262 research outputs found

    5G beam-steering 2×2 butler matrix with slotted waveguide antenna array

    Get PDF
    In this research paper, substrate integrated waveguide (SIW) was proposed as a technique by realizing bilateral edge walls to produce a compact 5G beam-steering antenna at 24 GHz. The beam forming network is produced using SIW directional coupler perform as 2×2 Butler Matrix (BM) fed with SIW slotted waveguide antenna array. The output signal is steered from -29 degrees and +29 degrees when the signal is fed to the respective input ports. If one of the input ports is fed, the signal is evenly distributed between the adjacent output ports with 90 degree constant phase shift. The compact size of directional coupler was designed by longitude slots on the surface of SIW substrate with bandwith of 16.85% at the operating frequency. The proposed antenna produce gain of 6.34 dB at operating frequency and the promising outcome of the beam steering make proposed design suitable for 5G communications especially with tracking capabilities

    Study of mm-wave Fixed Beam and Frequency Beam-Scanning Antenna Arrays

    Get PDF
    Millimeter-wave frequencies are anticipated to be widely adapted for future wireless communication systems to resolve the demand of high data-rate and capacity issues. The millimeter-wave frequency range offers wide spectrum and a shift for most newly developing technologies as the microwave and lower frequency bands are becoming overcrowded and congested. These high frequency bands offer short wavelengths which has enabled the researchers to design and implement compact and adaptable antenna solutions. This research focuses on the implementation, transformation and modification of antenna structures used in lower frequency bands to millimeter-wave applications with high gain and multi-band and wideband performances. The first part of the thesis presents a microstrip patch array antenna with high gain in the upper 26 GHz range for 5G applications. The tolerance of the antenna, on widely used Rogers RT/duroid 5880 substrate, is observed with the edge-fed structure when curved in both concave and convex directions. In the second part of the thesis, 20 rectangular loops are arranged in a quasi-rhombic shaped planar microstrip grid array antenna configuration with dual-band millimeter-wave performance. A comparison with equal sized microstrip patch array is also presented to analyse the performance. The antenna operates in the upper 26 GHz band and has two frequency bands in close proximity. The third part of the thesis discusses the transition from wire Bruce array antenna to planar technology. Having been around for nearly a century and despite the simplicity of structure, the research community has not extended the concept of Bruce array antenna for further research. The proposed planar Bruce array antenna operates in three frequency v bands with optimization focus on 28.0 GHz band that has a directive fan-beam radiation pattern at broadside whereas the other two frequency ranges, above 30 GHz, have dual-beam radiation patterns which provide radiation diversity in narrow passages. The final part of the thesis deals with the transformation and modification of wire Bruce array antenna geometry to edge-fed printed leaky-wave antennas for millimeter-wave frequency scanning applications. In the first approach, the lengths of the unit-cell are optimised, without any additional circuitry, to enable two scanning ranges and mitigate the Open-Stopband, at broadside, for seamless scanning in the first range. A Klopfen-stein tapered divider is then deployed to make a linear array of the proposed antenna to achieve high gain. In the second approach, the horizontal and vertical lengths of the meandered unit-cell are replaced with semi-circular and novel bowtie elements, respectively, to obtain wide scanning range. The numerical results and optimizations have been performed using CST Micro-wave Studio where the effects of metallization and dielectric losses are properly consid-ered. The prototypes of the proposed antennas have been fabricated and experimentally validated

    A novel optimized conical antenna array structure for back lobe cancellation of uniform concentric circular antenna arrays

    Get PDF
    In wireless communication systems, the existence of the antenna array back lobe represents a significant source of interference, which causes degradation of the signal-to-interference ratio (SIR), and power loss. In this paper, a novel optimized conical antenna array (O-CONAA) structure is proposed for back lobe cancellation of concentric circular antenna arrays (CCAA). Based on the CAA, It is considered to be made up Of several concentric circular antenna arrays (CCAA) which are placed in the X-Y plane. Firstly a non-optimized CONAA is constructed, by arranging these concentric CAAs with uniform vertical spacing along the Z-axis. Consequently, the CONAA seems to be treated as a combination between uniform CAAs and a linear antenna array (LAA). It has been noted that the CONAA radiation pattern has a back lobe amplitude the same as the main beam amplitude. The O-CONAA structure is suggested as a solution to this problem, which provides back lobe cancellation while maintaining the CONAA pattern characteristics like half power beamwidth (HPBW) side lobe level (SLL). The genetic algorithm(GA) approach is used in the O-CONAA structure to optimize the values of both CONAA inter-element spacing around the perimeter of each circle, and vertical spacing along the Z-axis to generate the desired radiation pattern

    A novel optimized conical antenna array structure for back lobe cancellation of uniform concentric circular antenna arrays

    Get PDF
    In wireless communication systems, the existence of the antenna array back lobe represents a significant source of interference, which causes degradation of the signal-to-interference ratio (SIR), and power loss. In this paper, a novel optimized conical antenna array (O-CONAA) structure is proposed for back lobe cancellation of concentric circular antenna arrays (CCAA). Based on the CAA, It is considered to be made up Of several concentric circular antenna arrays (CCAA) which are placed in the X-Y plane. Firstly a non-optimized CONAA is constructed, by arranging these concentric CAAs with uniform vertical spacing along the Z-axis. Consequently, the CONAA seems to be treated as a combination between uniform CAAs and a linear antenna array (LAA). It has been noted that the CONAA radiation pattern has a back lobe amplitude the same as the main beam amplitude. The O-CONAA structure is suggested as a solution to this problem, which provides back lobe cancellation while maintaining the CONAA pattern characteristics like half power beamwidth (HPBW) side lobe level (SLL). The genetic algorithm(GA) approach is used in the O-CONAA structure to optimize the values of both CONAA inter-element spacing around the perimeter of each circle, and vertical spacing along the Z-axis to generate the desired radiation pattern

    2008 Index IEEE Transactions on Control Systems Technology Vol. 16

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    Discrete interferences optimum beamformer in correlated signal and interfering noise

    Get PDF
    This paper introduces a significant special situation where the noise is a collection of D-plane interference signals and the correlated noise of D+1 is less than the number of array components. An optimal beamforming processor based on the minimum variance distortionless response (MVDR) generates and combines appropriate statistics for the D+1 model. Instead of the original space of the N-dimensional problem, the interference signal subspace is reduced to D+1. Typical antenna arrays in many modern communication networks absorb waves generated from multiple point sources. An analytical formula was derived to improve the signal to interference and noise ratio (SINR) obtained from the steering errors of the two beamformers. The proposed MVDR processor-based beamforming does not enforce general constraints. Therefore, it can also be used in systems where the steering vector is compromised by gain. Simulation results show that the output of the proposed beamformer based on the MVDR processor is usually close to the ideal state within a wide range of signal-to-noise ratio and signal-to-interference ratio. The MVDR processor-based beamformer has been experimentally evaluated. The proposed processor-based MVDR system significantly improves performance for large interference white noise ratio (INR) in the sidelobe region and provide an appropriate beam pattern
    • …
    corecore