1,541 research outputs found

    Monitoring extensions for component-based distributed software

    Get PDF
    This paper defines a generic class of monitoring extensions to component-based distributed enterprise software. Introducing a monitoring extension to a legacy application system can be very costly. In this paper, we identify the minimum support for application monitoring within the generic components of a distributed system, necessary for rapid development of new monitoring extensions. Furthermore, this paper offers an approach for design and implementation of monitoring extensions at reduced cost. A framework of basic facilities supporting the monitoring extensions is presented. These facilities handle different aspects critical to the monitoring process, such as ordering of the generated monitoring events, decoupling of the application components from the components of the monitoring extensions, delivery of the monitoring events to multiple consumers, etc.\ud The work presented in this paper is being validated in the prototype of a large distributed system, where a specific monitoring extension is built as a tool for debugging and testing the application behaviour.\u

    Adaptive object management for distributed systems

    Get PDF
    This thesis describes an architecture supporting the management of pluggable software components and evaluates it against the requirement for an enterprise integration platform for the manufacturing and petrochemical industries. In a distributed environment, we need mechanisms to manage objects and their interactions. At the least, we must be able to create objects in different processes on different nodes; we must be able to link them together so that they can pass messages to each other across the network; and we must deliver their messages in a timely and reliable manner. Object based environments which support these services already exist, for example ANSAware(ANSA, 1989), DEC's Objectbroker(ACA,1992), Iona's Orbix(Orbix,1994)Yet such environments provide limited support for composing applications from pluggable components. Pluggability is the ability to install and configure a component into an environment dynamically when the component is used, without specifying static dependencies between components when they are produced. Pluggability is supported to a degree by dynamic binding. Components may be programmed to import references to other components and to explore their interfaces at runtime, without using static type dependencies. Yet thus overloads the component with the responsibility to explore bindings. What is still generally missing is an efficient general-purpose binding model for managing bindings between independently produced components. In addition, existing environments provide no clear strategy for dealing with fine grained objects. The overhead of runtime binding and remote messaging will severely reduce performance where there are a lot of objects with complex patterns of interaction. We need an adaptive approach to managing configurations of pluggable components according to the needs and constraints of the environment. Management is made difficult by embedding bindings in component implementations and by relying on strong typing as the only means of verifying and validating bindings. To solve these problems we have built a set of configuration tools on top of an existing distributed support environment. Specification tools facilitate the construction of independent pluggable components. Visual composition tools facilitate the configuration of components into applications and the verification of composite behaviours. A configuration model is constructed which maintains the environmental state. Adaptive management is made possible by changing the management policy according to this state. Such policy changes affect the location of objects, their bindings, and the choice of messaging system

    Using real options to select stable Middleware-induced software architectures

    Get PDF
    The requirements that force decisions towards building distributed system architectures are usually of a non-functional nature. Scalability, openness, heterogeneity, and fault-tolerance are examples of such non-functional requirements. The current trend is to build distributed systems with middleware, which provide the application developer with primitives for managing the complexity of distribution, system resources, and for realising many of the non-functional requirements. As non-functional requirements evolve, the `coupling' between the middleware and architecture becomes the focal point for understanding the stability of the distributed software system architecture in the face of change. It is hypothesised that the choice of a stable distributed software architecture depends on the choice of the underlying middleware and its flexibility in responding to future changes in non-functional requirements. Drawing on a case study that adequately represents a medium-size component-based distributed architecture, it is reported how a likely future change in scalability could impact the architectural structure of two versions, each induced with a distinct middleware: one with CORBA and the other with J2EE. An option-based model is derived to value the flexibility of the induced-architectures and to guide the selection. The hypothesis is verified to be true for the given change. The paper concludes with some observations that could stimulate future research in the area of relating requirements to software architectures

    Security in a Distributed Processing Environment

    Get PDF
    Distribution plays a key role in telecommunication and computing systems today. It has become a necessity as a result of deregulation and anti-trust legislation, which has forced businesses to move from centralised, monolithic systems to distributed systems with the separation of applications and provisioning technologies, such as the service and transportation layers in the Internet. The need for reliability and recovery requires systems to use replication and secondary backup systems such as those used in ecommerce. There are consequences to distribution. It results in systems being implemented in heterogeneous environment; it requires systems to be scalable; it results in some loss of control and so this contributes to the increased security issues that result from distribution. Each of these issues has to be dealt with. A distributed processing environment (DPE) is middleware that allows heterogeneous environments to operate in a homogeneous manner. Scalability can be addressed by using object-oriented technology to distribute functionality. Security is more difficult to address because it requires the creation of a distributed trusted environment. The problem with security in a DPE currently is that it is treated as an adjunct service, i.e. and after-thought that is the last thing added to the system. As a result, it is not pervasive and therefore is unable to fully support the other DPE services. DPE security needs to provide the five basic security services, authentication, access control, integrity, confidentiality and non-repudiation, in a distributed environment, while ensuring simple and usable administration. The research, detailed in this thesis, starts by highlighting the inadequacies of the existing DPE and its services. It argues that a new management structure was introduced that provides greater flexibility and configurability, while promoting mechanism and service independence. A new secure interoperability framework was introduced which provides the ability to negotiate common mechanism and service level configurations. New facilities were added to the non-repudiation and audit services. The research has shown that all services should be security-aware, and therefore would able to interact with the Enhanced Security Service in order to provide a more secure environment within a DPE. As a proof of concept, the Trader service was selected. Its security limitations were examined, new security behaviour policies proposed and it was then implemented as a Security-aware Trader, which could counteract the existing security limitations.IONA TECHNOLOGIES PLC & ORANG

    Frameworks for Component-based Simulation

    Get PDF
    AbstractThe need to reduce development costs of simulation models has led to recent efforts for setting simulation standards that foster model reuse and interoperability. Specifically, the High Level Architecture (HLA) is a new simulation standard supported by the US Defense Modeling and Simulation Office (DMSO). It has been adopted as the standard technical architecture for all US Department of Defense simulations. In the meantime, the commercial sector has had successful efforts in developing enabling technologies for distributed computing; namely, the Common Object Request Broker Architecture (CORBA) by the Object Management Group (OMG). CORBA is a large and complex set of specifications and protocols that utilizes the objectoriented paradigm to achieve distributed object-oriented computing environments that allow object interoperability and reuse. When used as an infrastructure for simulation model reuse and interoperability, both HLA and CORBA exhibit merits and limitations. Since HLA and CORBA were developed independently, need exists for a comparative evaluation of the two architectures as a basis for component-based simulation. In this paper, both HLA and CORBA are presented in the context of component-based simulation model development and interoperability. The two architectures are compared against four comparison criteria that are related to their conceptual foundation and design

    A web services based framework for efficient monitoring and event reporting.

    Get PDF
    Network and Service Management (NSM) is a research discipline with significant research contributions the last 25 years. Despite the numerous standardised solutions that have been proposed for NSM, the quest for an "all encompassing technology" still continues. A new technology introduced lately to address NSM problems is Web Services (WS). Despite the research effort put into WS and their potential for addressing NSM objectives, there are efficiency, interoperability, etc issues that need to be solved before using WS for NSM. This thesis looks at two techniques to increase the efficiency of WS management applications so that the latter can be used for efficient monitoring and event reporting. The first is a query tool we built that can be used for efficient retrieval of management state data close to the devices where they are hosted. The second technique is policies used to delegate a number of tasks from a manager to an agent to make WS-based event reporting systems more efficient. We tested the performance of these mechanisms by incorporating them in a custom monitoring and event reporting framework and supporting systems we have built, against other similar mechanisms (XPath) that have been proposed for the same tasks, as well as previous technologies such as SNMP. Through these tests we have shown that these mechanisms are capable of allowing us to use WS efficiently in various monitoring and event reporting scenarios. Having shown the potential of our techniques we also present the design and implementation challenges for building a GUI tool to support and enhance the above systems with extra capabilities. In summary, we expect that other problems WS face will be solved in the near future, making WS a capable platform for it to be used for NSM

    A distributed computing environment (DCE) based object request broker

    Get PDF
    Includes bibliographical references.Object oriented technology has moved beyond being a tool for design and programming and is now being used to implement enterprise wide computer systems. Also, there has been a move from centralised mainframe systems to distributed computing due to the advent of more powerful workstations and faster, more reliable networks. The integration of object oriented technology and distributed computing is becoming a generally accepted method for implementing networked computer solutions. The purpose of the research presented in this thesis is to investigate how the evolving object oriented technologies can build upon the current distributed computing technology by using there underlying infrastructure and then to implement a CORBA compliant distributed Object Request Broker. This involves the design and implementation of a compiler which maps CORBA objects to DCE remote procedure calls. Our objective is to investigate the operation of a distributed object implementation and in particular the performance which can be achieved by a DCE-based Object Request Broker which is CORBA compliant

    CORBA: a middleware for an heterogeneous cooperative system

    Get PDF
    Two kinds of heterogeneities interfere with the integration of different information sources, those in systems and those in semantics. They generate different problems and require different solutions. This paper tries to separate them by proposing the usage of a distinct tool for each one (i.e. CORBA and BLOOM respectively), and analizing how they could collaborate. CORBA offers lots of ways to deal with distributed objects and their potential needs, while BLOOM takes care of the semantic heterogeneities. Therefore, it seems promising to handle the system heterogeneities by wrapping the components of the BLOOM execution architecture into CORBA objects.Postprint (published version
    corecore