properties of nanostructure which 

correlates with SERS/PEF performance. 
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3. To study the plasmon hybridized mode to analyze the light path in the nanostructure for 

light management applications. 

4. To study new plasmonic materials that address limitations of cost, losses and stability.  

 

1.3 INNOVATION/ SIGNIFICANCE 

The existing fabrication technologies and nanostructure design such as free standing 

nanoparticles usage for sensing and solar applications are not reliable. Free standing nanoparticles 

aggregate in a solution altering the plasmon mode which in turn affects the performance of the 

device. Also, the particles used are expensive noble metals. These problems prompt exploration of 

an alternative innovative solution. The proposed design and fabrication of nanostructures 

addressed the problems of the existing methods. The proposed research is significant in  

 

1. Developing highly repeatable, uniform and large scale nanostructures. 

2. Innovates sensing mechanism by optimizing the structure based on new plasmon coupling 

modes analysis. 

3. Exploring the possibility of replacing existing expensive material. 

 

1.4 THESIS ORGANIZATION 

The document encompasses seven chapters. Chapters 2,3,4,5 and 6 are expanded versions of 

published, submitted or soon to be submitted manuscripts. The first chapter details the introduction 

and objective of the thesis. The second chapter discusses the theoretical background and physics 

of plasmonics along with the fabrication techniques and applications. The third chapter focuses on 

the study of miRNA detection biosensor using gold nanoring array. In chapter four, the coupling 

mechanism of two different nanostructures for plexiton generation was discussed. In chapter five, 

the plasmonic properties of a semiconductor material and their impact on applications were 

discussed. In chapter six, the fluorescence sensing mechanism using plasmonic gap plasmon mode 

was presented in detail. 
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CHAPTER 2: BACKGROUND 

2.1 PLASMONICS 

Plasmonics is the study of the interaction between the electromagnetic field and free 

electrons in the metal. Free electrons in the metal can be excited by the electric component of light 

and create collective oscillations. These oscillations displace the free electrons from their 

corresponding nuclei. This displacement causes a dipole with the incident light1. At a particular 

frequency, the frequency of oscillation of dipole match with the frequency of incident light, which 

is called plasmon resonance. The incident light couples with the plasmons which either strongly 

scatter or absorb light. Plasmon and light interaction allows breaking the diffraction limit of light. 

This causes localization of light in subwavelength dimensions. This localization of light in 

subwavelength dimensions’ produces enhanced optical near-field and strong electromagnetic 

(EM) field enhancement. If the localization of light takes place at the metal-dielectric interface as 

propagating waves, the excitation is known as surface plasmon polaritons (SPP), while if it takes 

place within the nanostructure, localized surface plasmon resonance (LSPR) is excited2. Plasmonic 

behavior is seen in noble metals like gold, silver and copper. The localized plasmon resonance 

phenomenon occurs when the nanostructure size is comparable or less than the wavelength of light. 

The plasmon resonance properties mainly depend on the nanostructure shape, size and the 

dielectric medium in which the nanostructure is present. The attractive phenomenon of SPR and 

LSPR enables plasmonic materials with high potential of applications in a variety of fields which 

include photonics3, SERS4,5, sensors6,7, energy8 and light management9. 

2.1.1 PLASMONIC MATERIALS 

There are many materials that show plasmonic behavior which include metals, metal-

alloys, and semiconductors. The dielectric function of the material is key in determining where 

and how intense the plasmon resonance. The real part of the material dielectric function needs to 

be negative which is satisfied if the plasma frequency of the material is higher than the frequency 

of interest. Furthermore, the imaginary part of the materials dielectric function has to be low as 
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it corresponds to the losses experienced when polarizing the material. Each material has its 

advantages and disadvantages making the right material based on wavelength region, stability 

and refractive index. 

The plasma frequency of a material is given by 𝜔𝑝 = √
𝑛𝑒

2

𝑚𝑒𝜖0
   , where ne is the density of electrons 

and me is the effective mass of electrons.10 

 

The most typical materials used for plasmonic application are the ones with high plasma 

frequency which allows plasmon resonance to fall in the visible region of spectra. This is because 

most of the optoelectronic and solar applications are performed in visible region.  

The other important parameter is conductivity11.  

                                                           𝛾 =
𝑁𝑒2

𝜎𝑚𝑒
                                                                 (1) 

 where 𝜎 is the conductivity and 𝛾 is damping constant.                      

Conductivity is inversely proportional to damping constant. Thus materials having high 

conductivity, in particular, gold and silver have intense plasmon resonance. Both materials have 

very low losses in the visible and near infrared (NIR) region often making them the optimal 

choice. The plasmon resonance is strong for highly conductive materials and collapses for low 

conductive or insulating materials Silver having the lowest loss of all metals often seems the best 

choice but silver is also very easily oxidized in the presence of oxygen. 

Many metallic alloys are not of interest as they do not give any advantage or have too many 

disadvantages compared to pure metals.  

 

Recently, semiconductor nanocrystals (NCs) like metal chalcogenides, metal oxides, 

metal nitrides and heavily doped semiconductors were investigated for plasmonics12,13.  

Semiconductors can be used as plasmonic material if the plasma frequency is higher than the 

region of interest and the bandgap is high enough to ensure minimal losses due to interband 

transitions. Furthermore, to reach lower frequencies for phonon resonances to occur, the 

semiconductor material needs to be heavily doped while still ensuring high carrier mobility. Due 

to that, only a limited number of materials useable for plasmonics has until now been found 

despite a large number of semiconductor materials. Examples of semiconductors that could be 

interesting, especially in the visible and NIR region, include indium-tin-oxide, aluminum-zinc-
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oxide and gallium-zinc-oxide14. 

2.1.2 MAXWELL’S EQUATIONS 

The interaction of light and matter is governed by a set of classical equations, even at the 

subwavelength scale. These equations are called Maxwell’s equations. They are differential 

equations that describe the correlation between E-field and H-field of an electromagnetic wave at 

any point in space-time. Maxwell’s equations are critical in understanding electromagnetic 

properties in the medium. The flow of current produces a magnetic field and a varying current 

produces a varying magnetic field which in turn gives rise to an electric field. These varying 

electric and magnetic fields generate a propagating EM wave. The propagation of the wave through 

a medium is determined by parameters of the medium like the electric permittivity (ε), magnetic 

permeability (µ) and the electric conductivity (σ).  

 

 Electromagnetic fields are comprised of two vectors, E and H, for the electric and magnetic 

components respectively. The existence of propagating electromagnetic fields in an infinite, non-

conducting medium with constant permittivity, ε and permeability, μ in the direction of the 

complex wave vector, k is given by Maxwell’s plane wave equations which are 

 

 

                                                             ∇∙ E = 
ρ𝑣

𝜀
                                                                       (2) 

Equation (2) is Gauss’s law for a static electric field, which states electric flux through any closed 

surface is proportional to total electric charge enclosed by this surface.  

 

                                                             ∇∙ H = 0                                                                         (3) 

Equation (3) is Gauss’s law for static magnetic fields, which states magnetic flux passing through 

any closed surface is zero. 

                                                    ∇× 𝑬 =  -𝜇  
∂H

∂t
                                                                          (4) 

Equation (4) is Faraday’s law of induction, which states changing magnetic flux through a surface 

induces circulating Electric field. 

                                                      ∇ × 𝑯 = J + ε 
∂H

∂t
                                                                   (5) 
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Equation (5) is Ampere’s law, which states a changing electric flux through a surface produces a 

circulating magnetic field around any path that bounds that surface. 

 

2.2 IMPORTANCE OF NANOSTRUCTURE ARRAY FOR PLASMONIC 

APPLICATIONS 

 

Nanostructured materials have tunable physicochemical characteristics, unlike bulk materials 

where their properties are limited to its material property. Nanostructures allow tuning the material 

properties like light absorption, color change, electrical and thermal properties with different sizes 

and shapes of the structure. Understanding the fundamental optical properties has allowed for 

plasmonic nanostructure research and development throughout the past two decades. This is due 

to the growth of advanced fabrication and characterization techniques along with potential 

applications in the fields of medicine, biosensing, imaging, solar energy, catalysis and 

optoelectronics. 

A plasmon is typically excited on two types of substrates, 1) free-standing individual 

nanoparticles15 and their random aggregates16 and 2) chip-based nano-array patterns. Local EM 

enhancement factors can reach 104-106 with metal nanospheres17. With colloidal aggregates, the 

EM enhancement factors can achieve as high as 1014 18. Individual nanoparticles have been 

extensively used for surface-enhanced Raman scattering (SERS). It is noted that the SERS 

enhancement is difficult to reproduce because of the random distribution of colloids.  

A nano-array pattern is a periodic layout of particular nanostructure geometry over a solid-

state chip. Many nano-array patterns have been reported to generate tunable a plasmon such as a 

nanohole, nanocubes, nanorods, nanopyramids and nanorings. In particular, the collective 

behavior of plasmons in nano-arrays produces a coherent optical response, which leads to stronger 

and narrow spectral features. The optical spectrum of a nano-array depends on size, shape, and 

periodicity of the structures, which provides great flexibility and tunability of plasmon and optical 

properties. The tailorable plasmonic properties in nano-arrays have opened ample opportunities 

for EM enhancement and light management with nano-arrays, making nano-arrays applicable in 

photovoltaic devices, photocatalysts, biosensors, nano-medicine, and optoelectronic devices.   
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For example, plasmonic nano-arrays have been extensively used for two types of sensors, that 

is, surface plasmon sensors and SERS sensors. Plasmonic sensors are designed based on the 

principle that plasmon resonance is sensitive to refractive index changes in the environmental 

medium due to the adsorption or binding of molecules on the plasmonic nanostructures. Raman 

scattering is the result of inelastic scattering when light interacts with a molecule, which is used to 

detect vibrational and rotational properties of a system. The induced electric dipole moment for a 

Raman molecule is given by19 

                                                                        𝜇 =  𝛼𝐸                                                                            (6) 

Where 𝛼 is the molecular polarizability and E is the electric field strength. The induced electric 

dipole moment of a molecule is directly proportional to the electric field strength of the medium 

where the molecule is present. Raman scattering intensity is directly proportional to the square of 

the induced dipole moment. Therefore, when a Raman molecule is placed in a medium with a high 

electric field, the Raman signal is enhanced through a phenomenon called SERS. When 

nanostructures are irradiated with light, the light can be confined in subwavelength dimensions 

and produce a large EM field for SERS enhancement. Because of the high enhancement factors, 

SERS is a very promising technique for sensing applications to overcome poor sensitivity and high 

background interference. Since SERS was first realized for single molecule detection in 1997 [20, 

21], its application in the biosensing and nanomedicine fields has grown considerably. Over the 

past 20 years, the vast majority of SERS sensors have been engineered using colloidal nanoparticle 

SERS systems. Colloidal nanoparticles in SERS sensors systems are limited for use as in-solution 

detection probes, which can be subject to unwanted aggregation in biological matrices. 

Additionally, colloidal nanostructures, such as silver and gold nanorods, have challenging 

synthesis methods that are difficult to reproduce. Compared to nanoparticles, nano-arrays are 

highly stable and ordered structures, and can extend the space for light management and EM 

enhancement. To further improve sensor performance and diversify material design, 2D and 3D 

nano-arrays have gained interest for SERS sensing substrates. 

2.3 FABRICATION TECHNIQUES FOR NANOSTRUCTURE ARRAY 

Cleanroom-based photolithography (PL) is one of the most widely used and mass fabrication 

techniques in the semiconductor and microfabrication industry. However, its spatial resolution is 

limited by the diffraction limit of light. The angle of diffraction depends on the wavelength of light 
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used and the gap between a photomask and the substrate. For these reasons, conventional 

photolithography is unable to produce high-quality nanoscale features, especially for 3D and 

hierarchical nanostructures. New nano-fabrication techniques have emerged to overcome the 

challenges associated with photolithography. These lithography techniques include electron-beam 

lithography, focused-ion lithography, dip-pen lithography, laser interference lithography, 

nanosphere lithography, nanoimprint lithography, anodic aluminum oxide (AAO) template-based 

lithography, and molecular stamping. An ideal nanofabrication technique is inexpensive, high 

throughput, high resolution, and provides great flexibility for tailoring nanostructure size and 

shape. 

Electron-beam lithography (EBL)  

EBL was first developed in 196720 and has took many modifications and developments to achieve 

high spatial resolution. Electron-beam lithography (EBL) is a modified scanning electron 

microscope (SEM) to write a nanoscale pattern by focusing an electron beam spot on an electron 

sensitive resist. Projection printing and direct writing are two methods followed in EBL systems21. 

The difference between them is a projection scheme uses a larger electron beam projected on to 

the mask, where as in direct writing e-beam spot pattern the shape directly on the resist.  Generally, 

there are two sub categories of direct writing EBL systems based on the type of electron beam 

used. One is Gaussian beam e-beam system and the other is shaped beam e-beam system22.  

Gaussian e-beam systems are commonly used because of its flexibility and fine spatial resolution23. 

This section discusses about the direct writing EBL system. In direct writing EBL, an electron 

beam spot is focused on electron beam resist coated on a wafer. The pattern is transferred in the 

form of raster scans. The exposed part of resist is etched away if its positive resist using a developer 

leaving a nanostructure pattern. The resolution of nanostructure is depended on the size of beam 

spot, which is around 10nm. Since the EBL is serial process which uses raster scans the throughput 

is very low. 

Focused ion beam (FIB) lithography 

Ions are used in FIB similar to electrons used in EBL. In FIB heavier ions are projected on to 

the resist where as in EBL electrons are used. The advantages of using heavier ions improves the 

resolution24. The Debroglie wavelength of heavier ions is lower than electrons which give better 
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control of feature dimensions on the resist. However heavier ions like He+, Be+ and Ga+ have less 

penetration depth so high aspect ratio features are difficult to fabrication with FIB. Also, FIB need 

large energy to focus the ion beam because of the heavier ions. Similar to EBL, FIB also lacks 

high throughput. 

Dip-pen lithography (DPN) 

Dip-pen lithography (DPN) is a type of scanning probe lithography, where an atomic force 

microscope (AFM) tip is used to directly write a pattern by delivering chemical reagents directly 

on to the substrate. DPN was first introduced in 1999 as a tool for fabricating nanostructures32. 

Since then, it was developed to pattern variety of inks including organic molecules, colloidal 

particles, metal ions, and biological polymers33. Also, a variety of substrate surfaces can be 

patterned such as metals, insulators and semiconductors. DNP lithography is conducted in inert 

environment making this technique an ideal candidate for pattering biological and soft organic 

structures. DPN offers high resolution as shown in the patterning of alkylthiols on gold substrate 

to achieve 15 nm resolution with sharp tips34. Recently, parallel writing DPN has been developed, 

which addresses the complexity of engineering cantilever arrays by using a passive pen array 35
. 

The main disadvantage of DPN is its throughput because of its inherent serial fabrication process. 

Generally, DPN uses a single pen to write the pattern, even though efforts have been made to use 

multi pen configuration. Engineering cantilever array design for specific applications is difficult 

and expensive. One of the  disadvantages of DPN is that limited number of materials can be 

used in the ink for DPN. 

Laser interference lithography (LIL)  

Laser inference lithography (LIL) is similar to mask-less photolithography for fabricating 

nanostructures. It is an effective method for large area and high throughput fabrication36,37. In 

conventional photolithography, monochromatic light is illuminated through a mask, and transfers 

a pattern on to the photoresist. In LIL, instead of using a mask to form a pattern, the pattern is 

formed from the superposition of multiple laser beams exposed onto a photoresist38. The 

interference pattern and electric field intensity is formed during the superposition of multiple laser 

beams. Because LIL does not use photomask, the patterns of different sizes and shapes can be 

easily modified by interference principle. Also, the resolution of the feature size is not limited by 
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diffraction of light that is commonly seen with mask techniques. The resolution is only limited by 

wavelength of light being used during the pattern transfer39. However, not all shapes can be 

patterned using LIL and the minimum period of nanostructures is limited to the half the wavelength 

of light. This requires the usage of deep ultraviolet light for smaller features40, which makes the 

LIL very expensive. For large exposure area, the laser source should have a long coherence length 

and for higher resolution41, lower wavelengths of light are needed. The light source specifications 

required for desired patterns makes the LIL challenging for large-scale fabrication.  

Nano sphere lithography (NSL) 

Nanosphere lithography is a flexible, inexpensive, high throughput technique for fabricating 

2D and 3D nanostructures. In NSL, spherical colloids are transferred on to a substrate and dried to 

form a hexagonally closed pack (HCP) monolayer42. The monolayer is transferred on to substrate 

by various methods like dip coating43,44, spin coating45,46 and Langmuir-Blodgett47. This 

monolayer is used as a mask and subsequent steps are performed to fabricate different 

nanostructure array patterns13,48. Material is deposited through the interstitial spaces of the HCP 

beads and then the mask is removed by sonication leaving ordered array of nanostructures on a 

substrate. The size and shape of the nanostructure can be easily changed by changing the bead size. 

NSL is a hybrid of top-down and bottom-up approach, which offers a flexible fabrication. 

Lithographic techniques like EBL, LIL, IBL are low throughput and have high sample costs 

making these techniques impractical for large-scale fabrication. Because of these challenges, many 

parallel lithographic techniques have been developed, with NSL among them. NSL is a promising 

technique for developing nanoscale substrates because of the low cost, high throughput, and 

tunable optical properties49-51. However, since a HCP monolayer is used as the mask for 

lithography, the shape and size of nanostructure features are limited, so it is challenging to generate 

versatile nanostructure geometries and features. 

Nanoimprint lithography (NIL)  

Nano imprint lithography (NIL) is a high resolution, high throughput, and low cost technique 

for fabricating nanostructures. It was first developed by S.Y. Chou in 199552, and since then it has 

overcome many challenges to meet the practical industrial requirements. NIL has demonstrated 

sub 10 nm imprinting in 199753 and 2 nm structures fabrication54, making it a promising technique 
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for next generation lithography. It has been added to the International Technology Roadmap for 

Semiconductors (ITRS) for 32nm and 22 nm nodes55. 

NIL uses molds to form nanostructures. In this technique, a stamp (or mold) with a specific 

pattern is mechanically pressed into the imprint fluid already coated on a substrate. The mechanical 

deformation causes the pattern to be transferred into the imprint fluid. After the hardening process, 

the stamp is removed and leaves the nanostructure pattern on the substrate. The resolution of NIL 

is limited by the mold pattern, and is not due to the diffraction limit of light such as in the case of 

photolithography. Therefore, the minimum feature size of the nanostructure pattern depends on 

the mold pattern feature size. Based on the type of imprint curing, there are two commonly 

followed nanoimprint processes thermal NIL and UV-NIL56. Thermal NIL, the earliest form of 

NIL, utilizes a thermoplastic polymer as the imprint fluid. During the hardening step, the polymer 

is heated above the glass transition temperature to transfer the pattern. In case of UV-NIL, a UV 

sensitive polymer is used as an imprint fluid. After the mechanical contact, required dosage of UV 

light is illuminated on to the polymer to complete the hardening process. The applications of NIL 

are categorized into pattern transfer and polymer device applications. Its main applications are in 

optical storage devices, hard disk media devices, light emitting diodes, biosensors, microfluidic 

devices and functional polymer devices.  

Fabrication with anodic aluminum oxide (AAO) and other templates 

Anodic aluminum oxide (AAO) template is a template assisted nano-patterning technique for 

low cost and high resolution57 over a large area. The subsequent deposition of material through the 

template allows for fabrication of nanostructures. The template is made by metal anodization in an 

acidic solution to form periodic metal oxide nanopores58. The thickness of the membrane and the 

periodicity of pores depend on time of anodization and the voltage applied59. The flexibility of 

fabricating pore size which ranges from 7 nm to more than 300 nm make AAO a suitable template 

assisted pattering for high resolution fabrication60. This technique is applied to fabricate several 

nanostructures such as nano dots, rings, pillars and tubes over a large area. Besides aluminum, 

titanium and zirconium metals can also be used to generate pore patterns by anodic etching. 

However, it is difficult to generate long-range-ordered periodic nano-array patterns in a large area. 

Furthermore, the geometry and layout of the nanostructure feature are limited by the fixed AAO 

template because the template pores are round-shaped and laid out in a hexagonal pattern. 
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2.4 PLASMON MODES in 2D AND 3D NANOSTRUCTURES 

Similar to photons in a light wave, plasmons are quasiparticles of an oscillating plasma composed 

conduction electrons at the boundaries between metal and dielectric 68-71. The electric field vector 

of light oscillates free electrons at frequency to create a plasma. When the excitation light 

frequency matches the electron oscillations, plasmon resonance occurs. Materials with negative 

real and positive imaginary dielectric constant support surface plasmon resonance (SPR) when 

they are illuminated. The incident light couples with the plasmons, which either strongly scatters 

or absorb light. Understanding the relationship between material properties like size, shape, 

periodicity and dielectric with the optical response is being explored and has resulted in wide range 

of applications including SERS72,73, sensors74,75, fluorescence enhancement76, and refractive index 

measurements77. Surface plasmon oscillations vary based on the nanostructure properties and 

dielectric environment. These different types of surface plasmon oscillations are called plasmon 

modes. Plasmon modes can be modulated based on the suited applications and the desired physical 

properties. Plasmon modes differ in fundamental properties such as near-field electric field, mode 

volume, and bandwidth. SPR occurs in two fundamental forms localized surface plasmon 

resonance (LSRP) and surface plasmon polariton (SPP). Other plasmon modes, such as Fano 

resonance, plasmonic whispering-gallery mode, surface lattice resonance and plasmonic gap 

mode, can be excited from the coupling and interaction of these fundamental modes by controlling 

the nanoarchitecture.  

Each plasmonic mode has characteristic optical properties and unique distribution and amplitude 

of EM field. It is essential to understand the origin of plasmon excitation and decay, the optical 

responses of plasmon, and the associated effects such as hot electron emission in order to fabricate 

and utilize plasmonic nano-arrays in a fashion of “device-by-design”.  For example, for the 

application of plasmonic nano-array in plasmon sensors and SERS sensors, a well-designed nano-

array pattern along with the fundamental understanding of light interaction with nano-array pattern 

is required. 
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Localized surface plasmon resonance (LSPR):   

Localized surface plasmon resonance (LSPR) is a surface phenomenon generated by metal 

nanoparticles, in which electrons oscillate collectively in resonance with incident light (Figure 

1A). They are localized at particular areas on the nanostructure as localized plasmons. The electric 

field around the localized plasmons is multiplied by several orders of magnitude, and intensity 

decays exponentially with distance. These resonances create a sharp optical absorption or 

scattering along with strong EM field. 

                                            

 

Figure 2. 1: (A) LSPR condition and E filed distribution (B) Absorption dominates in smaller 

nano particles (C) Scattering dominates in larger nano particles 78 

The LSPR peak is highly dependent on the material, dielectric constant of surrounding 

medium, and size of nanostructure as given by the above equation. The real part of dielectric 

function determines the LSPR extinction peak position, while the imaginary part plays a role in 

the damping and resonance peak broadening. When 𝞮1=-2𝞮m, polarization attain singularity and 

EM field is enhanced. Mie’s theory is limited only to spherical particles. In 1912, Richard Gans 

generalized Mie’s equation based on small particle approximation and found the absorption cross-

section for prolate spheroid as [80] 
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This gives extinction spectrum from both transverse plasmon mode and longitudinal plasmon 

mode. This equation shows the dependency of shape on LSPR peak wavelength, by incorporating 

shape dependent dielectric function 
(1−𝑃𝑗)

𝑃𝑗
. For the shapes other than spheres and spheroids, LSPR 

spectrum is studied numerically with Finite Difference Time Domain (FDTD) calculations. For 

noble metals such as Ag and Au nanoparticles, singularity condition (𝞮1 = -2𝞮m) is met in visible 

region and near-infrared where optoelectronic devices are operated and many biological 

applications are conducted. This gives noble metals an advantage over other materials for sensing 

devices. The sharp optical response and local EM field of LSPR phenomenon are used in many 

applications like biomolecule sensing, imaging, metamaterials, and resonance energy transfer.  

The local EM filed of LSPR is directly proportional to the SERS enhancement. Thus, to 

improve the sensing performance, a SERS substrate is optimized with large density of localized 

plasmons known as plasmonic “hot spots” 81,82. Hot spots are areas in the vicinity of the plasmonic 

nanostructures where the local EM filed is enhanced enormously in comparison to its 

surroundings. Typically, hot spots are formed at the sharp tips of nanostructures where there is 

large charge density. As the distance between the metal nanostructures decreases, the EM 

enhancement at the hotspot increases exponentially82. When a Raman molecule is located in the 

hot spot, there is a tremendous enhancement in Raman signal. Typically, SERS enhancement is in 

the order of 104-108, but nano-array substrates with high density hot spots have enhancement 

ranging from 108-1012 84,85.  

Surface plasmon polariton (SPP) 

Surface plasmon polaritons (SPPs) are surface EM waves that propagates along the metal-

dielectric interface. These waves are generally visible or infrared waves whose EM field decay 

with distance dissipating energy into both medium104. Unlike LSPR, SPP cannot be excited directly 

by incident light due to high momentum requirement. The classic example of SPP is the 

Kretschmann configuration where a gold film is coupled to a prism and demonstrates optical 
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excitation of SPP on metal surface105,106. The prism with large refractive index enables an 

evanescent field through attenuated total reflection that excites plasmons. The prism makes the 

horizontal wave vector components of the incident light couple to the propagating SPP wave 

vector, as long as the two wave vectors match at a certain incident angle (Figure 3D). 

 

Figure 2. 2: (A) SPP propagating wave (B) Wave momentum match condition (C) Penetration 

depth of SPP into metal and dielectric medium (D) Resonance frequency match with angle , 78, 107  

 

From Maxwell equations, the SPP dispersion relation can be expressed as [108, 109] 

 

        Kspp = k√
𝜀𝑑𝜀𝑚

𝜀𝑑+𝜀𝑚
                                                                                    (4)                                                       

 

The nonlinear characteristic nature of SPP results in a momentum mismatch between light and 

SPP. This mismatch can be overcome by coupling light and SPP modes at the condition  

                                                          𝜀𝑑 + 𝜀𝑚 = 0                                                                                       (5) 
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At this condition, the real part of the dielectric constant is negative and denominator in the above 

equation is zero resulting to a resonance condition with resonance frequency 
𝜔𝑝

√1+𝜀𝑑
, where 𝜔𝑝 is 

the bulk plasma frequency. This resonance generates a surface plasmon propagating wave along 

the metal-dielectric interface and decays exponentially with distance. The penetration depth of EM 

field in dielectric is longer than the depth in metal and this difference is more prominent at longer 

wavelengths 110. 

The distinct behavior of SPPs, which allows control of light in nanometer scale, opened a 

potentially interesting applications in photonics111,112, SERS113-115, spectroscopy116, data storage117 

and in sensors118-119. Extraordinary optical transmission (EOT) is a phenomenon in which at a 

particular wavelength range transmission of light is greatly enhanced in a subwavelength aperture 

due to the excitation of SPP in an opaque metallic film in the presence of nanohole array111 

 

Fano resonance  

Fano resonance is the interaction between a narrow discreet state and a broad continuum, 

producing an asymmetric spectral shape with resonant suppression and enhancement in a narrow 

window of spectrum131. The resonance enhancement is the consequence of two modes that 

interfere constructively, while resonance suppression is due to destructive interference of such 

modes. The fundamental spectral result of a resonance from one or more independent resonances 

is given by Lorentzian formula, which describes superposition of individual resonances. Because 

Ugo Fano has discovered a new type of resonance unlike Lorentzian resonance with an asymmetric 

shape in his study of autoionizing states of atoms, this type of resonance is called Fano resonance. 

The absorption spectrum shape of Fano resonance is given by 132 

                                                             𝜎(𝐸) ⍺ 
(𝑞+ 𝜉)2

(1+𝜉2)
                                                                      (6) 

 

Where E is the energy, 𝑞 is the shape parameter that determines the asymmetry of the profile,     

and 𝜉 𝑖𝑠 
2(𝐸−𝐸0)

𝑓
 

  where E0 and f are energy and resonance width respectively.  

A Fano resonance can be derived from Mie theory for a single spherical plasmonic particle. 

The magnetic and electric amplitudes depend on size parameter. Considering small size q<<1 and 

non-magnetic particle (μ=1), Rayleigh scattering yields 133. 
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8

3

|𝜀−1|2

|𝜀+2|
𝑞4                                                                 (7) 

 

With increase in size (q>1), number of eigen modes increases creating extra resonances. When 

ε>1, all the resonances are broad and there is no possibility of Fano resonance. When ε<0 the 

resonance is broad at the same time for ε<0 and q>1 the resonance is weakly damped for 

dissipative materials (noble metals) and have a narrow resonance. These two resonances coexist 

over a window of ‘ε’ forming Fano resonance. 

 

Figure 2. 3: Illustration of Fano resonance134 

The Fano resonance phenomenon exists in plasmonic nanostructures136-138, where the plasmon 

resonance usually a continuum and couples with a discrete state to form a Fano resonant mode 

(Figure 5C). 

Plasmonic whispering-gallery modes (WGM) 

Whispering gallery mode resonances occur when an electromagnetic field becomes trapped 

at the surface of a nanostructure due to total internal reflection. They are gallery modes specific to 

a cavity and highly dependent on the geometry of the cavity153. WGM resonators have a high 

quality factor (Q), making them a potential candidate for biosensors. When the length of optical 

path matches the integer number of wavelength, a standing wave is formed inside the cavity. At 

this resonance condition, the mode is confined in the dielectric medium, and a small portion 

extends outside, which is very sensitive to the surrounding environment. The change in the 

resonant frequency with molecule is very sensitive and used as WGM sensors. The performance 

of a WGM resonator is measured by a quality factor (Q), defined as 
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                                                               Q =  
𝜔0

Δ𝜔𝐹𝑊𝐻𝑀
                                                                                 (8)                                                

where  𝜔0 is the angular resonance frequency and Δ𝜔𝐹𝑊𝐻𝑀 is linewidth of the frequency.  

 

Surface lattice resonance (SLR) 

Surface lattice resonance arises from optical coupling of LSPR modes in arrays of metallic 

nanoparticles (Figure 9)169-170. Compared to LSPR, SLR has much narrower optical spectrum 

features, making this mode desirable for light absorption applications and sensing171. Like LSPR, 

the SLR modes can be tuned along the UV-Vis and NIR spectrum by variation in morphology, 

particle size, material, refractive environment and periodicity 169-171. 

 

Figure 2. 4 (A) Surfac Lattice resonance illustration (B & C) Comparision of LSPR and SLR 

transmission spectra 169,184 

 

The coupled dipole approximation (CDA) is instrumental in understanding the difference in 

extinction cross section between LSPR and SLR. In this approximation for SLR, the dipole sum 

provides an additional degree of freedom (dependent on periodicity, particle size, etc.) to govern 
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the width of SLRs mode169. The effective polarizability (𝛼𝑒𝑓𝑓) and the extinction cross section 

(𝐶𝑒𝑥𝑡) are given by 

                                              𝛼𝑒𝑓𝑓 =  
1

1

𝛼𝑠
−𝑆

                                                                                           (9) 

                                              𝐶𝑒𝑥𝑡 = 4𝜋𝑁𝑘𝐼𝑚(𝛼𝑒𝑓𝑓)                                                                        (10) 

 

Where 𝛼𝑠 is the isolated nanoparticles polarizability, S is the retarted dipole summation from other 

particles, N is the number of particles, and k is the wavenumber of incident light. 

Nano-arrays are designed with assistance from CDA to support SLR. The primary control 

parameters to realize SLR are particle size and lattice constant as they control the coherent 

interaction of the plasmons169-172. An increasing lattice constant results in a more negative dipole 

sum, which redshifts the resonant frequency and decreases Full width at half maximum (FWHM) 

while decreasing diameter will blue shift in resonant frequency. SLR supports both orthogonal and 

parallel EM coupling, which is dependent on relationship between incident light propagation and 

diffraction wave propagation. Orthogonal or parallel coupling occurs when the light polarization 

is either vertical or parallel to the diffraction wave. These characteristics allow for SLR modes to 

be easily tuned to desired wavelengths along the EM spectrum. 

Gap plasmon 

Surface plasmons that exist between two metal structures and confine high electromagnetic 

energy in such small gap is generally called as gap plasmons (Figure 11). When the metal 

structures are in close proximity, the near-field coupling dominates confining the EM field in the 

nanogap. When the gap increases, the coupling weakens and properties of individual metal 

structure are displayed. Recently, planar arrays of nanostructures coupled with film separated by 

a spacer layer185-187 have increasing attention because of its controlled EM over large tunable 

wavelength range. The high enhancement of plasmon intensity at the gap is a subject of interest 

because of its applications in metamaterials, energy transfer, sensors and solar energy harvesting. 
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Figure 2. 5: (A) Gap plasmon standing wave illustration (B) Gap plasmon resonance tuning with 

spacer layer thickness 

 

There are two prominent multilayer configurations where gap plasmon can be realized. One 

is MIM and the other is insulator-metal-insulator (IMI). Both structures confine the gap plasmon, 

but MIM configuration is superior in terms of mode volume, strong confinement and quality 

factor188-189. In a simple MIM structure, the metal on the illumination side should be thin enough 

to allow the incident light to enter through the system. Once the light pass through the metal strip, 

light gets trapped in the dielectric layer, forming a standing wave called as gap plasmon shown in 

(Figure 11A). This shows a strong absorption peak in the spectrum. This can be explained by 

Fabry-Perot (FP) formula193 

                                                     𝑤 
2𝜋

𝜆
𝑛𝑒𝑓𝑓 = 𝑝𝜋 + 𝜙                                                                            (11)                                                                                               

Where w is the strip width, p is an integer, λ is the wavelength, 𝑛𝑒𝑓𝑓 is the effective refractive 

index where gap mode is formed, 𝜙 is an additional phase shift due to reflection. By tuning the 

spacer layer thickness, and refractive index absorption peak is tuned over a large wavelength range 

(Figure 11B). Gap mode is very sensitive to the spacer layer thickness. When the space layer is 

very thin (typically < 8 nm), the gap plasmon is very intense due to the strong light confinement. 

The EM field strength of the gap plasmon decreases with an increase in the thickness of the space 

layer. So there is a range of thickness a MIM can support a gap plasmon mode. 
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2.5 SURFACE ENHANCED SPECTROSCOPY  

Surface-enhanced Raman spectroscopy (SERS) was discovered in 1974 by Fleischmann, Hendra, 

and McQuillan25. They discovered that the Raman spectrum of pyridine on a silver electrode 

showed strong Raman intensity. The strength of the induced dipole moment for a Raman active 

molecule is given by µ=αE, where α is the molecular polarizabity and E is the electric field 

strength. So, the dipole moment can be increased with electric field strength, in turn shows high 

response in Raman spectroscopy which is enhanced by surface of metal nano particles. 

Electromagnetic enhancement is the dominant effect and occurs due to the enhancement of the 

electromagnetic field near the molecule of interest. This electromagnetic enhancement is caused 

by the interaction between the electromagnetic field and a nearby metallic substrate. The second 

form of enhancement is referred to as chemical enhancement and is a result of a change in 

polarizability induced by charge transfer and bond formation between the metallic substrate and 

the molecule of interest26 

2.5.1 SURFACE ENHANCED RAMAN SCATTERING 

Raman scattering is a type of secondary radiation that occurs when light interacts with and is 

scattered by molecules. This light scattering phenomenon was first discovered in 1928 by 

Chandrasekhara Venkata Raman27. Raman’s observations were influenced by the early work of 

Lord Rayleigh, who had reported on elastic light scattering in the atmosphere in 1871 28. It is a 

technique used to detect vibrational and rotational properties of a system. Each molecule has a 

fingerprint by which it can be detected using Raman spectroscopy. The inelastic scattering of light 

from molecule results in a change in energy of incident light. Scattered photons can be either of 

lower energy (stokes) or higher energy (anti-stokes), which gives information about vibrational 

modes in the system29. Rayleigh (or elastic) scattering is the dominant light scattering effect and 

results when light is scattered off molecules with no energy shift. Raman (or Inelastic) light 

scattering is a comparatively weak scattering phenomenon that occurs because of molecular 

vibrations. In Raman scattering, photo energy is transferred as it interacts with the molecules, 

causing a shift in the wavelength of the scattered light. 
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Figure 2. 6: Energy level diagram of Raman spectra 29 

 

2.6 PLASMON ENHANCED FLUORESCENCE 

 

Plasmon Enhanced Fluorescence (PEF) is similar to Surface Enhanced Raman Scattering (SERS) 

and had tremendous growth in recent years. Due to unique properties, PEF is the most spread 

optical method. In PEF, the fluorophore is allowed to couple with EM field of surface plasmon to 

enhance emitted fluorescence light intensity.  
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Figure 2. 7: Jablanski diagram for fluorescence 30 

 

Fluorescence is luminescence occurred when monochromatic or white light is illuminated on a 

fluorophore.  A fluorophore absorbs light at lower wavelengths and emits light at higher 

wavelengths, these two are called excitation wavelength and emission wavelengths respectively. 

The high energy light excites the system promoting electrons within the molecule to unstable 

state and eventually return to stable state emitting light in the form of fluorescence. The optical 

excitation cross section of nanostructures is many order of magnitude higher than molecular 

fluorophores. Also, the LSPR of nanostructure enables enhanced optical processes. So, when the 

coupling between the emission wavelength of fluorophore with plasmon resonance of metal 

nanostructure, there is an enhanced florescence.  

There are advantages for PEF over SERS which makes PEF more sensitive and unique. 

The cross section of fluorescence is much larger than Raman Scattering. The cross section for 

fluorescence is 9 to 13 orders of magnitude higher than Raman scattering. So, the fluorescence 

sensitivity in detection is high compared to Raman. Fluorescence has a two-step process where 

fluorophore absorbs light at shorted wavelengths and emits light at longer wavelengths which 
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makes PEF advantageous in detection. Florescence emission is either an enhancement or 

quenching effect, this depends on probability for the excited carriers to radiatively decay which 

in turn depends on number of available local density of optical states, which is nothing but 

Purcell factor. If the non-radiavtive decay is more then we call it as quenching. So it is always 

challenging to engineer PEF using nanostructure coupling. 

 

2.7 LIGHT MANAGEMENT APPLICATIOS USING NANOSTRUCTURES 

 

Light management is so important in improving the performance of optoelectronic devices like 

solar cells, photodetectors and LEDs. Using high efficient optoelectronic devices not only improve 

energy conversion but also produce clean energy. The efficiency of an optoelectronic device 

largely depends on the shape and size of nanostructure. Here, light can be manipulated in 

subwavelength structures either to scatter, trap or transmit through the nanostructure used in the 

application. For example, in LEDs the nanostructure design should scatter light so that photons are 

extracted from the active region efficiently. Similarly, for solar energy applications light should 

be trapped in the materials and to take longer path to improve the charge carrier generation. Thus, 

engineering nanostructures for specific application requires knowledge of how light interact with 

matter.  

The size, shape and structural configuration of nanostructure dictates the light management in a 

device. Geometry of a structure plays a crucial role; light absorption is enhanced when the size of 

structure is less than the wavelength of light whereas when size of structure is larger than the 

wavelength of light then the light scatters or reflects.  
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CHAPTER 3: FABRICATION AND OPTICAL 
PROPERTIES OF LARGE-AREA PLASMONIC GOLD 

NANO RING ARRAY PATTERN 
 

A new fabrication route, which combines the nanosphere lithography with the silicon-

based clean-room microfabrication processes, has been developed to produce the large-area long-

range ordered gold nanoring array patterns in a controllable fashion. Both the experimentation and 

the finite-difference time-domain (FDTD) simulation show that the surface plasmon resonance 

peak (SPR) of the nanoring array pattern can be tuned systematically in a large spectral range by 

varying the geometry parameters such as the ring thickness, the ring height, the ringer outer 

diameter and the gap between neighboring rings. For the Au nanoring arrays with a large gap in 

the absence of plasmon coupling between neighboring rings, the local electromagnetic (EM) field 

enhancement occurs at both the outer and inner surfaces of individual nanorings; and the 

periodicity of Au nanoring array has no effect on the plasmonic properties.  For the Au nanoring 

arrays with a small gap, plasmon coupling takes place between neighboring rings. As a result, the 

characteristic plasmonic band is split into two new peaks corresponding to a bonding SPR mode 

and an antibonding SPR mode. The local EM field enhancement becomes stronger with a decrease 

in the gap between neighboring rings, but the SPR peaks shift away. Therefore, to maximize the 

surface-enhanced Raman scattering signal, the geometry parameters of the Au nanoring array need 

to be tuned to balance the contributions from the resonance excitation (spectral overlap) and the 

local EM field enhancement. In this work, miRNA detection is demonstrated using a novel method 

of fabricating Nano ring array using Nanosphere Lithography (NSL), a long range periodic and 

economical technique of nanostructure fabrication. The nano ring array optical properties are 

investigated and FDTD simulations are performed to correlate structural changes with optical 

response and electromagnetic field. The ring structure height, radius thickness and pitch are 

optimized to analyze the SERS enhancement at 785nm excitation laser. Nano ring array is 

engineered in such a way each ring generates 6 hotspots from coupling from the surrounded ring 

structures with nano gaps less than 10nm, allowing high SERS enhancement for detection of 

miRNA in human fluids. 
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3.1 INTRODUCTION 

Surface-enhanced Raman scattering (SERS) and surface plasmon-coupled emission 

(SPCE) spectroscopy are finding increasing applications in biosensing and bioimaging.1-5 In SERS 

and SPCE, plasmonic nanostructures are employed as substrates to amplify the SERS or SPCE 

signals. Plasmonic metal nanoparticles have been used extensively in SERS and SPCE. Bare metal 

nanoparticles tend to aggregate in a solution with high ionic strength. Hence surface modification 

of metal nanoparticles is often performed to preserve the stability of colloidal nanoparticles.6 

Besides free-standing nanoparticles, two-dimensional (2D) metal nanoarray patterns have received 

increasing attention.7-10 The optical properties of 2D nanoarray patterns can be tuned 

systematically, and predicted theoretically using numeric methods such as the finite-difference 

time-domain (FDTD) and the finite element analysis (FEA), which in return helps guide the design 

of 2D nanoarrays.11-12  Long-range ordered 2D nanoarray patterns not only show good 

reproducibility but also extend the dynamic detection range of sensors due to the extension of 

enhanced electromagnetic (EM) field in space. It still remains a challenge in massive production 

of large-area long-range ordered metal nanoarray patterns at low cost.  

Among the panoply of 2D metallic nanoarrays, Au nanoring arrays display meritorious 

features.13-19 First, Au nanoring array patterns have a wide spectral range of tunable plasmon, 

which have advantages over Au nanohole and nanoparticle arrays whose optical property tunning 

is severely limited by the extent of size-dependent plasmon shift. Second, the EM field can be 

concentrated at both the inner and outer surfaces of the ring, considerably extending the spatial 

distribution of “hot spots” for surface-enhanced spectroscopies. Third, the overall size of Au 

nanoring arrays can remain largely unchanged during optical tuning by simply changing the shell 

thickness of rings. In contrast, tailoring optical properties of Au nanohole and nanoparticle arrays 

is always at the expense of significantly varying the size or periodicity, which compromises the 

overall performance. In addition, Au nanoring arrays have been theoretically predicted to have a 

high orientation-independent plasmon resonant absorption in the visible to near-infrared spectrum, 

which have strong implications for applications in plasmon-enhanced photothermal heating.20 

Thanks to these advantageous properties, colloidal Au nanorings have been chemically 

synthesized using sacrificial Co nanoparticles for SERS applications.21-22 These Au colloidal Au 

nanorings obtained have an outer diameter from 25 to 40 nm with a shell thickness of 5 nm, which 



 

42 

 

allows the LSPR to be tuned from 651 to 760 nm. Au nanoring array patterns have been fabricated 

by nanosphere lithography (NSL), electron-beam and focused-ion beam lithography, and etc..13-14, 

17-19 Electron-beam and focused-ion beam lithography can create ultra-small features in accurate 

and controllable fashion, but is expensive and impossible to produce the nano-array patterns 

massively. For example, Au nanoring arrays which were fabricated by e-beam lithography to study 

substrate effects on the behavior of plasmons only have an area of 60 µm × 60 µm.23 

 

 

Figure 3. 1: Fabrication protocol for Au nanoring arrays 

 

 In contrast, NSL is a powerful, versatile, and cost-effective fabrication method for 

fabrication of a large-area periodic nano-array patterns. NSL uses polystyrene (PS) beads as the 

template, which can be easily tailored by simply changing the PS bead size, the etching time, and 
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the metal deposition thickness. The reliability of NSL has been manifested in the development of 

Au nanohole arrays and Au nanotriangle arrays for SERS and SPCE applications.7, 24-25 Among 

those Au nanoring array patterns reported previously, the plasmonic bands of most of them are 

located in the mid-infrared and near-infrared range (typically >900 nm). This does not meet the 

requirement for SERS sensing because most of current SERS sensing signals are excited by the 

785 nm, 633 nm and 532 nm lasers. Although NSL has been demonstrated to fabricate Au nanoring 

arrays in combination with electrochemical deposition, the nanoring structure obtained is irregular, 

restricting achieving the best possible performance.26 Also, the gap of nanorings is generally too 

large to have plasmonic coupling between neighboring rings, leading to no “hot spots” between 

neighboring rings. In addition, so far a few studies have been performed to systematically 

investigate the EM enhancement distribution and the optical properties of nanoring array patterns. 

In the present work, NSL is combined with the silicon-based clean-room fabrication 

processes to fabricate the large-area long-range ordered Au nanoarray patterns at low cost.  FDTD 

simulation is employed to predict the optical properties and the EM field distribution in the Au 

nanoarray patterns with systematical variation of the geometry parameters such as the periodicity, 

the ring thickness, height, and the overall size of the rings. The systematic FDTD studies on the 

optical properties will provide guidelines for designing the optimum plasmonic Au nanoring array 

pattern for SERS sensing. The Au nanoring array patterns investigated in this work show two 

unique features for SERS. First, the wide tunable spectral range plasmon across the visible-light 

and near-infrared light regions to enable the plasmon band match the typical spectral wavelength 

of excitation laser sources. Second, the local EM field enhancement at the gap of neighboring rings 

provides a strong near-field.  

 

3.2 EXPERIMENTAL METHODS 
 

Chemicals and reagents 

Silicon wafers were purchased from University Wafers Inc. (Boston, MA). Polystyrene 

microspheres with diameters of 500 nm, 600 nm, and 1000 nm were purchased from Thermo 

Scientific (Waltham, MA). Deionized (D.I.) water was produced by Milli-Q Integral 3/5/10/15 

system (18.2 MO cm, Millipore Corp., USA). 
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Instrumentation 

Oxygen Plasma Asher (March PX-250 Plasma Asher) was used to etch the PS beads. Inductively 

Coupled Plasma (ICP Trion Technology Minilock III RIE) was used to etch silicon. E-beam 

Evaporator (Kurt J. Lesker) was used for metal deposition. A Scanning Electron Microscope 

(JEOL-JSM-7600F) was used to characterize the Au nanoring array patterns. Reflection spectra of 

Au nanoring array patterns were acquired using an Ocean Optics USB 4000 spectrometer and DT-

MINI-2-GS. 

Finite-difference time-domain (FDTD) simulation  

Optical properties of Au nanoring arrays were studied using FDTD simulations. The software 

Optiwave FDTD is commercially available from Optiwave Inc. A grid size of 1 nm was used to 

construct the simulation cells. A continuous plane wave from 400 nm to 1200 nm was used as the 

input light source. The refractive index was taken from the data of Palik.27 Periodic boundary 

conditions were imposed for all simulations to replicate periodic Au nanoring array patterns. 

3.3 RESULTS and DISCUSSIONS 

Morphology of Au nanoring array patterns 

Figure 3.2(a) shows that the fabricated Au nanoring array pattern had a typical physical 

size comparable with a coin. Figures 3.2(b) to 3.2(f) show the SEM images of the Au nanoring 

array patterns fabricated using the PS spheres with different sizes. In Figure 3.2(b), the overall ring 

size (i.e., the outer ring radius) was 920 nm, the ring thickness was 75 nm, the ring height was 120 

nm, and the periodicity (center-to-center distance) was 1000 nm. The periodicity of Au nanoring 

arrays is determined by the size of unetched PS beads used. The overall ring size and the gap size, 

which is the closest distance between two neighboring rings, can be varied by changing the 

duration of sphere etching Figure 3.1(c); and the ring height is dependent on the Si etching. The 

ring thickness, which is defined as the difference between outer and inner ring radius, can be tuned 

by controlling the oxygen plasma etching duration in Figure 3.1(e). While the hexagonally 

patterned monolayer of PS beads renders a long-range order of Au nanoring array pattern as shown 

in Figure 3.2(e) and 3.2(f). The parameters such as the size of PS beads and the etching duration 

allow a high degree of tunability of the optical properties. 
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Optical properties of Au nanoring array patterns 

The optical properties of Au nanoring arrays can be described by the plasmon hybridization 

model.283 As an Au nanoring array is considered to be created by an Au nanodisk array perforated 

with an Au nanohole array. Hence its optical properties include the contributions from both the 

elements. The elementary nanodisk and nanohole plasmons contribute to the oscillating charges at 

both the outer and inner surface of the ring. Because of a finite ring thickness, these oscillating 

charges interact with each other and produce two new plasmon resonances corresponding to a 

bonding mode at a longer wavelength and an antibonding mode at a shorter wavelength. The 

bonding localized surface plasmon resonance (LSPR) mode of an Au nanoring array is identified 

as the reflection dip at a spectral wavelength of 750 nm for the Au nanoring array with a periodicity 

of 500 nm (Figure 3(a)); and the dip red-shifted to a spectral wavelength of 880 nm when the Au 

ring periodicity increased to 600 nm. Due to the cancellation of opposite charges at outer and inner 

surface of the ring for the antibonding mode, the corresponding reflection dip has a much lower 

intensity and is thus of less significance.  

 

Figure 3.2. (a) Optical image of a large-area Au nanoring array chip compared to a coin; SEM 

image of (b) the Au nanoring pattern (periodicity:1000 nm, outer radius: 920 nm, thickness: 75 

nm and height: 120 nm); (c) Pattern (periodicity: 600 nm, outer radius: 500 nm, thickness: 50 nm 
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and height: 120 nm); (d) pattern (periodicity: 500 nm, outer radius: 440 nm, thickness: 30 nm and 

height: 120 nm); (e) and (f) the Au nanoring array patterns with large scale area. 

 

The plasmon hybridization description of the Au nanoring arrays with periodicity of 500 

nm and 600 nm predicted by FDTD simulation was consistent with the experimental data of 

reflection spectra periodicities Figure 3.3(a). The intense bonding LSPR mode was further 

confirmed by the dipolar behavior observed in the simulated local EM field distribution extracted 

at the LSPR wavelength, as shown in Figure 3.3(b). The Au nanoring array acts as a plasmonic 

lens. It concentrates the EM radiation at both outer and inner surface of the ring, considerably 

extending the spatial distribution of “hot spots” for surface-enhanced spectroscopies. In 

comparison, “hot spots” are limited to outer surface of circular nanodiscs.  

 

 

Figure 3.3. (a) Experimental (P500-exp) and FDTD-simulated (P500-fdtd) reflection spectra of 

Au nanoring arrays with periodicity of 500 nm and 600 nm, respectively; (b) EM field distribution 

with a local EM field enhancement (E/E0)
2 of ~5.0×102 at the plasmon peak wavelength for an Au 

nanoring with an outer radius of 200 nm, a ring thickness of 40 nm, a height of 100 nm and a 

periodicity of 500 nm. The white arrow indicates the polarization direction of the incident light. 
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Figure 3.4. Optimization of optical properties of Au nanoring arrays. Dependence of the plasmon 

resonance peak on (a) the ring thickness, (c) the height, and (e) the overall thickness. The yellow 

dashed arrow shows the trend of the plasmon peak position evolution. Plot of the plasmon peak 

sensitivity with respect to each tuning parameter extracted from Figure 4 (a), (b), and (c). The 

plasmon peak sensitivity is defined as the plasmon peak wavelength change for every 1 nm 
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variation of each tuning parameter. The refractive index used for the Si substrate in FDTD 

simulations is 3.42. 

Optimization of Au nanoring array patterns 

To achieve an optimal performance in surface-enhanced spectroscopies, the plasmonic 

band of the nanostructure needs to be overlapped with the spectral wavelength of the excitation 

laser source, and the local EM field enhancement needs to be maximized. The spectral overlap 

between the excitation light source and the SPR band ensures a resonance excitation; and the local 

EM field enhancement helps modulate various near-field optical processes.29-31 As identified 

above, the manifold parameters such as the ring thickness, height and overall ring size are found 

to affect the optical properties of the Au nanoring array patterns. Therefore, they all need to be 

studied and optimized.  

In case of the Au nanoring arrays with a large gap where plasmonic coupling among 

neighboring rings can be ignored, the behavior of individual nanorings just needs to be considered 

and the periodicity of nanoring had no effect, as shown in Figure 3.4(a), 3.4(c) and 3.4(e).  For any 

individual nanoring, among the parameters of the ring thickness, height and overall ring size, one 

was varied with all the other parameters fixed to study the plasmonic properties using FDTD 

simulation. For example, Figure 3.4(a) shows the effect of the ring thickness on the spectral 

wavelength (position) of plasmon peak in the meanwhile keeping the ring height, the overall ring 

size and the periodicity constant. A decrease in the ring thickness was found to red-shift the 

plasmon peak because of an increasingly stronger plasmonic coupling between charges at the outer 

and inner surfaces of the ring. A similar red-shift behavior of the plasmon peak was found for an 

increasing the ring height and the overall ring size, which was characteristic of the dipolar plasmon 

resonance of nanoparticles. It was found that the plasmon peak can be tuned 100~200 nm by 

merely varying one of the three tuning parameters above. The wide spectral tunability of Au 

nanoring arrays allows the resonance excitation of SPR by overlapping the SPR band with the 

wavelength of the excitation laser source. 

Dependence of the plasmon peak sensitivity on the tuning parameters was also studied to 

reveal the parameter regions where the optical properties are most sensitively affected. The 

plasmon peak sensitivity is defined as the plasmon peak shift for every 1 nm change of each tuning 
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parameter. The plasmon peak was found to be more sensitive at a smaller ring thickness, as shown 

in Figure 3.4(b). At a small ring thickness, the plasmonic coupling between charges at the outer 

and inner surfaces of the ring became weaker as an increase in the ring thickness. At a large ring 

thickness, there was no plasmonic coupling between charges at the outer and inner surfaces of the 

ring, which explained why varying the ring thickness barely shifted the plasmon at larger ring 

thicknesses. The plasmon peak was found to be largely equally sensitive to the ring height and 

overall ring size in a wide parameter region since the spectral dependence of the plasmon peak on 

both tuning parameters scale linearly, as shown in Figure 3.4(d) and 3.4(f). 

For the Au nanoring arrays where plasmonic coupling among neighboring rings is strong, 

the plasmonic properties were studied in a pair of rings by varying the gap, as shown in Figure 3.5. 

The plasmonic coupling between two approaching rings was found to become increasingly 

intensified, as manifested by the split of the plasmon peak into two new peaks corresponding to a 

bonding SPR mode and an antibonding SPR mode as shown in Figure 3.5(a), which was also 

experimentally observed in Figure 3.5(b). When the gap of the Au nanoring array with a period of 

500 nm changed from 100 nm to 2 nm, the plasmon peak at 750 nm was split to two peaks (i.e., 

the antibonding SPR peak at 700 nm and the bonding SPR peak at 920 nm), as shown in Figure 

3.5(a). For the Au nanoring array with a periodicity of 600 nm, reducing the gap from 90 nm to 12 

nm made the 850 nm peak split to the antibonding SPR peak at 790 nm and the bonding SPR peak 

at 900 nm Figure 3.5(b).  
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Figure 3.5. Plasmonic coupling between a pair of rings. (a) Simulated reflection spectra for the 

Au nanoring array with a periodicity of 500 nm; (b) experimental reflection spectra for the Au 

nanoring array with a periodicity of 600 nm. The olive dashed arrow shows the splitting of the 

plasmon peak into a bonding resonance mode (longer wavelength) and an anti-bonding resonance 

mode (shorter wavelength); (c) Gap-dependent EM field enhancement of a pair of Au rings; (d) 

the EM field distribution of a pair of rings with a gap of 2 nm. The magnitude of the EM field 

enhancement in (d) is presented as log10(E/E0)
2. 

In case of the Au nanoring arrays with a large gap where plasmonic coupling among 

neighboring rings can be ignored, the local EM field enhancement (E/E0)
2 for an individual 

nanoring was only ~5.0×102, as shown in Figure 3.3(b). In case of the Au nanoring arrays with a 

small gap where plasmonic coupling among neighboring rings occurred, the simulated local EM 

field enhancement (E/E0)
2 increased significantly with a decrease in the gap, reaching 4.3×104 at 

a gap of 2 nm as shown in Figure 3.5(c). The corresponding local EM field distribution transited 
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from being localized at the outer surface of the ring to the increasingly delocalized at the gap 

between neighboring rings, as shown in Figure 3.5(d). The local EM field enhancement can 

significantly mediate the performance of Au nanoring arrays in surface-enhanced spectroscopies 

through near-field interaction. However, maximizing the local EM field enhancement by coupling 

neighboring rings shifts the plasmon peak and thus could result in the breakdown of the resonance 

excitation. 

Detection of miRNA  

The Au nanostar@MBA@SiO2 core shell structures are used to further improve the SERS 

enhancement from coupling from the tips of nano star with the gold nano ring array. To detect 

target miRNA, the Au nanostar@MBA@SiO2 nanoparticles and the Au nanoring chips were 

modified with detection probe and capture probe respectively. When the miRNAs were absent in 

the aqueous solution, the two ssDNAs cannot hybridize with miRNA. Thus SERS probe with 

Raman reporter can be easily washed away from the substrate resulting in no signal. When there 

were miRNAs, two ssDNAs partially hybridize with miRNA resulting in a sandwich structure 

when the SERS probe is in close proximity to the substrate. This results in the Raman signal of 

MBA molecule confirming the miRNA presence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

LOD: 1 nMLinear range:  5 nM-50 nM 

Figure 3. 6: (a) Raman spectrum of Au nanostar@MBA@SiO2 (b) Raman Intensity vs miRNA 

concentration to find limit of detection 
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During the detection, firstly, 10 uL of detection probe functionalized Au nanostar@MBA@SiO2 

nanoparticle solution was dropped on the capture probe labeled Au nanoring chip. Then 10 uL of 

the sample solution containing a certain amount of miRNA was also dropped on the chips. After 

20 min incubation, the Au nanoring chip was rinsed with a buffer solution, and then dried with a 

nitrogen flow. Subsequently, the Raman spectrum was acquired. 

 

Guideline for fabrication of optimized Au nanoring array patterns 

The analysis above reveals two approaches to optimize Au nanoring arrays for surface-

enhanced spectroscopy. First, the wide spectral tuning range allows the resonant excitation of SPR 

by overlapping the excitation wavelength with the SPR band. This is made possible by varying 

either the ring thickness, height, or the overall ring size. The three tuning curves obtained 

represented as yellow dashed arrows in Figure 3.4 provide a general guideline in choosing the 

optimal parameters for Au nanoring array fabrication. Second, the strong local EM field 

enhancement can be achieved on the closely packed Au nanoring arrays due to plasmonic coupling. 

It is noted that maximizing local EM field enhancement could break down the resonance excitation 

since the plasmonic coupling could shift the plasmon resonance peak, making no spectral overlap. 

Therefore, to achieve an overall optimized performance, a compromise could be made to balance 

the resonance excitation and the local EM field enhancement, depending on the weight of each 

contribution to surface-enhanced spectroscopy. 

3.4 CONCLUSIONS 

In summary, the large-area long-range ordered Au nanoring array patterns were fabricated 

using the modified NSL technique. The plasmon resonance peak position can be tuned in large 

spectral range by the manifold parameters such as the ring thickness, the ring height, and the 

overall ring size. For example, the plasmon resonance peak position can be controlled to be 

spectrally overlapped with the wavelength (785 nm) of the excitation laser, which is widely used 

in SERS sensors. The local EM field enhancement can be achieved nearby the outer and inner 

surface of individual nanorings and became stronger with a decrease in the gap between 

neighboring nanorings by forming the “hot spots”. For maximizing the enhancement effect in 

SERS or SPCE, the contributions from the resonance excitation (spectral overlap) and the local 
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EM field enhancement need to be balanced. The knowledge obtained can guide the design of 

optical and optoelectronic devices in various surface-enhanced spectroscopy. By carefully 

balancing contributions from excitation and local EM field enhancement, an overall optimized 

performance can be achieved. 1 nM of mi-RNA is detected using gold nano ring array in coupled 

ring array pattern. The knowledge obtained in this research can guide the design of optical and 

optoelectronic devices in various surface-enhanced spectroscopies. 
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CHAPTER 4: LIGHT MANAGEMENT AND 

PLEXITON CREATION BY PLASMONIC GAP MODE 
 

Light management is given utmost importance to improve performance of optoelectronic 

devices. The structure design has a large impact on the efficiency of the device. This chapter 

presents a facile microfabrication-compatible approach to fabricate the large area of plasmonic 

nano-pyramid array-based antennas and demonstrates effective light management by tailoring the 

architecture. Firstly, a long-range ordered gold nano-pyramid array is fabricated, which exhibits 

strong light scattering. The maximum electric field enhancement (E/E0) of 271 is achieved at 

the corner but decays rapidly away from the pyramid bottom. After the gold nanopyramid array is 

coupled to a gold film, strong light scattering is converted into strong light absorption due to the 

excitation of a spectrally tunable plasmonic gap mode, where an intense electric field enhancement 

of 233 and a strong magnetic field enhancement (H/H0|) of 25 are simultaneously excited for a 

10 nm silica gap. The electric field decays much slower away from the pyramid bottom while the 

magnetic field keeps almost constant. The nanostructure is predicted to find extensive applications 

in optoelectronic devices. For example, if quantum emitters such as J-aggregates are embedded in 

the gap, strong coupling between J-aggregates and the plasmonic gap mode could take place, 

which was confirmed experimentally and by finite-difference time-domain simulations. This can 

overcome the problems of high energy loss and weak nonlinearity, which are typically associated 

with surface plasmon polariton (SPP) supported on plasmonic metallic nanostructures.  
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4.1 INTRODUCTION 

While fundamental to photosynthesis, photoenergy conversion, optical biosensing, super-

resolution microscopy, et al,1-4 light-matter interactions are difficult to realize because of the 

fundamental mismatch between the diffraction-limited spatial confinement of visible light and the 

size of quantum emitters (QEs).5 The diffraction limit, however, can be broken by surface plasmon 

polaritons (SPPs), which are light-coupled propagating EM waves of coherent electron oscillations 

on metallic surfaces.6 SPPs comes with two prominent features.7-8 First, it belongs to bosons. 

Therefore, it has a strong transportability of the EM energy. Second, it has the most harmonic 

behavior known in nature. Unfortunately, the plasmonic cavity which supports SPPs falls short of 

essential functionalities in modern optoelectronic devices owing to a very weak nonlinear response 

and a high metal loss.9-10 Coincidently, QEs are highly nonlinear in nature despite a low 

transportability.11 They are extensively exploited to realize optical gain in lasers and other 

optoelectronic devices.12-16 The integrated SPPs-QEs system can thus well balance and 

compensate the nonlinearity and transportability of the two counterparts except that a strong 

damping from the metal loss persists. 

One promising approach to overcome the metal loss is to make conditions for the interaction of 

the SPPs-QEs system to take place in the strong-coupling regime.17-25 The coupling strength 𝑔 is 

characterized by Rabi frequency Ω𝑅 (Ω𝑅 = 2𝑔), which quantifies the rate of energy exchange 

between the plasmonic cavity and QEs.26 In the strong-coupling regime, the coupling strength is 

so strong that it overwhelms the damping rate 𝜅 of the plasmonic cavity and the spontaneous decay 

rate 𝜏0 of QEs, i.e. 𝑔 > 𝜅, 𝜏0. The extraordinary coupling strength facilitates an extremely rapid, 

coherent, and reversible energy exchange between the plasmonic cavity and QEs, leading to two 

newly formed hybridized states called upper polariton and lower polariton which are half-light, 

half-matter, and are split by Rabi frequency.5, 10, 26 Given the dependence of the hybridized states 

on the coupling strength, the strongly-coupled SPPs-QEs system has strong implications in state-

of-the-art optoelectronic devices such as ultrafast switching, all-optical control, et al.27-29 In 

comparison, in the weak-coupling regime where the damping rate of the plasmonic cavity 

outcompetes the spontaneous decay rate of QEs and the coupling strength, i.e. 𝜅 > 𝜏0, 𝑔, the 

interaction is incoherent and irreversible.5, 10, 26 The energy extracted from QEs is unidirectionally 
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transferred to the cavity with the spontaneous decay rate enhanced by the cavity-dependent Purcell 

factor. 

Realizing strong coupling demands an intense interaction between the transition dipole 𝜇 of QEs 

and the plasmonic cavity: 𝑔 ∝ 𝜇√𝑁/𝑉, where 𝑉 is the effective mode volume of the plasmonic 

cavity in which the EM energy is confined and 𝑁 is the number of QEs in 𝑉.5, 10, 26 The diffraction-

unlimited nature of SPPs allows light to be confined in a significantly smaller plasmonic cavity 

than the photonic counterpart until the emergence of charge transfer plasmons due to quantum 

tunneling or nonlocal effects at a gap below 1 nm.30-33 Such extraordinarily small plasmonic 

cavities have been demonstrated on nanoparticle-on-mirror geometry, bowtie antennas, patch 

antenna, et al.17, 34-35 Minimizing the effective mode volume, however, is also at the expense of 

reducing the number of QEs participating light-matter interactions, which compromises the 

coupling strength. Moreover, it is also a technique challenge to fabricate ultra-small plasmonic 

cavity. Therefore, from a practical point of view, modern optoelectronic devices working in the 

strong-coupling regime require a precise fabrication for better performance. 

In this work, the nanostructure of film-coupled gold nanopyramid array is proposed, in which 

the hexagonally-patterned gold nanopyramid arrays sit on an underlying gold film separated by a 

thickness-tunable spacer layer. There are many advantages with this nanostructure. First, it 

supports plasmonic gap modes, which are tunable both spectrally and in terms of the effective 

mode volume. Second, QEs at the spacer layer exactly fall into the effective mode volume, which 

can ensure the largest possibly achievable coupling strength. Third, it can be fabricated on a large 

scale by the well-established and cost-effective technique of nanosphere lithography in the 

cleanroom.36 The spacer layer can be easily replaced with any other QEs of interest to realize 

different functionalities. Fourth, the long-range order of the structure ensures the robustness and 

reproducibility of fabrication. In addition, the two-dimensional nanostructure makes it practically 

easy to be integrated into optoelectronic devices. Therefore, in what follows, a combination of 

cleanroom fabrications and numeric simulations based on finite-difference time-domain (FDTD) 

method is implemented to study the optical properties of the film-coupled gold nanopyramid array. 

The capability of the nanostructure to manipulate light-matter interactions is also studied 

numerically by looking at the coupling between the plasmonic gap mode and QEs.  
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Fabrication of Gold Pyramid Array On Gold Film 

Figure 4.1 shows the procedure for fabrication of the Au nanopyramid array pattern directly on a 

glass substrate, and the Au nanopyramid array-silica-Au film structure, respectively. The Au 

nanopyramids were 179 nm in base edge length and 200 nm high. The silica space layer was 

controlled to be from 35 nm to 130 nm. The overall lateral size of as-fabricated chips was typically 

comparable to that of a coin, as shown in the inset of Figure 4.2(a). This confirmed the strong 

capability of nanosphere lithography for long-range ordered nano-array nanofabrication. In 

contrast, it would take several days for e-beam lithography to produce such a large area of 

nanostructured patterns. 

The proposed nanostructure of film-coupled Au nanopyramid array was fabricated by 

nanosphere lithography, as shown in Figure 4.1. Specifically, a thin layer with varying thicknesses 

of silica was first coated on a commercially available Au-coated glass slide by spin coating a layer 

of silica precursor (XR-1541) at varying speeds and then conducting heat treatment at 400 °C for 

1 hour. Subsequently, a monolayer of polystyrene beads with a diameter of 600 nm was patterned 

on the silica surface by dip-coating. After natural drying in air, a layer of 5 nm Ti film was 

deposited, which was followed by depositing a layer of 200 nm Au film. After polystyrene beads 

were removed by ultrasonication, the film-coupled Au nanopyramid array was obtained. The entire 

fabrication process, which could be scaled up for mass production, was done in just one day in the 

cleanroom. Following a similar procedure, Au nanopyramid array was fabricated. 
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Figure 4. 1:Protocol of nanosphere lithography fabrication for film-coupled gold nanopyramid 

array. Polystyrene beads with a diameter of 600 nm were used. 200 nm of gold was deposited 

 

4.2 METHODS 

Chemicals and materials. Gold-coated glass slides were purchased from Fisher Scientific Inc. 

Polystyrene microspheres with a diameter of 600 nm were purchased from Thermo Scientific 

(Waltham, MA). XR1541 e-beam resist was purchased from Dow corning. Acetone, methanol, 

and sulphuric acid (H2SO4) and hydrogen peroxide were purchased from Alfa Aesar (Haverhill, 

MA). Deionized (D.I.) water was produced by the Milli-Q Integral 3/5/10/15 system (18.2 MΩ 

cm, Millipore Corp., U.S.A.). 

Nanosphere lithography fabrication: Figure 4.1 reveals the procedure for fabrication of the Au 

nanopyramid array-silica-Au film structure. Specifically, a thin layer with varying thicknesses of 
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silica was first coated on a commercially available Au-coated glass slide by spin coating a layer of 

silica precursor (XR-1541) at varying speeds and then conducting heat treatment at 400 °C for 1 

hour. Subsequently, a monolayer of polystyrene beads with a diameter of 600 nm was patterned 

on the silica surface by dip-coating. After natural drying in air, a layer of 5 nm Ti film was 

deposited, followed by depositing a 200 nm thick Au film. After polystyrene beads were removed 

by ultrasonication, the film-coupled Au nanopyramid array was obtained. The entire fabrication 

process, which could be scaled up for mass production, was done in just one day in the cleanroom.  

Fabrication of Au film-J-aggregates-Au nanopyramid structure. 5mg/ml of J-aggregates in 

water were mixed with 25mg/ml of Poly Vinyl Alcohol (PVA) in water and let it stir for 3 hours. 

The mixture was spin coated on cleaned 1cm x 1cm gold coated glass chips at 4000 rpm for 60 s 

to form a J-aggregate polymer thin film. A 5 nm thin silica layer was deposited on the top of J-

aggregate polymer thin film for two reasons. Silica layer acts as a protective layer to prevent J-

aggregates from damaging while depositing gold pyramids and it also helps in enabling a 

hydrophilic surface for dip coating where J-aggregate polymer thin film is hydrophobic in nature. 

Later 500nm Polystyrene beads monolayer was dip coated on the surface of silica. After drying in 

air, 5 nm Ti and 200nm Au films were deposited successively on the monolayer. Finally, the chips 

were ultra-sonicated in methanol to remove polystyrene beads and leaving Au nanopyramid array 

on the top layer.     

Instrumentation. E-beam evaporator (Kurt J. Lesker) was used to deposit gold. Spin coater 

(Laurel Technologies 600 spinner) was used to coat the silica precursor to make the silica films 

with different thickness. A Scanning Electron Microscope (JEOL-JSM-7600F) was used to 

characterize fabricated film-coupled gold nanopyramid array. Reflection spectra were acquired by 

an Ocean Optics USB 4000 spectrometer and DT-MINI-2-GS.  

Finite-difference time-domain (FDTD) simulations. FDTD simulations were implemented 

throughout the paper to study the film-coupled gold nanopyramid array using commercially 

available software Lumerical FDTD Solutions. A mesh size of 2 nm was imposed in the simulation 

region. The permittivity of gold was from Johnson & Christy.55 The refractive index of silica was 

set as 1.52. A continuous plane wave from 600nm to 1000nm was used as the input light source. 

Back reflection spectra, electromagnetic field enhancement, and surface polarization charges were 
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calculated. Perfectly Matched Layer (PML) boundary conditions were imposed on all these 

simulations.  

 

4.3 RESULTS and DISCUSSIONS 

 

 

Figure 4. 2: (a) SEM image of fabricated film-coupled Au nanopyramid array (b) Experimental 

and FDTD-simulated reflection spectra for Au nanopyramid array (c) Experimental and (d) 

FDTD-simulated reflection spectra with various silica thicknesses 

The fabricated Au nanopyramid array on the glass substrate displayed an intense reflection peak 

centered at 865 nm corresponding to the plasmonic corner mode, the orange solid curve as shown 

in Figure 4.2(b), which was consistent with the reflection peak at 850 nm calculated by FDTD, as 

shown with the olive dashed curve. The minor reflection peak at around 750 nm in the calculated 
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reflection spectrum was ascribed to the edge mode, which was not clearly seen in the experimental 

data due to the rounded edge. The reflection peak contributed to strong light scattering of 

individual nanopyramids under excitation of the localized surface-plasmon resonance (LSPR) 

mode at the corner while light absorption by individual nanopyramids were small. It was not 

surprising because the size/volume of nanopyramids were quite large. For LSPR-associated total 

extinction spectra of nanoparticles, both light absorption and scattering contribute to the total 

extinction.6 When the particle size is relatively small (typically less than 15 nm), light absorption 

is dominant. When the particle size increases, light scattering becomes dominate. In addition, the 

major reflection peak corresponding to the plasmonic corner mode red shifts with a decrease in the 

pyramid height. The FDTD simulation results show that the localized electric field enhancement 

took place primarily on the four corners, where surface polarization charges accumulate at the 

corners. As a result, the plasmonic corner mode exhibits intense electric field enhancement. The 

calculated maximum electric field enhancement (E/E0) at the corners was estimated to be 271. 

Transition from strong reflection to strong absorption 

Although the top-view SEM images looked the same for Au nanopyramid arrays with and without 

an underlying Au film, their optical properties differed significantly, as shown in Figure 4.2 (b), 

(c), and (d). For an ordinary Au nanopyramid array on glass, it displayed an intense reflection peak 

corresponding to the plasmonic corner mode, which was consistent with FDTD-simulated 

reflection spectrum, as shown in Figure 4.2(b). However, the intense reflection peak disappeared 

when the Au nanopyramid array was coupled with an underlying Au film separated by a silica 

spacer layer. Instead, the film-coupled Au nanopyramid array displayed a strong absorption, which 

was featured as an intense reflection dip, as shown in Figure 4.2(c). By reducing the thickness of 

the silica spacer layer, the reflection dip underwent a red shift. This was also confirmed by FDTD-

simulations, as shown in Figure 4.2(d). 

 



 

65 

 

 

Figure 4. 3: FDTD-simulated surface polarization charge distributions at the reflection dip 

wavelengths of 1135 nm and 790 nm for a silica thickness of 10 nm. 

Plasmonic gap mode of film-coupled gold nanopyramid array 

The observed intense reflection dip was ascribed to the formation of plasmonic gap modes 

at the spacer layer between the Au nanopyramid array and the underlying Au film. This was 

confirmed by calculations of surface polarization charge distributions in Figure 4.3 for a film-

coupled Au nanopyramid array with a spacer layer of 10 nm silica, which exhibited two reflection 

dips in 1135 nm and 790 nm, as shown in the dash dotted curve in Figure 4.2(d). The primary 

plasmonic gap mode at 1135 nm was featured as a stronger reflection dip than the other, since the 

positive and negative surface polarization charges were well separated from each other, as shown 

in the middle column of Figure 4.3. The higher-order plasmonic gap mode at 790 nm displayed a 

less intense reflection dip because its net dipole momentum was partially cancelled, as shown in 

the right column of Figure 4.3. By varying the thickness of the spacer layer, the plasmonic gap 

modes could be spectrally tuned. In this paper, the study would mainly focus on the primary 

plasmonic gap mode, which will be just called plasmonic gap mode in all what follows. 
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Figure 4. 4:(a) Electric and (b) magnetic field at the gap from a vertical cross-section view; (c) 

and (d) Electric and magnetic fields at the center of the gap from a horizontal cross-section view 

Electromagnetic fields of plasmonic gap mode 

A prominent feature of the plasmonic gap mode was that charges with opposite signs were induced 

on opposite sides of the gap. These charges resulted in an intense electric field localized at the gap, 

as shown in Figure 4.4 (a) and (c). At the same time, the fictitious current loop along the periphery 

of the gap generated a strong magnetic field at the center, as shown in Figure 4.4 (b) and (d). 

Consequently, the localized EM energy oscillated back and forth between the electric and magnetic 

counterparts, and it only got damped either because of metal loss or by coupling to free space. The 

gap which confines the spatially oscillating EM energy thus defines a spectrally tunable plasmonic 

cavity with an effective mode volume approximately the actual volume of the gap region. This 

feature provides an excellent configuration to enable the maximum interaction between SPPs and 

the spacer layer at the gap.   



 

67 

 

 

Figure 4.5: (a) Scheme of the film-coupled gold nanopyramid array structure with a layer of 

thickness-varying J aggregates sandwiched at the spacer layer; (b) Spectral profiles of J-

aggregates, SPPs and the hybridized upper (UP) and lower(LP) polaritonic states (c) Dispersion 

of SPPs compared to the absorption line of QEs when they were uncoupled; (d) Dispersion of the 

hybridized polaritonic states (UP and LP) generated from the strongly-coupled SPPs-QEs system 

 

Strong coupling. The capability of the fabricated film-coupled Au nanopyramid array to reach the 

strong-coupling regime when coupled with an excitonic material was studied numerically by 

FDTD simulations. Instead of silica, J-aggregates were modelled as QEs in the spacer layer, as 

shown in Figure 4.5(a). The permittivity of J-aggregates was assumed to follow the Lorentz Model, 

which was given by21 
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 𝜀(𝜔) = 𝜀∞ +
𝑓0𝜔0

2

𝜔0
2 − 𝜔2 − 𝑖𝛾0𝜔

 (1) 

The absorption peak of J-aggregates was assumed at 861 nm (𝜔0 = 1.44 𝑒𝑉); the damping rate 

was assumed as 𝛾0 = 50 𝑚𝑒𝑉; the high-frequency permittivity 𝜀∞ and Lorentz permittivity 𝑓0 

were set as 1.45 and 50 meV, respectively. 

The absorption spectrum of J-aggregates was derived from the imaginary part of the complex 

permittivity given by Equation (1) and was shown in Figure 4.5(b). In the meanwhile, the reflection 

spectra for the corresponding plasmonic gap modes were calculated using FDTD simulations by 

modelling the spacer layer as an insulator with a fixed refractive index of 1.25, roughly the mean 

value of the real part of the permittivity of J-aggregates. 

 

 

Figure 4. 6: (a) Experimentally measured spectral profiles of J-aggregates (absorption, olive 

curves), plasmonic gap modes (reflection, blue curves), and the hybridized upper (UP) and 

lower(LP) plexciton states (reflection, orange curves) when a layer of J-aggregates were 

sandwiched at the spacer layer 

Without coupling, the dispersion of SPPs was independent of the absorption line of QEs, as shown 

in Figure 4.5(c), where the detuning was defined as the energy difference between SPPs and QEs. 

With a layer of 16 nm J-aggregates filled into the spacer, SPPs and QEs were spectrally mixed. 

Instead of being independent of each other, their spectral mixture led to the Rabi splitting of the 

plasmonic gap mode and generated two new hybridized modes at 795 nm and 912 nm, 

respectively, as shown in Figure 4.5(b). The mode splitting, however, does not necessarily 

guarantee that the strong-coupling regime is reached. As it has been well documented previously, 
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the plasmonic coupling and Fano resonance could also cause similar features.37-38 A positive 

confirmation of strong coupling requires that the coupling strength far exceed any other damping 

rates. 

For the case with a layer of 16 nm J-aggregates sandwiched in the film-coupled gold 

nanopyramid array, the Rabi frequency was calculated as Ω𝑅 = 200 𝑚𝑒𝑉. The coupling strength 

was found as 𝑔 =
1

2
Ω𝑅 = 100 𝑚𝑒𝑉. The damping rate of SPPs was obtained by fitting the 

reflection dip with a Lorentzian function, which was given as 𝜅 = 56 𝑚𝑒𝑉. The fact that 𝑔 > 𝜅, 𝛾0 

confirms that strong coupling was indeed achieved in this nanostructure. The two new hybridized 

modes were actually two newly formed polaritonic states corresponding to upper polariton (UP) 

and lower polariton (LP), which are half-light, half matter. These entangled states are characteristic 

of strong coupling where SPPs and J-aggregates lose their own identities. The confined energy 

was rapidly and coherently exchanged between SPPs and J-aggregates at a rate of the Rabi 

frequency. By varying the thickness of the J-aggregate layer, the anti-crossing behavior of the two 

polaritonic states were observed, as shown in Figure 4.5(d), which would not occur in the weak-

coupling regime.10 

The anti-crossing region is of great fundamental significance. It has been predicted to give rise 

to numerous intriguing optical effects such as photon blockade, emission of correlated photons, 

nonclassical or squeezed state generation, super-radiant phase transitions, and ultra-efficient light 

emission.10, 39 Furthermore, the problems of a high energy loss in metallic nanostructures can be 

effectively circumvented since the rates of any other damping channels are outcompeted by the 

overwhelmingly strong coupling rate in the strong-coupling region. The demonstration of reaching 

the strong-coupling regime by sandwiching a layer of excitonic material in the film-coupled gold 

nanopyramid array has strong implications in designing state-of-the-art optoelectronic devices 

with new functionalities by fully utilizing the nonlinearity of QEs and the transportability of SPPs.  

 

 

4.4 CONCULUSION 

In summary, a long-range ordered gold nanopyramid array pattern was fabricated on the glass 

substrate by nanosphere lithography. The gold nanopyramid array exhibited strong light scattering, 

displaying an intense reflection peak. The maximum electric field enhancement (E/E0) was 
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estimated to be 271 at the corners, which decayed exponentially away from the pyramid bottom.  

After the gold nanopyramid array was coupled to a gold film, a plasmonic gap mode was generated 

in the silica spacer layer, which led to strong light absorption confined in the spacer layer. In case 

of a 10 nm thick spacer layer, the maximum electric field enhancement (E/E0) and the magnetic 

field enhancement (|H|/|H0|) were estimated to be 233 and 25, respectively, which occurred at the 

gap edge. The magnetic field remained almost constant and the electric field decayed much slower 

with an increase in the distance away from the pyramid bottom. Because of the induced charges 

on opposite sides of the gap, the confined EM energy was found to oscillate back and forth between 

the spatially separated electric and magnetic counterparts, which made the effective mode volume 

to be approximately the actual volume of the gap region. By filling the gap with J-aggregates, 

strong coupling between the plasmonic gap mode and J-aggregates was demonstrated. The 

demonstration of strong coupling on this two-dimensional metallic nanostructure not only 

effectively circumvents the unavoidable high loss on metals, but also makes it possible to fully 

utilize the nonlinearity of QEs and the high transportability of SPPs in designing state-of-the-art 

optoelectronic devices. 
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CHAPTER 5: ENHANCED FLUORESCENCE OF 

METAL ORGANIC FRAMEWORKS IN PLASMONIC 

GAP MODE 
 

Fluorescence based biosensors have become a dominant and most efficient tool for biosensing. 

Metal Enhanced Fluorescence is a phenomenon where the intensity of fluorescent material signal 

is enhanced several orders of magnitude, when fluorophore is placed in the vicinity of plasmonic 

nanostructure. Among all the plasmonic modes, gap mode has large field enhancement and mode 

volume with high Purcell factor. In this chapter, MOF fluorescent signal is enhanced in gap mode 

generated by pyramids on gold film 3D nanostructure. The device is designed and optimized based 

on the spectral overlap of gap mode on to the fluorescent emission for maximizing the Purcell 

factor.  

 

5.1 INTRODUCTION 

Metal nanostructures have showed unique optical properties which were used in a wide variety of 

applications1-5 like bio-sensing, solar energy, photonic crystals etc. Particularly plasmon enhanced 

spectroscopies like Surface Enhanced Raman Scattering (SERS)6-8 and Metal Enhanced 

Fluorescence (MEF)9-15 were become dominant techniques in bio-sensing and medical diagnostics. 

Plasmonic structures localize the optical energy into the nanoscale features in the form of EM field 

energy. This plasmonic property is known as localized surface plasmon resonance (LSPR), which 

arise from the collective oscillation of free electrons with the incident light. LSPR of a 

nanostructure depends on the size, shape, dielectric environment and coupling between adjacent 

nanostructures.  

Quick and efficient detection of trace physiological markers and chemicals need to be detected for 

health and food safety. For this reason, biosensors are being rapidly developed. Fluorescence 

technique is used to detect DNA microarrays and bio molecules by attaching fluorophores. 

However, low concentration of biomolecules need to be enhanced several times for the detection. 

Recently, MEF is emerging as a new tool for enhancing the fluorescence signal by using metal 
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particles. The increase in the fluorescence emission of fluorophore in the vicinity of EM filed of 

metal nano particle is MEF phenomenon. The stronger interaction occurring between fluorophore 

excited states and the EM field of metal nano particles increases or decreases the radiative decay 

rate of fluorophore. MEF has shown significant progress as a tool for fluorescence spectroscopy16, 

because of its unique features like sensitivity, ease of use and higher cross-section. MEF is 

extensively studied for different shape, size and separation between nanoparticles. However, it is 

an experimental challenge to design a MEF based nano structure on a large scale. There are three 

major factors that affect the efficiency of MEF a) The size and type of metal nanoparticle b) 

emission wavelength of fluorophore c) Intrinsic quantum yield of fluorophore. For metal nano 

particles less than 40nm generally absorb light quenches the fluorescence emission. Similarly, 

nano particles greater than 40nm, scatters light which enhances the fluorescence emission. In 

addition to size dependency there is another most efficient way to enhance the fluorescence. When 

there is a spectral overlap between the fluorescence emission with the surface plasmon resonance 

there is a non-radiative energy transfer from fluorescent species to the metal nano particles.  
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Figure 5.1: Nanosphere lithography fabrication of silver nanopyramids coupled gold film for 

exciting gap plasmon in the MOF spacer layer 

In this chapter, gap surface plasmon17-20 mode is generated from coupling silver nano pyramids 

and gold film which are separated by a spacer layer. Nano Sphere Lithography is used for large 

area and uniform array fabrication of silver nano pyramid structure. A uniform layer of MOF, 

which is a fluorescent material is used as a spacer layer. The gap plasmon mode is confined in the 

spacer layer which is MOF. Thus fluorescent material is in vicinity of the plasmon mode. In this 

regard, there is a 2 orders of enhancement of MOF fluorescent signal in gap plasmon mode. 
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5.2 Methods 

Chemicals and Materials 

Gold-coated glass slides were purchased from Fisher Scientific Inc. Polystyrene microspheres with 

a diameter of 500 nm were purchased from Thermo Scientific (Waltham, MA). MOF synthesis 

process is giving after this section. Acetone, methanol, and sulphuric acid (H2SO4) and hydrogen 

peroxide were purchased from Alfa Aesar (Haverhill, MA). Deionized (D.I.) water was produced 

by the Milli-Q Integral 3/5/10/15 system (18.2 MO cm, Millipore Corp., U.S.A.) 

MOF synthesis 

ZrCl4 (70 mg), TCPP (50 mg) and benzoic acid (2,700 mg) were added into 8 mL of DEF, 

ultrasonically dissolved. The mixture was heated in 120 °C oven for 48 h. After the reaction, red 

needle shaped crystals were harvested by filtration (35 mg, 47% yield)22,23 

 

Instrumentation 

An e-beam evaporator (Kurt J. Lesker) was used to deposit silver. A scanning electron microscope 

(JEOL-JSM-7600F) was used to characterize the fabricated film-coupled silver nanopyramid 

array. Reflection spectra were acquired by an Ocean Optics USB 4000 spectrometer and DT-

MINI-2-GS. Fluorescence spectra measurements were taken using Hoiba Flurolog-3 

spectrofluorometer. 

5.3 RESULTS AND DISCUSSIONS 

Fabrication of nanopyramid array coupled gold film 

The step by step fabrication process is shown in Figure 5.1. Initially a silicon chip of roughly 0.5cm 

x 0.5cm is cut down. The chips are cleaned successively in acetone, methanol and water for 5min 

in each. The chips are dried in N2 gas. 100nm gold is deposited using e-beam evaporator on to the 

silicon chips. Using layer by layer approach MOF is deposited on to the gold surface. For this 

application 7 monolayers of MOF is deposited. Polystyrene beads are dip coated on to the MOF 

and dried to form a uniform monolayer of PS film. Later, 5nm of titanium and 200nm of silver is 
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deposited using e-beam evaporator. Due to the interstitial gaps in the PS bead, the deposited 

material takes the shape of pyramids as shown in figure 5.1(h). The chips are ultrasonicated in 

methanol to remove PS beads and leaving only pyramids. In this process titanium is used as an 

adhesion layer for silver pyramids to stick to the substrate.  

Excitation of gap plasmon mode in silver nanopyramid array coupled gold film 

Silver nanopyramid array- MOF- gold film structure is designed such a way the gap plasmon mode 

excited in this structure which is used for metal enhanced fluorescence. For this first the gap mode 

of such MIM structure is tunable over large range to overlap with the emission wavelength of 

fluorescent material. The MOF is layer by layer deposited as a spacer layer, which is fluorescent 

material. This fluorophore is sandwiched in between the nanostructures (Figure 5.2(a)) to get the 

efficient metal enhanced fluorescence.  

Initially optical properties were studied to optimize the fluorescence signal enhancement. Figure 

5.2 (b) shows the absorption spectra of MOF on gold and the coupled structure. In the absorption 

spectra of MOF, the band edge is around 550nm which is due to the band gap of MOF. In the 

sandwich structure, there is absorption peak at 650nm this is due to the gap mode formation which 

strongly absorbs light. The gap plasmon mode is formed due to the coupling between gold film 

and the silver nanopyramids. The gap plasmon peak is very sensitive to the thickness of the MOF 

film. Since the maximum enhancement can be achieved when the fluorescent peak of MOF 

overlaps with the plasmon peak, the plasmon peak is tuned by varying the thickness of MOF film. 
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Figure 5. 2: a) Schematic of nanopyramid coupled with gold film with MOF spacer layer b) 

Absorption spectra of proposed structure with pyramids and without pyramids c) Fluorescence 

spectra of MOF on glass d) Overlay graph of nanostructure absorption and MOF fluorescence 

spectra 

 

For 7layers of MOF deposition, the plasmon peak exists at 650nm which exactly overlap with the 

fluorescent peak of MOF shown in figure 5.2 (d). The observed intense absorption peak was 

ascribed to the plasmonic gap modes, which were induced in the spacer layer between the Ag 

nanopyramid array and the underlying Au film. Since a transmission line type of resonance can be 

sustained at the gap21 the incident light can be guided into the gap region and adjust itself to satisfy 

the boundary conditions. The impedance mismatch at the gap edge causes most of the 

incident light to be trapped inside the gap, and thus contributes to the strong absorption.  
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Fluorescent enhancement 

To demonstrate the fluorescence enhancement, the MOF fluorescence spectra is acquired by 

excitation wavelength 410nm as shown in the Figure 5.2 (c). The fluorescent peak at 665nm is 

overlaped with the cavity mode of the sandwich structure for maximum fluorescent enhancement. 

The coupling of fluorophore with gap resonant mode affects the intensity of fluorescence emission.  

 

Figure 5. 3: a) Fluorescence spectra comparison b) Fluorescence spectra from 650nm to 700nm 

range 

Figure 5.3 shows the comparison of fluorescence spectra of MOF, MOF on gold film and MOF in 

gap plasmon mode. There is a distinct enhancement of fluorescence signal of MOF in gap mode 

compared to the one on glass substrate. The strong enhancement is due to the Electromagnetic 

field created by the gap mode. electric field was confined within the gap for the film-coupled Au 

pyramid array while a radial electrical field appeared at the corners for the Ag nanopyramid array. 

The magnetic field was kept almost constant in the gap for the film-coupled Au pyramid array and 

the electric field underwent only a small decay with an increase in the distance away from the 

pyramid bottom along the cross-section. In stark contrast, the electric field from the corner mode 

of the Ag pyramid array alone decayed exponentially away with an increase in the distance away 

from the pyramid bottom. Thanks to these unique features, the localized EM energy oscillated 

back and forth between the electric and magnetic counterparts inside the gap and it only got 

damped either because of metal loss or by coupling to the free space. The gap which confines the 

spatially oscillating EM energy thus defines a spectrally tunable plasmonic cavity mode with an 
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effective mode volume that is approximately the physical size of the gap. This feature provides an 

excellent configuration to enable the maximum interaction between SPPs and the MOF in the gap. 

To assess the performance of sandwich nanostructure in enhancing fluorescence, a peak centered 

around 670nm is considered and base line is calculated. The comparison of fluorescence peak on 

different substrates is shown in figure 5.3 (b). The fluorescence enhancement factor was found to 

be 5*102. 

5.4 CONCLUSION 

In summary, a long-range ordered silver nanopyramid array pattern was fabricated on a MOF-Au 

film by nanosphere lithography. The nanopyramid array was coupled to gold film to form a 

plasmonic gap mode in MOF spacer layer, which led to strong light absorption. The absorbed light 

is trapped in the gap (MOF layer) to generate huge EM filed. The gap mode is spectrally tuned to 

overlap the fluorescent peak of MOF. The fluorescence emission measurements on MOF and MOF 

in the gap mode demonstrated the enhancement factor around 5*102, which can be used in MEF 

based biosensing applications. The gap plasmon is more effective for enhanced fluorescence 

because of the huge EM filed generated in the cavity. 
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CHAPTER 6: INEXPENSIVE SEMICONDUCTOR 

MATERIALS FOR PLASMONIC APPLICATIONS 
 

Two dimensional semiconductor materials have shown plasmon resonance in visible region, 

having lot of applications in sensing, medicine and photonics. Unlike metals, the plasmon 

tunability in semiconductors depends on experimental parameters of the material synthesis 

process.  This makes the tuning of plasmonic resonance in semiconductor materials challenging. 

Here in, the molybdenum oxide thin films were directly deposited and nitrogen annealed which 

showed a tunable localized surface plasmon resonance (LSPR). A chip based 2D semiconductor 

material is fabricated to study the structural and size dependent plasmon resonance. This work 

establishes a way to fabricate chip based ordered semiconductor nanostructures, which helps in 

systematic study of plasmon properties on nanostructures.   

 

6.1 INTRODUCTION 

Surface plasmons allow near-field absorption and far-field scattering spectral profiles to be 

delicately engineered in a diffraction-unlimited manner by either fabricating heterogeneous 

nanoparticles or 2D nanostructures. They have laid the fundamental framework for surface-

enhanced spectroscopies as well as plasmon-induced resonant energy transfer, and thus have met 

with huge successes in medical diagnostics1,2,3, environmental protection4, photonics5,6 and energy 

harvesting7 in recent years. Yet, candidate metals supporting strong surface plasmons are restricted 

to gold and silver given the large energy loss rate in a vast majority of metals. There is an unmet 

need to identify alternative plasmonic materials without compromising the performance.  

Semiconductor nanocrystals (NCs) like metal chalcogenides, metal oxides, metal nitrides 

and heavily doped semiconductors were investigated for plasmonics33-42,9-14,8,27,60,61. In metal 

chalcogenides like CuS, copper deficiency causes vacancies in the highest energy states in valance 

band, generating more holes responsible for plasmon resonance43,16. In transition metal 

oxides15,24,25, 44 outer d orbital valence electrons contribute to the plasmon resonance. Whereas, in 

the degenerately doped semiconductors26,45,46,41,61 the free carriers are tuned by doping 

concentration to excite plasmon. In all the above semiconductor NCs, generation of free excess 
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carriers either by creating vacancies or doping is the reason for plasmon excitation. Inspite of 

metals having high density of free carriers which generate intense plasmon resonance, there are 

many advantages of plasmon resonance in semiconductors compared to metals. Since the carrier 

density in metals is constant, LSPR in metals is tuned by shape, size and refractive index of 

surroundings. This restrict plasmon resonance tuning 47,48,49,50,51 over a narrow wavelength range 

and need to choose a different metal to exceed the rage of application. In contrast, LSPR in 

plasmonic semiconductors can be tuned with parameters like carrier density, annealing 

temperature and doping. This gives an advantage of tuning the plasmon peak over a broad range 

including visible, Near Infrared (NIR) and Infrared(IR) regions. This is because for semiconductor 

materials the carrier concentration can be varied over a large range27,52,53,54 (1019-1021 cm-3). 

Among semiconductor NCs, transitional metal oxides are unique especially molybdenum trioxide 

(MoO3). MoO3 is wide bandgap semiconductor (3.2eV)67, and has a stable orthorhombic 𝛼-MoO3 

phase in layered structure with distorted MoO6 octahedra68. High density of free carriers are 

possible in MoO3
 not only because of outer-d valence electrons73 but also due the formation of 

lattice vacancies during the intercalation of H+ ions71 (reduction of Mo oxidation states). These 

vacancies in the MoOx crystal results in unique properties of plasma tuning, varied electrical 

conductivity and band gap69,70. Many research groups have showed potential applications of 

plasmonic semiconductors in recent years. Transition metal oxides W18O49 and MoO3-x 
 were able 

to generate SERS enhancement factor of 3.4*104  and 1.42*104 respectively17,14, having 

sensitivities comparable to the noble metal SERS substrates. Visual calorimetric molecular 

computing system was demonstrated with molybdenum oxide based on plasmonic switching18. 

Plasmonic MoO3-x nanosheets with large surface area is used as catalyst to enhance 

dehydrogenation activity of ammonia boarane19
. There are other applications in nano photonics, 

electrocatalysis and microelectronic devices 28,29,30
.
 

The understanding of plasmon resonance fundamentally in semiconductor NCs and their 

potential applications demanded development in the field of plasmonic semiconductor NCs. With 

the development of wet chemical synthesis methods, NC synthesis has become controllable and 

flexible to tune LSPR properties. There are many wet chemical synthesis methods like 

solvothermal method, hydrothermal method, chemical precipitation and colloidal NC synthesis 

metod to control the size, shape, phase and composition55-59, 62-64 of NCs. However, the structures 

produced are highly random and cannot be repeated, which is highly difficult to reproduce. 



 

87 

 

Moreover, the fundamental relation of EM field intensity with carrier concentration, morphology 

and doping is weakly understood in semiconductor NCs. Also, the study on amorphous MoO3, on 

plasmon resonance is limited by fabrication and preparation methods. This study can be possible 

if the amorphous MoO3 structures are fabricated repeatedly and in controlled fashion. Zhou et.al 

demonstrated an ordered mesoporous WO3 using solvent evaporation induced self-assembly 

method with large surface area 65,66
. However, ordered amorphous molybdenum oxide structures 

on large scale is difficult to synthesis as anisotropic crystal growth preferentially forms nanosheets 

and determines the morphology14,19. In this paper, chip based plasmonic MoO3-x amorphous thin 

films were fabricated to study the plasmonic behavior under visible light. The films were deposited 

(physical vapor deposition) and annealed in N2 atmosphere to change the oxygen composition in 

molybdenum oxide films. The LSPR of Nitrogen treated MoO3 is tuned across visible to NIR by 

varying N2 treatment time and annealing temperature, which play a crucial role in the LSPR 

response intensity. We analyzed the morphological, temperature and duration parameters of  

MoO3-x on plasmon peak.  

 

CHIP BASED PLASMONIC MoO3 FILMS FABRICATION 

 

 

 

Figure 6. 1: (a) Scheme for MoO3-x thin film fabrication; AFM micrograph images of MoO3-x 

thin film for (b) as-deposited and (c) annealed sample at 400 °C 

The MoO3-x thin film was fabricated by a simple two-step process: deposition of molybdenum 

oxide thin films and annealing in nitrogen atmosphere, as shown in (Figure 6.1(a)). Detailed 
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experimental procedures are described in the Methods Section. The AFM micrograph of as-

deposited MoO3-x films (Figure 6.1(b)) showed uniform and small grains with root mean square 

(RMS) roughness is around 2nm. This reflects the amorphous and smooth surface nature of the 

films. When the films are heated at 400 °C under N2, the size of the grains increased, with a 

corresponding increase in RMS surface roughness to around 35nm as shown in the micrograph 

AFM image in (Figure 6.1(c)).  This behavior is due to the agglomeration of smaller particles to 

form a larger particle with increase in the temperature. For the 500°C annealed sample, the 

temperature is too high which breaks the film apart exposing glass surface underneath the films 

and forms MoO3 islands. 

 

6.2 EXPERIMENTAL METHODS 

Chemicals and Reagents: Microscope glass slides were purchased from Sigma-Aldrich. 

Polystyrene microspheres were purchased from Thermo Scientific. Molybdenum Trioxide (MoO3) 

e-beam evaporator pallets were purchased from Kurt J. Lesker. Acetone, methanol, sulphuric aicd 

and Hydrogen peroxide were purchased from Alfa Aesar. Deionized (D.I) water was purchased 

from Millipore Corp. Nitrogen (ultra high purity 99.999%) tank was purchased from Matheson 

Tri-gas. 

Instrumentation and Characterization: E-beam evaporator (Temescal) was used to deposit 

Molybdenum trioxide thin films. Tube furnace (Lindberg/Blue M) was used to anneal the sample 

under Nitrogen atmosphere. Scanning Electron Microscopy (SEM) images were taken under a 

JEOL JSM-7600F with an accelerating voltage of 5kV. Shimadzu UV-2550 UV-Vis spectrometer 

equipped with an integrating sphere (UV 2401/2) was used to acquire the ultraviolet (UV)-Visible 

absorption spectra.  X-ray Diffraction (XRD) measurements were performed with PANalytical 

X’pert Pro X-ray diffractometer to study the crystallinity of the samples. X-ray Photoelectron 

spectroscopy (XPS) measurements were performed using a Physical Electronics PHI 5000 

VersaProbe X-Ray Photoelectron Spectrometer to analyze the chemical state and electronic 

structure of samples. Hall effect measurements were also taken to estimate the resistivity and 

carrier concentration of the thin films. 

Fabrication of MoOx thin films and annealing: 
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Initially, glass slides were cut into 1.5 cm x 1.5cm pieces to be used as substrates. The glass pieces 

were cleaned by ultrasonicating in acetone, methanol and D.I water for five minutes in each 

solution and dried using nitrogen gas. 300nm MoO3 thin film was evaporated on glass pieces using 

e-beam evaporator. As deposited MoO3 samples were then annealed in N2 atmosphere at 200°C, 

300°C, 400°C and 500°C for 3hrs at ramp rate of 5°C/min to from MoO3-x. 

Finite-Difference Time-Domain (FDTD) Simulation 

Optical properties of MoO3-x films were analyzed by FDTD simulations. The software Lumerical 

FDTD Solutions is commercially available. A grid size of 5 nm was used to construct the 

simulation cells. A continuous plane wave from 200 to 1800 nm was used as the input light source.  

In modeling the dielectric function of MoO3-x films, a Drude Model was used. The Drude formula 

is given by 

                                                        𝜀(𝜔) = 1 −
𝜔𝑝

2

𝜔2+𝑖𝛾𝜔
                                                               (1) 

In the above equation, 𝜔𝑝 is the plasma frequency calculated by 𝜔𝑝 = √
𝑁𝑒2

𝜀0𝑚𝑒
 where N is the free 

carrier density,  𝜀0 is the permittivity of free space and 𝑚𝑒 is the effective mass of the free carrier 

(electron in this case). The damping constant 𝛾 can be calculated by 𝛾 =
𝑁𝑒2

𝜎𝑚𝑒
 where 𝜎 is the 

conductivity. Since the MoO3-x film was modelled as a rough surface, its surface roughness (RMS, 

or root mean square) was fixed at 30 nm, unless study of surface roughness on the plasmon 

resonance was conducted where the RMS was varied from 10 to 50 nm.  
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6.3 RESULTS and DISCUSSIONS 

Optical Characterization of MoO3 thin films. The optical properties of MoO3 thin films were 

characterized by taking UV-Vis absorption spectra. Figure 6.2(a) shows the comparison of 

absorption spectra of MoO3 films annealed in N2 at different temperatures. The as-deposited MoO3 

thin film has an absorption band edge around 420nm and there is no photo absorption at longer 

Figure 6. 2:(a) UV-Vis spectra of MoO3 annealed at different temperatures in N2 (b) Optical 

image of MoO3 film on glass annealed at different temperature in N2 

wavelengths. In contrast, the films annealed in N2 showed a clear visible light absorption. The 

absorption peak blue shifted from 800nm to 600nm with the increase in the annealing temperature 

from 200°C to 400°C. This strong absorption is due to the Localized Surface Plasmon Resonance 

(LSPR) generated from the free carriers, induced during nitrogen annealing. During annealing 

process nitrogen reduces the molybdenum trioxide and induces oxygen vacancies leading to the 

increase in the carrier concentration. The bulk plasmon frequency is strongly dependent on the free 

carrier concentration of the material, which enabled broad range tunability of LSPR peak from 

NIR to Visible region.  

                                                                      𝜔𝑝 = √
𝑁𝑞2

𝜀0𝑚𝑒
                                                             (2) 
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𝜔𝑝 is the bulk plasmon frequency , N is the free carrier density,  𝜀0 is the permittivity of free space 

and 𝑚𝑒 is the effective mass of the free carrier (electron in this case). 

For the films annealed at lower temperature the plasmon peak is weak and present at longer 

wavelengths indicating less number of oxygen vacancies are created. When the annealing 

temperature is increased, the LSPR peak strengthened and blue shifted revealing more number of 

free carriers are generated. This phenomenon is confirmed by calculating the free carrier 

concentration from Hall effect measurement system. The as-deposited film is insulating which 

makes Hall system impossible to acquire carrier concentration and conductivity of the sample. 

MoO3 films which are annealed showed increase in carrier density and conductivity with increase 

in temperature up to 400°C.  The carrier concentration of the MoO3-X annealed at 400°C was 

determined to be 5*1020. The strongest LSPR is observed at around 600nm. Beyond 400°C, in 

spite of increase in the temperature the plasmon strength decreased and shifted to longer 

wavelengths, due to collapsing of the film to form islands. 

Figure 6.2(b) shows the optical image of the MoO3 films on glass substrate. The as-

deposited sample is optically transparent. The annealed samples show blue color and the intensity 

gradually increased upto 400°C above which the blue tint disappeared. This phenomenon is 

correlated with the LSPR peak, explaining strong LSPR coexisted when the sample is deep blue 

in color. This phenomenon is due to the outer-d electrons intravalence charge transfer between 

Mo+5 and         Mo+6. 20
 

 

Tunable plasmon peak in MoO3-x films 

In metals, the conductivity and carrier density are fairly constant, allowing other 

parameters like shape, size and dielectric plays an important role in tuning the plasmon peak. In 

semiconductors, especially in this case the conductivity and carrier density of MoO3-x film changes 

with annealing 

temperature making plasmon peak tunable over a large range. Thus, the important parameters like 

carrier density, conductivity and roughness effects on plasmon peak were analyzed. Initially a  

rough MoO3 film is modeled with surface roughness RMS 30, using Optiwave FDTD. Figure. 

6.3(b) 
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Figure 6. 3: a) Dependence of plasmon peak on carrier density at surface roughness RMS 30. b) 

Experimental (Exp) and FDTD-simulated (FDTD) absorption spectra of MoOx film c) plasmon 

peak strength dependence on conductivity of the film d) d) plasmon peak wavelength dependence 

on surface roughness 

shows a good match of experimental and simulated absorption spectra where carrier density and 

conductivity of the MoO3-x considered to be 2.2*1020 and 1*105 respectively. Further each 

parameter was analyzed to get an optimized plasmon peak. (Figure 6.3(a)) shows, as the carrier 

density increases the plasmon peak blue shifted which was discuss earlier. The other important 

parameter is the conductivity.  

                                             𝛾 =
𝑁𝑒2

𝜎𝑚𝑒
                                                                                           (3) 

where 𝜎 is the conductivity and 𝛾 is damping constant. 
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The plasmon damping increases with the decrease in conductivity from the above equation. The 

plasmon resonance is strong for highly conductive materials and collapses for low conductive or 

insulating materials. This is one of the reasons for as-deposited MoO3-x does not have a plasmon 

peak. This also explains, why there is no plasmon resonance for all degenerate semiconductors.  

Further, the factor of roughness is analyzed. A localized plasmon resonance exists only when there 

are nanoparticles. The smooth MoO3-x films cannot support LSPR, Figure 6.1(a) shows as-

deposited MoO3-x films where the surface roughness is negligible. However, with increase in 

temperature the surface roughness increases allowing plasmon to strengthen. This patter is in well 

agreement with simulations shown in Figure 6.2(d). Thus all the parameters are tuned precisely to 

allow the plasmon resonance to fall in visible region.  

 X-ray Diffraction (XRD) (Figure 6.4) was performed to study the crystallinity and 

chemical state of the MoO3 samples. From the XRD spectra in Figure 6.4, the as-deposited MoOx 

sample shows an amorphous nature with no defined peaks. After heat treatment at 300 °C under 

N2 where the LSPR peak begins to appear, the MoOx sample still retains an amorphous nature with 

no defined peaks. Once the heat treatment reaches 400 °C under N2, the MoOx sample distinct 

crystalline peaks attributable to a dominant Mo5O14 (ICSD 98-007-2639) phase with a very minor 

MoO2 phase (ICSD 98-003-6263). Further heating at 500 °C under N2 results in a near complete 

conversion of the sample to MoO2. 
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Figure 6. 4: XRD spectra for MoOx thin films on glass substrates after different heat treatment 

temperatures under N2. 

  

To determine the effects of the heat treatments under N2 on the chemical state of the MoO3 films, 

core level (Figure 6.5) X-ray Photoelectron spectroscopy (XPS) was performed. The as-deposited 

MoO3 samples shows only one peak at 233.0 eV corresponding to Mo6+ states21. Upon heating at 

300 °C under N2, the MoOx sample show peaks at 232.8 eV and 231.8 eV corresponding to Mo6+ 

and Mo5+ states respectively.21,22 In addition, an additional peak in the O1s spectrum at 531.6 eV 

appears that is associated with the chemical environment of oxygen anions near oxygen vacancies 

within metal oxides.23 The emergence of the new Mo5+ peak in the Mo3d spectrum and new O1s 

peak indicate that the heat treatment under N2 results in the formation of oxygen vacancies and 

reduction of Mo6+ to Mo5+ to maintain overall charge neutrality of the sample. Further heating at 

400 °C under N2 results in further reduction of the sample evident from the formation of a new 

peak at 230.0 eV corresponding to Mo4+ states and an increase in the relative peak intensity of the 

O1s peak due to the presence of oxygen vacancies (531.8 eV). The mixed Mo4+/Mo5+/Mo6+ state 

of the sample heated at 400 °C under N2 is consistent with the dominant Mo5O14 crystal phase of 

the sample.  
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Figure 6. 5: XPS core level spectra for Mo3d (a-c) and O1s (d-f) of MoOx films on glass; (a, d) 

As-deposited MoOx, (b, e) MoOx film heat treated at 300 °C under N2, (c, f) MoOx film heat 

treated at 400 °C under N2 

 To determine the effects of the Mo4+, Mo5+, and oxygen vacancy states on the electronic 

structure within the bandgap of the MoOx samples, valence band XPS spectra (Figure 6.6) were 

measured.  

 

Figure 6. 6:Normalized XPS valence band spectra for MoOx films under different heat treatment 

temperatures under N2. 
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 As can be seen in (Figure 6.6), the as-deposited MoO3 samples have a clear valence band 

edge with no mid-gap states within the bandgap. Upon heating at 300 °C under N2, mid-gap 

electronic states begin to appear within the bandgap with a peak energy 1.9 eV above the valence 

band edge. Further heating at 400 °C under N2 results in formation of additional mid-gap states 

with energies up to the Fermi level of the sample (Binding Energy = 0). This indicates that the 

occupied mid-gap states from Mo4+/Mo5+ and oxygen vacancy states are the source of free carriers 

that improve the electronic conductivity and results in the plasmon resonance of the MoOx samples 

heated at 300 °C and 400 °C under N2. 

 However, upon heating at 500 °C under N2, the mid-gap states that were present with the 

MoOx samples heated at 300 °C and 400 °C under N2 disappear. The disappearance of the mid-

gap states upon heating at 500 °C under N2 is consistent with the disappearance of the plasmon 

peak in the UV-Vis absorbance spectrum. In addition to the mid-gap states disappearing, there is 

a significant decrease in surface Mo4+ and Mo5+ states in the core-level XPS spectrum with the 

MoOx sample heated at 500 °C under N2 despite the near total conversion of the sample to MoO2. 

The crystal phase transformation and morphology changes the overall electronic structure and 

removes the plasmonic nature of the sample. 

 

6.4 CONCLUSION 

In summary plasmonic MoO3-x films were fabricated, by inducing oxygen vacancies. The 

samples exhibit plasmon which is stable and repeatable. The LSPR peak is tunable over the large 

range from 600nm to 1000nm. Chip based fabrication is followed for systematic study of plasmon 

intensity by varying the experimental parameters. The parameters which effect the plasmon 

resonance were tuned controllably and compared with the simulated results, which shows a perfect 

match. The analysis of the visible plasmon resonance in chip based semiconductor substrates offers 

promising applications in plasmonics.  
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CHAPTER 7: SUMMARY AND FUTURE DIRECTION 

7.1 SUMMARY 

In this dissertation, a reliable long range fabrication route is used for the fabrication of ordered 

plasmonic nanostructures. Using Nano Sphere Lithography nano ring array, nanopyramid array 

and coupled nanopyramid with gold film structures were fabricated and analyzed their optical 

properties. In this study, evolving of plasmonic mode in an individual structure and the properties 

of plasmonic coupling with different nano structures were analyzed. After understanding the 

fundamental properties of different plasmon resonance that can be excited in nanostructures, 

sensors were designed based on Surface Enhanced Raman Scattering (SERS) and Plasmon 

Enhanced Fluorescence (PEF) techniques. Using the local EM field enhancement, and 

fundamentally understanding the SERS and PEF enhancement criteria, the nanostructures were 

optimized for maximum enhancement. Innovation in the area of fabrication in plasmonics has 

direct impact on the field of energy harvesting. In this study a 3D nanostructure of nanopyramid 

array coupled to gold film was fabricated with a silica layer in between forming a plasmon gap 

mode. The structure traps light into the spacer layer exhibiting total light absorption.  

        In addition to exploiting noble metals such as gold and silver to study surface-enhanced 

spectroscopy, alternative cost-effective plasmonic materials have also been explored. In this 

dissertation, MoO3 semiconductor NC’s were studied for plasmonic behavior and observed wide 

plasmon tunable range. The carrier concentration, physical dimension and conductivity parameters 

of MoO3 dependency on plasmon peak position is investigated. The results strongly indicate 

semiconductor NC’s are highly promising alternative and inexpensive plasmonic materials. 

 

7.2 FUTURE DIRECTION 

The availability of fabrication techniques as well as the discovery and understanding of 

plasmonic modes are the key to plasmonic research success. In the past two decades, many 

fabrication methods have been developed to overcome the limitation of conventional 

photolithography. However, significant challenges remain for large scale fabrication of nano-

arrays at nanoscale-resolution and low-cost with excellent repeatability, controllability and great 

flexibility in tuning optical properties. In many cases, simulation shows that hierarchical structures 



 

105 

 

could exhibit extraordinary optical properties; however, no one fabrication method is available to 

make real structures. In particular, there are still technical barriers for fabrication of large-area, 

long-range-ordered periodic nano-array patterns. On the other hand, when plasmonic nano-arrays 

are used in practical application such as photovoltaics, photoelectrochemical cells (PECs), sensors 

and optoelectronics, plasmonic metal-semiconductor heterojunctions are required to enable 

plasmonic coupling between metals and semiconductors. This puts a constraint on the development 

of fabrication route.  
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