298 research outputs found

    When the fingers do the talking: A study of group participation for different kinds of shareable surfaces

    Get PDF
    and other research outputs When the fingers do the talking: A study of group par-ticipation for different kinds of shareable surface

    Group vs Individual: Impact of TOUCH and TILT Cross-Device Interactions on Mixed-Focus Collaboration

    Get PDF
    Cross-device environments (XDEs) have been devel-oped to support a multitude of collaborative activities. Yet, little is known about how different cross-device in-teraction techniques impact group collaboration; in-cluding their impact on independent and joint work that often occur during group work. In this work, we explore the impact of two XDE data browsing tech-niques: TOUCH and TILT. Through a mixed-methods study of a collaborative sensemaking task, we show that TOUCH and TILT have distinct impacts on how groups accomplish, and shift between, independent and joint work. Finally, we reflect on these findings and how they can more generally inform the design of XDEs.NSER

    Investigating the Impact of Co-located and Distributed Collaboration Using Multi-touch Tables

    Get PDF
    With the intention to study the role of new interfaces in multi-user applications, multi-touch tabletops are investigated to examine if they effectively aid their users in working together synchronously. Multi-player games are selected as a case of collaborative work. Early studies of distributed multi-touch tabletops did not cover the HCI related aspects associated with multi-player games, especially in distributed configuration. The performance, collaboration, and usability aspects of HCI are studied in this research. A simple multi-player maze game has been designed and implemented over two connected and physically separated multi-touch tabletops. The aim of this work is to investigate the effects of distribution on players performance, collaboration, and usability of multi-player games over multi-touch tabletops, compared to playing in a co-located condition. Groups of participants have been randomly selected and assigned to play the game in pairs under two conditions: co-located where two players are playing the game on the same table, and distributed where they are playing the game but on separate tables. The collected data is statistically analysed to test for differences between the two conditions, as well as the differences of the strength of the correlation between the underlying factors. The results indicate that, in general, the differences are not significant for such type of applications if a simple and efficient communication mechanism is provided for the players in the distributed condition. Players expressed almost the same level of usability engagement and enjoyment for the two conditions. This may have a strong impact on the HCI aspects when designing such type of applications on the future

    Using natural user interfaces to support synchronous distributed collaborative work

    Get PDF
    Synchronous Distributed Collaborative Work (SDCW) occurs when group members work together at the same time from different places together to achieve a common goal. Effective SDCW requires good communication, continuous coordination and shared information among group members. SDCW is possible because of groupware, a class of computer software systems that supports group work. Shared-workspace groupware systems are systems that provide a common workspace that aims to replicate aspects of a physical workspace that is shared among group members in a co-located environment. Shared-workspace groupware systems have failed to provide the same degree of coordination and awareness among distributed group members that exists in co-located groups owing to unintuitive interaction techniques that these systems have incorporated. Natural User Interfaces (NUIs) focus on reusing natural human abilities such as touch, speech, gestures and proximity awareness to allow intuitive human-computer interaction. These interaction techniques could provide solutions to the existing issues of groupware systems by breaking down the barrier between people and technology created by the interaction techniques currently utilised. The aim of this research was to investigate how NUI interaction techniques could be used to effectively support SDCW. An architecture for such a shared-workspace groupware system was proposed and a prototype, called GroupAware, was designed and developed based on this architecture. GroupAware allows multiple users from distributed locations to simultaneously view and annotate text documents, and create graphic designs in a shared workspace. Documents are represented as visual objects that can be manipulated through touch gestures. Group coordination and awareness is maintained through document updates via immediate workspace synchronization, user action tracking via user labels and user availability identification via basic proxemic interaction. Members can effectively communicate via audio and video conferencing. A user study was conducted to evaluate GroupAware and determine whether NUI interaction techniques effectively supported SDCW. Ten groups of three members each participated in the study. High levels of performance, user satisfaction and collaboration demonstrated that GroupAware was an effective groupware system that was easy to learn and use, and effectively supported group work in terms of communication, coordination and information sharing. Participants gave highly positive comments about the system that further supported the results. The successful implementation of GroupAware and the positive results obtained from the user evaluation provides evidence that NUI interaction techniques can effectively support SDCW

    Group reaching over digital tabletops with digital arm embodiments

    Get PDF
    In almost all collaborative tabletop tasks, groups require coordinated access to the shared objects on the table’s surface. The physical social norms of close-proximity interactions built up over years of interacting around other physical bodies cause people to avoid interfering with other people (e.g., avoiding grabbing the same object simultaneously). However, some digital tabletop situations require the use of indirect input (e.g., when using mice, and when supporting remote users). With indirect input, people are no longer physically embodied during their reaching gestures, so most systems provide digital embodiments – visual representations of each person – to provide feedback to both the person who is reaching and to the other group members. Tabletop arm embodiments have been shown to better support group interactions than simple visual designs, providing awareness of actions to the group. However, researchers and digital tabletop designers know little of how the design of digital arm embodiments affects the fundamental group tabletop interaction of reaching for objects. Therefore, in this thesis, we evaluate how people coordinate their interactions over digital tabletops when using different types of embodiments. Specifically, in a series of studies, we investigate how the visual design (what they look like) and interaction design (how they work) of digital arm embodiments affects a group’s coordinative behaviours in an open- ended parallel tabletop task. We evaluated visual factors of size, transparency, and realism (through pictures and videos of physical arms), as well as interaction factors of input and augmentations (feedback of interactions), in both a co-located and distributed environment. We found that the visual design had little effect on a group’s ability to coordinate access to shared tabletop items, that embodiment augmentations are useful to support group coordinative actions, and that there are large differences when the person is not physically co-present. Our results demonstrate an initial exploration into the design of digital arm embodiments, providing design guidelines for future researchers and designers to use when designing the next generation of shared digital spaces

    Issues and techniques for collaborative music making on multi-touch surfaces

    Get PDF
    A range of systems exist for collaborative music making on multi-touch surfaces. Some of them have been highly successful, but currently there is no systematic way of designing them, to maximise collaboration for a particular user group. We are particularly interested in systems that will engage novices and experts. We designed a simple application in an initial attempt to clearly analyse some of the issues. Our application allows groups of users to express themselves in collaborative music making using pre-composed materials. User studies were video recorded and analysed using two techniques derived from Grounded Theory and Content Analysis. A questionnaire was also conducted and evaluated. Findings suggest that the application affords engaging interaction. Enhancements for collaborative music making on multi-touch surfaces are discussed. Finally, future work on the prototype is proposed to maximise engagement

    Designing for Shareable Interfaces in the Wild

    Get PDF
    Despite excitement about the potential of interactive tabletops to support collaborative work, there have been few empirical demonstrations of their effectiveness (Marshall et al., 2011). In particular, while lab-based studies have explored the effects of individual design features, there has been a dearth of studies evaluating the success of systems in the wild. For this technology to be of value, designers and systems builders require a better understanding of how to develop and evaluate tabletop applications to be deployed in real world settings. This dissertation reports on two systems designed through a process that incorporated ethnography-style observations, iterative design and in the wild evaluation. The first study focused on collaborative learning in a medical setting. To address the fact that visitors to a hospital emergency ward were leaving with an incomplete understanding of their diagnosis and treatment, a system was prototyped in a working Emergency Room (ER) with doctors and patients. The system was found to be helpful but adoption issues hampered its impact. The second study focused on a planning application for visitors to a tourist information centre. Issues and opportunities for a successful, contextually-fitted system were addressed and it was found to be effective in supporting group planning activities by novice users, in particular, facilitating users’ first experiences, providing effective signage and offering assistance to guide the user through the application. This dissertation contributes to understanding of multi-user systems through literature review of tabletop systems, collaborative tasks, design frameworks and evaluation of prototypes. Some support was found for the claim that tabletops are a useful technology for collaboration, and several issues were discussed. Contributions to understanding in this field are delivered through design guidelines, heuristics, frameworks, and recommendations, in addition to the two case studies to help guide future tabletop system creators

    Collaborative behavior, performance and engagement with visual analytics tasks using mobile devices

    Get PDF
    Interactive visualizations are external tools that can support users’ exploratory activities. Collaboration can bring benefits to the exploration of visual representations or visu‐ alizations. This research investigates the use of co‐located collaborative visualizations in mobile devices, how users working with two different modes of interaction and view (Shared or Non‐Shared) and how being placed at various position arrangements (Corner‐to‐Corner, Face‐to‐Face, and Side‐by‐Side) affect their knowledge acquisition, engagement level, and learning efficiency. A user study is conducted with 60 partici‐ pants divided into 6 groups (2 modes×3 positions) using a tool that we developed to support the exploration of 3D visual structures in a collaborative manner. Our results show that the shared control and view version in the Side‐by‐Side position is the most favorable and can improve task efficiency. In this paper, we present the results and a set of recommendations that are derived from them

    Mechanisms for collaboration: a design and evaluation framework for multi-user interfaces

    Get PDF
    Multi-user interfaces are said to provide “natural” interaction in supporting collaboration, compared to individual and noncolocated technologies. We identify three mechanisms accounting for the success of such interfaces: high awareness of others' actions and intentions, high control over the interface, and high availability of background information. We challenge the idea that interaction over such interfaces is necessarily “natural” and argue that everyday interaction involves constraints on awareness, control, and availability. These constraints help people interact more smoothly. We draw from social developmental psychology to characterize the design of multi-user interfaces in terms of how constraints on these mechanisms can be best used to promote collaboration. We use this framework of mechanisms and constraints to explain the successes and failures of existing designs, then apply it to three case studies of design, and finally derive from them a set of questions to consider when designing and analysing multi-user interfaces for collaboration

    Evaluation of the influence of personality types on performance of shared tasks in a collaborative environment

    Get PDF
    Computer Supported Cooperative Work (CSCW) is an area of computing that has been receiving much attention in recent years. Developments in groupware technology, such as MERL’s Diamondtouch and Microsoft’s Surface, have presented us with new, challenging and exciting ways to carry out group tasks. However, these groupware technologies present us with a novel area of research in the field of computing – that being multi-user Human-Computer Interaction (HCI). With multi-user HCI, we no longer have to cater for one person working on their own PC. We must now consider multiple users and their preferences as a group in order to design groupware applications that best suit the needs of that group. In this thesis, we aim to identify how groups of two people (dyads), given their various personality types and preferences, work together on groupware technologies. We propose interface variants to both competitive and collaborative systems in an attempt to identify what aspects of an interface or task best suit the needs of the different dyads, maximising their performance and producing high levels of user satisfaction. In order to determine this, we introduce a series of user experiments that we carried out with 18 dyads and analyse their performance, behaviour and responses to each of 5 systems and their respective variants. Our research and user experiments were facilitated by the DiamondTouch – a collaborative, multi-user tabletop device
    corecore