431 research outputs found

    Wish You Were Here: Mental and Physiological Effects of Remote Music Collaboration in Mixed Reality

    Get PDF
    With face-to-face music collaboration being severely limited during the recent pandemic, mixed reality technologies and their potential to provide musicians a feeling of "being there" with their musical partner can offer tremendous opportunities. In order to assess this potential, we conducted a laboratory study in which musicians made music together in real-time while simultaneously seeing their jamming partner's mixed reality point cloud via a head-mounted display and compared mental effects such as flow, affect, and co-presence to an audio-only baseline. In addition, we tracked the musicians' physiological signals and evaluated their features during times of self-reported flow. For users jamming in mixed reality, we observed a significant increase in co-presence. Regardless of the condition (mixed reality or audio-only), we observed an increase in positive affect after jamming remotely. Furthermore, we identified heart rate and HF/LF as promising features for classifying the flow state musicians experienced while making music together.Comment: Conditionally Accepted for CHI 202

    Musiquence – Design, Implementation and Validation of a Customizable Music and Reminiscence Cognitive Stimulation Platform for People with Dementia

    Get PDF
    Dementia is a neurodegenerative disease that affects millions of individuals worldwide and is challenging to diagnose as symptoms may only perceivable decades later. The disease leads to a gradual loss of memory, learning, orientation, language, and comprehension skills, which compromises activities of daily living. Health-related costs caused by dementia will continue to increase over the next few years; between the years 2005 and 2009, an increase of 34% (from 315to315 to 422 billion worldwide) was observed in treating dementia-related issues. Pharmaceutical approaches have been developed to treat dementia symptoms; unfortunately, the risk of side effects is high. For this reason, nonpharmaceutical methods such as music and reminiscence therapies have gained acceptance as patients with dementia positively respond to such approaches even at later stages of the disease. Nevertheless, further research is needed to understand how music and reminiscence therapy should be used and to quantify their impact on individuals with dementia. The development of serious games has gained attention as an alternative approach to stimulate patients. However, the clinical impact that serious games have on individuals with dementia is still unclear. In this dissertation, we contribute with new knowledge regarding the usage of music and reminiscence approaches in people with dementia through a theoretical model. Based on Baddeley’s working memory model, our model aims to explain how the therapeutic properties of music and reminiscence can have a beneficial effect. To test our model, we developed a novel interactive platform called Musiquence, in which healthcare professionals can create music and reminiscence based cognitive activities to stimulate people with dementia. In this dissertation, we present the results from several studies about the usage and effects that music and reminiscence have on such a population. We performed two studies using Musiquence to study the feasibility of a novel learning method based on musical feedback to aid people with dementia during task performance in virtual reality settings. Results show that participants relied more on music-based feedback during the task performance of virtual reality activities than in other forms of feedback. Also, data suggest that the music-based feedback system can improve task performance, compensating for some dementia-related deficits. We also used Musiquence in a longitudinal one-month-long pilot study to assess its efficacy when used for a cognitive stimulation intervention in dementia patients. The results of the study are promising. The 3 participants showed improvements in terms of general cognition, quality of life, mood, and verbal fluency

    XR, music and neurodiversity: design and application of new mixed reality technologies that facilitate musical intervention for children with autism spectrum conditions

    Get PDF
    This thesis, accompanied by the practice outputs,investigates sensory integration, social interaction and creativity through a newly developed VR-musical interface designed exclusively for children with a high-functioning autism spectrum condition (ASC).The results aim to contribute to the limited expanse of literature and research surrounding Virtual Reality (VR) musical interventions and Immersive Virtual Environments (IVEs) designed to support individuals with neurodevelopmental conditions. The author has developed bespoke hardware, software and a new methodology to conduct field investigations. These outputs include a Virtual Immersive Musical Reality Intervention (ViMRI) protocol, a Supplemental Personalised, immersive Musical Experience(SPiME) programme, the Assisted Real-time Three-dimensional Immersive Musical Intervention System’ (ARTIMIS) and a bespoke (and fully configurable) ‘Creative immersive interactive Musical Software’ application (CiiMS). The outputs are each implemented within a series of institutional investigations of 18 autistic child participants. Four groups are evaluated using newly developed virtual assessment and scoring mechanisms devised exclusively from long-established rating scales. Key quantitative indicators from the datasets demonstrate consistent findings and significant improvements for individual preferences (likes), fear reduction efficacy, and social interaction. Six individual case studies present positive qualitative results demonstrating improved decision-making and sensorimotor processing. The preliminary research trials further indicate that using this virtual-reality music technology system and newly developed protocols produces notable improvements for participants with an ASC. More significantly, there is evidence that the supplemental technology facilitates a reduction in psychological anxiety and improvements in dexterity. The virtual music composition and improvisation system presented here require further extensive testing in different spheres for proof of concept

    Intelligent Music Interfaces: When Interactive Assistance and Augmentation Meet Musical Instruments

    Get PDF
    The interactive augmentation of musical instruments to foster self-expressiveness and learning has a rich history. Over the past decades, the incorporation of interactive technologies into musical instruments emerged into a new research field requiring strong collaboration between different disciplines. The workshop "Intelligent Music Interfaces"consequently covers a wide range of musical research subjects and directions, including (a) current challenges in musical learning, (b) prototyping for improvements, (c) new means of musical expression, and (d) evaluation of the solutions

    Eliciting Music Performance Anxiety of Vocal and Piano Students Through the Use of Virtual Reality

    Get PDF
    Despite the growth of virtual reality technologies, there is a lack of understanding of implementing these technologies within the collegiate classroom. This case study provides a mixed-method insight into a virtual reality (VR) asset deployed in a music performance environment. The study examined the effectiveness of a virtual reality environment as measured by the physiological response and user feedback. Ten voice and four piano college students participated in the study. Each participant performed musical works within an authentic practice room and the virtual concert hall via a Virtual Reality (VR) headset. Data was collected across four criteria. Participants’ heart rates were recorded before and after the performances. A State-Trait Anxiety Inventory test was presented to participants before and after the performances. Each performance was recorded and then blindly evaluated by two licensed music adjudicators. After the performances, participants completed a self-evaluation. Results indicated that virtual concert hall sessions caused a change in some categories of physiological, performance, and anxiety compared to an authentic practice room. No statistical difference was recorded in heart rate for vocalists between both environments. This project serves as a proof of concept that VR technologies can effectively elicit change in music performance anxiety. Furthermore, the study could encourage further research on mitigating music performance anxiety through virtual environment exposure

    Leveraging eXtented Reality & Human-Computer Interaction for User Experi- ence in 360◦ Video

    Get PDF
    EXtended Reality systems have resurged as a medium for work and entertainment. While 360o video has been characterized as less immersive than computer-generated VR, its realism, ease of use and affordability mean it is in widespread commercial use. Based on the prevalence and potential of the 360o video format, this research is focused on improving and augmenting the user experience of watching 360o video. By leveraging knowledge from Extented Reality (XR) systems and Human-Computer Interaction (HCI), this research addresses two issues affecting user experience in 360o video: Attention Guidance and Visually Induced Motion Sickness (VIMS). This research work relies on the construction of multiple artifacts to answer the de- fined research questions: (1) IVRUX, a tool for analysis of immersive VR narrative expe- riences; (2) Cue Control, a tool for creation of spatial audio soundtracks for 360o video, as well as enabling the collection and analysis of captured metrics emerging from the user experience; and (3) VIMS mitigation pipeline, a linear sequence of modules (including optical flow and visual SLAM among others) that control parameters for visual modi- fications such as a restricted Field of View (FoV). These artifacts are accompanied by evaluation studies targeting the defined research questions. Through Cue Control, this research shows that non-diegetic music can be spatialized to act as orientation for users. A partial spatialization of music was deemed ineffective when used for orientation. Addi- tionally, our results also demonstrate that diegetic sounds are used for notification rather than orientation. Through VIMS mitigation pipeline, this research shows that dynamic restricted FoV is statistically significant in mitigating VIMS, while mantaining desired levels of Presence. Both Cue Control and the VIMS mitigation pipeline emerged from a Research through Design (RtD) approach, where the IVRUX artifact is the product of de- sign knowledge and gave direction to research. The research presented in this thesis is of interest to practitioners and researchers working on 360o video and helps delineate future directions in making 360o video a rich design space for interaction and narrative.Sistemas de Realidade EXtendida ressurgiram como um meio de comunicação para o tra- balho e entretenimento. Enquanto que o vídeo 360o tem sido caracterizado como sendo menos imersivo que a Realidade Virtual gerada por computador, o seu realismo, facili- dade de uso e acessibilidade significa que tem uso comercial generalizado. Baseado na prevalência e potencial do formato de vídeo 360o, esta pesquisa está focada em melhorar e aumentar a experiência de utilizador ao ver vídeos 360o. Impulsionado por conhecimento de sistemas de Realidade eXtendida (XR) e Interacção Humano-Computador (HCI), esta pesquisa aborda dois problemas que afetam a experiência de utilizador em vídeo 360o: Orientação de Atenção e Enjoo de Movimento Induzido Visualmente (VIMS). Este trabalho de pesquisa é apoiado na construção de múltiplos artefactos para res- ponder as perguntas de pesquisa definidas: (1) IVRUX, uma ferramenta para análise de experiências narrativas imersivas em VR; (2) Cue Control, uma ferramenta para a criação de bandas sonoras de áudio espacial, enquanto permite a recolha e análise de métricas capturadas emergentes da experiencia de utilizador; e (3) canal para a mitigação de VIMS, uma sequência linear de módulos (incluindo fluxo ótico e SLAM visual entre outros) que controla parâmetros para modificações visuais como o campo de visão restringido. Estes artefactos estão acompanhados por estudos de avaliação direcionados para às perguntas de pesquisa definidas. Através do Cue Control, esta pesquisa mostra que música não- diegética pode ser espacializada para servir como orientação para os utilizadores. Uma espacialização parcial da música foi considerada ineficaz quando usada para a orientação. Adicionalmente, os nossos resultados demonstram que sons diegéticos são usados para notificação em vez de orientação. Através do canal para a mitigação de VIMS, esta pesquisa mostra que o campo de visão restrito e dinâmico é estatisticamente significante ao mitigar VIMS, enquanto mantem níveis desejados de Presença. Ambos Cue Control e o canal para a mitigação de VIMS emergiram de uma abordagem de Pesquisa através do Design (RtD), onde o artefacto IVRUX é o produto de conhecimento de design e deu direcção à pesquisa. A pesquisa apresentada nesta tese é de interesse para profissionais e investigadores tra- balhando em vídeo 360o e ajuda a delinear futuras direções em tornar o vídeo 360o um espaço de design rico para a interação e narrativa

    Analyzing the Impact of Spatio-Temporal Sensor Resolution on Player Experience in Augmented Reality Games

    Get PDF
    Along with automating everyday tasks of human life, smartphones have become one of the most popular devices to play video games on due to their interactivity. Smartphones are embedded with various sensors which enhance their ability to adopt new new interaction techniques for video games. These integrated sen- sors, such as motion sensors or location sensors, make the device able to adopt new interaction techniques that enhance usability. However, despite their mobility and embedded sensor capacity, smartphones are limited in processing power and display area compared to desktop computer consoles. When it comes to evaluat- ing Player Experience (PX), players might not have as compelling an experience because the rich graphics environments that a desktop computer can provide are absent on a smartphone. A plausible alternative in this regard can be substituting the virtual game world with a real world game board, perceived through the device camera by rendering the digital artifacts over the camera view. This technology is widely known as Augmented Reality (AR). Smartphone sensors (e.g. GPS, accelerometer, gyro-meter, compass) have enhanced the capability for deploying Augmented Reality technology. AR has been applied to a large number of smartphone games including shooters, casual games, or puzzles. Because AR play environments are viewed through the camera, rendering the digital artifacts consistently and accurately is crucial because the digital characters need to move with respect to sensed orientation, then the accelerometer and gyroscope need to provide su ciently accurate and precise readings to make the game playable. In particular, determining the pose of the camera in space is vital as the appropriate angle to view the rendered digital characters are determined by the pose of the camera. This defines how well the players will be able interact with the digital game characters. Depending in the Quality of Service (QoS) of these sensors, the Player Experience (PX) may vary as the rendering of digital characters are affected by noisy sensors causing a loss of registration. Confronting such problem while developing AR games is di cult in general as it requires creating wide variety of game types, narratives, input modalities as well as user-testing. Moreover, current AR games developers do not have any specific guidelines for developing AR games, and concrete guidelines outlining the tradeoffs between QoS and PX for different genres and interaction techniques are required. My dissertation provides a complete view (a taxonomy) of the spatio-temporal sensor resolution depen- dency of the existing AR games. Four user experiments have been conducted and one experiment is proposed to validate the taxonomy and demonstrate the differential impact of sensor noise on gameplay of different genres of AR games in different aspect of PX. This analysis is performed in the context of a novel instru- mentation technology, which allows the controlled manipulation of QoS on position and orientation sensors. The experimental outcome demonstrated how the QoS of input sensor noise impacts the PX differently while playing AR game of different genre and the key elements creating this differential impact are - the input modality, narrative and game mechanics. Later, concrete guidelines are derived to regulate the sensor QoS as complete set of instructions to develop different genres or AR games
    corecore