CORBA: A middleware for an heterogeneous cooperative system

Alberto Abellé
Dept. Llenguatges 1 Sistemes Informatics

Universitat Politecnica de Catalunya

May 21, 1999

Abstract

Two kinds of heterogeneities interfere with the integration of different information sources, those in
systems and those in semantics. They generate different problems and require different solutions. This
paper tries to separate them by proposing the usage of a distinct tool for each one (i.e. CORBA and
BLOOM respectively), and analizing how they could collaborate. CORBA offers lots of ways to deal with
distributed objects and their potential needs, while BLOOM takes care of the semantic heterogeneities.
Therefore, it seems promising to handle the system heterogeneities by wrapping the components of the
BLOOM execution architecture into CORBA objects.

Contents

1 Introduction 1
1.1 Needs of integration L e e 1
1.2 A distributed cooperative system architecture 0 ... 2
1.3 Distributed object systems L L e e 4
1.4 Outline of the paper e e 5
1.5 Acknowledgments L L e 6

2 Object Management Group solution 7
2.1 HIiStory o e e e e e e e e e e e e e e e 7
2.2 Billof purposes e e e e e e e e 8
2.3 General architecture L L e 10
2.4 Broker architecture L e e 12

2.4.1 Knowing interfaces at compile time oo oo 0oL 16
2.4.2 Discovering interfacesonthe fly oo oo L. 17
2.5 SETVICES . . L o e e e e e e e e e e e e e e e 18

251 Uptillnow o o e e e 19

2.5.2 Todolist o i e e 23
2.6 Using the Object Request Broker o . 25
2.6.1 ThelInterface e e 26
2.6.2 The Object Implementation 0. 28
2.6.3 The Client e e 30
2.7 Let’s stick to realities oL e 32
CORBA in heterogeneous DBMSs 36
3.1 HEROS .« . o e e 36
3.1.1 CORBA specific decisions made L o o oo 38
3.2 MIND o e e 38
3.2.1 CORBA specific decisions made L o o oo 41
3.3 BLOOM e e 41
3.4 Others . . . o e e 45
CORBA in the persistence of data 46
4.1 The different ways e e 46
4.1.1 “Classical” three-tier approach oL 47
4.1.2 Just an Object Database Adapter 48
4.1.3 Object loaders e e e 49
4.1.4 Persistence through externalization 50

il

4.1.5 The Persistent Object Service

4.1.6 The Object Query Service . .

4.2 Meeting BLOOM

5 Conclusions

5.1 Two storage trends

5.2 Squaring CORBA and BLOOM

Glossary

Bibliography

A Service IDL interfaces

A.1 Externalization Service

A.2 Persistent Object Service

A.3 Object Query Service

iii

60

60

61

63

66

69

List of Figures

1.1

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.1

4.1

4.2

4.3

Reference execution architecture [ROSCI7] 2
Object Management Architecture schema [OMG95] 10
OMA components calls.o L e 11
Common Object Request Broker Architecture oo o 0 0. 13
ORBrole e 16
Code generation process it e e e e e e 26
Example of interface mapped to Java [OH98] 27
Example of server code [OH98] 29
Example of client code [OHI8] 31
Example of DIT code [OH98] e 32
MIND global view [DDKTO6] oo it e e 40
Three-tier architecture with and without CORBA 47
Components of the POS [OMG98] i 53
BLOOM-0OQS architecture e 58

v

List of Tables

2.1 Commercial ORBs scorecard (Source: Standish Group, February, 1997) [OHE97]

Chapter 1

Introduction

1.1 Needs of integration

Companies are faced with rapidly evolving technology which offers a wealth of new opportunities for
those companies that can move swiftly and evolve quickly. The faster a company adapts its structure to

the ever changing market, the more it rises its benefits.

Within this frame, information had become a cornerstone in business. Everybody needs to know what
is happening in order to react. This means an enterprise needs to take advantage of its information
systems in order to gain competitivity. Probably, the needed information is already there, you just have
to find and use it in the proper way. This model of business requires new and creative uses of computer

technology.

That needed information should be obtained at the lower cost. Nowadays, while the cost of hardware
is decreasing, the cost of software is increasing. This makes people think about reusing the existing
applications instead of just throwing them away and doing everything from scratch. Reusing seems to be

a solution.

However, those already existing applications were not exactly thought as interoperating between them.
The problem is even worst if the applications are running on a network of different machines with differ-
ent operating systems. Moreover, every application could have been done using a different programming
language, as well. Diversity in hardware and software is a fact of life. As explained in [Vin97], het-
erogeneity is the result of several factors: different people across an enterprise often choose different

solutions to similar problems; consumers tend to buy the systems that best fulfill their requirements at

the most reasonable price, regardless of who makes them; over time, purchasing decisions accumulate,
and already-purchased systems may be too critical or too costly to replace. You need tools to harmonize

the pieces of this puzzle, to solve those heterogeneities.

1.2 A distributed cooperative system architecture

In order to make all the applications in a company or group of companies work together, a really good
glue is needed. Since it will be for sure a distributed and heterogeneous set of systems, a “supersystem”
hidding its actual complexity will have to be built on top of the existing applications. This proposed
extra layer is called “Federation” in [SL90] and presents the set of information systems as a whole (to

the federated users at least).

Federated Query Federated Result
A
B '_E - __)| Security Controller
¢ User schema
D - u L + D
mappingsamong | 1 gL 1_ reomings
| USand ES | Query Transformer apping |
R - T Fed. schema) R
mappingsamong) | | | | . .
B |_Fsandcss meppings
C — C
M P
T [mappings among A QUERY Com. schema T
CSsandNSs | [T~ T T~ L Query Trandator MANAGER - o
° N / \ mappings
R A \ R
y | mappings among G CA IR B v
FSLandCsts | [[E~~ _>| Level Security Trans!ator|
R

TRANSACTION MANAGER

PN

Control Seg
DBMSK

Figure 1.1: Reference execution architecture [ROSC97]

The last end of this paper is finding the way to build the federation by means of the architecture described

in [ROSC97]. Figure 1.1 describes the process followed by a given query in that Federated DataBase
Management System (FDBMS).

This architecture allows two kinds of queries: those coming from federal users and those that the local
users send to their local databases. We will focus in the former since the local queries are not an extra

problem because the federation preserves the autonomy of the component databases.

Firstly, the Federated Query arrives to the Security Controller which checks the User Schema to see if it is
authorized at its security level. If the query is authorized, it passes to the Query Transformer to translate
it from the User Schema (expressed in the model chosen by the user) to the Federated Schema (expressed
in the canonical model, let’s say BLOOM). Once the query is expressed in terms of the Federated Schema,
it is decomposed by the Query Decomposer into subqueries, each one of them accessing exactly one of the
Component DataBases (CDBs). Before sending the subqueries to the CDBs, they should be expressed
in terms of the respective Local Schema. This translation is done by the Query Translator. Finally, the
Level Security Translator changes the federated security level tags by the given component security levels

tags.

The Transaction Manager assumes the responsibility for executing the subqueries on each CDB and

getting the results from them, following the rules in a given transaction model.

Once the Transaction Manager has got the subresults, these must be stuck together to build the result
of the original Federated Query. This means, more or less, undo the steps to decompose the query, but
skiping the security controls. Firstly, the subresults have to be translated from the given local model to
the canonical data model (done by the Subresult Translator). The subresults expressed in the canonical
model are passed to the Result Consolidator that obtains the final result. This is not enough since the
result coming out from the Result Consolidator must be expressed in terms of the federated user model.

The Result Transformer does that and, finally, obtains the Federated Result.

When you have this complex architecture, the problem is how to build it. It could be the case that all
the databases are running on a single mainframe, what would make it much more easy. However, that
assumption is not realistic. The different CDBs will be wide through a, maybe, huge network, running
on different machines and with full autonomy. It could even be the case that some of those machines
hosting the CDBs, are neither accepting any modification nor any extra piece of software to be connected
to the federation. Those CDBs could be migrated from one machine to another, too. New CDBs could

join the federation as well as some DBs could leave it.

Summing up, we need a really flexible system that allow us to tie together all those components and

modules while let us scatter and modify them if necesary. Dealing with heterogeneity is rarely easy.

1.3 Distributed object systems

Heterogeneity is not a bad thing if you know how to handle it. It enables us to use the best combination
of hardware and software components for each portion of the enterprise. It is just a problem of having a

standard protocol for interoperability and portability between the components.

Probably, the most important proposed solution is the distributed object systems. The well-known
advantages of objects are of use here. It is, roughtly, a client-server architecture with code encapsulated
into independent objects which can be placed anywhere in a network. As defined in [OMG95], an object
system is a collection of objects that isolates the requestors of services (clients) from the providers of
services (servers) by a well-defined encapsulating interface. As components, those isolated objects can be

used as building blocks for larger applications (just bigger objects).

Object-Oriented software is easier to modify than software written using other techniques. Some interfaces
or implementations could be changed without requiring global changes. This is really important at the

enterprise level, where changes are prohibitively expensive to make.

Some different attempts had been shipped to the market. Of course, Microsoft proposed its Component
Object Model (COM) and Object Linking and Embedding (OLE). Independently of its advantages, it is
a proprietary solution and, definitely, that is not good for an heterogeneous and flexible system. It would

go against one of the main requirements of a federation: no assumptions about the CDBs.

Another distributed object system is Remote Method Invocation (RMI), a Java solution [Sri97]. Despite
it is a proprietary system as well (Sun Microsystems), Java is intended to run everywhere. Besides, it

does not try to compete against anybody but, rather, fill holes left by others.

RMI lets us create a Java object on a given machine and communicate with it as you normally would,
because it is no more than an extension of Java itself. Tts pros are its cons: both ends (i.e. client and
server) must be written in Java and this forces us to re-implement our legacy applications, which is exactly
what we were trying to avoid. Another problem with RMI is that objects are not automatically started
upon invocation. The RMI registry must be started by hand as well as every server object. Moreover,
it locks you into a Java only solution. Take into account Java is interpreted rather than compiled and it

means slowness.

Don’t worry, the perfect solution is already here. Its name is CORBA, which stands for Common
Object Request Broker Architecture. It is an open solution controlled by the members of the Object
Management Group (OMG). Almost all (either small or big) computer related companies are associated

to this organization (i.e. Digital, Object Design, IONA Technologies, Sun Microsystems, Hewlett-Packard,

... but Microsoft is not).

As explained in [Bak97], CORBA has two aims. Firstly, it makes easier to implement new applications
that must place components on differents hosts on the network, or use different programming languages.
Secondly, it encourages the writing of open applications, which might be used as components of larger
systems. Fach application is made up of components, and integration is supported by allowing other

applications to communicate directly with these components.

CORBA is not an implementation standard but a communication protocol. It says how the object
interface must be, rather than how it should be implemented. It means you just need to know what you
will give to an object and what you will get from the object in return. Therefore, if some objects share
the same interface, they are interchangeable. Those interfaces are defined using the Interface Definition
Language (IDL).

The CORBA standard does not say anything about the implementation of the objects. They could be
implemented even in a non-Object Oriented language (e.g. C). In order to implement an object in a given
language, you just need a correspondence between IDL and the language. Up to now, correspondences
had been defined with C, C4++, Smalltalk and Java (that’s it, the portability of Java and the acceptance
of CORBA can be mixed together). Correspondences with other languages will be defined in the future.

CORBA does not exclude the use of other solutions (i.e. COM/OLE, Java/RMI, etc.), rather it makes
easy to use them. It is a big umbrella which shelters everything and everybody. As a consensuated
solution, it has the potential of subsuming every other form of existing client/server middleware. For

instance, CORBA integration with OLE and Java is described in [Bak97], [OH98] and [KS98].

The aim of this paper is not presenting and comparing different distributed object architectures but
finding a promising way to build a federated architecture. To this purpose, it seems much better not to
be tied to a proprietary solution. Therefore, we will focus on CORBA because its broad acceptance and

its standard role.

1.4 Outline of the paper

1. Introduction: Gives a brief overview of the problem, and introduces the BLOOM execution archi-

tecture as well as some distributed object systems.

2. Object Management Group solution: Explains the OMG history and its proposed architecture
(OMA). The OMA is broken into small pieces, step by step. Firstly, the general architecture
is introduced, afterwards CORBA is explained, the different services listed, finishing by giving

concrete examples of the connection to the CORBA system, and a brief overview of some ORB

implementations.

3. CORBA in heterogeneous DBMSs: Presents how CORBA is (or could be) used in building three
different FDBMSs (i.e. HEROS from Brazil, MIND from Turkey, and finally our beloved BLOOM).

4. CORBA in the persistence of data: Analizes the different ways to get data persistence in a CORBA
system, and tries to apply them to the BLOOM execution architecture.

5. Conclusions: contains a reflection on the “political” problems of CORBA, and on how BLOOM
and CORBA match.

In the last pages you can find a glossary (with the acronyms, and main terms used), the bibliography,

and the IDL CORBA interfaces of a couple of interesting services.

1.5 Acknowledgments

This work was partially supported by a grant of the Comissionat per a Universitats i Recerca de la

Generalitat de Catalunya and the Spanish PRONTIC programme (under project TIC96-0903).

Chapter 2

Object Management Group solution

2.1 History

Due to the increasing amount of programming interfaces and packages in the market and the lack of
a standards to facilitate the integration of systems in a distributed heterogeneous environment, the
Object Management Group (OMG) was founded in April 1989. Tt is a consortium of computer-involved
companies, located in Framingham (Massachusetts, USA), currently supported by over 700 members,
including information system vendors, software developers and users. Those members range from giants
of hardware and software industry to tiny companies barely starting up. At present, it has become the

largest information technology consortium in the world.

As can be read in [OMG95], OMG’s objectives are to foster the growth of object technology and influence
its direction by establishing the Object Management Architecture (OMA). The OMA provides the con-
ceptual infrastructure upon which all OMG specializations are based. Primary goals are the reusability,

portability, and interoperability of object-based software in distributed, heterogeneous environments.

The OMG does not actually produce any software, only specifications. In order to agree on the standard
protocols and interfaces, the OMG issues Requests For Proposals (RFPs) and Requests For Information
(RFTs), asking for detailed specifications of extensions to the standard. As a response to those requests,
each member (or subset of members) can submit its proposal. Each submission must specify how the
standard should be extended and how the extension is going to be used (defining neutral IDL interfaces).

It must not define the implementation of the given extension.

A period of time (around a year) begins for each proposer to complete the submission, or merge it with

the proposals from others. During that period of time, the proposals use to be merged into a single
proposal, which is then voted by the OMG members. If that is not the case, and there are more than one
final proposal, one is selected by successive vote of the Task Force and the Technical Committee. Finally,

the OMG Board of Directors declares the successful proposal to be the official specification.

The standardization process encourages the participation of everybody and drives them towards consen-
sus. Although, at the beginning of it, every company works individually or in small groups, a single agreed
proposal is the most common ending. For example, the original CORBA specification was a consensus
submission from six companies, and the first set of CORBA services was cosubmitted by eleven. The
“Common” in CORBA stands for two API proposals: one coming from HyperDesk and Digital, based on
a dynamic API; and another based on a static APl coming from Sun and Hewlett-Packard. That is why
CORBA supports dynamic as well as static method invocation, both were mixed together into a single

respomnse.

Once a standard has been agreed, companies that submit the successful proposal must ship a commercial
implementation within a year. At the same time or later on, it can be implemented by any company
(OMG member or not), without paying anything to the OMG. The OMG itself does not implement any
of its standards, and it stays neutral between the different vendors providing implementations. However,
it has committees to maintain and change the specification if needed. That does not mean the standard

changes every day. It is not subject to frequent changes.

As can be inferred from this process and who is in it, the OMG adopts specifications based on commercially
available object technology. They try to be stuck to realities and get implementations in the market as

soon as possible. A full example of the process is found in [Ses96].

An Object Management Architecture Guide was published in 1990. The first CORBA specification was
adopted by the OMG in October 1991, and its first full implementation was released in July 1993.
CORBA 2.0 was adopted in December 1994. During 1996, the Internet Inter-ORB Protocol (ITOP) was
adopted to allow the communication between different implementations of the ORB (possibly running on

different machines). All of it is rapidly growing up.

2.2 Bill of purposes

e Some desirable general properties of the object system we are talking about are listed in [Bak97]:

— Objects must be simple to create.
— Objects must be of any size.

— Access to objects must be efficient.

— It should allow you to invoke methods on server objects using your high-level language of

choice.
— An object must be accessible from any programming language (either OO or not).
— Many programming languages must be supported.
— Objects must be accessible across a network.
— It should provide local/remote transparency.

— An object must be accessible from any operating system, not just the one that the object itself

is running on.
— Objects must be supported by the current commercial operating systems.
— Objects must be accessible from Web-based clients.
— The message details must be hidden.
— Tt should provide polymorphic messages (they should be pointed to a concrete object).
— An interface must be simple to implement.

— Easy encapsulation of existing applications must be provided (by means of the separation of

object definition and implementation).
— The system must interact with other object-oriented systems (e.g. ODBMS).
— The system must be able to work with non-object-oriented systems (e.g. RDBMS).
— Invocations must be secure.
— It must be easy to give objects high-level symbolic names.
— It must be possible to find an object by giving a description of it.
— Distributed transactions must be supported.
— It must be possible to obtain type information at runtime, the system should be self-describing.
— It must allow both, static and dynamic method invocations.
— The system must have wide industrial acceptance.
— The system must be based on a non-proprietary standard.

— It must be available from multiple suppliers.
much more pragmatic list singing the praises of the OMA is in [Sie96]:
— The object-oriented paradigm meshes with software “best practice” from the start of the de-

velopment cycle to the end, when the objects are deployed in a distributed object environment.

— It maximizes programmer productivity: provides a sophisticated base, with transparent dis-

tribution and easy access to components.

— Developers create or assemble application objects, taking advantage of every component.

— Programmers can build new objects by making incremental modifications to existing ones

without having to recode the parts that already work.
— Helps code reuse in new or dynamically reconfigured applications.

— The system lets you take advantage of all the tools you have bought, from hardware to de-
velopment software. Give them an interface and a thin layer of wrapper code, and legacy

applications come into the environment on an equal basis with your new software components.

— You can mix and match tools within a project, using any for a given kind of component (i.e.

GUI) and another one for the rest (i.e. business code).

2.3 General architecture

The task of the OMG was huge and hard: they where trying to put the software industry on the right
track. If they wanted to get the support of the vast majority of the companies in the market, they needed
a general architecture where everybody fit and which clearly mark the route to follow. With the idea of
giving a solid and general framework that define the frontiers and interfaces between different producers,

they began defining the OMA.

Application Objects Common Facilities

OBJECT REQUEST BROKER

Object Services

Figure 2.1: Object Management Architecture schema [OMG95]

The OMA provides the conceptual underlying structure, terms and definitions upon which all OMG
specifications are based. It is composed of an Object Model and a Reference Model. The Object Model
defines an object as an encapsulated entity with a distinct identity whose services can be accessed only

through well-defined interfaces. In [OMG95] you can find a description of the different components of the

10

Reference Model (i.e. Object Services, Common Facilities and Application Objects), depicted in figure
2.1:

Object Services, a collection of services (interfaces and objects) that support basic functions for using
and implementing objects. Services are necessary to construct any distributed application and
are always independent of application domains. It includes the lower level and most crucial object
interfaces. They are though as being used by other objects. A short description of available services

is listed in section 2.5.

Common Facilities, a collection of services that many applications may share, but which are not as
fundamental as the Object Services. They are though as being used directly by the applications.
An example of Common Facility could be a management system for e-mail. Two kinds of facilities

are distinguished:

Horizontal Facilities, which can be used by virtually every business (enterprise-wide).

Vertical Facilities, which standardizes management of information specialized to particular in-

dustry groups (industry-specific).

Application Objects, which are products of a single vendor on in-house development group which
control their interfaces. Application Objects correspond to the traditional notion of applications, so
they are not standardized by OMG. Instead, Application Objects constitute the uppermost layer of
the Reference Model and they are though as being used directly by the end-user.

Object Request Broker is the core of the model, which enables objects to transparently make and
receive requests and responses in a distributed environment. It is the foundation for building
applications in heterogeneous environments. It keeps all together, is like a engine that makes work

the other parts of the model. Its detailed description is found in section 2.4.

Applications)\
Vertical Facilities
Horizontal Facilities D\
Services)\
ORB

Figure 2.2: OMA components calls

These four or five components could be simply seen as in figure 2.2, where any set of objects requests

services mainly through those interfaces in its own level or in the level just below it. That is probably

11

the unique difference between applications, facilities and services: how general, reusable and near to the

end-user they are.

The OMA gives a overall view of the proposed architecture and how everything interacts. It does not
actually concrete anything, it is pretty general. Each one of its parts needs to be specified in much more
detail. The task of the OMG is standardize the underlying object architecture and the interfaces to the
object services and facilities. Tt has been conceived as a core (i.e. CORBA) and a growing number of
standards (i.e. CORBA services, and CORBA facilities) that extend the core.

Since all together is just a standard, and no description about its implementation is given at all, each part
of it can be provided by a different vendor. Each service, facility or application object in your system
could have been implemented by an absolutely different maker. Even it is possible having a different

ORB running on each one of your machines.

2.4 Broker architecture

Zooming into the OMA, we find the Common Object Request Broker Architecture (CORBA) which
describes in much more detail how everything works and the available tools to get the desired results.
While the OMA tries to group the different kinds of objects that will exist inside a system attending
to its genericity in usage (who calls who), CORBA describes the way those objects are going to work
together. It is based on a client-server architecture where clients ask for services and the servers offer

perform those services.

CORBA separates the specification of a service offered by a given object from its actual implementation.
To avoid breaking encapsulation, distributed OO applications must deal only with object interfaces and

should not care whether the object implementations are in the same process or on another machine.

Shipping objects across the network is not advisable. Obviously, it would break object encapsulation by
accessing private data, not to mention it would need compiler-specific knowledge about how objects are
laid out in memory and that would affect portability. Therefore, the server code and data remain in its

machine, and it is the method call and result who travel between client and server.

The architecture proposes a self-describing system where everything is designed as flexible as possible
based on the interoperation on an object bus (the Object Request Broker). This even allows intelligent
components to dynamically discover each other, they just need access to the bus. It is a star architecture
with the ORB sited in the middle and the objects hanging from it. In figure 2.3, you can see the different
parts of CORBA and the ORB as defined in [OMGY95]. A much shorter overview of the architecture is

12

Client

Dynamic Static IDL
Invocation Stubs

< >

Interface
Repository

Static IDL Dynamic Object
Skeleton Skeleton Adapter

ORB
Interface

ORB Core

| —]
Inter-ORB
Protocol |———

Implementation
Repository
Y Interface identical for all ORB implementations

There may be multiple object adapters A Up-call interface
I There are stubs and a skeleton for each object type :
[1ORB-dependent interface * Normal call interface

Figure 2.3: Common Object Request Broker Architecture

in [Vin93].

e Client side:

Static IDL Stubs, interface known at compile time that allows invocation of requests to objects.
They are like local proxies for a possibly remote server object. Each object should define its
specific one and distribute it to its clients to be linked with them. A more detailed explanation
isin 2.4.1.

Dynamic Invocation Interface, the interface that allows dynamic creation and invocation of
requests to objects. It is the same interface independently of the target object’s interface. A

more detailed explanation is in 2.4.2.
e Server side:

Static IDL Skeleton, interface known at compile time that allows the ORB to pass a request to
a given implementation of an object. It is also used to get the result of the request, if any.
Each object defines its specific one and should be linked with it. A more detailed explanation
isin 2.4.1.

13

Dynamic Skeleton Interface, the server’s side interface that can deliver requests from the ORB
to an object implementation that does not have compilation time knowledge of the type of

object it is implementing. A more detailed explanation is in 2.4.2.

Object Adapter, describes the primary interface that an implementation uses to access ORB
functions. Its roles include finding the target object of an invocation, determining what oper-
ation to call, and actually making the call on the target object. An ORB could offer multiple
object adapters to support any style of object implementation (e.g. Basic Object Adapter,
Portable Object Adapter, Object Database Adapter, etc.).

e ORB components:

ORB Interface describes the interface to the ORB functions that do not depend on object
adapters. These operations are not many, but they are common for all ORBs and object

implementations.

Interface Repository manages and provides access to a collection of object definitions at runtime.
It keeps object interfaces, the methods they support, and the parameters and return values
they require. This information is used by the ORB as well as the clients (remember the DIT).
CORBA defines a standard APIs for looking up the meta-data that defines a server interface.

Implementation Repository keeps the runtime relations between objects and implementations
(i.e. the classes a server support, the objects that are instantiated, their IDs, etc.). Tt allows

the ORB to locate and activate implementations of objects.

Inter-ORB Protocol allows the communication and interaction between different ORBs, even if

they are running on different machines.

Object Reference identifies an object running on a given ORB. It does not depend on the Client
nor Object Implementation but on the ORB. The ORB uses the references to identify and
locate objects so that it can direct requests to them. An Object Reference always refers to the
same object for which it was created (while it exists) and cannot be modified by the client.
However, it can be stored and restored from storage systems. Object References can be made
persistent by first asking the ORB to convert them to string. Clients can store these string
object references in their own private data files and later retrieve them, ask the ORB to change
them back into object references, and use them to make requests. This capability can be used

to maintain persistent links between objects and the applications that use them.

The Client is who wants to perform an operation on a given object and the Object Implementation is the
code which actually does what is asked. The implementation defines the data for the object instances and
the code for the object’s methods. It is important to notice that the Client role is relative to a particular
object (i.e. the implementation of one object could be the client for others). The Client is just the piece

of code that makes requests of objects.

14

To make the request, the Client can use the DII or an specific stub. In either case, the Client needs an Ob-
ject Reference which identifies the object that will answer. The Object Implementation that corresponds
to the Object Reference receives the request coming from the ORB through either its specific Static IDL
Skeleton or the generic Dynamic Skeleton. CORBA has no special object creation operations, therefore,
object references are always obtained by making requests on other objects (i.e. an object factory, the

Naming Service or the Object Trade Service).

The ORB is responsible for finding the corresponding object implementation to a given request, wherever
it is sited (it could even establish a connection to a different ORB which control the demanded imple-
mentation). The location of the implementation is absolutely transparent to the Client, as well as its
programming language. Both, programming language and location, are hidden by the ORB. An ORB
is plugged to other ORBs by means of a Inter-ORB Protocol. Using that protocol, the ORBs interact

between them to give access to the implementations controlled by any of them from any other.

The clients and the implementations could directly interact with the ORB through the ORB Interface
to access some of its functions. Besides, the implementations can call the Object Adapter by using its
interface. The Object Implementation is closely connected with the Object Adapter. Generally, the Object
Implementation does not depend on the ORB or how the Client invokes the object, but on the kind of
Object Adapter chosen. If the same ORB has different object adapters, the object adapter to be used will
be chosen by the Object Implementation based on the services it requires. The Object Adapter provides:

Generation and interpretation of object references.

Method invocation.

Security of interactions.

Object activation and deactivation.

Mapping object references to implementations.

e Registration of implementations.

The Client has no knowledge of the implementation of the object, which object adapter is used by
the implementation, or which ORB is used to access it. Summing up, by means of all the described

mechanisms, the ORB hides to the client:

e Location: The client does not need to know where the object implementation is.

e Implementation: It does not know how that implementation works, neither.

15

e Execution state: It does not matter whether the object is currently activated and ready to accept
requests. The ORB transparently starts the object up if necessary before delivering the request to
it.

e Communication mechanisms: The Client is not aware of the communication mechanisms used by

the ORB to deliver the request to the Object Implementation and return the response to it.

Q Client
\/

ORB —
Glue
e !

Target Target
Object T~ Object

Client

Figure 2.4: ORB role

What really matters is that the ORB must be transparent for the client requesting a service from a given
object. The communication work is done by the ORB and neither the client nor the target object need
to be aware of the existence of the ORB and the communications problems it is solving. As depicted
in figure 2.4, the ORB could be seen as the glue that sticks together the Client and the Target Object

regardless of where they are actually sited.

2.4.1 Knowing interfaces at compile time

Every object interface should be defined by means of the Interface Definition Language. The IDL defines
the types of objects according to the operations that may be performed on them and the parameters to
those operations. From that definition, the specific stub and skeleton for the given object and Object

Adapter are created.

If that interface is known at compile time, it should be linked at both sides (i.e. Client and Object
Implementation). Once that is done, it does not matter if the implementation of the object is in the same
address space or running on a remote machine, if it was made with the same programming language or
with a different one. The CORBA objects will look exactly like any other object in the client. You just

need to call their methods with the corresponding parameters and get the return values if any.

16

When a call is done, it goes to the ORB through the stub. The ORB looks its repositories to find an
implementation of the object. If that implementation is not running, the ORB automatically starts it up.
Finally, the request arrives to the implementation through the skeleton. The implementation performs

the request and the result goes the way back to the Client.

The obvious advantages of this approach are:

Is easier to program.

Provides type checking at compile time.

e Gives “good” performance.

Clearly shows what the code is doing.

2.4.2 Discovering interfaces on the fly

CORBA also contemplates the impossibility of knowing the object interface at compile time (either by
the Client or the Object Implementation itself) and describes how this problem is solved. Tt is even
possible to have one of the sides linked with the needed stub or skeleton and the other not. From the
Client point of view, it is only matter if itself knowns the stub or should use the DII (it is not important
how the request will arrive to the Object Implementation). Conversely, from the Object Implementation
point of view, it is only matter if itself knows the skeleton or should use the DSI (it is not important how

the request arrived to the ORB).

While calling a method using a stub is transparent to the client, using the DII, the Client must specify
the Object Reference, the name of the method to be invoked and the list of parameters to pass to that

method. The returned value is of type any.

That dynamic call is done by means of standard objects always present in the ORB (i.e. CORBA::ORB,
CORBA ::0bject, CORBA::Request and CORBA:NVList). Mainly, the methods CORBA::Object.cre-
ate_request, CORBA::Request.add_arg and CORBA::Request.send are used. The needed information
about the desired method to feed those calls (e.g. number of parameters, types, ...) can be retrieved

from the Interface Repository using CORBA ::Object.get_interface.

The usefulness of the DII is as clear as daylight. A client could look for the best object offering what it
needs and call it without any knowledge at compilation time. However, the benefits of using the DSI are
not clear enough. DSI works exactly as DII does: it allows the ORB to call methods on objects without
knowing their interfaces. When is that going to be useful? Well, probably it is never going to be useful

17

at all ... for clients. It was added to the CORBA specification to allow some cases found while trying
to implement generic ORB bridges, that is, interaction between different ORBs. Of course, this kind of

calls are absolutely transparent to the end-user.

Static invocations are easier to program, faster and self-documenting. Dynamic invocations provide
maximum flexibility, but they are difficult to program; they are very useful for implementing tools to

discover services at runtime.

2.5 Services

The OMG planned the development of the OMA as an iterative process. It begun giving the general
OMA reference model and making it more specific in the CORBA architecture. Once that has been
done, the stress is on the concrete services specifications. The next step will be standardizing facilities

and having full CORBA compliant applications.

The CORBA services are simply a collection of system-level services. They try to complete the services
directly offered by the ORB itself. Their specification is absolutely independent of their implementation,
which allows to easily connect to the bus and use all the services it offers. Using or implementing the
interfaces defined by the CORBA services, every ordinary object can be made lockable, persistent, secure,
transactional, ... It is not mandatory to use any of this services, you should only use them if it saves time

to implement your objects.

The services actually are standard interfaces which guaranty the interoperability between different im-
plementors. They are a contract between the vendor and the customer, so you can get what you want
from where you like the most, and use it without any problem at all. This policy implies every service
could be implemented by an absolutely different company without any knowledge of each other, and the

services would work smoothly together. It means real software reusability.

A list of desirable architectural goals for these services being developed can be found in [OMG94]:

Scalability.
e Portability.

Performance.

Security.

e Precise descriptions.

18

e Independence and modularity.

e Minimum duplication of functionality.

e No hidden interfaces (allow absolutely implementation swapping).

e Consistency among different object services (they should be able to work together).
e Extensibility of individual object services (inheritance, delegation, ...).

e Extensibility of the set of services (allow adding new services without affecting the already existing

ones).

e Configurability (allow different combinations of services, the ones using the others).

2.5.1 Up till now

The CORBA services specification is not well established, yet. Some service definitions are more advanced
than others. Moreover, since it is iterative, it is probably a never-ending process. The current services
specification is described in [OMG98]. Here they are listed ordered by the date their proposals where

requested.

Life Cycle Service

Defines conventions for creating, deleting, copying and moving objects. They allow to perform life cycle
operations on objects in different locations. It is based on a factory model. A factory is simply an object

that creates another object returning it on demand. It is not a special object at all.

Naming Service

Can be used by the servers to bind a name to any of its objects, relative to a naming context (set of
name bindings in which each name is unique) and independent of the name of the server or the host it is
running on. To resolve a name is to determine the object associated with the name in a given context.
In other words, the naming service associates a human-recognizable name with its concrete ORB-specific

object reference.

19

Persistent Object Service

Provides a set of common interfaces to the mechanism used for retaining and managing the persistent
state of objects on a variety of storage servers (ODBMSs, RDBMSs, flat files, etc.). The object ultimately
has the responsibility of managing its state, but can use or delegate to the Persistence Object Service
for the actual work. Its usage is described more deeply in section 4.1.5, while its interfaces are listed in

appendix A.2.

Event Notification Service

Provides basic capabilities to allow different kinds of message or event delivery over an event channel.
There can be multiple consumers and multiple suppliers of events connected to that channel. Suppliers
can generate events without knowing the identities of the consumers and consumers can receive events
without knowing the identities of the suppliers, they just need to know the event channel. It supports
push and pull event delivery models: consumers can either request events or be notified of events. It also

allows components to dynamically register or unregister their interest in specific events.

Transaction Service

Supports multiple transaction models, including flat and nested models. It includes network interoper-
ability to allow a transaction service interoperate with a cooperative transaction service using different

ORBs. It provides two-phase commit protocol between the databases and a coordinator.

Concurrency Control Service

Enables multiple clients to coordinate their access to shared resources. Coordinating access to a resource
means that when multiple, concurrent clients access a single resource, any conflicting actions by the clients
are reconciled so that the resource remains in a consistent state. It is regulated with locks associated
with single resources and a single client. Several lock modes had been defined to allow flexible conflict

resolution.

20

Relationship Service

Allows relationships between CORBA objects (that know nothing of each other) to be explicitly rep-
resented and traversed. The service defines two new kinds of objects: relationships and roles. A role
represents a CORBA object in a relationship. Together with the Life Cycle Service, it allows to copy,

move, and remove graphs of related objects in some different ways.

Object Externalization Service

Defines protocols and conventions for externalizing and internalizing objects. Externalizing an object is
to record the object state in a stream of data so that it can be internalized into a new object in the same
or different process. Its usage is more deeply described in section 4.1.4, while its interfaces are listed in

appendix A.l.

Security Service

Protects individual objects or groups of objects, so that only suitably privileged users can call specified

operations on them. This service specifies different security functionalities:

Identification/Authentication of principals to verify they are who they claim to be.
Authorization/Access control deciding whether a principal can access an object.

Security auditing to make users accountable for the security related actions. Auditing
mechanisms should be able to identify the user correctly, even after a chain of calls

through many objects.

Security of communication between objects, which is often over insecure lower layer com-

munications. The Security Service provides encryption mechanisms.

Non-repudiation provides irrefutable evidence of actions such as proof of origin of data to
the recipient, or proof of recipient of data to the sender to protect against subsequent

attempts to falsely deny the receiving or sending of the data.

Administration of security information.

21

Time Service

Enables the user to obtain the current time together with an error estimate associated with it. It generates
time-triggered events based on timers and alarms. It can be used to compute the interval between two

events as well as synchronize time in a distributed environment.

Object Query Service

Allows users and objects to invoke queries on collections of other objects. It is based on existing standards
for query, including SQL-92, and OQL-93, as well as the upcoming SQL3 specification. This service
provides an architecture for a nested and federated service that can coordinate multiple, nested query
evaluators, and return a single object or a collection of objects. Its usage is more deeply described in

section 4.1.6, while its interfaces are listed in appendix A.3.

Licensing Service

Provides a mechanism for producers to control the use of their intellectual property and be compensated
for its use. A license has three types of attributes that allow producers to apply controls flexibly: time,
value mapping, and consumer. Time allows licenses to have start/duration and expiration dates. Value
mapping allows producers to implement a licensing scheme according to units, allocation, or consumption.
Consumer attributes allow a license to be reserved or assigned for specific entities. It supports charging

per session, per node, per instance creation, and per site.

Property Service

Provides the ability to dynamically associate named values with objects outside the static IDL-typed
system. It defines operations to create and manipulate sets of name-value pairs or name-value-mode

tuples. The names are simple IDL strings and values are IDL anys.

Object Trade Service

This service could be seen as a kind of “Yellow Pages” where the clients look for a description of what
they want to do. The objects publish the services they are offering and the potential clients can look

for whatever they need. It could seem similar to the Naming Service, however, the difference here is

22

the client does not even know the name of the desired object or if it exists (the Naming Service is more

similar to a telephone directory).

Object Collections Service

Allows to group objects which, as a group, support some operations and exhibit specific behaviour that
are related to the nature of the collection (i.e. set, bag, queue, stack, list, tree, etc.) rather than to the

type of objects it contains.

2.5.2 To do list

Some other services have not been requested for proposals, yet, but they are in mind. Some of them are

listed here in alphabetical order.

Archive Service

Copies objects from an active/persistent store to backup store and vice versa. It will use the Object

Ezxternalization Service to get the internal state of objects.

Backup/Restore Service

Provides recovery after a system failure or a user error. It is closely related to the Transaction Service.
In order to record a given state, it will use either the Object Externalization Service or the Persistent

Object Service.

Change Management (Versioning) Service

Supports the identification and consistent evolution of objects including version and configuration man-
agement. This service should work with the Persistent Object Service to allow persistent objects to evolve

from old to new versions.

23

Data Interchange Service

Enables objects to exchange some or all of their associated state. This service should work with Persistent

Object Service to allow state to be exchanged when one or more of the objects are persistent.

Internationalization Service

Extends the Naming Service to better support representing and resolving names for some languages and

cultures.

Implementation Repository

Supports the management of object implementations. The Persistent Object Service may depend on this

to determine what persistent data an object contains.

Interface Repository

Supports runtime access to IDL-specified definitions such as object interfaces and type definitions. The

Persistent Object Service depends on this to determine if a persistent object supports certain interfaces.

Logging Service

Implements the abstract notion of an infinitely long, sequentially-accessible, append-only file. It typically
supports multiple log files, where each log file consist of a sequence of log records. It is related to the
Transaction Service (for undo and redo), the Change Management Service (to support recovery) and the

Concurrency Service (to keep track of locks).

Recovery Service

Responsible for keeping record of the changes made to the state of recoverable objects during a transaction

and undo the updates if the transaction rolls back.

24

Replication Service

Provides explicit replication of objects in a distributed environment and manages the consistency of

replicated copies.

Startup Service

Enables requests to automatically start up when an ORB is invoked. It supports bootstrapping and

termination of the Persistent Object Service.

2.6 Using the Object Request Broker

All the beauty described has no-sense without the ORB. It is what makes everything work together, the
core of the architecture, the cornerstone without which everything would fall down, the bus where all

objects are connected. It makes possible objects interacting without any knowledge of each other.

Most of the CORBA services and facilities could be implemented on the ORB, although a small number
either must be integrated into the core or require any extensions to it. Again, the idea is keeping it as
simple as possible, and separating different concepts. Therefore, the ORB is clearly separated from the

concrete services.

As always in CORBA, it does not specify how the ORB must be implemented but which are its interfaces.
This means it could be implemented as different pieces given the desired functionality rather than as one
block of concrete. If it offers the required interfaces, it does not matter its implementation. There may
be multiple ORB implementations which have different representations for object references and different

means of performing invocations. Some possible ORB implementations proposed in [OMG95] are:

Client- and Implementation-resident ORB, some routines are linked with the clients and the im-

plementations to allow the communication between them.

Server-based ORB, all clients and implementations can communicate with one or more servers whose

job is to reroute requests from clients to implementations.
System-based ORB, the ORB could be provided as a basic service of the underlying operating system.

Library-based ORB, the implementations might actually be in a library. Therefore, the stubs would
be the actual methods.

25

Interface IDL compiler
Repository l

Client-side| | Saver-side s
stgbs kel ?ton mappings
Object

implementation

Server F-------- Implementatio
Repository

—— Compilation ins and outs
= Templatefor

---= Linked with

- -~ Dataflow

Figure 2.5: Code generation process

Independently of how the ORB is implemented, the process to get an object implementation accessible

to its potential clients is described in figure 2.5.

2.6.1 The Interface

The interfaces are the joint between the ORB and the objects. They are a contract between clients and
implementations, what the client can ask and what the implementation have to provide. At the same
time, based on these contracts, the ORB puts the client into touch with the requested object. They let
the communications infrastructure know the format of all messages the object will receive and send. The
contracts are written using the Interface Definition Language, which is purely descriptive (it does not say
how but what).

The valid requests a client can make on a given object are defined by the interface or interfaces the object
supports. An interface contains some number of operations, any of which can be requested by the client.

In the interface definition, we fix the functionality of an object. However, we do not fix:

e The programming language used to implement it.

26

The platform it will run on.

The ORB it will connect to.

Whether it will run local to its clients or remotely.

e The network hardware or protocol it will use, if remote.

Security aspects.

Both, client stubs and server skeletons, are generated by the IDL compiler, starting from the interface
definition. IDL provides operating system and programming language independent way to define inter-
faces to all the services and components (a language mapping of IDL to the given programming language
should have been defined). You just need the proper IDL compiler which generate code (stub and skele-
ton) - dependent of your ORB, OA, programming language, and machine - to connect the objects (clients

and implementations respectively) to the ORB.

module Counter { package Counter
interface Count { public interface Count extends CORBA.Object {
attribute long sum; public int sum() throws CORBA.SystemException;
long increment(); public void sum(int _val) throws CORBA.SystemException;
} public int increment() throws CORBA.SystemException;
} }

Figure 2.6: Example of interface mapped to Java [OH98]

In figure 2.6 you can see how an IDL interface definition looks like, as well as its mapping to Java (some
service IDL interfaces are also listed in appendix A). Tts syntax is quite similar to C++, and is fixed
in [OMG95]. Tt is actually a subset of the proposed ANSI C++ standard with additional constructs to
support the operation invocation mechanism. Mappings had been defined to C, C+4, Smalltalk and

Java, up to now.

An IDL specification consists of one or more type definitions, constant definitions, exception definitions,
module definitions, or interface definitions. Since the first three do not need any explanation, just to say

that a module is used to scope IDL identifiers.

An interface definition consist of header and body. The header contains the name of the interface and its
inheritance specification if any (implicitly derives from Object which is defined in the CORBA module).
IDL allows multiple inheritance. However, the operations cannot be redefined in derived interfaces, and
there is no notion of implementation inheritance (just interface inheritance). Object implementations are

free to utilize any inheritance features of their implementation languages, independent of IDL inheritance.

27

The body contains constant declarations, type declarations, exception declarations, attribute declarations,
and a set of named operations and the parameters to those operations. Empty interfaces are permitted.
The parameters to the operations, as well as the attributes, can be basic types (i.e. integer, boolean, char,
octet, any, etc.), template types (i.e. sequence, or string) constructed types (i.e. struct, union, or enum),

or user-defined interfaces. The parameters can be in, out or inout.

2.6.2 The Object Implementation

Once the negotiation is finished and the contract is signed, this is almost a filling gaps exercise. The IDL

compiler will automatically generate:

Server-side skeleton.

Client-side stub.
e Mappings to the corresponding language (see figure 2.6).

e Code template (optional).

The mappings are the IDL interface translated to the desired language, and the optional “code template”
is a file where the programmer can add the concrete code implementing the services offered by the object
(possibly using services offered by other CORBA objects connected to any ORB). Now it is time to fill
the body for every service (method), implement the full object and publish it on the ORB.

The actual implementation of the object is not a problem, since it is just implementing the interface
generated by the IDL compiler as any other in the implementation language used. It does not matter the
object will be connected on the ORB. Its implementation will look exactly like any other object except
for the interface it implements (the object interface) and the class it extends (the skeleton). Thus, the
object implementation by itself is not enough to connect to the ORB. Some extra code (Server) is needed
to create the object instances of a concrete implementation and loop waiting for requests. This Server
must be registered in its turn in the ORB Implementation Repository, for instance from the command

line (e.g. calling “putit serverName fullPathName activationMode” in an ORBIX ORB).

Knowing the available servers and the objects they contain, the ORB launches or just calls (if already
running) the proper server depending on the demanded object service. Some different activation modes or
mechanisms are proposed in the CORBA specification for this purpose. Those allow the ORB to control
the number of servers that are running and avoid overloading unnecessary the machine it is running on.

Nevertheless, the client must view all objects on the ORB as being up and running all the time, waiting

28

on the client to invoke their operations. The activation mode is indicated when the server is registered

in the Implementation Repository. The different available modes are explained in [Bak97]:

e Primary activation modes:

Shared, all of the objects with the same server name (created in the same server) on a given host

are managed by the same process on that host. It is the default mode.

Unshared, only one object at a time can be active in one server. This is of use when the same

server provides several object implementations.

Per-method-call, each invocation will result in the creation of an individual process which will

be destroyed at the end of the operation.

Persistent server, the server is launched manually prior to any invocation on its objects. After-

wards it is treated as in Shared mode.
e Variations for the Shared and Unshared modes:

Per-client, activations of the same server by different end-users will cause a different process to
be created for each such end-user. Different processes owned by the same end-user will share

the same server process.

Per-client-process, activations of the same server by different client processes will cause a differ-
ent process to be created for each such client process. Different processes, even if owned by

the same end-user, will use different server processes.

Multiple-client, activation of the same server by different end-users will share the same process.
This is the default mode.

class CountServer {

static public void main(String[] args) {

try {
CORBA.ORB orb = CORBA.ORB.init(); // Get a reference to the ORB
CORBA.BOA boa = orb.BOA_init(); // Get a reference to the BOA
CountImpl count = new CountImpl("My Count”); // Create the Count object and give it a name
boa.objisready(count); // Export the ORB newly created object
boa.implis_ready(); // Ready to service requests (loop "forever”)
}

catch(CORBA.SystemException €) {
System.err.println(e);

}

Figure 2.7: Example of server code [OH98]

29

In figure 2.7 you can see an example of server code. It is quite simple and easy to understand. In order

to register an object implementation it follows these steps:

1. Get areference for the (default) local ORB. If more than one ORB is running on the same machine,

any of them could be specified.

2. Get a reference for the (default) BOA. As for the ORB, any one could be specified, if there would

be more than one.

3. Create the object (as any other would be created) or objects the server contains. There is not any

restriction about a server containing more than one object implementation.

4. Pass the interface and implementation name to the BOA, and enter the object reference in a Naming
Service. In this case, the IDL compiler automatically generated the code necessary to do all that

in the constructor of the skeleton.
5. Inform the ORB the object or objects are ready to be used.

6. Inform the ORB the server finished creating objects and loops forever (or just for a while) waiting
for requests of the created objects. If the server falls down, the ORB should automatically start it

up again.

0. Moreover, the server should catch any exception possibly thrown by its connection to the ORB.

2.6.3 The Client

Once the server and its objects are registered in the ORB, only the client code remains to enjoy it. A
Client is nothing else than a piece of code that uses an object reference to request CORBA services. An
object reference is a token that may be invoked or passed as a parameter to an invocation on a different

object. In order to get an object reference, the Client connects to the ORB and does one of these:

e Uses a naming service (see Object Naming Service in 2.5.1).

Uses a trade service (see Object Trade Service in 2.5.1).

e Uses an object factory (see Life Cycle Service in 2.5.1).

Gets a persistent reference from any storage system (e.g. a file where it was recorded as a string).

The Client does not need anything else than that reference to use an object. If it has the object-type-

specific stubs, it can access them as library routines in its program, calling them in the normal way in

30

its programming language. If not, the Client can use the DII to request services. In any case, the ORB
hides communication complexity and all its problems, allowing the Client to treat the reference as a very
own object.

class CountClient {
static public void main(String[] args) {

try {
CORBA.ORB orb = CORBA.ORB.init(); // Initialize the ORB
Counter.Count counter = Counter.Count_var.bind("My Count”); // Bind to the Count object

counter.sum((int)0); // Use the object as any other

counter.increment();

}
catch(CORBA.SystemException €) {

System.err.println(e);

}

Figure 2.8: Example of client code [OH98]

In figure 2.8 you can see an example of client code (note the method calls look exactly like any other

Java method call). As well as the server code, it is quite simple and understandable:

1. Get a reference to the ORB. It could be specified which one, if more than one are running on the

local machine.
2. Locate the desired object (or objects).
3. Use it as any other object in the same address space.

0. Moreover, the client should catch any exception potentially thrown by the CORBA objects.

As you can see in figure 2.9, a dynamic invocation would not be so difficult neither. It keeps looking like
Java code, but is really slower. However, the DII is much more flexible than the specific stubs and allows

different kinds of invocations as explained in [Bak97]:

Blocking, the client is blocked until the call has been transmitted to the target object, the target
object’s code has been run, and the reply has arrived back at the client. It is the normal semantics

of function calls.

31

CORBA .InterfaceDef CountInterface = counter._get_interface(); // Get the Counter interface
CORBA._InterfaceDef.FulllnterfaceDescription intDesc = CountInterface.describe.interface();
// Get the description of the interface

if (intDesc.operations[0].name.compareTo(“increment”)==0) { // Check the interface description
CORBA Request request = counter. request(“increment”); // Get the desired king of request
request.result().value().fromlong(0); // Fill parameters and return values
request.invoke(); // Invoke the request
}

Figure 2.9: Example of DII code [OH98]

Non-blocking, the caller is allowed to run in parallel with the request and wait for the reply later. This
is just possible while using DII.

Store-and-forward, the request is stored in a persistent store before being sent to the target object.

This is really useful in implementing batch applications.

Publish-and-subscribe, a message is sent on a specific topic, and any object interested in that topic

can receive it.

2.7 Let’s stick to realities

It does not matter what the CORBA standard promises but what its implementations actually offer,
and by now, they are pretty separated. Nowadays, the CORBA implementations seem to be quite green.
The CORBA standard is just a newborn still growing up. Therefore, its particular implementations are
yet more younger, testing different ways to accomplish the standard, and looking for their market place.

This entails difficulties in the usage, and uncertainty about its future.

Here is a list of some products implementing part of the CORBA standard (ORBs and DBs):

e Object Request Brokers (table 2.1 shortens the features offered and promised by them in 1997, and

almost all are widely commented and compared in [Sie96]).

Orbix is a product from TONA Technologies (used as the example ORB throughout [Bak97]). Tt
offers an IDL compiler, which generates the stubs, skeletons, a BOA specific implementation
class to be inherited by any object, and headers for the object implementation C++ classes;
some C++ defines to be used instead of the specific BOA implementation class if it cannot

be inherited; a command to register the servers in the ORB; and the ORB daemon. All the

32

Features ObjectBroker SOMobjects NEO ORB plus Orbix DAIS

Protocols
mop v v v v v o
® Vv Vv VA v
Static calls V4 V4 V4 V4 V4 V4
Dynamic calls V4 V4 V4 97 V4 V4

Language Bindings
C V4 V4 V4 97 97 V4
C++ v v v v v v
Java 97 97 V4 97 V4 V4
Smalltalk 97 V4 1] V4 V4 ?
Cobol] N4 0] v 97
Ada ? ?]] N4]

CORBA services
Naming V4 V4 V4 V4 V4 97
Events 97 97 V4 V4 V4 V4
Life Cycle 98 97 V4 V4 97 98
Trader 97 97 1] 97 97 V4
Transactions 97 97 97 98 V4 97
Concurrency 98 97 97 98 97 1]
Security 97 V4 97 97 97 V4
Persistence 98 97 V4 98 V4 97
Externalization 98 v] 98 97]
Query 98 98 V4 1] 97 98
Collections 98 98 1] ? 97 ?
Relationships 98 97 V4 1] 97 1]
Time '98 98 0 0 97 '98
Licensing 98 '98 ? ? 97 98
Properties 98 98 V4 1] 97 98

Table 2.1: Commercial ORBs scorecard (Source: Standish Group, February, 1997) [OHE97]

classes generated by the IDL compiler must be compiled and appropriately linked to generate
the client and the server. Then, by means of the provided command, the server has to be
registered in the ORB. Besides, some basic services are provided (i.e. Event Service, Object
Transaction Service, Initialization Service, Life Cycle Service), and even some in two ways: the
CORBA standard form and the Orbix proprietary form (i.e. Naming Service, Fxternalization

Service). Orbix is available on more than 20 operating systems.

ObjectBroker is Digital Equipment Corporation’s implementation of the CORBA specifications.
It is the oldest ORB, nowadays available on 21 different platforms (e.g. UNIX, OpenVMS,
Windows, etc.). Tt offers different mechanisms to wrap legacy applications (some that are not
CORBA compliant) as well as extensions to the IDL that aid in describing, structuring, and
generating distributed applications. This ORB gives you two additional languages to organize

and describe the object implementations (i.e. Method Mapping Language, and Implementation

33

Mapping Language). A compiler generates the stubs, and skeletons to match the IDL, MML,
and IML specified. It also provides Kerberos authentication if desired.

SOMobjects is the IBM product, a library based ORB. It was initially conceived as a set of
tools to build and use DLLs by means of object oriented technology. The appearance of
CORBA led it to the distributed version (DSOM). Tt keeps its initial terminology, and, of
course, the most of its non-standard mechanisms. A compiler is used to, starting from the IDL
source file, automatically generate the implementation template file (within which the class
implementation will be defined) for the desired programming language. That generated file
contains stub procedures for each method of the server class. The same compiler generates
the needed code in the client programming language. DSOM is available for IBM platforms
and Microsoft Windows.

DAIS is another ORB developed in ICL Object Software Laboratories and launched in October
1993. Tt implements the Trader Service, Life Cycle Service, Alert Service, Naming/Integrated
Directory Service, Concurrency Service, Object Transaction Service, and Security Service (note
some of them are not even mentioned in the CORBA specification). It is available in quite a

lot of platforms: IBM, Sun, Digital, ICL, etc.

NEO is a SunSoft product family to develop and deploy networked object applications based on
the CORBA standard (note that Sun cofounded the OMG). It extends the standard by offering
a DDL to describe the persistent state of the objects, and an Object Server Language (OSL)
to describe the server’s behaviour. All that is compiled and gives rise to a default, expected to
be modified server implementation (just throwing CORBA::NO_IMPLEMENT exceptions),
as well as the corresponding stubs. Since Java is Sun Technology too, it is closely related to
NEO, and is used, for example, to ship the client side stubs across the internet, facilitating

their distribution.

ORB plus is the Hewlett-Packard CORBA implementation. It tries to be a lightweight ORB,
and, for example offers a Simplified Object Adapter. 1t supports Events, Naming, and Life
Cycle object services. It provides an IDL compiler which generates interface classes and types,
server base classes, and server skeleton types as well as the stub and skeleton code. All that

will be compiled and liked with the corresponding server and client code.

e Databases (just a couple of examples):

ObjectStore is one of the best ODBMSs in the market. It offers an ODA to make the objects in
the database accessible remotely by means of an Orbix ORB. The objects’ code does not need
to be changed. Just the compiling and liking processes change.

ORACLE , one of the biggest enterprises offering RDBMSs, joined forces in 1997 with Visigenic
(another ORB implementor whose ORB is called “Visibroker”) to incorporate object technol-
ogy to its products. The last one, shipped in 1999, called ORACLE 8i (“i” stands for internet)

34

claims for implementing native CORBA protocols. Actually, they implement the TIOP, but

are not able to say how to use it, and how easy it could be.

Lots of tools offering partial CORBA implementations are in the market, all of them claiming to be
CORBA compliant. However, all provide proprietary solutions together with or instead of those stan-
dardized in the CORBA specification (it is a matter of distinguishing the products to increase sales).
Moreover, CORBA specifications use to be the mixing of those existing solutions. Therefore, none of the
products in the market, at specifications shipping time, fully fulfill them, but at most a part. Once the
standard is fixed, all the products must migrate to it, and this is neither simple nor fast. It can take
years. This means an object or piece of code running on a given ORB will likely not work on a different
one. It makes the development of a CORBA distributed system harder than it seems. However, on the
other hand, that diversity gives you the freedom to choose what fits your needs the best.

The CORBA standard is really young (the CORBA 3.0 is just about to come). Thus, you cannot expect
its implementations being mature. CORBA needs time, the support of the software enterprises, and the

patience of the potential customers.

35

Chapter 3

CORBA in heterogeneous DBMSs

3.1 HEROS

HEROS stands for HEteRogeneous Object System. It is a tightly coupled object oriented heterogeneous
DBMS developed in the Pontificia Universidade Catdlica do Rio de Janeiro (Brazil). Tts implementation
is described in [AULM98] as providing location and data models transparency, minimum interferences
on the processing of its CDBs, multiple data abstractions to better represent the semantics of its CDBs,
consistency maintenance of replicated data when these data are mapped into the global schema, and

physical data independence.

The prototype described in the paper uses OO standards to integrate and coordinate information re-
sources. It was developed on a UNIX environment, using CORBA as a middleware to facilitate the
interoperation of the different components. The programming language used was C++, and the com-
ponent databases were Oracle and Postgres (located in different machines). It supports operations at
the federation level (using a global transaction model) as well as at the CDB level. A four level schema

architecture with an OO model as Canonical Data Model (CDM) is proposed for the integration:

Local schema, defined using the data model of the corresponding CDB.

Export schema, which is already in the CDM, and represents what is shared by a given CDB with the

federation.
Global schema, also in the CDM, shows the integration of the different component schemas.

External schema, that is just an application view of the Global schema.

36

The CDBs of study differ on DBMS, data model, computational environment and physical location.
The integration mechanisms have to deal with those heterogeneities. CORBA, by means of the object
architecture defined, takes care of the differences in location, hardware and environment; and HEROS
offers mechanisms to handle synonyms, homonyms, object replication, measure units and generalization
differences, once they have been detected by the federated database administrator. The system performs
the translation between data models, but leaves to the administrator the detection of possible semantic

heterogeneities.

Three main CORBA interfaces are defined:

Federation interacts with the applications.
Component interacts with the CDBs.

Factory creates and lists existing objects (needed due to the Life Cycle CORBA service).

A hierarchy of classes hanging from Component is used to represent meta-information associated to each
CDB. The Component class is specified attending to the environment of the components (i.e. OO or
relational), that are specified again in concrete systems (i.e. Oracle, Postgres, HEROS, ...). When a
database joins the federation, an instance of Component class is generated in the corresponding subclass,
depending on its environment and particular software. At this time, the translation rules are defined
and attached to the given environment instance. It means the mappings depend just on the CDB being

relational or OO, and not at all on the concrete software of use.

About the transaction model, HEROS allows updates and uses the compensable-compensating transac-
tions presented in the Sagas model. An HEROS transaction is an open nested transaction. It gives visi-
bility of partial results, which avoids other transactions lock of data access. The transaction is a sequence
of compensatable transactions, one vital (or pivot) transaction, and the compensating transaction list
corresponding to the compensatable transactions. A vital transaction is a traditional, non-compensatable
transaction whose commit implies the commit of the whole global transaction. The compensating trans-
actions semantically undo what was done by the compensatable transactions, if a rollback is needed. A

flat transaction is just a degenerated nested transaction which only contains the vital transaction.

The class Federation is responsible for the global management of the transaction, while the subclasses
of Component are responsible for the corresponding local management of transactions. The CDBs do
not distinguish between global and local transaction, and are not responsible for the resubmission of
the transaction if it is cancelled. However, it is assumed the CDBs use the strict 2PC protocol for the

concurrency control to guarantee serializable and recoverable schedules on all executed transactions.

The system does not provide data materialization. Thus, the queries as well as the updates go straight

37

to the CDBs. The Federation class uses the mapping data stored in the global schema to generate the
operation tree, where each node corresponds to an operation over a CDB in the export schema, and the
composition operation to be applied to the responses to build the federated result. Each operation is

passed to the corresponding Component instance to perform it.

3.1.1 CORBA specific decisions made

e The data granularity chosen was the CDB. It means a CORBA object containing data resources
corresponds to a CDB.

e In order to encapsulate the different CDBs, the interface methods are mapped to one of many

implementations. The same interface is used by all the CDBs.
e Since the objects are well known (i.e. Federation, Component, etc.), the invocation is always static

e Servers were defined with Persistent activation mode, because they need to be registered so in the

concrete ORB used in order to be activated later by the applications.
e The objects are created by means of a factory (i.e. Factory class).
e Every object is named (using the Naming Service).

e The activation policy is Unshared for all the objects (to allow parallelist) but the factory, whose
policy is Shared.

3.2 MIND

MIND stands for METU INteroperable DBMS and is a system developed in the Middle East Technical
University (METU) in Turkey. It is described in [DDK'96] as a multidatabase system based on OMG’s

distributed object management architecture.

In this project, the CDBs are encapsulated in generic database CORBA objects. One generic IDL interface
is defined and multiple implementations are provided (a different one for each DBMS). A common data
model (based on IDL) and a single global query language (based on SQL) make possible a unified access to
the CDBs, allowing users to perform queries and updates on a global schema. It also provides serializable
execution of global nested transactions without violating the autonomy of local DBs. Oracle, Sybase,

Adabas and Mood are the DBMSs used in the prototype.

CORBA is used to handle the heterogeneity at the platform level and provide location and implementation

transparency. The global queries are decomposed into subqueries which are sent to the ORB, that

38

transfers them to the corresponding database server on the network. The subqueries are executed by
using the Call Level Interface (CLI) routines of the local DBMSs, and the results are returned to the
client, again through the ORB, as a single response. The clients are not aware of where the CDBs are
or how they do their tasks. Moreover, new DBMSs can be added to the system without affecting the

existing.

CORBA does not help to solve semantic heterogeneities, therefore, tools are given to the DBA to deal
with domain conflict (i.e. differences in extensions: identical, intersecting, inclusion or disjoint), and
structural conflicts (i.e. differences in intensions: homonyms, synonyms, attribute domain, scale, con-
straints, operations, etc.). A four-level schema architecture is proposed to help the integration of the

different database schemas:

Local schema, the schemas of the local CDBs.
Export schema, translation of the Local schema to the CDM.

Derived (Federated) schema, combination of the FExport schemas into an integrated one. Includes
information on data distribution generated when integrating. It is built by the DBA as a view over

the Fxport schemas.

External schema, corresponding to the Derived schema plus extra information or constraints needed

for a user or application. It could be just a subset of the Derived schema.

The basic components of the system, depicted in figure 3.1, are:

Schema Information Manager, keeps the schemas information.

Ticket Server, generates globally unique, monotonically increasing numbers to stamp the subtransac-

tions. It is used to guarantee serializability of global transactions.

Factory, is the omnipresent, named object that allows the creation of others (i.e. Global Query Manager,

Global Query Processor, etc.).

Global Query Manager, parses, decomposes, and optimizes the global queries according to the infor-
mation contained in the Schema Information Manager. It also provides global transaction man-
agement to ensure serializability (using the Ticket Server to enrich the subtransactions with ticket
operations). Exists one Global Query Manager per user interacting with the system and its location
is dynamically determined by the ORB (usually the local host). Tt can be used to perform more

than one query.

Global Query Processor, is responsible from processing partial results returned by the Local Database

Agents.

39

Global
DBA

Schema
Information
Manager

Local Local
Database Database
Agent Agent
Local DBMS | | Local DBMS | | Local DBMS | | Local DBMS

Figure 3.1: MIND global view [DDK*96]

Local Database Agent, maintains export schemas provided by the local DBMSs represented in the
CDM, and translates the queries from the global query language to the local one. It provides an

interface to the CDB.

A query submition implies the creation of a new Global Query Manager, which obtains schema information
from the Schema Information Manager in order to decompose the query. Afterwards, the manager creates
the needed Local Database Agents, and sends each subquery to the corresponding agent using the Non-
blocking call mode (this allows the different agents to work in parallel). The Global Query Manager keeps
a list of expected partial results. Whenever two results that need to be processed together are ready,
the Global Query Manager creates a Global Query Processor to process them (allowing parallelism in

building the result, as well). The final result is sent back to the client.

The last version of MIND implements a technique for global concurrency control of nested transactions
called Nested Tickets Method for Nested Transactions. It makes consistent the execution order of sibling
subtransactions at all sites. The main idea of this technique is to give tickets to each global transaction
as well as its childs. Then, each subtransaction is forced into conflict with its siblings through its parent’s

ticket at all related sites. The subtransaction is aborted (thanks to the 2PC protocol being supported

40

by the CDBs) if its ticket value is smaller than that of its sibling transaction previously executed at the
same site. Note that it is supposed to exist a grandparent never-ending transaction whose ticket value
is zero. Therefore, all transactions are interrelated. It is a semi-lattice where a relation between two

transactions can always be stated by means of a common ancestor.

3.2.1 CORBA specific decisions made

e As in the HEROS project, the data granularity chosen was the CDB. The whole database is encap-
sulated into a CORBA object.

e In order to encapsulate the different CDBs, the interface methods are mapped to one of many

implementations. The same interface is used by all the CDBs.

e The invocation is static again, because the CORBA objects are fixed and well known too (i.e.
Factory, Global Query Manager, etc.). However, since the Non-blocking call mode is supported
only by DII, it is used in some concrete cases (like the SendQuery method of Local Database
Agent).

e The objects are created by means of a factory (i.e. Factory class).

e Factory, Ticket Server, and Schema Information Manager are registered in the Naming Service.
They serve the whole system continuously. Thus they are not created on demand but during the

start up phase of the system.

e Shared activation policy is used for Fuactory, Ticket Server, and Schema Information Manager,
mainly because of their short activation time. The other objects are activated in Unshared mode

to provide parallelism and keep separated contexts for each different transaction.

3.3 BLOOM

As was explained in section 1.2, the aim of this paper, besides introducing CORBA, is studying how
a particular distributed information system architecture (say BLOOM execution architecture) can be
implemented using distributed object technology. In view of previous sections, CORBA and BLOOM

seem to fit into each other.
Each one of the pieces depicted in figure 1.1 (i.e. Security Controller, Query Transformer, Query Decom-

poser, Level Security Translator, Transaction Manager, Subresult Translator, Result Consolidator, Result

Transformer, Directory as well as local DBMSs) can be wrapped into a CORBA object. Once the code

41

is wrapped, the CORBA architecture takes care of the system heterogeneities. The different BLOOM
modules will not need to be aware of being running on a single machine or across a wide area network of
absolutely different machines running code programmed in different languages; they just need to worry
about semantic heterogeneities and data schemas translation. Moreover, the CORBA services could also
help in the specific implementation of some modules. Since Concurrency Control Service, Transaction
Service, and Security Service (outlined in section 2.5) have already been well defined by the OMG, they

could be used in the transaction and security managers.

Firstly, before implementing the execution architecture, the best distribution of the modules across the
network should be studied. It is a trade-off between the load of the machines, the communication speed
between them, and the amount of data to be transferred. Ideally, the distribution should be dynamic,
taking benefit from the machines and communication channels load at any time. However, that would need
lots of information about the network and the machines, and the willingness of the CDBs administrators
to have the modules running on their machines. Being much more realistic, the distribution of the
modules will be quite static and mainly depending on the administrators of the different CDBs, and the
available machines, as well as the network architecture. It will be absolutely different for each particular
instance, and will always be fixed more by the existing components than by the desired performance of

the cooperative system.

CORBA will be really helpful specially at this point because of its location transparency and flexibility.
Wrapping the different modules separatedly, will increase that flexibility on distribution and migration.

CORBA follows a tiny, reusable objects policy, and it seems good to keep it in this case, because:

e Facilitates software reusability.

e By itself, does not cause unreasonable overhead, if the modules keep running on the same machine.
The overhead appears more due to communications between machines than between different pro-

cesses on the same machine.

e Helps to cause the acceptance of modules running on local machines by their administrators, since

they are small.

e The modules can be easily spread over the network avoiding an unnecessary overload at any par-

ticular site.

e The modules can be redistributed in as needed basis, when the federation is modified (a member

leaves or a new one joins it).

e Different instances of the same module could run at the same time if needed. For example, it seems

good having just one Query Decomposer but several Query Translators.

42

o Allows parallelism between different modules. The Subresult Translators could do their task running

in parallel with the Result Consolidators joining the results already translated, for instance.

However, wrapping small pieces is not always desirable. In the case of the CDBs, the best choice seems
to be wrapping the whole DB into a single CORBA object (Thick Granularity), and let the local DBMS
do its tasks. Nevertheless, some other possibilities could be taken into account: wrapping each table or
tuple (if relational) into a different object (Fine Granularity). In some cases Fine Granularity could be
necessary, for example due to security restrictions, to avoid overload on a given CDB or to implement
special search or order algorithms. Still in general, it seems better having everybody doing its own job,
instead of trying to do what is already done. A full DBMS could be implemented just using CORBA
services, and use the CDBs as simple repositories. But why should we build a new DBMS, if what is

already done works well?

In order to make easy and smooth the integration, it seems good letting CORBA hide different im-
plementations of the same interface. It means having one to many mappings between interface and
implementations. It will be specially useful for the component DBMSs and the translators (i.e. Re-
sult Translator, Query Translator, and Level Security Translator). We could have a different translator
implementation for every data model or even schema, but only one interface to call their methods. It
means hiding the complexity of one module to another. For example, the Query Decomposer does not
need to be aware of which model a given subquery is going to be translated to. The decomposer just
need to know how to split a federated query into pieces and where to send each piece. Having different
methods or parameters depending on the data model to be translated to is not needed at all. The same
is applicable to the different CDBs, the best is having the same interface to all of them despite their
specific implementation. Having a different interface depending on the DBMS that the interface should

hide does not seem to make too much sense.

The next point is how to create the object instances. The first possibility is having the objects compiled
and linked with the applications, which would then be able to solve their own necessities. Obviously, this
would not be a good choice, it would throw away all the benefits we have been talking about CORBA.
A better possibility is having a given number of stand-alone object instances always running, waiting for
requests. The references to those objects could be obtained using the Naming Service, or having them
persistently stored in files (as strings). This method does not seem enough flexible yet, because it implies
a fixed number of objects, and a name distribution mechanism. The distribution mechanism could be

the Trade Service, but it is hard to use (better to avoid using it while possible).

Another and really good possibility is having factories which produce new objects on demand. This avoids
registering every object in the Naming Service and storing references into files. Besides, we could ask as
many objects as we need (and where we need them). The problem is how those factories are created and

who does it. Here we go back to the discarted possibilities: they must be already running and registered

43

in the Naming Service or their references stored into files. It is not a problem now, because the number
of factories is smaller than the number of objects. Moreover, having a fixed number of factories is not
problematic, either, because they will not be a bottleneck in the execution process. You just need a
factory running on the machine you want to be able to run objects on, register it in the Naming Service,

and ask it for objects implementing the desired interface.

We can have an unique huge factory creating all the possible kinds of objects, or have a different specific
tiny factory for every different kind. Probably, the best solution would be in between. Having a huge
factory means recompiling and distributing it every time an object changes, and maybe, creating a bottle
neck, if everybody asks objects to it. Having a specific factory for every kind of object means a lot of
factories running and names to record or register. The reasonable solution would be having a factory
for every interface or small set of related interfaces. With this, a site only needs to have factories to
create the kinds of objects it wants to run. Besides, the same factory could create all possible different
implementations of that interface. For instance, we would have a factory to create the Query Translators,
which, given a parameter, would return the proper implementation to translate from the CDM to the

desired native data model.

The activation policy is another choice to be done, see section 2.6.2. Remember CORBA offers four

different possibilities: Shared, Unshared, Persistent, and Per-method-call.

e The Shared mode would be used in the objects that do not need parallelism: the factories, and

maybe the Directory of the system.

e The Unshared mode allows parallelism for calls to objects running on the same machine. A different
process is created for every user or process depending on the submode (i.e. Per-client, or Per-client-
process). Using this mode avoids a small query waiting for a long one to be executed in a given

site. It could be used in almost all the modules to provide parallelism.

e The Persistent mode means the server is always started up by hand, never automatically. Therefore,
it is never halted after an inactivity period of time. It is useful for modules hard to start up, or

those that record its state between different calls. It might be the case of the Directory.

e The Per-method-call is the opposite to the Persistent mode, an object is started up every time a
method is called. Tt saves resources by avoiding unnecessary processes in memory. It could be used

with objects not keeping state and having fast start-up.

The last important point to talk about is the invocation (static vs dynamic), see section 2.6.3. The
static invocation using stubs is faster, that is clear. Moreover, there is not any problem using it, because

all object interfaces are well-known. However, there are some cases where the dynamic invocation fits

44

better. Remember there are three invocation modes only available using dynamic invocation: Non-

blocking, Store-and-Forward, and Publish-and-Subscribe.

e The Non-blocking mode avoids the client waiting for the response of the target object. Its usage is

essential to allow parallelism.

e Store-and-Forward stores the call to be executed later. Really useful for batch systems, maybe

running at night.

o Publish-and-Subscribe allows to throw a call into a channel. Any server listening to that channel
can serve it. It provides a high-level flexibility, because allows to build a “producers-consumers”
architecture. When a client needs to request a service, instead of looking for a given instance of an

object, it leaves its call into the channel, and whoever listening to it can serve the request.

The last one of those modes means a radical change in the implementation. However, the others could
be provided as an optional feature of the objects, already offering static method invocation. They could
be implemented together with the static calls and activated by a given parameter or call to the object.
Their performance is not so bad if the Request object is already prepared to be used. It should be tested

in particular cases.

3.4 Others

These had been just examples of multidatabase systems using CORBA to solve system heterogeneities.
Of course, other projects exist, for example IRO-DB, or Jupiter. Curiously, none of these projects takes
place in USA. TSIMMIS (in the Stanford University) and Information Manifold (in AT&T) talk about
“wrappers” and “mediators”. However, they do not say anything about using CORBA to glue everything.

45

Chapter 4

CORBA in the persistence of data

4.1 The different ways

The usage of CORBA in the implementation of the execution architecture of the cooperative system
has been studied in the previous chapter. However, it can be useful in another important point: the
persistence of data. Independenly of helping the interaction between the different modules of the execution
architecture, CORBA offers tools to the implementation of wrappers for the DBMSs. It is really handy
hiding the heterogeneities in the access to the different CDBs.

Since the CORBA system has been thought as a “mecano”, there is not only one way to get persistence
in a CORBA environment. Probably, none of these ways is perfect, all of them have pros and cons, some
are firmly rooted in the market while others have a doubtful future. Moreover, they are not exclusive
between them, different combination are possible too. For sure, other people could find other possibilities
for using CORBA to get data persistence, CORBA is not a closed system at all, but those presented here

are:

“Classical” three-tier approach (plus CORBA).

Object Database Adapter.

Object loaders.

Externalization Service.

46

o Persistent Object Service.

e Object Query service.

4.1.1 “Classical” three-tier approach

This first approach to get persistence is diametrically opposite to the others described in next pages. It
proposes an architecture where the CORBA objects themselves are not persistent, but they handle the

persistent data, hiding their complexity, and actual location to the clients.

Isolating the client from the complexities of the DBMSs reduces perceptibly its code. Moreover, the client
does not have to be modified if the storage of the data changes. It also helps to control the access to
the data, since it is always through a clearly defined interface, its specific implementations are not mixed

with the rest of the code, and the access is centralized.

Client Tier1 Client
Remote call
Local call WAN
CLI Tier2 CORBA+CLI
DBMS Tier3 DBMS

Figure 4.1: Three-tier architecture with and without CORBA

Actually, CORBA is not needed to implement this kind of architecture. CORBA is just the front-end
to the data, any piece of software could be used as middleware. It is the typical three-tier architecture
composed by “repository”, “middleware” and “user interface”. That middleware can be implemented
using JDBC, ODBC, DCOM, or any other kind of CLI; and it is precisely used to hide the usage of those
tools to the client application. It just sends the proper SQL statements to the DBMS, and passes the

desired results to the client.

In spite of not being necessary, CORBA usage could make easy the communication and distribution of

that middleware. At the same time, it wraps the access to the database and provides portability for the

47

middleware code. An example of this usage of CORBA can be found in [OH98]. Tt studies how CORBA
and Java can work together to obtain distributed applications. This book even gives code and some

benchmarks to compare different ORBs and tier distributions.

Using CORBA only as a wrapper to hide the location of the code is wasting its potential. This approach
neither makes good use of the object oriented technology in CORBA, nor its modularity, reusability,
interface standardization, services, ... Obviously, CORBA hides the location of the code, but it can do

lots of other things. This architecture should be mixed with some of the solutions proposed in next pages.

4.1.2 Just an Object Database Adapter

[OMG95] describes the structure and features of objects adapters. They are ORB dependent, and offer
an interface to the object implementations. Since they are in between the ORB and the object imple-
mentation, they can be used to intercept the calls and perform the needed features. It is specifically
contemplated in that specification the usage of an specialized OA (called Object Database Adapter) to
get persistence. An ODA is suitable for the storage in ODBMS. It can use a connection to an object
oriented database to provide access to the objects stored in it. The mention of this kind of things in the

CORBA specification is a proof of the good relations existing between the OMG and the ODMG.

Moreover, the second appendix in [CBB197] describes how ODBMS objects could participate as OMG
objects, routing object invocations through identifiers provided by the ODBMS itself. Requests to the
persistent objects, whether through the ORB or directly to the ODBMS, produce the same effect and
are absolutely compatible. Those persistent objects look exactly like any other object accessible through
the ORB, from the client point of view. Besides, to facilitate it, the ODMG Object Definition Language
(ODL) is an extension of the IDL.

Registering all database objects in the ORB does not seem a good choice, mainly because it would
produce a lot of unnecessary overhead. Therefore, the ODMG also describes the ODBMSs as having
the capability to register subspaces of object identifiers with the ORB. That allows the ORB to handle
requests to all of the objects in an ODBMS without the registration of each individual object. This seems

a powerful tool for handling persistent objects.

A specific implementation of an ODA is presented in [ION97]. That implementation allows an Orbix
ORB to store the objects in an ObjectStore database. It could also be seen in the opposite way as the
ObjectStore objects being invoked by CORBA applications through the Orbix ORB. We could say that

paper presents the complementarity between Orbix and ObjectStore.

When an invocation is made on a persistent object that is not currently loaded, Orbix will pass the

48

invocation to the ODA, which will cause the object to be loaded from the ObjectStore database, and
Orbix will then pass the invocation to that object. From the client point of view, the Orbix clients do not
need to be aware of whether an object is both an Orbix object and an ObjectStore object at the same
time, and the same applies for the ObjectStore clients. On the other hand, from the implementor point of
view, a programmer just carries out the implementation steps of an Orbix object plus the implementation

steps for ObjectStore:

1. Define the object interface using standard IDL.

2. Use the modified Orbix IDL compiler to compile the interface.

3. Declare the corresponding C++ class.

4. Process the class declaration with the ObjectStore schema generator.

5. Implement the C++ class.

6. Compile and link with the needed libraries (Orbix and ObjectStore), stubs, and skeletons.

7. Create the instances using the ObjectStore overloaded “new” operator.

This is probably the most simple, comfortable, graceful, and powerful way to get persistence for CORBA
objects. However, by means of it, integration of legacy applications is not possible. Moreover, you are
tied to some implementations, and have to use ODBMS. One of the probably most important benefits of
CORBA is lost: its universality.

4.1.3 Object loaders

A specific Orbix mechanism to implement persistence is described in [Bak97]. Tt is suitable to access a
RDBMS (or ODBMS without ODA), and consist of four steps:

1. Decide the OO to relational mappings.
2. Code the mappings.
3. Write or import a “loader” that will create a C++ object for each object invoked by clients.

4. Ensure that the RDBMS is updated at the end of a transaction and that objects are removed from

memory.

49

It encourages (or discourages) you to implement the persistence by hand and almost from scratch. Some
tools (i.e. Ontos, Persistence, RogueWave, etc.) are proposed to automate or semi-automate the process,
but, even using them, it still seems long and hard. They could be seen as adhoc extensions of the ORB
in order to get the desired object activation. Actually, implementing a loader is providing a specific OA

for specific persistent objects.

When an operation invocation arrives at a process, Orbix searches for the target object in the process’s
object table. If the object is not found, the loader of the object will be informed about the object fault
and provided with an opportunity to load the target object and resume the invocation transparently to
the caller. Each object is associated with one of these loaders. If no loader is explicitly specified for an
object, then it is associated with a default loader, implemented by Orbix. A loader is nothing else than

a subclass of CORBA::LoaderClass overwriting the methods load, save, record, and rename.

load is called when the object is not found in memory and is responsible of the load the object.
save saves the object on process termination.

record and rename are used to choose the persistent identifiers for the instances.

This approach is quite at a low level, and absolutely dependent on the (Orbix) ORB. It is not part of
the CORBA standard at all. Thus, it means a loss in portability. Moreover, it can always be avoided by
using other similar solutions contemplated in the CORBA specification (e.g. FEaxternalization Service).
However, in some particular cases could be a really good solution as alternative to an ODA, if you are
not using an ODBMS.

4.1.4 Persistence through externalization

As defined in [OMG94], externalizing an object is to record the object state in a stream of data. Objects
which support the appropriate interfaces, and whose implementations adhere to the proper conventions
can be externalized to a stream (in memory, on a disk file, across the network, etc.), and subsequently be
internalized into a new object in the same or a different process. The externalized form of the object can
exist for arbitrary amounts of time, be transported by means outside the ORB, and can be internalized
in a different, disconnected ORB.

The externalization was conceived as an easily implemented service that could work with any kind of

object. The stream concept is quite similar to that in C++, and has two basic operations: put data into,

and get data out.

50

In using this CORBA service there are three different roles: client, stream and streamable object. The
client invokes operations on the stream in order to read or write an object. On externalization, the
stream records the object state; and on internalization, the stream invokes a factory to create a new, non
initialized instance, and initializes it with the recorded state. Each streamable object has to implement its
own way to be externalized and internalized using the StreamlIO interface. Moreover, there is a Standard
Stream Data Format (SSDF) which makes it possible to externalize an object on one system and know for
sure that you can internalize it on any other system able to run that kind of object. The SSDF lets you
exchange streams across dissimilar networks, operating system platforms, and storage implementations.

The StreamlO is responsible for using the SSDF or not.

The usage of this service is driven by the six interfaces (distributed in two modules) written in appendix
Al

Stream wraps the stream itself.
StreamFactory is the factory to create streams.
FileStreamFactory is a special kind of stream factory that allows to create streams on files.

Streamable is the interface implemented by the objects supporting their externalization and internal-

ization.
StreamableFactory allows the streams to create new streamable objects where to internalize a state.

StreamIO provides operations to write and read all the IDL data types (possibly using the SSDTF).

The steps to externalize an object are:

1. Call a stream factory to get the desired kind of stream.
2. Invoke the stream passing as a parameter the object reference to be externalized.
3. The stream tells the object to externalize itself to the stream.

4. The object writes its content to the stream (through the StreamlIO interface).

Later on, may be in a different machine, the steps to internalize the previously externalized object are:

51

1. Invoke Stream::internalize on the desired stream.

2. The stream object looks inside the stream for a key that helps it to locate a factory that can create

an object with an implementation that matches the object (or objects) in the stream.
3. The stream tells the streamable object to internalize itself.

4. The object reads its contents from the stream (through the StreamlIO interface).

All this is part of the CORBA standard (concretely one of its services, as said in section 2.5). Therefore,
it is always well-stated and the objects implementing it are interchangeable between different ORBs. Be-
sides, part of its implementation could be provided by a vendor (i.e. Stream, StreamFactory, FileStream-
Factory, and StreamIO implementations). Its main weakness is that it forces you to record the whole
state of an object at a time, you are not allowed to externalize just a part of the state (it is all or nothing).
This is because this service is not thought as to get persistence, but to copy or move object instances
from one machine to another one that is not connected to the former. However, in spite of its simplicity,
it is really handy. If all the objects were streamable, it could be used to ease the task of other services.
For example, the Persistent Object Service would just need a translation mechanism from the SSDF to

the desired storage mechanism in order to get persistence.

4.1.5 The Persistent Object Service

This service, as was said in section 2.5, supports the capability of making persistent all or part of the
state of an object. It describes ways for the object to decide what state needs to be made persistent,
and ways to store and retrieve that state. Its usage is not mandatory. Any object has the responsibility
of managing its state, but can delegate part of the work to the POS. An object could only use some
of the POS components or all of them. All this results in quite a freedom to the persistent objects’

implementors.

The POS specification is a merging between two proposals, one coming from IBM and another one from
SunSoft, submitted to the OMG. IBM proposal tried to integrate the RDBMSs into the OMA world, while
the second one was directed towards establishing interfaces to the ODBMSs. As a result, the definitive
POS specification is wide opened. It was conceived to make everybody happy, or at least, as much happy
as possible. Any storage system can be plugged into the POS. Moreover, it ensures that client code
remains unchanged as object datastores are changed, by presenting the interfaces as a contract between

the POS and datastore vendors. Another important point to take into account about the conception of

52

the POS is that, violating the OMG policy, it is not based upon well established market products.

Client

Persi

Persistent
Identifier

Protoco| s

< >

Figure 4.2: Components of the POS [OMG98]

The different components of the POS are depicted in figure 4.2 and described in [OMG94] and [OMG98]

as:

Client is who asks for recording a persistent object. It can exist or not depending on the persistent

object implementation offering the PO interface or not.

Persistent Object (PO) is an object whose state is recorded in a Datastore. The persistence is pro-
vided by the object itself, but by means of implementing the corresponding interface, it may let the
client to control when the state is recorded. An object is persistent or not independently of whether
it implements the PO interface or not. An object is persistent if it stores its data persistently by
means of the POS.

Persistent Identifier (PID) describes the location on an object’s persistent data in some Datastore
and generates a string identifier for that data. An object must have a PID in order to store its data
persistently. It is passed as parameter to the POM, and is used to identify one or more locations
within a Datastore. Note it is different from the OID in that the PID identifies data location, while
the OID identifies a CORBA object. A PID cannot be used as target for an invocation; it can only
be used in the context of the POS.

Persistent Object Manager (POM) provides a uniform interface for the implementation of an objec-

t’s persistence operations. An object has a single POM to which it routes its high-level persistence

53

operations. Its role is simply to decide which PDS to pass the calls to. This allows the PO to
use different PDSs without changing its implementation but the PID. This routing function of the
POM serves to shield the client from having to know the details of how and where actual data
storage takes place. Thus, the POM will use non-standard operations to find out which protocols

and PDSs a given object can work with.

Persistent Data Service (PDS) provides a uniform interface for any combination of Datastore and
Protocol, and coordinates the basic persistence operations for a single object. It translates from the

object world to the specific Datastore world.

Protocol provides one of several ways to get data in and out of an object. It is the way in which the
object interacts with the PDS. There is no an unified protocol, three different ones are defined in the
services specification: the Direct Attribute (DA) protocol, the ODMG protocol, and the Dynamic
Data Object (DDO) protocol. Moreover, any other environment or language specific protocol could
be used, as well. For example, SSDF could be the fourth.

Datastore provides one of several ways (i.e. flat file, RDBMS, ODBMS, etc.) to store an object’s data
independently of the address containing the object. It will typically offer a CLI to access the data

in it.

With all this, [Ses96] describes the “typical” persistence request (a store invocation) as the client setting
up the PID and invoking the store on the PO. The PO passes on the store request to the POM. The POM
looks at the PID and the object to determine which PDS can handle the request. The POM forwards
the store request to the appropriate PDS. The PDS then takes over the store, interacting directly with
the object and the Datastore.

Obviously, the POS just defines the IDL interfaces (listed in appendix A.2) and does not say anything
about their implementations. Different implementations are possible and even encouraged. The existence
of all those modules gives a great freedom degree to the implementors. Anyone of the modules could
be implemented by a different one, and everything would work together without problems. Concretely,
it means different storage systems could be used at the same time, and even interchanged, in spite of

ranging from simple file systems to DBMSs (while supporting the same protocol).

Those interfaces propose two different ways to control the persistence of an object. The fist one (connect
method) establishes a “permanent” connection between the volatile and persistent data of an object. Any
change (while the connection is established) in the former is automatically reflected in the Datastore. After
disconnection (disconnect method), the persistent data keep the values. About the second way, it allows
a client to control when data is stored and restored (methods store and restore). There exists another
method (delete) which deletes the object’s persistent data from the Datastore location indicated by a
PID.

54

The POS proposes a solution to wrap storage mechanisms (object oriented or not), so that they can
be used as object technology. It means the system is opened to any kind of data storage (including
RDBMSs). However, a problem arises when trying to use an ODBMS: it losses simplicity and efficiency.
Since the DBMS is not aware of the actual data structure of the objects it is recording, a direct mapping
between memory and the storage system cannot be generated. The advantages of that mapping are
probably the main reasons to use an ODBMS instead of an RDBMS extended for objects. Therefore,
the ODBMS vendors are not completely happy with this service (they promote the usage of an ODA in

order to get persistence).

[KPT96] is a paper summarizing the weaknesses of the POS. The first one is the underspecified semantics
of operations (i.e. connect, disconnect, etc.). The specification does not specify what concretely had to
do some of the operations, it is left to the implementor’s discretion. Something similar happens talking
about the POM, because proprietary solutions are expected to be introduced. Besides, the reusability of
other CORBA services is just briefly mentioned. However, these problems were probably generated on
purpose. The OMG left some concretions for future revisions, which will be done after the shipment of
some commercial products implementing the standard (it was previously mentioned that, exceptionally,

this service is not based upon market products).

Other commented problem in the standard is the lack of a “Compound Persistent Object Service”. It
would be responsible for the storage of the inter-object references. This will be really hard since the PID

and the object are loosely coupled.

4.1.6 The Object Query Service

Probably, the most suitable of the CORBA services for being used in BLOOM is the OQS, previously
introduced in section 2.5. In spite of the fact that it does not provide object persistence by itself, it
is really useful to access information in storage systems. As described in [OMG94] and [OMGY8], the
0OQS provides query operations on collections of objects. In this context, “query” stands for selection as
well as insertion, updating, and deletion. Those documents even mention that the OQS could coordinate

multiple nested query evaluators in a federated service architecture.

Despite that another CORBA service is specifically devoted to collections, they are briefly described as
part of the query service. It offers interfaces for creating and manipulating collections of objects, possibly
obtained as a result of a query. Those collections are defined as objects, with methods for adding and
removing members. Any system managing extensions of objects (as complex as needed) can be wrapped
into a collection object. Tterators (“cursors”) are explicitly specified, as well, and appear always bound to

a given collection. They are used to manipulate collections, traversing them and retrieving their objects.

55

The OQS is a front-end conceived to unify CORBA objects, RDBMSs, and ODBMSs into a single query
target. As everything in the CORBA world, it is done by specifying an IDL interface, or set of interfaces.
Anything implementing that interface can participate in the query system as a first class object. It
is expected the database vendors will implement this feature as part of their database systems. The

interfaces offered by the OQS, and listed in appendix A.3 are:

QueryEvaluator Evaluates query predicates and executes query operations using the specified query

language.

Query is the interface encapsulating a query by which it can be previously designed, saved, precompiled,
and treated as any other object. It supports four operations: prepare, erecute, get_status, and

get_result.

QueryManager is a specialization of QueryEvaluator which creates Query instances (it is a query

factory at the same time).
CollectionFactory is just a factory creating Collection instances.
Collection allows you to manipulate grouped objects.

QueriableCollection is a specialization of Collection and QueryFEvaluator, both at the same time.

Thus, it allows to evaluate queries on a given set of objects.

Iterator is a movable pointer into a Collection.

The query process begins when a client sends a query to a Query Fvaluator, which could just be a
collection supporting the corresponding interface, or a complex DBMS. The Query Fvaluator passes the
query predicate to the collection, which then evaluates the predicate and performs query operations on
an appropriate member object, receives any result, combines such results with all other participating
object results, and returns this to the caller (as a single object or a collection). As said above, there is no
problem in nesting the process, that is the members of a collection could be collections, and the members

of a QueriableCollection could be QueriableCollections.

The steps to execute a query and obtain the result are:
1. Create a Query object by invoking create on a QueryManager.
2. Prepare (precompile) the query.

3. Execute the query as many time as you like.

4. Get the result.

56

5. Create an Iterator on the returned collection (if a collection was returned).
6. Read the first element in the collection.

7. Go to the next object in the collection and read it as well.

The first three steps could be simplified by just submitting the query by invoking evaluate on the QuerykE-
valuator. This will be much faster if the query is going to be executed only once. However, since in this

case it is not precompiled nor stored, its repeated execution would be pretty slower.

In describing the OQS, [OMG98] uses the term “object” in the general sense to include data. It means the
contents of a collection do not have to be CORBA objects but just a set of data. This solves the problem
found in other services, here the objects implementation does not need to be modified nor extended to get
persistence. The data is stored in a storage system and retrieved using a query language. A completely
new view point is offered: less work, less service. You are not recording first class CORBA objects but

just their ”plain” data. It seems thought as a simplification to win people for the CORBA cause.

In the same way, it is expected the QueryFEvaluators to support at least SQL-92 Query or OQL-93 Basic,
to be useful for relational as well as for object oriented users. The query languages are evolving fast, and

this will change as soon as one supporting relations and objects appear in the market.

4.2 Meeting BLOOM

CORBA is conceived like a “mecano” with complementary pieces. None of the solutions proposed above
solves all the problems in the BLOOM architecture, rather all them working together will improve the
BLOOM system. In spite of that, some seem more useful than others, depending on where you want to

use them.

At first, the POS seems really attractive to wrap the CDBs. It is a service conceived to get persistence
which covers all the possibilities. However, some problems arise when looking in depth: it is too complex
and has not been implemented yet. If implementations of some of its interfaces (i.e. PDS, POM, and PID)
are not in the market, the adhoc implementation of the whole POS seems unfeasible. The problem is that
this does not seem going to happen because it is the most questioned service. There exists a confrontation
of interests between RDBMSs and ODBMSs vendors. The former do not completely support CORBA,
while the others are more interested on the ODA than on the POS. The OMG is close to issuing a RFP
for POS 2, having the coexistence with POS 1.0 interfaces as a requirement. Maybe that will be the

solution to the problem.

57

The easiest and best way to access the CDB would be by means of an ODA. Nevertheless, one of the
strongest constraints in the BLOOM architecture is to keep the autonomy of the CDBs. That autonomy
is no problem if it is the case of an ODBMS (almost for sure it is going to have an ODA in the market),
but there are no ODAs for RDBMSs, and the CDBs should likely have to transfer part of their autonomy

to the federation in order to build that relational ODA (let apart its implementation costs).

The Externalization Service or specific object loaders seem to be a quite simple way to get persistence.
They are really easy to implement and no “external” aid is needed. If every object implements its own
storage method, everything goes smoothly. This is a magnitude problem: who is going to implement
the hundreds or thousands of different methods to record and recover the existing objects if they are not
implemented yet? Furthermore, the BLOOM CDBs have to maintain their autonomy. Therefore, their

objects cannot be modified in order to get persistence (we run up against the same wall again).

QueryEvaluator Interface

BLOOM system
Query Query Query
Evaluator | |[Evaluator| ~~ |Evaluator

Figure 4.3: BLOOM-OQS architecture

Probably, the problems outcrop because we are trying to store what is already stored. The data in the
CDBs are already persistent. Rather, just a query system is needed. A simple three-tier architecture
seems to fit well here, because it will allow the CDBs to keep their autonomy. Their machines do not
need to be modified at all if they offer a way to query the databases (this does not seem an unfounded
assumption, because almost all DBMSs offer a CLI). Besides, the typical three-tier architecture could be
improved to benefit from CORBA. If every CDB is wrapped into a QueryEvaluator, CORBA will hide

the system heterogeneities (just the semantic ones left). See figure 4.3.

The absolute autonomy and security of the CDB can be easily guaranteed just by means of the CLI
operations each one offers to the federation, and the specific implementation of the QueryFvaluators.
The heterogeneities in the CDBs are smoothed out at the same level. Furthermore, CORBA will hide
the actual location of the puzzle pieces, which will facilitate the evolution of the system. Moreover, all
the BLOOM system could be wrapped into a QueryFvaluator as well, to obtain a nestable architecture.

Offering a QueryEvaluator interface to the federation will not be an excessive effort, and will let plug the

58

federation into another federation.

The OQS does not seem to be necessary in all this. Its interfaces are so simple, we could just forget those
and easily redefine them to our own liking. However, why should we reinvent what is already invented
and standardized. We do not need to waste time thinking what was already clearly stated. Moreover,
using a standard would make easy the joining of new CDBs to the federation, not to mention in the near
future, hopefully, the DBMSs could offer their own implementation of the OQS interfaces, complementing
the current CLIs, to be integrated in a CORBA environment.

Obviously, OQS is not the perfect solution to be always used everywhere. CORBA offers lots of possibil-
ities and all them should be carefully taken into account to implement a cooperative system. As it was
previously said, all the proposals in this chapter could be combined to fit the needs of the system, mainly
depending on the kind of CDBs.

Leaving the data in the CDBs aside, storing the data of the different modules in the BLOOM execution
architecture is another completely different story. We do not have to keep any autonomy at all, and they
must be implemented from scratch. It means we can choose the CORBA service fitting the best into
our needs. The Directory is probably the most special and interesting of the modules attending to their
persistence. It is a database about the databases, keeps the information needed to integrate them (i.e.
schemas at the different levels, mappings between those schemas, security information, transactional data,
etc.). Once the POS is discarded, the externalization service seems a good, wide accepted alternative.
However, since there could be lots of different objects, and it is more a database than a distributed
system, a database storage system would fit much better. Doubtless, if we can choose the database to
use, the best choice is an ODA. Using a database offering an ODA implementation for the given ORB
(or ORBs) will provide transparent persistence for all the data in the CORBA objects, or transparent
CORBA access to any data in the database (depending on the point of view). This way we get the
distribution of a CORBA system plus the persistence storage of a database without any extra effort.

On the contrary, the other modules in the BLOOM execution architecture (those that are not the Di-
rectory) are more a part of a distributed system than a database. Therefore, the best is the simplest
solution: the Fzternalization Service. 1t will allow the modules to store any possibly persistent data they
handle without any problem. Moreover, together with the Life Cycle Service, it can be used to copy or

move a given module execution from one machine to another.

59

Chapter 5

Conclusions

5.1 Two storage trends

The main obstacle to the imposition of CORBA is the fight between ODBMSs and RDBMSs. They are
struggling for the market, and CORBA is a corner-stone in the future of software. It is the center nobody
wants to lose. The storage system is probably the most important part of an information system. The

way it is offered drives the future of the whole information system technologies.

The difference can be stated as providing a single-level or a two-level storage system. In the former, the
client is not aware of whether the object is in memory or disk. The DBMS (ODBMS in this case) hides
the location of the data to the users. From the user point of view, the objects are always in memory. The
other kind of storage systems (RDBMSs) clearly separates memory and persistent storage. The user is

responsible for explicitly retrieve and store the data.

Nowadays, most databases are relational. The ODBMSs are limited to some specific business areas
(i.e. CAD, CAE, etc.), and do not seem to gain market space in others. Nevertheless, since CORBA
uses object technologies, it seems the ODBMSs should be treated favourably. Moreover, the single-level
storage provides better performance, and solves the impedance mismatch problem. However, the weight
of RDBMSs in business is not negligible. Some CORBA specifications are a trade-ofl between what
should be and what really is (e.g. POS specification and its interfaces).

Probably, the POS is the most clear example of what is happening. It was proposed to allow any kind of

storage mechanism. It does not say how but what, and its interfaces are as general as possible in order

to be used by relational as well as OO storage systems. However, the generality, in this case, favors a

60

two-level store model at the expense of a single-level one, because it offers two operations, i.e. store and
restore, which clearly is a two-level store view. The signs of this battle are also found in the OQS which

forces, at least, two different query languages: SQL and OQL.

It is not mandatory to use the POS to get persistence nor the OQS to query storage systems, any other
facility could be used instead of them. Thus, as a result of all these problems, none of the contenders fully
backs those disputed services. The ODBMSs bet on the ODA solution, while the RDBMSs do not seem
to bet on anything, yet. Trying to satisfy everybody is not always the best. The storage disagreement is
a brake for CORBA.

The differences will likely (hopefully) be smoothed by means of the Transaction service, which can make
a two-level store look like a one-level store, or vice versa, depending on the point of view. A one-level
storage system could be seen as two-level storage system with the restores grouped at the begin and the

stores grouped at the commit of transaction (as proposed in [Ses96]).

5.2 Squaring CORBA and BLOOM

BLOOM and CORBA are two of a kind. The two of them make a good match to manage heterogeneities
in multidatabase systems. While CORBA handles the system heterogeneities, BLOOM tries to solve the
semantic ones. Clearly, it is a teamwork, where each one is specialized in a different facet. CORBA saves

BLOOM problems in dealing with “second class” heterogeneities.

The system heterogeneities (in hardware, operating system, communication protocols, etc.) are cumber-
some to study the integration of autonomous (or semi-autonomous) information systems. They are well
understood, and have already proposed solutions (CORBA is a good example of this). Thus, when trying
to study such systems, we could assume those heterogeneities are already solved. By means of CORBA,

BLOOM can forget them and only look at the semantics of the different schemas to be integrated.

This does not mean we can just say the system heterogeneities are solved and go straight to the semantics.
The interaction between both systems must be carefully studied. CORBA is a new born, still evolving
standard, and there does not exist an implementation of BLOOM, yet. Therefore, neither supply nor

demand are well stated.

This paper tried to give an overview of how that interaction could be seen. It seems clear to divide it
into two different parts. The one is how CORBA can be used to wrap the CDBs, and the other is how
CORBA can wrap the modules in the BLOOM execution architecture to help their distribution.

61

On wrapping the CDBs, CORBA has potential. However, at present day, it is not evident how will be
done. There are a lot of helpful services, which have not been fully implemented, yet. Some, because
have been standardized recently. Others, because it is not obvious how the standard will be concreted.
Sometimes, the standard is quite vague, and the implementors got a high degree of freedom. It seems
CORBA will do a good job, but how it will cannot be ensured by now. The most promising service is

the OQS. However, an implementation is not available, yet.

About the second way CORBA can help BLOOM, it seems much more realistic. It does not depend so
much on the services, but on the ORB itself. The ORB was standardized before the services. Thus, its
implementations are better established in the market, and it is much easier to say what it does and what
it will do. The idea here is to wrap each BLOOM module into a CORBA object to be able to ship them
across the network. This will solve the location problems, and will help to distribute the load of the
system between the different machines participating in the cooperative information system. By means
of CORBA, every machine (actually machine administrator) can dynamically choose which modules are

allowed to be run on it.

It is certain that CORBA will help BLOOM to build a federation of databases. Maybe, the question is
when. Full CORBA implementations are not available today, and the standard is still evolving and grow-
ing. Nevertheless, there can be no doubt that when the standard become stable and the implementations
well rooted in the market, CORBA will be the indispensable tool to build a cooperative information

system.

62

Glossary

API Application Programming Interface.

BLOOM BarcelLona Object Oriented Model. Note that it is used to refer to the data model itself, as

well as the whole project (canonical model, schemas architecture and execution architecture).
BOA Basic Object Adapter.
CAD Computer Aided Design.
CAE Computer Aided Engineering.
CDB Component DataBase.
CDM Canonical Data Model.
CLI Call Level Interface.
COM™™ Component Object Model (Microsoft).

Cooperative Information System Set of information systems, possibly distributed over large and
complex computer/communication networks, which manage large amount of information and com-

puting services, and support individual or collaborative human work. [MDJ*98]
CORBA Common Object Request Broker Architecture.
DA Direct Access protocol.
DB DataBase.
DBA DataBase Administrator.
DBMS DataBase Management System.
DDL Data Definition Language.

DDO Dynamic Data Object.

63

DII Dynamic Invocation Interface.

DLL Dynamically Loaded Library.

DSI Dynamic Skeleton Interface.

DSOMTM Dynamic SOM (IBM).

FDBMS Federated DataBase Management System.

Federated Database Management System Collection of cooperating but autonomous component

database systems, possibly heterogeneous. [SL.90]
GUI Graphical User Interface.
HEROS HEteRogeneous Object System. [AULM98]
IDL Interface Definition Language.
ITIOP Internet Inter-ORB Protocol.
IML™™ TImplementation Mapping Language (Digital).

Interface Definition Language Language used to define CORBA object interfaces (quite similar to
CH++).

JDBCTM Java DataBase Connectivity (Sun Microsystems).
METU Middle East Technical University (Turkey).

MIND METU INteroperable DBMS. [DDK*96]

MML™™ Method Mapping Language (Digital).

OA (Generic) Object Adapter.

Object Identifiable, encapsulated entity that provides one or more services that can be requested by a

client. [OMG95]

Object reference Object name that reliably denotes a particular object. Specifically, an Object Refer-
ence will identify the same object each time the reference is used in a request. An object may be

denoted by multiple, distinct object references. [OMG95]
ObjectStore’™ Concrete ODBMS implementation (Ideal Object).
ODA Object Database Adapter.
ODBC Open DataBase Connectivity.

ODBMS Object oriented DBMS.

64

ODL Object Definition Language.

ODMG Object Database Management Group.

OID Object IDentifier.

OLE”M Object Linking and Embedding (Microsoft).
OMA Object Management Architecture.

OMG™™ Object Management Group.

OO Object Oriented.

OQL Object Query Language (defined by the ODMG).
0QS Object Query Service.

ORB Object Request Broker.

OSLTM QObject Server Language (Sun Microsystems).
Orbix™ Concrete ORB implementation (IONA Technologies).
PDS Persistent Data Storage.

PID Persistent [Dentifier.

PO Persistent Object.

POA Persistent Object Adapter.

POM Persistent Object Manager.

POS Persistent Object Service.

Request Event by means of which a client requests a service. The information associated with a request
consist of an operation, a target object, zero or more (actual) parameters used to pass data to the

target object, and an optional request context. [OMG95]
RDBMS Relational DBMS.
RFI Request For Information.
RFP Request For Proposals.
RMI? Remote Method Invocation (Sun Microsystems).
SD Synchronized Data.

SOM™M System Object Model (IBM).

65

SQL Standard Query Language.

SSDF Standard Stream Data Format.

66

Bibliography

[AULM98]

[Bak97]

[CBB*97]

[DDK*96]

[TON97]

[KPT96]

[KS98]

[MDJ+98]

[OH98]

E. M. Antunes-Uchoa, S. Lifschitz, and R. N. Melo. HEROS: A heterogeneous object-oriented
database system. Lecture Notes in Computer Science, 1460:435-447, 1998.

Sean Baker. CORBA Distributed Objects - Using Orbiz. ACM Press, Adison Wesley, 1997.

R. G. G. Cattell, D. Barry, D. Bartels, M. Berler, J. Eastman, S. Gamerman, D. Jordan,
A. Springer, H. Strickland, and D. Wade. The Object Database Standard: ODMG 2.0. Morgan
Kaufmann Publishers, Los Altos (CA), USA, 1997.

A. Dogac, C. Dengi, E. Kilic, G. Ozhan, F. Ozcan, S. Nural, C. Evrendilek, U. Halici,
B. Arpinar, P. Koksal, and S. Mancuhan. A multidatabase system implementation on
CORBA. In Sizth International Workshop on Research Issues in Data Engineering - Inter-

operability of Nontraditional Database Systems, pages 2—-11, Washington - Brussels - Tokyo,
February 1996. IEEE Computer Society.

IONA Technologies. ORBIX + ObjectStore adapter. White paper, IONA Technologies PLC.,
1997.

Jan Kleindienst, Frantisek Plasil, and Petr Tuma. Lessons learned from implementing the
CORBA persistent object service. In Proceedings of the Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, volume 31, 10 of ACM SIGPLAN Notices,
pages 150-167, New York, October6—-10 1996. ACM Press.

G. Kappel and B. Schroeder. Distributed light-weight persistence in Java — A tour on RMI-
and CORBA-based solutions. Lecture Notes in Computer Science, 1460:411-424, 1998.

Georgio De Michelis, Eric Dubois, Matthias Jarke, Florian Matthes, John Mylopoulos,
Michael P. Papazoglou, Klaus Pohl, Joachim Schmidt, Carson Woo, and Eric Yu. Coop-
erative information systems: a manifesto. In Michael P. Papazoglou and Gunter Schlageter,

editors, Cooperative Information Systems, pages 315-363. Academic Press, San Diego, 1998.

Robert Orfali and Dan Harkey. Client/Server Programming with JAVA and CORBA. John
Wiley & Sons, New York, 2 edition, 1998.

67

[OHE97]

[OMG94]

[OMGY5]

[OMGYS]

[ROSCY7]

[Ses96]

[Sie96]

[SL90]

[Sri97]

[SV97]

[Vin93]

[Vin9T]

Robert Orfali, Dan Harkey, and Jeri Edwards. Instant CORBA. Wiley Computer Publishing,
John Wiley and Sons Inc., 1997.

OMG. Object services architecture. Documentation available at http://www.omg.org, Object
Management Group, 1994. Revision 8.0.

OMG. The common object request broker: Architecture and specification. Documentation

available at http://www.omg.org, Object Management Group, July 1995. Revision 2.0.

OMG. CORBAservices: Common object services specification. Documentation available at

http://www.omg.org, Object Management Group, December 1998.

Elena Rodriguez, Marta Oliva, Felix Saltor, and Benet Campderrich. On schema and func-
tional architectures for multilevel secure and multiuser model federated database systems. In
S. Conrad et al., editor, Proceedings of the International CAiSE’97 Workshop on Engineering
Federated Database Systems (EFDBS’97), pages 93-104. Springer, Magdeburg (Germany),
1997.

Roger Sessions. Object Persistence — beyond object-oriented databases. Prentice Hall, 1996.

Jon Siegel. CORBA: Fundamentals and Programming. John Wiley & Sons Inc., New York, 1
edition, 1996.

Amit P. Sheth and James A. Larson. Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3):183-236, Septem-
ber 1990. Also published in/as: Bellcore, TM-STS-016302, Jun.1990.

Prashant Sridharan. Advanced Java Networking. Prentice Hall, 1997. ISBN 0-13-749136.

Douglas C. Schmidt and Steve Vinoski. Object interconnections. SIGS C++ Report, April
1997.

S. Vinoski. Distributed object computing with CORBA. C++ Report, 5(6):32-38, July-
August 1993.

Steve Vinoski. CORBA: Integrating diverse applications within distributed heterogeneous
environments. IEFE Communications, 35(2):46-55, February 1997.

68

Appendix A

Service IDL interfaces

A.1 Externalization Service

module CosExternalization {
exception InvalidFileNameError {};

exception ContextAlreadyRegisteredError {};

interface Stream : CosLifeCycle::LifeCycleObject {
void externalize(in CosStream::Streamable theObject);
CosStream::Streamable internalize(in CosLifeCycle::FactoryFinder there)
raises (CosLifeCycle::NoFactory, StreamDataFormatError);
void begin_context() raises (ContextAlreadyRegistered);
void end_context();
void flush();
b
interface StreamFactory {
Stream create();
b
interface FileStreamFactory {
Stream create(in string theFileName) raises (InvalidFileNameError);
b
b

69

module CosStream {
exception ObjectCreationError {};

exception StreamDataFormatError {};

interface StreamlO;
interface Streamable : CosObjectIdentity::IdentifiableObject {
readonly attribute CosLifeCycle::Key external form_id;

void externalize to_stream(in StreamIO targetStreamlIO);
void internalize from stream(in StreamIO targetStreamlO, in CosLifeCycle::FactoryFinder there)
raises (CosLifeCycle::NoFactory, ObjectCreationError, StreamDataFormatError);
b
interface StreamableFactory {
Streamable create_uninitialized();
b
interface StreamIO {
void write_object(in Streamable obj);
void write_string(in string aString);

void write_char(in char aChar);
Streamable read_object() raises (StreamDataFormatError);

string read_string() raises (StreamDataFormatError);

char read_char() raises (StreamDataFormatError);

i

70

A.2 Persistent Object Service

module CosPersistencePO {
interface PO {
attribute CosPersistencePID::PID p;

CosPersistencePDS::PDS connect (in CosPersistencePID::PID p);
void disconnect(in CosPersistencePID::PID p);
void store(in CosPersistencePID::PID p);
void restore(in CosPersistencePID::PID p);
void delete(in CosPersistencePID::PID p);
b

interface SD {
void prestore();
void postrestore();
b

b

module CosPersistencePOM {
interface POM {
CosPersistencePDS::PDS connect (in Object obj, in CosPersistencePID::PID p);
void disconnect(in CosPersistencePID::PID p);
void store(in CosPersistencePID::PID p);
void restore(in CosPersistencePID::PID p);
void delete(in CosPersistencePID::PID p);

i

module CosPersistencePDS {
interface PDS {
PDS connect (in Object obj, in CosPersistencePID::PID p);
void disconnect(in CosPersistencePID::PID p);
void store(in CosPersistencePID::PID p);
void restore(in CosPersistencePID::PID p);
void delete(in CosPersistencePID::PID p);
b

71

module CosPersistencePDS DA {
typedef string DAObjectID;
typedef sequence<string> AttributeNames;
typedef string ClusterlD;
typedef sequence<Cluster]D> ClusterIDs;

interface PID DA : CosPersistencePID::PID {

attribute DAObjectID oid;
b

interface DAObject {

boolean dado_same(in DAObject d);
DAObjectID dado_oid();

PID DA dado_pid();

void dado_remove();

void dadofree();
b

interface DAObjectFactory {

DAObject create();
b

interface DAObjectFactoryFinder {

DAObjectFactory find factory(in string key);

i

interface PDS_DA : CosPersistencePDS:PDS {

DAObject get_data();

void set_data(in DAObject new_data);
DAObject lookup(in DAObjectID id);
PID DA get_pid();

PID DA get_object_pid(in DAObject dao);
DAObjectFactoryFinder data_factories();

i

interface DynamicAttributeAccess {

AttributeNames attribute names();
any attribute_get(in siring name);
void attributeset(in string name, in any value);

i

interface PDS_ClusteredDA : PDS_DA {

ClusterID cluster_id();

string cluster kind();

ClusterIDs clusters_of();

PDS_ClusteredDA create_cluster(in string kind);
PDS_ClusteredDA open_cluster(in ClusterID cluster);
PDS_ClusteredDA copy cluster(in PDS_DA source);

i

72

module CosPersistenceDDO {
interface DDO {
attribute string object type;
attribute CosPersistencePID::PID p;

short add_datal();

short add_data_property(in short dataid);

short add_data_count();

short add_data_property _count(in short dataid);

void get_data_property(in short dataid, in short property_id, out string property name, out any property_value);
void set_data_property(in short datalid, in short property.id, in string property name, in any property_value);
void get_data(in short data_id, out string dataname, out any data_value);

void set_data(in short dataid, in string dataname, in any data_value);

i

73

A.3 Object Query Service

module CosQueryCollection {
exception ElementlInvalid ;
exception IteratorInvalid ;

exception PositionInvalid ;

enum ValueType { TypeBoolean, TypeChar, TypeOctet, TypeShort, TypeUShort, TypeLong, ..., TypeNumeric};
struct Decimal { long precision; long scale; sequence<octet> value; };
union Value switch(ValueType) {

case TypeBoolean: boolean b;

case TypeNumerical: Decimal n;
b
typedef boolean Null;
union FieldValue switch (Null) {
case FALSE: Value v;
b
typedef sequence<FieldValue> Record;
typedef string wstring;
struct NVPair { wstring name; any value; }

typedef sequence<INVPair> ParameterList;

interface Collection;

interface Iterator;

interface CollectionFactory {
Collection create(in ParameterList params);
b

interface Collection {

readonly attribute long cardinality;

void add_element(in any element) raises (ElementInvalid);
void add.all_elements(in Collection elements) raises (ElementInvalid);
void insert_element.at(in any element, in Iterator where) raises (IteratorInvalid, ElementInvalid);
void replace_element.at(in any element, in Iterator where) raises (IteratorInvalid, PositionInvalid, ElementInvalid);
void remove_element_at(in Iterator where) raises (IteratorInvalid, PositionInvalid);
void remove_all_elements();
any retrieve element_at(in Iterator where) raises (IteratorInvalid, PositionInvalid);
Iterator create_iterator();
b
interface Iterator {
any next() raises (IteratorInvalid, PositionInvalid);
void reset();
boolean more();
b
b

74

module CosQuery {
exception Querylnvalid ;
exception QueryProcessingError string why;;

exception QueryTypelnvalid ;

enum QueryStatus { complete, incomplete };
typedef CosQueryCollection::ParameterList ParameterList;
typedef CORBA::InterfaceDef QLType;

interface QueryLanguageType {};
interface SQLQuery : QueryLanguageType {};
interface SQL_92Query : SQLQuery {};
interface OQL : QueryLanguageType {};
interface OQLBasic : OQL {};
interface OQL_93 : OQL {};
interface OQL_93Basic : 0QL_93, OQL Basic {};
interface QueryEvaluator {
readonly attribute sequence<QLType> ql_types;
readonly attribute QLType default_gl_type;

any evaluate(in string query, in QLType gl_type, in ParameterList params)
raises (QueryTypelnvalid, QueryInvalid, QueryProcessingError);
}s
interface QueriableCollection : QueryEvaluator, CosQueryCollection:Collection {};
interface QueryManager : QueryEvaluator {
Query create(in string query, in QLType ql_type, in ParameterList params) raises (QueryTypelnvalid, QueryInvalid);
}s
interface Query {

readonly attribute QueryManager query_mgr;

void prepare(in ParameterList params) raises (QueryProcessingError);
void execute(in ParameterList params) raises (QueryProcessingError);
QueryStatus get_status();

any getresult();

i

75

