
CORBA: A middleware for an heterogeneous cooperative systemAlberto Abell�oDept. Llenguatges i Sistemes Inform�aticsUniversitat Polit�ecnica de CatalunyaMay 21, 1999

AbstractTwo kinds of heterogeneities interfere with the integration of di�erent information sources, those insystems and those in semantics. They generate di�erent problems and require di�erent solutions. Thispaper tries to separate them by proposing the usage of a distinct tool for each one (i.e. CORBA andBLOOM respectively), and analizing how they could collaborate. CORBA o�ers lots of ways to deal withdistributed objects and their potential needs, while BLOOM takes care of the semantic heterogeneities.Therefore, it seems promising to handle the system heterogeneities by wrapping the components of theBLOOM execution architecture into CORBA objects.

Contents1 Introduction 11.1 Needs of integration . 11.2 A distributed cooperative system architecture . 21.3 Distributed object systems . 41.4 Outline of the paper . 51.5 Acknowledgments . 62 Object Management Group solution 72.1 History . 72.2 Bill of purposes . 82.3 General architecture . 102.4 Broker architecture . 122.4.1 Knowing interfaces at compile time . 162.4.2 Discovering interfaces on the y . 172.5 Services . 18i

2.5.1 Up till now . 192.5.2 To do list . 232.6 Using the Object Request Broker . 252.6.1 The Interface . 262.6.2 The Object Implementation . 282.6.3 The Client . 302.7 Let's stick to realities . 323 CORBA in heterogeneous DBMSs 363.1 HEROS . 363.1.1 CORBA speci�c decisions made . 383.2 MIND . 383.2.1 CORBA speci�c decisions made . 413.3 BLOOM . 413.4 Others . 454 CORBA in the persistence of data 464.1 The di�erent ways . 464.1.1 \Classical" three-tier approach . 474.1.2 Just an Object Database Adapter . 484.1.3 Object loaders . 494.1.4 Persistence through externalization . 50ii

4.1.5 The Persistent Object Service . 524.1.6 The Object Query Service . 554.2 Meeting BLOOM . 575 Conclusions 605.1 Two storage trends . 605.2 Squaring CORBA and BLOOM . 61Glossary 63Bibliography 66A Service IDL interfaces 69A.1 Externalization Service . 69A.2 Persistent Object Service . 71A.3 Object Query Service . 74
iii

List of Figures1.1 Reference execution architecture [ROSC97] . 22.1 Object Management Architecture schema [OMG95] . 102.2 OMA components calls . 112.3 Common Object Request Broker Architecture . 132.4 ORB role . 162.5 Code generation process . 262.6 Example of interface mapped to Java [OH98] . 272.7 Example of server code [OH98] . 292.8 Example of client code [OH98] . 312.9 Example of DII code [OH98] . 323.1 MIND global view [DDK+96] . 404.1 Three-tier architecture with and without CORBA . 474.2 Components of the POS [OMG98] . 534.3 BLOOM-OQS architecture . 58iv

List of Tables2.1 Commercial ORBs scorecard (Source: Standish Group, February, 1997) [OHE97] 33

v

Chapter 1Introduction1.1 Needs of integrationCompanies are faced with rapidly evolving technology which o�ers a wealth of new opportunities forthose companies that can move swiftly and evolve quickly. The faster a company adapts its structure tothe ever changing market, the more it rises its bene�ts.Within this frame, information had become a cornerstone in business. Everybody needs to know whatis happening in order to react. This means an enterprise needs to take advantage of its informationsystems in order to gain competitivity. Probably, the needed information is already there, you just haveto �nd and use it in the proper way. This model of business requires new and creative uses of computertechnology.That needed information should be obtained at the lower cost. Nowadays, while the cost of hardwareis decreasing, the cost of software is increasing. This makes people think about reusing the existingapplications instead of just throwing them away and doing everything from scratch. Reusing seems to bea solution.However, those already existing applications were not exactly thought as interoperating between them.The problem is even worst if the applications are running on a network of di�erent machines with di�er-ent operating systems. Moreover, every application could have been done using a di�erent programminglanguage, as well. Diversity in hardware and software is a fact of life. As explained in [Vin97], het-erogeneity is the result of several factors: di�erent people across an enterprise often choose di�erentsolutions to similar problems; consumers tend to buy the systems that best ful�ll their requirements at1

the most reasonable price, regardless of who makes them; over time, purchasing decisions accumulate,and already-purchased systems may be too critical or too costly to replace. You need tools to harmonizethe pieces of this puzzle, to solve those heterogeneities.1.2 A distributed cooperative system architectureIn order to make all the applications in a company or group of companies work together, a really goodglue is needed. Since it will be for sure a distributed and heterogeneous set of systems, a \supersystem"hidding its actual complexity will have to be built on top of the existing applications. This proposedextra layer is called \Federation" in [SL90] and presents the set of information systems as a whole (tothe federated users at least).
Security Controller

Query Transformer

Query Descomposer

Query Translator

Level Security Translator

Result Transformer

Result Consolidator

Subresult Translator
QUERY
MANAGER

TRANSACTION MANAGER

.DBMS1 DBMS2 DBMSK DBMSN

Federated Query Federated Result

User schema
+

mappings

Fed. schema
+

mappings

Com. schema
+

mappings

Control Sec

User schema

mappings among
US and FS

mappings among
FS and CSs

mappings among
CSs and NSs

mappings among
FSL and CSLs

S
E
C
U
R
I
T
Y

M
A
N
A
G
E
R

.

DB1 DB2 DBK DBN

.

.

.

D

I

R

E

C

T

O

R

Y

D

I

R

E

C

T

O

R

Y

Figure 1.1: Reference execution architecture [ROSC97]The last end of this paper is �nding the way to build the federation by means of the architecture described2

in [ROSC97]. Figure 1.1 describes the process followed by a given query in that Federated DataBaseManagement System (FDBMS).This architecture allows two kinds of queries: those coming from federal users and those that the localusers send to their local databases. We will focus in the former since the local queries are not an extraproblem because the federation preserves the autonomy of the component databases.Firstly, the Federated Query arrives to the Security Controller which checks the User Schema to see if it isauthorized at its security level. If the query is authorized, it passes to the Query Transformer to translateit from the User Schema (expressed in the model chosen by the user) to the Federated Schema (expressedin the canonical model, let's say BLOOM). Once the query is expressed in terms of the Federated Schema,it is decomposed by the Query Decomposer into subqueries, each one of them accessing exactly one of theComponent DataBases (CDBs). Before sending the subqueries to the CDBs, they should be expressedin terms of the respective Local Schema. This translation is done by the Query Translator. Finally, theLevel Security Translator changes the federated security level tags by the given component security levelstags.The Transaction Manager assumes the responsibility for executing the subqueries on each CDB andgetting the results from them, following the rules in a given transaction model.Once the Transaction Manager has got the subresults, these must be stuck together to build the resultof the original Federated Query. This means, more or less, undo the steps to decompose the query, butskiping the security controls. Firstly, the subresults have to be translated from the given local model tothe canonical data model (done by the Subresult Translator). The subresults expressed in the canonicalmodel are passed to the Result Consolidator that obtains the �nal result. This is not enough since theresult coming out from the Result Consolidator must be expressed in terms of the federated user model.The Result Transformer does that and, �nally, obtains the Federated Result.When you have this complex architecture, the problem is how to build it. It could be the case that allthe databases are running on a single mainframe, what would make it much more easy. However, thatassumption is not realistic. The di�erent CDBs will be wide through a, maybe, huge network, runningon di�erent machines and with full autonomy. It could even be the case that some of those machineshosting the CDBs, are neither accepting any modi�cation nor any extra piece of software to be connectedto the federation. Those CDBs could be migrated from one machine to another, too. New CDBs couldjoin the federation as well as some DBs could leave it.Summing up, we need a really exible system that allow us to tie together all those components andmodules while let us scatter and modify them if necesary. Dealing with heterogeneity is rarely easy.3

1.3 Distributed object systemsHeterogeneity is not a bad thing if you know how to handle it. It enables us to use the best combinationof hardware and software components for each portion of the enterprise. It is just a problem of having astandard protocol for interoperability and portability between the components.Probably, the most important proposed solution is the distributed object systems. The well-knownadvantages of objects are of use here. It is, roughtly, a client-server architecture with code encapsulatedinto independent objects which can be placed anywhere in a network. As de�ned in [OMG95], an objectsystem is a collection of objects that isolates the requestors of services (clients) from the providers ofservices (servers) by a well-de�ned encapsulating interface. As components, those isolated objects can beused as building blocks for larger applications (just bigger objects).Object-Oriented software is easier to modify than software written using other techniques. Some interfacesor implementations could be changed without requiring global changes. This is really important at theenterprise level, where changes are prohibitively expensive to make.Some di�erent attempts had been shipped to the market. Of course, Microsoft proposed its ComponentObject Model (COM) and Object Linking and Embedding (OLE). Independently of its advantages, it isa proprietary solution and, de�nitely, that is not good for an heterogeneous and exible system. It wouldgo against one of the main requirements of a federation: no assumptions about the CDBs.Another distributed object system is Remote Method Invocation (RMI), a Java solution [Sri97]. Despiteit is a proprietary system as well (Sun Microsystems), Java is intended to run everywhere. Besides, itdoes not try to compete against anybody but, rather, �ll holes left by others.RMI lets us create a Java object on a given machine and communicate with it as you normally would,because it is no more than an extension of Java itself. Its pros are its cons: both ends (i.e. client andserver) must be written in Java and this forces us to re-implement our legacy applications, which is exactlywhat we were trying to avoid. Another problem with RMI is that objects are not automatically startedupon invocation. The RMI registry must be started by hand as well as every server object. Moreover,it locks you into a Java only solution. Take into account Java is interpreted rather than compiled and itmeans slowness.Don't worry, the perfect solution is already here. Its name is CORBA, which stands for CommonObject Request Broker Architecture. It is an open solution controlled by the members of the ObjectManagement Group (OMG). Almost all (either small or big) computer related companies are associatedto this organization (i.e. Digital, Object Design, IONA Technologies, Sun Microsystems, Hewlett-Packard,4

... but Microsoft is not).As explained in [Bak97], CORBA has two aims. Firstly, it makes easier to implement new applicationsthat must place components on di�erents hosts on the network, or use di�erent programming languages.Secondly, it encourages the writing of open applications, which might be used as components of largersystems. Each application is made up of components, and integration is supported by allowing otherapplications to communicate directly with these components.CORBA is not an implementation standard but a communication protocol. It says how the objectinterface must be, rather than how it should be implemented. It means you just need to know what youwill give to an object and what you will get from the object in return. Therefore, if some objects sharethe same interface, they are interchangeable. Those interfaces are de�ned using the Interface De�nitionLanguage (IDL).The CORBA standard does not say anything about the implementation of the objects. They could beimplemented even in a non-Object Oriented language (e.g. C). In order to implement an object in a givenlanguage, you just need a correspondence between IDL and the language. Up to now, correspondenceshad been de�ned with C, C++, Smalltalk and Java (that's it, the portability of Java and the acceptanceof CORBA can be mixed together). Correspondences with other languages will be de�ned in the future.CORBA does not exclude the use of other solutions (i.e. COM/OLE, Java/RMI, etc.), rather it makeseasy to use them. It is a big umbrella which shelters everything and everybody. As a consensuatedsolution, it has the potential of subsuming every other form of existing client/server middleware. Forinstance, CORBA integration with OLE and Java is described in [Bak97], [OH98] and [KS98].The aim of this paper is not presenting and comparing di�erent distributed object architectures but�nding a promising way to build a federated architecture. To this purpose, it seems much better not tobe tied to a proprietary solution. Therefore, we will focus on CORBA because its broad acceptance andits standard role.1.4 Outline of the paper1. Introduction: Gives a brief overview of the problem, and introduces the BLOOM execution archi-tecture as well as some distributed object systems.2. Object Management Group solution: Explains the OMG history and its proposed architecture(OMA). The OMA is broken into small pieces, step by step. Firstly, the general architectureis introduced, afterwards CORBA is explained, the di�erent services listed, �nishing by giving5

concrete examples of the connection to the CORBA system, and a brief overview of some ORBimplementations.3. CORBA in heterogeneous DBMSs: Presents how CORBA is (or could be) used in building threedi�erent FDBMSs (i.e. HEROS from Brazil, MIND from Turkey, and �nally our beloved BLOOM).4. CORBA in the persistence of data: Analizes the di�erent ways to get data persistence in a CORBAsystem, and tries to apply them to the BLOOM execution architecture.5. Conclusions: contains a reection on the \political" problems of CORBA, and on how BLOOMand CORBA match.In the last pages you can �nd a glossary (with the acronyms, and main terms used), the bibliography,and the IDL CORBA interfaces of a couple of interesting services.1.5 AcknowledgmentsThis work was partially supported by a grant of the Comissionat per a Universitats i Recerca de laGeneralitat de Catalunya and the Spanish PRONTIC programme (under project TIC96-0903).

6

Chapter 2Object Management Group solution2.1 HistoryDue to the increasing amount of programming interfaces and packages in the market and the lack ofa standards to facilitate the integration of systems in a distributed heterogeneous environment, theObject Management Group (OMG) was founded in April 1989. It is a consortium of computer-involvedcompanies, located in Framingham (Massachusetts, USA), currently supported by over 700 members,including information system vendors, software developers and users. Those members range from giantsof hardware and software industry to tiny companies barely starting up. At present, it has become thelargest information technology consortium in the world.As can be read in [OMG95], OMG's objectives are to foster the growth of object technology and inuenceits direction by establishing the Object Management Architecture (OMA). The OMA provides the con-ceptual infrastructure upon which all OMG specializations are based. Primary goals are the reusability,portability, and interoperability of object-based software in distributed, heterogeneous environments.The OMG does not actually produce any software, only speci�cations. In order to agree on the standardprotocols and interfaces, the OMG issues Requests For Proposals (RFPs) and Requests For Information(RFIs), asking for detailed speci�cations of extensions to the standard. As a response to those requests,each member (or subset of members) can submit its proposal. Each submission must specify how thestandard should be extended and how the extension is going to be used (de�ning neutral IDL interfaces).It must not de�ne the implementation of the given extension.A period of time (around a year) begins for each proposer to complete the submission, or merge it with7

the proposals from others. During that period of time, the proposals use to be merged into a singleproposal, which is then voted by the OMG members. If that is not the case, and there are more than one�nal proposal, one is selected by successive vote of the Task Force and the Technical Committee. Finally,the OMG Board of Directors declares the successful proposal to be the o�cial speci�cation.The standardization process encourages the participation of everybody and drives them towards consen-sus. Although, at the beginning of it, every company works individually or in small groups, a single agreedproposal is the most common ending. For example, the original CORBA speci�cation was a consensussubmission from six companies, and the �rst set of CORBA services was cosubmitted by eleven. The\Common" in CORBA stands for two API proposals: one coming from HyperDesk and Digital, based ona dynamic API; and another based on a static API coming from Sun and Hewlett-Packard. That is whyCORBA supports dynamic as well as static method invocation, both were mixed together into a singleresponse.Once a standard has been agreed, companies that submit the successful proposal must ship a commercialimplementation within a year. At the same time or later on, it can be implemented by any company(OMG member or not), without paying anything to the OMG. The OMG itself does not implement anyof its standards, and it stays neutral between the di�erent vendors providing implementations. However,it has committees to maintain and change the speci�cation if needed. That does not mean the standardchanges every day. It is not subject to frequent changes.As can be inferred from this process and who is in it, the OMG adopts speci�cations based on commerciallyavailable object technology. They try to be stuck to realities and get implementations in the market assoon as possible. A full example of the process is found in [Ses96].An Object Management Architecture Guide was published in 1990. The �rst CORBA speci�cation wasadopted by the OMG in October 1991, and its �rst full implementation was released in July 1993.CORBA 2.0 was adopted in December 1994. During 1996, the Internet Inter-ORB Protocol (IIOP) wasadopted to allow the communication between di�erent implementations of the ORB (possibly running ondi�erent machines). All of it is rapidly growing up.2.2 Bill of purposes� Some desirable general properties of the object system we are talking about are listed in [Bak97]:{ Objects must be simple to create.{ Objects must be of any size.{ Access to objects must be e�cient. 8

{ It should allow you to invoke methods on server objects using your high-level language ofchoice.{ An object must be accessible from any programming language (either OO or not).{ Many programming languages must be supported.{ Objects must be accessible across a network.{ It should provide local/remote transparency.{ An object must be accessible from any operating system, not just the one that the object itselfis running on.{ Objects must be supported by the current commercial operating systems.{ Objects must be accessible from Web-based clients.{ The message details must be hidden.{ It should provide polymorphic messages (they should be pointed to a concrete object).{ An interface must be simple to implement.{ Easy encapsulation of existing applications must be provided (by means of the separation ofobject de�nition and implementation).{ The system must interact with other object-oriented systems (e.g. ODBMS).{ The system must be able to work with non-object-oriented systems (e.g. RDBMS).{ Invocations must be secure.{ It must be easy to give objects high-level symbolic names.{ It must be possible to �nd an object by giving a description of it.{ Distributed transactions must be supported.{ It must be possible to obtain type information at runtime, the system should be self-describing.{ It must allow both, static and dynamic method invocations.{ The system must have wide industrial acceptance.{ The system must be based on a non-proprietary standard.{ It must be available from multiple suppliers.� A much more pragmatic list singing the praises of the OMA is in [Sie96]:{ The object-oriented paradigm meshes with software \best practice" from the start of the de-velopment cycle to the end, when the objects are deployed in a distributed object environment.{ It maximizes programmer productivity: provides a sophisticated base, with transparent dis-tribution and easy access to components.{ Developers create or assemble application objects, taking advantage of every component.9

{ Programmers can build new objects by making incremental modi�cations to existing oneswithout having to recode the parts that already work.{ Helps code reuse in new or dynamically recon�gured applications.{ The system lets you take advantage of all the tools you have bought, from hardware to de-velopment software. Give them an interface and a thin layer of wrapper code, and legacyapplications come into the environment on an equal basis with your new software components.{ You can mix and match tools within a project, using any for a given kind of component (i.e.GUI) and another one for the rest (i.e. business code).2.3 General architectureThe task of the OMG was huge and hard: they where trying to put the software industry on the righttrack. If they wanted to get the support of the vast majority of the companies in the market, they neededa general architecture where everybody �t and which clearly mark the route to follow. With the idea ofgiving a solid and general framework that de�ne the frontiers and interfaces between di�erent producers,they began de�ning the OMA.
OBJECT REQUEST BROKER

Object Services

Common FacilitiesApplication Objects

Figure 2.1: Object Management Architecture schema [OMG95]The OMA provides the conceptual underlying structure, terms and de�nitions upon which all OMGspeci�cations are based. It is composed of an Object Model and a Reference Model. The Object Modelde�nes an object as an encapsulated entity with a distinct identity whose services can be accessed onlythrough well-de�ned interfaces. In [OMG95] you can �nd a description of the di�erent components of the10

Reference Model (i.e. Object Services, Common Facilities and Application Objects), depicted in �gure2.1:Object Services, a collection of services (interfaces and objects) that support basic functions for usingand implementing objects. Services are necessary to construct any distributed application andare always independent of application domains. It includes the lower level and most crucial objectinterfaces. They are though as being used by other objects. A short description of available servicesis listed in section 2.5.Common Facilities, a collection of services that many applications may share, but which are not asfundamental as the Object Services. They are though as being used directly by the applications.An example of Common Facility could be a management system for e-mail. Two kinds of facilitiesare distinguished:Horizontal Facilities, which can be used by virtually every business (enterprise-wide).Vertical Facilities, which standardizes management of information specialized to particular in-dustry groups (industry-speci�c).Application Objects, which are products of a single vendor on in-house development group whichcontrol their interfaces. Application Objects correspond to the traditional notion of applications, sothey are not standardized by OMG. Instead, Application Objects constitute the uppermost layer ofthe Reference Model and they are though as being used directly by the end-user.Object Request Broker is the core of the model, which enables objects to transparently make andreceive requests and responses in a distributed environment. It is the foundation for buildingapplications in heterogeneous environments. It keeps all together, is like a engine that makes workthe other parts of the model. Its detailed description is found in section 2.4.
ORB

Services

Applications

Horizontal Facilities
Vertical FacilitiesFigure 2.2: OMA components callsThese four or �ve components could be simply seen as in �gure 2.2, where any set of objects requestsservices mainly through those interfaces in its own level or in the level just below it. That is probably11

the unique di�erence between applications, facilities and services: how general, reusable and near to theend-user they are.The OMA gives a overall view of the proposed architecture and how everything interacts. It does notactually concrete anything, it is pretty general. Each one of its parts needs to be speci�ed in much moredetail. The task of the OMG is standardize the underlying object architecture and the interfaces to theobject services and facilities. It has been conceived as a core (i.e. CORBA) and a growing number ofstandards (i.e. CORBA services, and CORBA facilities) that extend the core.Since all together is just a standard, and no description about its implementation is given at all, each partof it can be provided by a di�erent vendor. Each service, facility or application object in your systemcould have been implemented by an absolutely di�erent maker. Even it is possible having a di�erentORB running on each one of your machines.2.4 Broker architectureZooming into the OMA, we �nd the Common Object Request Broker Architecture (CORBA) whichdescribes in much more detail how everything works and the available tools to get the desired results.While the OMA tries to group the di�erent kinds of objects that will exist inside a system attendingto its genericity in usage (who calls who), CORBA describes the way those objects are going to worktogether. It is based on a client-server architecture where clients ask for services and the servers o�erperform those services.CORBA separates the speci�cation of a service o�ered by a given object from its actual implementation.To avoid breaking encapsulation, distributed OO applications must deal only with object interfaces andshould not care whether the object implementations are in the same process or on another machine.Shipping objects across the network is not advisable. Obviously, it would break object encapsulation byaccessing private data, not to mention it would need compiler-speci�c knowledge about how objects arelaid out in memory and that would a�ect portability. Therefore, the server code and data remain in itsmachine, and it is the method call and result who travel between client and server.The architecture proposes a self-describing system where everything is designed as exible as possiblebased on the interoperation on an object bus (the Object Request Broker). This even allows intelligentcomponents to dynamically discover each other, they just need access to the bus. It is a star architecturewith the ORB sited in the middle and the objects hanging from it. In �gure 2.3, you can see the di�erentparts of CORBA and the ORB as de�ned in [OMG95]. A much shorter overview of the architecture is12

Object Implementation

Dynamic
Invocation

Dynamic
Skeleton

Object
AdapterORB

Interface

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

Stubs
Static IDL

Static IDL
Skeleton

ORB-dependent interface
There are stubs and a skeleton for each object type

�������
�������
�������
�������

�������
�������
�������
��������������
�������
�������

�������
�������
�������

Interface identical for all ORB implementations

Normal call interface

Up-call interface

ORB Core

Client

Interface
Repository

Implementation
Repository

There may be multiple object adapters

Inter-ORB
Protocol

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
�����������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

Object Reference

Figure 2.3: Common Object Request Broker Architecturein [Vin93].� Client side:Static IDL Stubs, interface known at compile time that allows invocation of requests to objects.They are like local proxies for a possibly remote server object. Each object should de�ne itsspeci�c one and distribute it to its clients to be linked with them. A more detailed explanationis in 2.4.1.Dynamic Invocation Interface, the interface that allows dynamic creation and invocation ofrequests to objects. It is the same interface independently of the target object's interface. Amore detailed explanation is in 2.4.2.� Server side:Static IDL Skeleton, interface known at compile time that allows the ORB to pass a request toa given implementation of an object. It is also used to get the result of the request, if any.Each object de�nes its speci�c one and should be linked with it. A more detailed explanationis in 2.4.1. 13

Dynamic Skeleton Interface, the server's side interface that can deliver requests from the ORBto an object implementation that does not have compilation time knowledge of the type ofobject it is implementing. A more detailed explanation is in 2.4.2.Object Adapter, describes the primary interface that an implementation uses to access ORBfunctions. Its roles include �nding the target object of an invocation, determining what oper-ation to call, and actually making the call on the target object. An ORB could o�er multipleobject adapters to support any style of object implementation (e.g. Basic Object Adapter,Portable Object Adapter, Object Database Adapter, etc.).� ORB components:ORB Interface describes the interface to the ORB functions that do not depend on objectadapters. These operations are not many, but they are common for all ORBs and objectimplementations.Interface Repository manages and provides access to a collection of object de�nitions at runtime.It keeps object interfaces, the methods they support, and the parameters and return valuesthey require. This information is used by the ORB as well as the clients (remember the DII).CORBA de�nes a standard APIs for looking up the meta-data that de�nes a server interface.Implementation Repository keeps the runtime relations between objects and implementations(i.e. the classes a server support, the objects that are instantiated, their IDs, etc.). It allowsthe ORB to locate and activate implementations of objects.Inter-ORB Protocol allows the communication and interaction between di�erent ORBs, even ifthey are running on di�erent machines.Object Reference identi�es an object running on a given ORB. It does not depend on the Clientnor Object Implementation but on the ORB. The ORB uses the references to identify andlocate objects so that it can direct requests to them. An Object Reference always refers to thesame object for which it was created (while it exists) and cannot be modi�ed by the client.However, it can be stored and restored from storage systems. Object References can be madepersistent by �rst asking the ORB to convert them to string. Clients can store these stringobject references in their own private data �les and later retrieve them, ask the ORB to changethem back into object references, and use them to make requests. This capability can be usedto maintain persistent links between objects and the applications that use them.The Client is who wants to perform an operation on a given object and the Object Implementation is thecode which actually does what is asked. The implementation de�nes the data for the object instances andthe code for the object's methods. It is important to notice that the Client role is relative to a particularobject (i.e. the implementation of one object could be the client for others). The Client is just the pieceof code that makes requests of objects. 14

To make the request, the Client can use the DII or an speci�c stub. In either case, the Client needs an Ob-ject Reference which identi�es the object that will answer. The Object Implementation that correspondsto the Object Reference receives the request coming from the ORB through either its speci�c Static IDLSkeleton or the generic Dynamic Skeleton. CORBA has no special object creation operations, therefore,object references are always obtained by making requests on other objects (i.e. an object factory, theNaming Service or the Object Trade Service).The ORB is responsible for �nding the corresponding object implementation to a given request, whereverit is sited (it could even establish a connection to a di�erent ORB which control the demanded imple-mentation). The location of the implementation is absolutely transparent to the Client, as well as itsprogramming language. Both, programming language and location, are hidden by the ORB. An ORBis plugged to other ORBs by means of a Inter-ORB Protocol. Using that protocol, the ORBs interactbetween them to give access to the implementations controlled by any of them from any other.The clients and the implementations could directly interact with the ORB through the ORB Interfaceto access some of its functions. Besides, the implementations can call the Object Adapter by using itsinterface. The Object Implementation is closely connected with the Object Adapter. Generally, the ObjectImplementation does not depend on the ORB or how the Client invokes the object, but on the kind ofObject Adapter chosen. If the same ORB has di�erent object adapters, the object adapter to be used willbe chosen by the Object Implementation based on the services it requires. The Object Adapter provides:� Generation and interpretation of object references.� Method invocation.� Security of interactions.� Object activation and deactivation.� Mapping object references to implementations.� Registration of implementations.The Client has no knowledge of the implementation of the object, which object adapter is used bythe implementation, or which ORB is used to access it. Summing up, by means of all the describedmechanisms, the ORB hides to the client :� Location: The client does not need to know where the object implementation is.� Implementation: It does not know how that implementation works, neither.15

� Execution state: It does not matter whether the object is currently activated and ready to acceptrequests. The ORB transparently starts the object up if necessary before delivering the request toit.� Communication mechanisms: The Client is not aware of the communication mechanisms used bythe ORB to deliver the request to the Object Implementation and return the response to it.
Client

Stub Object
Target

Skeleton

Object
Target

Client

ORB
Glue

+ + =
sticks everythingFigure 2.4: ORB roleWhat really matters is that the ORB must be transparent for the client requesting a service from a givenobject. The communication work is done by the ORB and neither the client nor the target object needto be aware of the existence of the ORB and the communications problems it is solving. As depictedin �gure 2.4, the ORB could be seen as the glue that sticks together the Client and the Target Objectregardless of where they are actually sited.2.4.1 Knowing interfaces at compile timeEvery object interface should be de�ned by means of the Interface De�nition Language. The IDL de�nesthe types of objects according to the operations that may be performed on them and the parameters tothose operations. From that de�nition, the speci�c stub and skeleton for the given object and ObjectAdapter are created.If that interface is known at compile time, it should be linked at both sides (i.e. Client and ObjectImplementation). Once that is done, it does not matter if the implementation of the object is in the sameaddress space or running on a remote machine, if it was made with the same programming language orwith a di�erent one. The CORBA objects will look exactly like any other object in the client. You justneed to call their methods with the corresponding parameters and get the return values if any.16

When a call is done, it goes to the ORB through the stub. The ORB looks its repositories to �nd animplementation of the object. If that implementation is not running, the ORB automatically starts it up.Finally, the request arrives to the implementation through the skeleton. The implementation performsthe request and the result goes the way back to the Client.The obvious advantages of this approach are:� Is easier to program.� Provides type checking at compile time.� Gives \good" performance.� Clearly shows what the code is doing.2.4.2 Discovering interfaces on the yCORBA also contemplates the impossibility of knowing the object interface at compile time (either bythe Client or the Object Implementation itself) and describes how this problem is solved. It is evenpossible to have one of the sides linked with the needed stub or skeleton and the other not. From theClient point of view, it is only matter if itself knowns the stub or should use the DII (it is not importanthow the request will arrive to the Object Implementation). Conversely, from the Object Implementationpoint of view, it is only matter if itself knows the skeleton or should use the DSI (it is not important howthe request arrived to the ORB).While calling a method using a stub is transparent to the client, using the DII, the Client must specifythe Object Reference, the name of the method to be invoked and the list of parameters to pass to thatmethod. The returned value is of type any.That dynamic call is done by means of standard objects always present in the ORB (i.e. CORBA::ORB,CORBA::Object, CORBA::Request and CORBA:NVList). Mainly, the methods CORBA::Object.cre-ate request, CORBA::Request.add arg and CORBA::Request.send are used. The needed informationabout the desired method to feed those calls (e.g. number of parameters, types, ...) can be retrievedfrom the Interface Repository using CORBA::Object.get interface.The usefulness of the DII is as clear as daylight. A client could look for the best object o�ering what itneeds and call it without any knowledge at compilation time. However, the bene�ts of using the DSI arenot clear enough. DSI works exactly as DII does: it allows the ORB to call methods on objects withoutknowing their interfaces. When is that going to be useful? Well, probably it is never going to be useful17

at all ... for clients. It was added to the CORBA speci�cation to allow some cases found while tryingto implement generic ORB bridges, that is, interaction between di�erent ORBs. Of course, this kind ofcalls are absolutely transparent to the end-user.Static invocations are easier to program, faster and self-documenting. Dynamic invocations providemaximum exibility, but they are di�cult to program; they are very useful for implementing tools todiscover services at runtime.2.5 ServicesThe OMG planned the development of the OMA as an iterative process. It begun giving the generalOMA reference model and making it more speci�c in the CORBA architecture. Once that has beendone, the stress is on the concrete services speci�cations. The next step will be standardizing facilitiesand having full CORBA compliant applications.The CORBA services are simply a collection of system-level services. They try to complete the servicesdirectly o�ered by the ORB itself. Their speci�cation is absolutely independent of their implementation,which allows to easily connect to the bus and use all the services it o�ers. Using or implementing theinterfaces de�ned by the CORBA services, every ordinary object can be made lockable, persistent, secure,transactional, ... It is not mandatory to use any of this services, you should only use them if it saves timeto implement your objects.The services actually are standard interfaces which guaranty the interoperability between di�erent im-plementors. They are a contract between the vendor and the customer, so you can get what you wantfrom where you like the most, and use it without any problem at all. This policy implies every servicecould be implemented by an absolutely di�erent company without any knowledge of each other, and theservices would work smoothly together. It means real software reusability.A list of desirable architectural goals for these services being developed can be found in [OMG94]:� Scalability.� Portability.� Performance.� Security.� Precise descriptions. 18

� Independence and modularity.� Minimum duplication of functionality.� No hidden interfaces (allow absolutely implementation swapping).� Consistency among di�erent object services (they should be able to work together).� Extensibility of individual object services (inheritance, delegation, ...).� Extensibility of the set of services (allow adding new services without a�ecting the already existingones).� Con�gurability (allow di�erent combinations of services, the ones using the others).2.5.1 Up till nowThe CORBA services speci�cation is not well established, yet. Some service de�nitions are more advancedthan others. Moreover, since it is iterative, it is probably a never-ending process. The current servicesspeci�cation is described in [OMG98]. Here they are listed ordered by the date their proposals whererequested.Life Cycle ServiceDe�nes conventions for creating, deleting, copying and moving objects. They allow to perform life cycleoperations on objects in di�erent locations. It is based on a factory model. A factory is simply an objectthat creates another object returning it on demand. It is not a special object at all.Naming ServiceCan be used by the servers to bind a name to any of its objects, relative to a naming context (set ofname bindings in which each name is unique) and independent of the name of the server or the host it isrunning on. To resolve a name is to determine the object associated with the name in a given context.In other words, the naming service associates a human-recognizable name with its concrete ORB-speci�cobject reference. 19

Persistent Object ServiceProvides a set of common interfaces to the mechanism used for retaining and managing the persistentstate of objects on a variety of storage servers (ODBMSs, RDBMSs, at �les, etc.). The object ultimatelyhas the responsibility of managing its state, but can use or delegate to the Persistence Object Servicefor the actual work. Its usage is described more deeply in section 4.1.5, while its interfaces are listed inappendix A.2.Event Noti�cation ServiceProvides basic capabilities to allow di�erent kinds of message or event delivery over an event channel.There can be multiple consumers and multiple suppliers of events connected to that channel. Supplierscan generate events without knowing the identities of the consumers and consumers can receive eventswithout knowing the identities of the suppliers, they just need to know the event channel. It supportspush and pull event delivery models: consumers can either request events or be noti�ed of events. It alsoallows components to dynamically register or unregister their interest in speci�c events.Transaction ServiceSupports multiple transaction models, including at and nested models. It includes network interoper-ability to allow a transaction service interoperate with a cooperative transaction service using di�erentORBs. It provides two-phase commit protocol between the databases and a coordinator.Concurrency Control ServiceEnables multiple clients to coordinate their access to shared resources. Coordinating access to a resourcemeans that when multiple, concurrent clients access a single resource, any conicting actions by the clientsare reconciled so that the resource remains in a consistent state. It is regulated with locks associatedwith single resources and a single client. Several lock modes had been de�ned to allow exible conictresolution.
20

Relationship ServiceAllows relationships between CORBA objects (that know nothing of each other) to be explicitly rep-resented and traversed. The service de�nes two new kinds of objects: relationships and roles. A rolerepresents a CORBA object in a relationship. Together with the Life Cycle Service, it allows to copy,move, and remove graphs of related objects in some di�erent ways.Object Externalization ServiceDe�nes protocols and conventions for externalizing and internalizing objects. Externalizing an object isto record the object state in a stream of data so that it can be internalized into a new object in the sameor di�erent process. Its usage is more deeply described in section 4.1.4, while its interfaces are listed inappendix A.1.Security ServiceProtects individual objects or groups of objects, so that only suitably privileged users can call speci�edoperations on them. This service speci�es di�erent security functionalities:Identi�cation/Authentication of principals to verify they are who they claim to be.Authorization/Access control deciding whether a principal can access an object.Security auditing to make users accountable for the security related actions. Auditingmechanisms should be able to identify the user correctly, even after a chain of callsthrough many objects.Security of communication between objects, which is often over insecure lower layer com-munications. The Security Service provides encryption mechanisms.Non-repudiation provides irrefutable evidence of actions such as proof of origin of data tothe recipient, or proof of recipient of data to the sender to protect against subsequentattempts to falsely deny the receiving or sending of the data.Administration of security information.
21

Time ServiceEnables the user to obtain the current time together with an error estimate associated with it. It generatestime-triggered events based on timers and alarms. It can be used to compute the interval between twoevents as well as synchronize time in a distributed environment.Object Query ServiceAllows users and objects to invoke queries on collections of other objects. It is based on existing standardsfor query, including SQL-92, and OQL-93, as well as the upcoming SQL3 speci�cation. This serviceprovides an architecture for a nested and federated service that can coordinate multiple, nested queryevaluators, and return a single object or a collection of objects. Its usage is more deeply described insection 4.1.6, while its interfaces are listed in appendix A.3.Licensing ServiceProvides a mechanism for producers to control the use of their intellectual property and be compensatedfor its use. A license has three types of attributes that allow producers to apply controls exibly: time,value mapping, and consumer. Time allows licenses to have start/duration and expiration dates. Valuemapping allows producers to implement a licensing scheme according to units, allocation, or consumption.Consumer attributes allow a license to be reserved or assigned for speci�c entities. It supports chargingper session, per node, per instance creation, and per site.Property ServiceProvides the ability to dynamically associate named values with objects outside the static IDL-typedsystem. It de�nes operations to create and manipulate sets of name-value pairs or name-value-modetuples. The names are simple IDL strings and values are IDL anys.Object Trade ServiceThis service could be seen as a kind of \Yellow Pages" where the clients look for a description of whatthey want to do. The objects publish the services they are o�ering and the potential clients can lookfor whatever they need. It could seem similar to the Naming Service, however, the di�erence here is22

the client does not even know the name of the desired object or if it exists (the Naming Service is moresimilar to a telephone directory).Object Collections ServiceAllows to group objects which, as a group, support some operations and exhibit speci�c behaviour thatare related to the nature of the collection (i.e. set, bag, queue, stack, list, tree, etc.) rather than to thetype of objects it contains.2.5.2 To do listSome other services have not been requested for proposals, yet, but they are in mind. Some of them arelisted here in alphabetical order.Archive ServiceCopies objects from an active/persistent store to backup store and vice versa. It will use the ObjectExternalization Service to get the internal state of objects.Backup/Restore ServiceProvides recovery after a system failure or a user error. It is closely related to the Transaction Service.In order to record a given state, it will use either the Object Externalization Service or the PersistentObject Service.Change Management (Versioning) ServiceSupports the identi�cation and consistent evolution of objects including version and con�guration man-agement. This service should work with the Persistent Object Service to allow persistent objects to evolvefrom old to new versions. 23

Data Interchange ServiceEnables objects to exchange some or all of their associated state. This service should work with PersistentObject Service to allow state to be exchanged when one or more of the objects are persistent.Internationalization ServiceExtends the Naming Service to better support representing and resolving names for some languages andcultures.Implementation RepositorySupports the management of object implementations. The Persistent Object Service may depend on thisto determine what persistent data an object contains.Interface RepositorySupports runtime access to IDL-speci�ed de�nitions such as object interfaces and type de�nitions. ThePersistent Object Service depends on this to determine if a persistent object supports certain interfaces.Logging ServiceImplements the abstract notion of an in�nitely long, sequentially-accessible, append-only �le. It typicallysupports multiple log �les, where each log �le consist of a sequence of log records. It is related to theTransaction Service (for undo and redo), the Change Management Service (to support recovery) and theConcurrency Service (to keep track of locks).Recovery ServiceResponsible for keeping record of the changes made to the state of recoverable objects during a transactionand undo the updates if the transaction rolls back.24

Replication ServiceProvides explicit replication of objects in a distributed environment and manages the consistency ofreplicated copies.Startup ServiceEnables requests to automatically start up when an ORB is invoked. It supports bootstrapping andtermination of the Persistent Object Service.2.6 Using the Object Request BrokerAll the beauty described has no-sense without the ORB. It is what makes everything work together, thecore of the architecture, the cornerstone without which everything would fall down, the bus where allobjects are connected. It makes possible objects interacting without any knowledge of each other.Most of the CORBA services and facilities could be implemented on the ORB, although a small numbereither must be integrated into the core or require any extensions to it. Again, the idea is keeping it assimple as possible, and separating di�erent concepts. Therefore, the ORB is clearly separated from theconcrete services.As always in CORBA, it does not specify how the ORB must be implemented but which are its interfaces.This means it could be implemented as di�erent pieces given the desired functionality rather than as oneblock of concrete. If it o�ers the required interfaces, it does not matter its implementation. There maybe multiple ORB implementations which have di�erent representations for object references and di�erentmeans of performing invocations. Some possible ORB implementations proposed in [OMG95] are:Client- and Implementation-resident ORB, some routines are linked with the clients and the im-plementations to allow the communication between them.Server-based ORB, all clients and implementations can communicate with one or more servers whosejob is to reroute requests from clients to implementations.System-based ORB, the ORB could be provided as a basic service of the underlying operating system.Library-based ORB, the implementations might actually be in a library. Therefore, the stubs wouldbe the actual methods. 25

IDL compiler

Server

Client-side
stubs

Concrete
language
mappings

Server-side
skeleton

Implementation
Repository

Interface
Repository

Object
Adapter

Client

Object
implementation

Interface

Compilation ins and outs
Template for
Linked with
Data flow Figure 2.5: Code generation processIndependently of how the ORB is implemented, the process to get an object implementation accessibleto its potential clients is described in �gure 2.5.2.6.1 The InterfaceThe interfaces are the joint between the ORB and the objects. They are a contract between clients andimplementations, what the client can ask and what the implementation have to provide. At the sametime, based on these contracts, the ORB puts the client into touch with the requested object. They letthe communications infrastructure know the format of all messages the object will receive and send. Thecontracts are written using the Interface De�nition Language, which is purely descriptive (it does not sayhow but what).The valid requests a client can make on a given object are de�ned by the interface or interfaces the objectsupports. An interface contains some number of operations, any of which can be requested by the client.In the interface de�nition, we �x the functionality of an object. However, we do not �x:� The programming language used to implement it.26

� The platform it will run on.� The ORB it will connect to.� Whether it will run local to its clients or remotely.� The network hardware or protocol it will use, if remote.� Security aspects.Both, client stubs and server skeletons, are generated by the IDL compiler, starting from the interfacede�nition. IDL provides operating system and programming language independent way to de�ne inter-faces to all the services and components (a language mapping of IDL to the given programming languageshould have been de�ned). You just need the proper IDL compiler which generate code (stub and skele-ton) - dependent of your ORB, OA, programming language, and machine - to connect the objects (clientsand implementations respectively) to the ORB.module Counter f package Counterinterface Count f public interface Count extends CORBA.Object fattribute long sum; public int sum() throws CORBA.SystemException;long increment(); public void sum(int val) throws CORBA.SystemException;g public int increment() throws CORBA.SystemException;g gFigure 2.6: Example of interface mapped to Java [OH98]In �gure 2.6 you can see how an IDL interface de�nition looks like, as well as its mapping to Java (someservice IDL interfaces are also listed in appendix A). Its syntax is quite similar to C++, and is �xedin [OMG95]. It is actually a subset of the proposed ANSI C++ standard with additional constructs tosupport the operation invocation mechanism. Mappings had been de�ned to C, C++, Smalltalk andJava, up to now.An IDL speci�cation consists of one or more type de�nitions, constant de�nitions, exception de�nitions,module de�nitions, or interface de�nitions. Since the �rst three do not need any explanation, just to saythat a module is used to scope IDL identi�ers.An interface de�nition consist of header and body. The header contains the name of the interface and itsinheritance speci�cation if any (implicitly derives from Object which is de�ned in the CORBA module).IDL allows multiple inheritance. However, the operations cannot be rede�ned in derived interfaces, andthere is no notion of implementation inheritance (just interface inheritance). Object implementations arefree to utilize any inheritance features of their implementation languages, independent of IDL inheritance.27

The body contains constant declarations, type declarations, exception declarations, attribute declarations,and a set of named operations and the parameters to those operations. Empty interfaces are permitted.The parameters to the operations, as well as the attributes, can be basic types (i.e. integer, boolean, char,octet, any, etc.), template types (i.e. sequence, or string) constructed types (i.e. struct, union, or enum),or user-de�ned interfaces. The parameters can be in, out or inout.2.6.2 The Object ImplementationOnce the negotiation is �nished and the contract is signed, this is almost a �lling gaps exercise. The IDLcompiler will automatically generate:� Server-side skeleton.� Client-side stub.� Mappings to the corresponding language (see �gure 2.6).� Code template (optional).The mappings are the IDL interface translated to the desired language, and the optional \code template"is a �le where the programmer can add the concrete code implementing the services o�ered by the object(possibly using services o�ered by other CORBA objects connected to any ORB). Now it is time to �llthe body for every service (method), implement the full object and publish it on the ORB.The actual implementation of the object is not a problem, since it is just implementing the interfacegenerated by the IDL compiler as any other in the implementation language used. It does not matter theobject will be connected on the ORB. Its implementation will look exactly like any other object exceptfor the interface it implements (the object interface) and the class it extends (the skeleton). Thus, theobject implementation by itself is not enough to connect to the ORB. Some extra code (Server) is neededto create the object instances of a concrete implementation and loop waiting for requests. This Servermust be registered in its turn in the ORB Implementation Repository, for instance from the commandline (e.g. calling \putit serverName fullPathName activationMode" in an ORBIX ORB).Knowing the available servers and the objects they contain, the ORB launches or just calls (if alreadyrunning) the proper server depending on the demanded object service. Some di�erent activation modes ormechanisms are proposed in the CORBA speci�cation for this purpose. Those allow the ORB to controlthe number of servers that are running and avoid overloading unnecessary the machine it is running on.Nevertheless, the client must view all objects on the ORB as being up and running all the time, waiting28

on the client to invoke their operations. The activation mode is indicated when the server is registeredin the Implementation Repository. The di�erent available modes are explained in [Bak97]:� Primary activation modes:Shared, all of the objects with the same server name (created in the same server) on a given hostare managed by the same process on that host. It is the default mode.Unshared, only one object at a time can be active in one server. This is of use when the sameserver provides several object implementations.Per-method-call, each invocation will result in the creation of an individual process which willbe destroyed at the end of the operation.Persistent server, the server is launched manually prior to any invocation on its objects. After-wards it is treated as in Shared mode.� Variations for the Shared and Unshared modes:Per-client, activations of the same server by di�erent end-users will cause a di�erent process tobe created for each such end-user. Di�erent processes owned by the same end-user will sharethe same server process.Per-client-process, activations of the same server by di�erent client processes will cause a di�er-ent process to be created for each such client process. Di�erent processes, even if owned bythe same end-user, will use di�erent server processes.Multiple-client, activation of the same server by di�erent end-users will share the same process.This is the default mode.class CountServer fstatic public void main(String[] args) ftry fCORBA.ORB orb = CORBA.ORB.init(); // Get a reference to the ORBCORBA.BOA boa = orb.BOA init(); // Get a reference to the BOACountImpl count = new CountImpl("My Count"); // Create the Count object and give it a nameboa.obj is ready(count); // Export the ORB newly created objectboa.impl is ready(); // Ready to service requests (loop "forever")gcatch(CORBA.SystemException e) fSystem.err.println(e);ggg Figure 2.7: Example of server code [OH98]29

In �gure 2.7 you can see an example of server code. It is quite simple and easy to understand. In orderto register an object implementation it follows these steps:1. Get a reference for the (default) local ORB. If more than one ORB is running on the same machine,any of them could be speci�ed.2. Get a reference for the (default) BOA. As for the ORB, any one could be speci�ed, if there wouldbe more than one.3. Create the object (as any other would be created) or objects the server contains. There is not anyrestriction about a server containing more than one object implementation.4. Pass the interface and implementation name to the BOA, and enter the object reference in a NamingService. In this case, the IDL compiler automatically generated the code necessary to do all thatin the constructor of the skeleton.5. Inform the ORB the object or objects are ready to be used.6. Inform the ORB the server �nished creating objects and loops forever (or just for a while) waitingfor requests of the created objects. If the server falls down, the ORB should automatically start itup again.0. Moreover, the server should catch any exception possibly thrown by its connection to the ORB.2.6.3 The ClientOnce the server and its objects are registered in the ORB, only the client code remains to enjoy it. AClient is nothing else than a piece of code that uses an object reference to request CORBA services. Anobject reference is a token that may be invoked or passed as a parameter to an invocation on a di�erentobject. In order to get an object reference, the Client connects to the ORB and does one of these:� Uses a naming service (see Object Naming Service in 2.5.1).� Uses a trade service (see Object Trade Service in 2.5.1).� Uses an object factory (see Life Cycle Service in 2.5.1).� Gets a persistent reference from any storage system (e.g. a �le where it was recorded as a string).The Client does not need anything else than that reference to use an object. If it has the object-type-speci�c stubs, it can access them as library routines in its program, calling them in the normal way in30

its programming language. If not, the Client can use the DII to request services. In any case, the ORBhides communication complexity and all its problems, allowing the Client to treat the reference as a veryown object.class CountClient fstatic public void main(String[] args) ftry fCORBA.ORB orb = CORBA.ORB.init(); // Initialize the ORBCounter.Count counter = Counter.Count var.bind("My Count"); // Bind to the Count object...counter.sum((int)0); // Use the object as any other...counter.increment();...gcatch(CORBA.SystemException e) fSystem.err.println(e);ggg Figure 2.8: Example of client code [OH98]In �gure 2.8 you can see an example of client code (note the method calls look exactly like any otherJava method call). As well as the server code, it is quite simple and understandable:1. Get a reference to the ORB. It could be speci�ed which one, if more than one are running on thelocal machine.2. Locate the desired object (or objects).3. Use it as any other object in the same address space.0. Moreover, the client should catch any exception potentially thrown by the CORBA objects.As you can see in �gure 2.9, a dynamic invocation would not be so di�cult neither. It keeps looking likeJava code, but is really slower. However, the DII is much more exible than the speci�c stubs and allowsdi�erent kinds of invocations as explained in [Bak97]:Blocking, the client is blocked until the call has been transmitted to the target object, the targetobject's code has been run, and the reply has arrived back at the client. It is the normal semanticsof function calls. 31

...CORBA.InterfaceDef CountInterface = counter. get interface(); // Get the Counter interfaceCORBA. InterfaceDef.FullInterfaceDescription intDesc = CountInterface.describe interface();// Get the description of the interfaceif (intDesc.operations[0].name.compareTo(\increment")==0) f // Check the interface descriptionCORBA.Request request = counter. request(\increment"); // Get the desired king of requestrequest.result().value().from long(0); // Fill parameters and return valuesrequest.invoke(); // Invoke the requestg... Figure 2.9: Example of DII code [OH98]Non-blocking, the caller is allowed to run in parallel with the request and wait for the reply later. Thisis just possible while using DII.Store-and-forward, the request is stored in a persistent store before being sent to the target object.This is really useful in implementing batch applications.Publish-and-subscribe, a message is sent on a speci�c topic, and any object interested in that topiccan receive it.2.7 Let's stick to realitiesIt does not matter what the CORBA standard promises but what its implementations actually o�er,and by now, they are pretty separated. Nowadays, the CORBA implementations seem to be quite green.The CORBA standard is just a newborn still growing up. Therefore, its particular implementations areyet more younger, testing di�erent ways to accomplish the standard, and looking for their market place.This entails di�culties in the usage, and uncertainty about its future.Here is a list of some products implementing part of the CORBA standard (ORBs and DBs):� Object Request Brokers (table 2.1 shortens the features o�ered and promised by them in 1997, andalmost all are widely commented and compared in [Sie96]).Orbix is a product from IONA Technologies (used as the example ORB throughout [Bak97]). Ito�ers an IDL compiler, which generates the stubs, skeletons, a BOA speci�c implementationclass to be inherited by any object, and headers for the object implementation C++ classes;some C++ de�nes to be used instead of the speci�c BOA implementation class if it cannotbe inherited; a command to register the servers in the ORB; and the ORB daemon. All the32

Features ObjectBroker SOMobjects NEO ORB plus Orbix DAISProtocolsIIOP p p p p p pIR p p p '97 p pStatic calls p p p p p pDynamic calls p p p '97 p pLanguage BindingsC p p p '97 '97 pC++ p p p p p pJava '97 '97 p '97 p pSmalltalk '97 p ; p p ;Cobol ; p ; ; p '97Ada ; ; ; ; p ;CORBA servicesNaming p p p p p '97Events '97 '97 p p p pLife Cycle '98 '97 p p '97 '98Trader '97 '97 ; '97 '97 pTransactions '97 '97 '97 '98 p '97Concurrency '98 '97 '97 '98 '97 ;Security '97 p '97 '97 '97 pPersistence '98 '97 p '98 p '97Externalization '98 p ; '98 '97 ;Query '98 '98 p ; '97 '98Collections '98 '98 ; ; '97 ;Relationships '98 '97 p ; '97 ;Time '98 '98 ; ; '97 '98Licensing '98 '98 ; ; '97 '98Properties '98 '98 p ; '97 '98Table 2.1: Commercial ORBs scorecard (Source: Standish Group, February, 1997) [OHE97]classes generated by the IDL compiler must be compiled and appropriately linked to generatethe client and the server. Then, by means of the provided command, the server has to beregistered in the ORB. Besides, some basic services are provided (i.e. Event Service, ObjectTransaction Service, Initialization Service, Life Cycle Service), and even some in two ways: theCORBA standard form and the Orbix proprietary form (i.e. Naming Service, ExternalizationService). Orbix is available on more than 20 operating systems.ObjectBroker is Digital Equipment Corporation's implementation of the CORBA speci�cations.It is the oldest ORB, nowadays available on 21 di�erent platforms (e.g. UNIX, OpenVMS,Windows, etc.). It o�ers di�erent mechanisms to wrap legacy applications (some that are notCORBA compliant) as well as extensions to the IDL that aid in describing, structuring, andgenerating distributed applications. This ORB gives you two additional languages to organizeand describe the object implementations (i.e. Method Mapping Language, and Implementation33

Mapping Language). A compiler generates the stubs, and skeletons to match the IDL, MML,and IML speci�ed. It also provides Kerberos authentication if desired.SOMobjects is the IBM product, a library based ORB. It was initially conceived as a set oftools to build and use DLLs by means of object oriented technology. The appearance ofCORBA led it to the distributed version (DSOM). It keeps its initial terminology, and, ofcourse, the most of its non-standard mechanisms. A compiler is used to, starting from the IDLsource �le, automatically generate the implementation template �le (within which the classimplementation will be de�ned) for the desired programming language. That generated �lecontains stub procedures for each method of the server class. The same compiler generatesthe needed code in the client programming language. DSOM is available for IBM platformsand Microsoft Windows.DAIS is another ORB developed in ICL Object Software Laboratories and launched in October1993. It implements the Trader Service, Life Cycle Service, Alert Service, Naming/IntegratedDirectory Service, Concurrency Service, Object Transaction Service, and Security Service (notesome of them are not even mentioned in the CORBA speci�cation). It is available in quite alot of platforms: IBM, Sun, Digital, ICL, etc.NEO is a SunSoft product family to develop and deploy networked object applications based onthe CORBA standard (note that Sun cofounded the OMG). It extends the standard by o�eringa DDL to describe the persistent state of the objects, and an Object Server Language (OSL)to describe the server's behaviour. All that is compiled and gives rise to a default, expected tobe modi�ed server implementation (just throwing CORBA::NO IMPLEMENT exceptions),as well as the corresponding stubs. Since Java is Sun Technology too, it is closely related toNEO, and is used, for example, to ship the client side stubs across the internet, facilitatingtheir distribution.ORB plus is the Hewlett-Packard CORBA implementation. It tries to be a lightweight ORB,and, for example o�ers a Simpli�ed Object Adapter. It supports Events, Naming, and LifeCycle object services. It provides an IDL compiler which generates interface classes and types,server base classes, and server skeleton types as well as the stub and skeleton code. All thatwill be compiled and liked with the corresponding server and client code.� Databases (just a couple of examples):ObjectStore is one of the best ODBMSs in the market. It o�ers an ODA to make the objects inthe database accessible remotely by means of an Orbix ORB. The objects' code does not needto be changed. Just the compiling and liking processes change.ORACLE , one of the biggest enterprises o�ering RDBMSs, joined forces in 1997 with Visigenic(another ORB implementor whose ORB is called \Visibroker") to incorporate object technol-ogy to its products. The last one, shipped in 1999, called ORACLE 8i (\i" stands for internet)34

claims for implementing native CORBA protocols. Actually, they implement the IIOP, butare not able to say how to use it, and how easy it could be.Lots of tools o�ering partial CORBA implementations are in the market, all of them claiming to beCORBA compliant. However, all provide proprietary solutions together with or instead of those stan-dardized in the CORBA speci�cation (it is a matter of distinguishing the products to increase sales).Moreover, CORBA speci�cations use to be the mixing of those existing solutions. Therefore, none of theproducts in the market, at speci�cations shipping time, fully ful�ll them, but at most a part. Once thestandard is �xed, all the products must migrate to it, and this is neither simple nor fast. It can takeyears. This means an object or piece of code running on a given ORB will likely not work on a di�erentone. It makes the development of a CORBA distributed system harder than it seems. However, on theother hand, that diversity gives you the freedom to choose what �ts your needs the best.The CORBA standard is really young (the CORBA 3.0 is just about to come). Thus, you cannot expectits implementations being mature. CORBA needs time, the support of the software enterprises, and thepatience of the potential customers.

35

Chapter 3CORBA in heterogeneous DBMSs3.1 HEROSHEROS stands for HEteRogeneous Object System. It is a tightly coupled object oriented heterogeneousDBMS developed in the Ponti�cia Universidade Cat�olica do Rio de Janeiro (Brazil). Its implementationis described in [AULM98] as providing location and data models transparency, minimum interferenceson the processing of its CDBs, multiple data abstractions to better represent the semantics of its CDBs,consistency maintenance of replicated data when these data are mapped into the global schema, andphysical data independence.The prototype described in the paper uses OO standards to integrate and coordinate information re-sources. It was developed on a UNIX environment, using CORBA as a middleware to facilitate theinteroperation of the di�erent components. The programming language used was C++, and the com-ponent databases were Oracle and Postgres (located in di�erent machines). It supports operations atthe federation level (using a global transaction model) as well as at the CDB level. A four level schemaarchitecture with an OO model as Canonical Data Model (CDM) is proposed for the integration:Local schema, de�ned using the data model of the corresponding CDB.Export schema, which is already in the CDM, and represents what is shared by a given CDB with thefederation.Global schema, also in the CDM, shows the integration of the di�erent component schemas.External schema, that is just an application view of the Global schema.36

The CDBs of study di�er on DBMS, data model, computational environment and physical location.The integration mechanisms have to deal with those heterogeneities. CORBA, by means of the objectarchitecture de�ned, takes care of the di�erences in location, hardware and environment; and HEROSo�ers mechanisms to handle synonyms, homonyms, object replication, measure units and generalizationdi�erences, once they have been detected by the federated database administrator. The system performsthe translation between data models, but leaves to the administrator the detection of possible semanticheterogeneities.Three main CORBA interfaces are de�ned:Federation interacts with the applications.Component interacts with the CDBs.Factory creates and lists existing objects (needed due to the Life Cycle CORBA service).A hierarchy of classes hanging from Component is used to represent meta-information associated to eachCDB. The Component class is speci�ed attending to the environment of the components (i.e. OO orrelational), that are speci�ed again in concrete systems (i.e. Oracle, Postgres, HEROS, ...). When adatabase joins the federation, an instance of Component class is generated in the corresponding subclass,depending on its environment and particular software. At this time, the translation rules are de�nedand attached to the given environment instance. It means the mappings depend just on the CDB beingrelational or OO, and not at all on the concrete software of use.About the transaction model, HEROS allows updates and uses the compensable-compensating transac-tions presented in the Sagas model. An HEROS transaction is an open nested transaction. It gives visi-bility of partial results, which avoids other transactions lock of data access. The transaction is a sequenceof compensatable transactions, one vital (or pivot) transaction, and the compensating transaction listcorresponding to the compensatable transactions. A vital transaction is a traditional, non-compensatabletransaction whose commit implies the commit of the whole global transaction. The compensating trans-actions semantically undo what was done by the compensatable transactions, if a rollback is needed. Aat transaction is just a degenerated nested transaction which only contains the vital transaction.The class Federation is responsible for the global management of the transaction, while the subclassesof Component are responsible for the corresponding local management of transactions. The CDBs donot distinguish between global and local transaction, and are not responsible for the resubmission ofthe transaction if it is cancelled. However, it is assumed the CDBs use the strict 2PC protocol for theconcurrency control to guarantee serializable and recoverable schedules on all executed transactions.The system does not provide data materialization. Thus, the queries as well as the updates go straight37

to the CDBs. The Federation class uses the mapping data stored in the global schema to generate theoperation tree, where each node corresponds to an operation over a CDB in the export schema, and thecomposition operation to be applied to the responses to build the federated result. Each operation ispassed to the corresponding Component instance to perform it.3.1.1 CORBA speci�c decisions made� The data granularity chosen was the CDB. It means a CORBA object containing data resourcescorresponds to a CDB.� In order to encapsulate the di�erent CDBs, the interface methods are mapped to one of manyimplementations. The same interface is used by all the CDBs.� Since the objects are well known (i.e. Federation, Component, etc.), the invocation is always static� Servers were de�ned with Persistent activation mode, because they need to be registered so in theconcrete ORB used in order to be activated later by the applications.� The objects are created by means of a factory (i.e. Factory class).� Every object is named (using the Naming Service).� The activation policy is Unshared for all the objects (to allow parallelist) but the factory, whosepolicy is Shared.3.2 MINDMIND stands for METU INteroperable DBMS and is a system developed in the Middle East TechnicalUniversity (METU) in Turkey. It is described in [DDK+96] as a multidatabase system based on OMG'sdistributed object management architecture.In this project, the CDBs are encapsulated in generic database CORBA objects. One generic IDL interfaceis de�ned and multiple implementations are provided (a di�erent one for each DBMS). A common datamodel (based on IDL) and a single global query language (based on SQL) make possible a uni�ed access tothe CDBs, allowing users to perform queries and updates on a global schema. It also provides serializableexecution of global nested transactions without violating the autonomy of local DBs. Oracle, Sybase,Adabas and Mood are the DBMSs used in the prototype.CORBA is used to handle the heterogeneity at the platform level and provide location and implementationtransparency. The global queries are decomposed into subqueries which are sent to the ORB, that38

transfers them to the corresponding database server on the network. The subqueries are executed byusing the Call Level Interface (CLI) routines of the local DBMSs, and the results are returned to theclient, again through the ORB, as a single response. The clients are not aware of where the CDBs areor how they do their tasks. Moreover, new DBMSs can be added to the system without a�ecting theexisting.CORBA does not help to solve semantic heterogeneities, therefore, tools are given to the DBA to dealwith domain conict (i.e. di�erences in extensions: identical, intersecting, inclusion or disjoint), andstructural conicts (i.e. di�erences in intensions: homonyms, synonyms, attribute domain, scale, con-straints, operations, etc.). A four-level schema architecture is proposed to help the integration of thedi�erent database schemas:Local schema, the schemas of the local CDBs.Export schema, translation of the Local schema to the CDM.Derived (Federated) schema, combination of the Export schemas into an integrated one. Includesinformation on data distribution generated when integrating. It is built by the DBA as a view overthe Export schemas.External schema, corresponding to the Derived schema plus extra information or constraints neededfor a user or application. It could be just a subset of the Derived schema.The basic components of the system, depicted in �gure 3.1, are:Schema Information Manager, keeps the schemas information.Ticket Server, generates globally unique, monotonically increasing numbers to stamp the subtransac-tions. It is used to guarantee serializability of global transactions.Factory, is the omnipresent, named object that allows the creation of others (i.e. Global Query Manager,Global Query Processor, etc.).Global Query Manager, parses, decomposes, and optimizes the global queries according to the infor-mation contained in the Schema Information Manager. It also provides global transaction man-agement to ensure serializability (using the Ticket Server to enrich the subtransactions with ticketoperations). Exists one Global Query Manager per user interacting with the system and its locationis dynamically determined by the ORB (usually the local host). It can be used to perform morethan one query.Global Query Processor, is responsible from processing partial results returned by the Local DatabaseAgents. 39

Global
Query

Manager

Local DBMS

Local
Database

Agent

Global
Query

Processor

Local DBMS

Local
Database

Agent

Global
Query

Processor

Local DBMS

Local
Database

Agent

Local DBMS

Local
Database

Agent

Server
Ticket

Factory Client

Global
DBA

Schema
Information

Manager

Figure 3.1: MIND global view [DDK+96]Local Database Agent, maintains export schemas provided by the local DBMSs represented in theCDM, and translates the queries from the global query language to the local one. It provides aninterface to the CDB.A query submition implies the creation of a new Global Query Manager, which obtains schema informationfrom the Schema Information Manager in order to decompose the query. Afterwards, the manager createsthe needed Local Database Agents, and sends each subquery to the corresponding agent using the Non-blocking call mode (this allows the di�erent agents to work in parallel). The Global Query Manager keepsa list of expected partial results. Whenever two results that need to be processed together are ready,the Global Query Manager creates a Global Query Processor to process them (allowing parallelism inbuilding the result, as well). The �nal result is sent back to the client.The last version of MIND implements a technique for global concurrency control of nested transactionscalled Nested Tickets Method for Nested Transactions. It makes consistent the execution order of siblingsubtransactions at all sites. The main idea of this technique is to give tickets to each global transactionas well as its childs. Then, each subtransaction is forced into conict with its siblings through its parent'sticket at all related sites. The subtransaction is aborted (thanks to the 2PC protocol being supported40

by the CDBs) if its ticket value is smaller than that of its sibling transaction previously executed at thesame site. Note that it is supposed to exist a grandparent never-ending transaction whose ticket valueis zero. Therefore, all transactions are interrelated. It is a semi-lattice where a relation between twotransactions can always be stated by means of a common ancestor.3.2.1 CORBA speci�c decisions made� As in the HEROS project, the data granularity chosen was the CDB. The whole database is encap-sulated into a CORBA object.� In order to encapsulate the di�erent CDBs, the interface methods are mapped to one of manyimplementations. The same interface is used by all the CDBs.� The invocation is static again, because the CORBA objects are �xed and well known too (i.e.Factory, Global Query Manager, etc.). However, since the Non-blocking call mode is supportedonly by DII, it is used in some concrete cases (like the SendQuery method of Local DatabaseAgent).� The objects are created by means of a factory (i.e. Factory class).� Factory, Ticket Server, and Schema Information Manager are registered in the Naming Service.They serve the whole system continuously. Thus they are not created on demand but during thestart up phase of the system.� Shared activation policy is used for Factory, Ticket Server, and Schema Information Manager,mainly because of their short activation time. The other objects are activated in Unshared modeto provide parallelism and keep separated contexts for each di�erent transaction.3.3 BLOOMAs was explained in section 1.2, the aim of this paper, besides introducing CORBA, is studying howa particular distributed information system architecture (say BLOOM execution architecture) can beimplemented using distributed object technology. In view of previous sections, CORBA and BLOOMseem to �t into each other.Each one of the pieces depicted in �gure 1.1 (i.e. Security Controller, Query Transformer, Query Decom-poser, Level Security Translator, Transaction Manager, Subresult Translator, Result Consolidator, ResultTransformer, Directory as well as local DBMSs) can be wrapped into a CORBA object. Once the code41

is wrapped, the CORBA architecture takes care of the system heterogeneities. The di�erent BLOOMmodules will not need to be aware of being running on a single machine or across a wide area network ofabsolutely di�erent machines running code programmed in di�erent languages; they just need to worryabout semantic heterogeneities and data schemas translation. Moreover, the CORBA services could alsohelp in the speci�c implementation of some modules. Since Concurrency Control Service, TransactionService, and Security Service (outlined in section 2.5) have already been well de�ned by the OMG, theycould be used in the transaction and security managers.Firstly, before implementing the execution architecture, the best distribution of the modules across thenetwork should be studied. It is a trade-o� between the load of the machines, the communication speedbetween them, and the amount of data to be transferred. Ideally, the distribution should be dynamic,taking bene�t from the machines and communication channels load at any time. However, that would needlots of information about the network and the machines, and the willingness of the CDBs administratorsto have the modules running on their machines. Being much more realistic, the distribution of themodules will be quite static and mainly depending on the administrators of the di�erent CDBs, and theavailable machines, as well as the network architecture. It will be absolutely di�erent for each particularinstance, and will always be �xed more by the existing components than by the desired performance ofthe cooperative system.CORBA will be really helpful specially at this point because of its location transparency and exibility.Wrapping the di�erent modules separatedly, will increase that exibility on distribution and migration.CORBA follows a tiny, reusable objects policy, and it seems good to keep it in this case, because:� Facilitates software reusability.� By itself, does not cause unreasonable overhead, if the modules keep running on the same machine.The overhead appears more due to communications between machines than between di�erent pro-cesses on the same machine.� Helps to cause the acceptance of modules running on local machines by their administrators, sincethey are small.� The modules can be easily spread over the network avoiding an unnecessary overload at any par-ticular site.� The modules can be redistributed in as needed basis, when the federation is modi�ed (a memberleaves or a new one joins it).� Di�erent instances of the same module could run at the same time if needed. For example, it seemsgood having just one Query Decomposer but several Query Translators.42

� Allows parallelismbetween di�erent modules. The Subresult Translators could do their task runningin parallel with the Result Consolidators joining the results already translated, for instance.However, wrapping small pieces is not always desirable. In the case of the CDBs, the best choice seemsto be wrapping the whole DB into a single CORBA object (Thick Granularity), and let the local DBMSdo its tasks. Nevertheless, some other possibilities could be taken into account: wrapping each table ortuple (if relational) into a di�erent object (Fine Granularity). In some cases Fine Granularity could benecessary, for example due to security restrictions, to avoid overload on a given CDB or to implementspecial search or order algorithms. Still in general, it seems better having everybody doing its own job,instead of trying to do what is already done. A full DBMS could be implemented just using CORBAservices, and use the CDBs as simple repositories. But why should we build a new DBMS, if what isalready done works well?In order to make easy and smooth the integration, it seems good letting CORBA hide di�erent im-plementations of the same interface. It means having one to many mappings between interface andimplementations. It will be specially useful for the component DBMSs and the translators (i.e. Re-sult Translator, Query Translator, and Level Security Translator). We could have a di�erent translatorimplementation for every data model or even schema, but only one interface to call their methods. Itmeans hiding the complexity of one module to another. For example, the Query Decomposer does notneed to be aware of which model a given subquery is going to be translated to. The decomposer justneed to know how to split a federated query into pieces and where to send each piece. Having di�erentmethods or parameters depending on the data model to be translated to is not needed at all. The sameis applicable to the di�erent CDBs, the best is having the same interface to all of them despite theirspeci�c implementation. Having a di�erent interface depending on the DBMS that the interface shouldhide does not seem to make too much sense.The next point is how to create the object instances. The �rst possibility is having the objects compiledand linked with the applications, which would then be able to solve their own necessities. Obviously, thiswould not be a good choice, it would throw away all the bene�ts we have been talking about CORBA.A better possibility is having a given number of stand-alone object instances always running, waiting forrequests. The references to those objects could be obtained using the Naming Service, or having thempersistently stored in �les (as strings). This method does not seem enough exible yet, because it impliesa �xed number of objects, and a name distribution mechanism. The distribution mechanism could bethe Trade Service, but it is hard to use (better to avoid using it while possible).Another and really good possibility is having factories which produce new objects on demand. This avoidsregistering every object in the Naming Service and storing references into �les. Besides, we could ask asmany objects as we need (and where we need them). The problem is how those factories are created andwho does it. Here we go back to the discarted possibilities: they must be already running and registered43

in the Naming Service or their references stored into �les. It is not a problem now, because the numberof factories is smaller than the number of objects. Moreover, having a �xed number of factories is notproblematic, either, because they will not be a bottleneck in the execution process. You just need afactory running on the machine you want to be able to run objects on, register it in the Naming Service,and ask it for objects implementing the desired interface.We can have an unique huge factory creating all the possible kinds of objects, or have a di�erent speci�ctiny factory for every di�erent kind. Probably, the best solution would be in between. Having a hugefactory means recompiling and distributing it every time an object changes, and maybe, creating a bottleneck, if everybody asks objects to it. Having a speci�c factory for every kind of object means a lot offactories running and names to record or register. The reasonable solution would be having a factoryfor every interface or small set of related interfaces. With this, a site only needs to have factories tocreate the kinds of objects it wants to run. Besides, the same factory could create all possible di�erentimplementations of that interface. For instance, we would have a factory to create the Query Translators,which, given a parameter, would return the proper implementation to translate from the CDM to thedesired native data model.The activation policy is another choice to be done, see section 2.6.2. Remember CORBA o�ers fourdi�erent possibilities: Shared, Unshared, Persistent, and Per-method-call.� The Shared mode would be used in the objects that do not need parallelism: the factories, andmaybe the Directory of the system.� The Unshared mode allows parallelism for calls to objects running on the same machine. A di�erentprocess is created for every user or process depending on the submode (i.e. Per-client, or Per-client-process). Using this mode avoids a small query waiting for a long one to be executed in a givensite. It could be used in almost all the modules to provide parallelism.� The Persistent mode means the server is always started up by hand, never automatically. Therefore,it is never halted after an inactivity period of time. It is useful for modules hard to start up, orthose that record its state between di�erent calls. It might be the case of the Directory.� The Per-method-call is the opposite to the Persistent mode, an object is started up every time amethod is called. It saves resources by avoiding unnecessary processes in memory. It could be usedwith objects not keeping state and having fast start-up.The last important point to talk about is the invocation (static vs dynamic), see section 2.6.3. Thestatic invocation using stubs is faster, that is clear. Moreover, there is not any problem using it, becauseall object interfaces are well-known. However, there are some cases where the dynamic invocation �ts44

better. Remember there are three invocation modes only available using dynamic invocation: Non-blocking, Store-and-Forward, and Publish-and-Subscribe.� The Non-blocking mode avoids the client waiting for the response of the target object. Its usage isessential to allow parallelism.� Store-and-Forward stores the call to be executed later. Really useful for batch systems, mayberunning at night.� Publish-and-Subscribe allows to throw a call into a channel. Any server listening to that channelcan serve it. It provides a high-level exibility, because allows to build a \producers-consumers"architecture. When a client needs to request a service, instead of looking for a given instance of anobject, it leaves its call into the channel, and whoever listening to it can serve the request.The last one of those modes means a radical change in the implementation. However, the others couldbe provided as an optional feature of the objects, already o�ering static method invocation. They couldbe implemented together with the static calls and activated by a given parameter or call to the object.Their performance is not so bad if the Request object is already prepared to be used. It should be testedin particular cases.3.4 OthersThese had been just examples of multidatabase systems using CORBA to solve system heterogeneities.Of course, other projects exist, for example IRO-DB, or Jupiter. Curiously, none of these projects takesplace in USA. TSIMMIS (in the Stanford University) and Information Manifold (in AT&T) talk about\wrappers" and \mediators". However, they do not say anything about using CORBA to glue everything.
45

Chapter 4CORBA in the persistence of data4.1 The di�erent waysThe usage of CORBA in the implementation of the execution architecture of the cooperative systemhas been studied in the previous chapter. However, it can be useful in another important point: thepersistence of data. Independenly of helping the interaction between the di�erent modules of the executionarchitecture, CORBA o�ers tools to the implementation of wrappers for the DBMSs. It is really handyhiding the heterogeneities in the access to the di�erent CDBs.Since the CORBA system has been thought as a \mecano", there is not only one way to get persistencein a CORBA environment. Probably, none of these ways is perfect, all of them have pros and cons, someare �rmly rooted in the market while others have a doubtful future. Moreover, they are not exclusivebetween them, di�erent combination are possible too. For sure, other people could �nd other possibilitiesfor using CORBA to get data persistence, CORBA is not a closed system at all, but those presented hereare:� \Classical" three-tier approach (plus CORBA).� Object Database Adapter.� Object loaders.� Externalization Service. 46

� Persistent Object Service.� Object Query service.4.1.1 \Classical" three-tier approachThis �rst approach to get persistence is diametrically opposite to the others described in next pages. Itproposes an architecture where the CORBA objects themselves are not persistent, but they handle thepersistent data, hiding their complexity, and actual location to the clients.Isolating the client from the complexities of the DBMSs reduces perceptibly its code. Moreover, the clientdoes not have to be modi�ed if the storage of the data changes. It also helps to control the access tothe data, since it is always through a clearly de�ned interface, its speci�c implementations are not mixedwith the rest of the code, and the access is centralized.
Tier 1

Tier 2

Tier 3

Client

CLI

DBMS

Client

DBMS

CORBA+CLI

WANLocal call

Remote call

Figure 4.1: Three-tier architecture with and without CORBAActually, CORBA is not needed to implement this kind of architecture. CORBA is just the front-endto the data, any piece of software could be used as middleware. It is the typical three-tier architecturecomposed by \repository", \middleware" and \user interface". That middleware can be implementedusing JDBC, ODBC, DCOM, or any other kind of CLI; and it is precisely used to hide the usage of thosetools to the client application. It just sends the proper SQL statements to the DBMS, and passes thedesired results to the client.In spite of not being necessary, CORBA usage could make easy the communication and distribution ofthat middleware. At the same time, it wraps the access to the database and provides portability for the47

middleware code. An example of this usage of CORBA can be found in [OH98]. It studies how CORBAand Java can work together to obtain distributed applications. This book even gives code and somebenchmarks to compare di�erent ORBs and tier distributions.Using CORBA only as a wrapper to hide the location of the code is wasting its potential. This approachneither makes good use of the object oriented technology in CORBA, nor its modularity, reusability,interface standardization, services, ... Obviously, CORBA hides the location of the code, but it can dolots of other things. This architecture should be mixed with some of the solutions proposed in next pages.4.1.2 Just an Object Database Adapter[OMG95] describes the structure and features of objects adapters. They are ORB dependent, and o�eran interface to the object implementations. Since they are in between the ORB and the object imple-mentation, they can be used to intercept the calls and perform the needed features. It is speci�callycontemplated in that speci�cation the usage of an specialized OA (called Object Database Adapter) toget persistence. An ODA is suitable for the storage in ODBMS. It can use a connection to an objectoriented database to provide access to the objects stored in it. The mention of this kind of things in theCORBA speci�cation is a proof of the good relations existing between the OMG and the ODMG.Moreover, the second appendix in [CBB+97] describes how ODBMS objects could participate as OMGobjects, routing object invocations through identi�ers provided by the ODBMS itself. Requests to thepersistent objects, whether through the ORB or directly to the ODBMS, produce the same e�ect andare absolutely compatible. Those persistent objects look exactly like any other object accessible throughthe ORB, from the client point of view. Besides, to facilitate it, the ODMG Object De�nition Language(ODL) is an extension of the IDL.Registering all database objects in the ORB does not seem a good choice, mainly because it wouldproduce a lot of unnecessary overhead. Therefore, the ODMG also describes the ODBMSs as havingthe capability to register subspaces of object identi�ers with the ORB. That allows the ORB to handlerequests to all of the objects in an ODBMS without the registration of each individual object. This seemsa powerful tool for handling persistent objects.A speci�c implementation of an ODA is presented in [ION97]. That implementation allows an OrbixORB to store the objects in an ObjectStore database. It could also be seen in the opposite way as theObjectStore objects being invoked by CORBA applications through the Orbix ORB. We could say thatpaper presents the complementarity between Orbix and ObjectStore.When an invocation is made on a persistent object that is not currently loaded, Orbix will pass the48

invocation to the ODA, which will cause the object to be loaded from the ObjectStore database, andOrbix will then pass the invocation to that object. From the client point of view, the Orbix clients do notneed to be aware of whether an object is both an Orbix object and an ObjectStore object at the sametime, and the same applies for the ObjectStore clients. On the other hand, from the implementor point ofview, a programmer just carries out the implementation steps of an Orbix object plus the implementationsteps for ObjectStore:1. De�ne the object interface using standard IDL.2. Use the modi�ed Orbix IDL compiler to compile the interface.3. Declare the corresponding C++ class.4. Process the class declaration with the ObjectStore schema generator.5. Implement the C++ class.6. Compile and link with the needed libraries (Orbix and ObjectStore), stubs, and skeletons.7. Create the instances using the ObjectStore overloaded \new" operator.This is probably the most simple, comfortable, graceful, and powerful way to get persistence for CORBAobjects. However, by means of it, integration of legacy applications is not possible. Moreover, you aretied to some implementations, and have to use ODBMS. One of the probably most important bene�ts ofCORBA is lost: its universality.4.1.3 Object loadersA speci�c Orbix mechanism to implement persistence is described in [Bak97]. It is suitable to access aRDBMS (or ODBMS without ODA), and consist of four steps:1. Decide the OO to relational mappings.2. Code the mappings.3. Write or import a \loader" that will create a C++ object for each object invoked by clients.4. Ensure that the RDBMS is updated at the end of a transaction and that objects are removed frommemory. 49

It encourages (or discourages) you to implement the persistence by hand and almost from scratch. Sometools (i.e. Ontos, Persistence, RogueWave, etc.) are proposed to automate or semi-automate the process,but, even using them, it still seems long and hard. They could be seen as adhoc extensions of the ORBin order to get the desired object activation. Actually, implementing a loader is providing a speci�c OAfor speci�c persistent objects.When an operation invocation arrives at a process, Orbix searches for the target object in the process'sobject table. If the object is not found, the loader of the object will be informed about the object faultand provided with an opportunity to load the target object and resume the invocation transparently tothe caller. Each object is associated with one of these loaders. If no loader is explicitly speci�ed for anobject, then it is associated with a default loader, implemented by Orbix. A loader is nothing else thana subclass of CORBA::LoaderClass overwriting the methods load, save, record, and rename.load is called when the object is not found in memory and is responsible of the load the object.save saves the object on process termination.record and rename are used to choose the persistent identi�ers for the instances.This approach is quite at a low level, and absolutely dependent on the (Orbix) ORB. It is not part ofthe CORBA standard at all. Thus, it means a loss in portability. Moreover, it can always be avoided byusing other similar solutions contemplated in the CORBA speci�cation (e.g. Externalization Service).However, in some particular cases could be a really good solution as alternative to an ODA, if you arenot using an ODBMS.4.1.4 Persistence through externalizationAs de�ned in [OMG94], externalizing an object is to record the object state in a stream of data. Objectswhich support the appropriate interfaces, and whose implementations adhere to the proper conventionscan be externalized to a stream (in memory, on a disk �le, across the network, etc.), and subsequently beinternalized into a new object in the same or a di�erent process. The externalized form of the object canexist for arbitrary amounts of time, be transported by means outside the ORB, and can be internalizedin a di�erent, disconnected ORB.The externalization was conceived as an easily implemented service that could work with any kind ofobject. The stream concept is quite similar to that in C++, and has two basic operations: put data into,and get data out. 50

In using this CORBA service there are three di�erent roles: client, stream and streamable object. Theclient invokes operations on the stream in order to read or write an object. On externalization, thestream records the object state; and on internalization, the stream invokes a factory to create a new, noninitialized instance, and initializes it with the recorded state. Each streamable object has to implement itsown way to be externalized and internalized using the StreamIO interface. Moreover, there is a StandardStream Data Format (SSDF) which makes it possible to externalize an object on one system and know forsure that you can internalize it on any other system able to run that kind of object. The SSDF lets youexchange streams across dissimilar networks, operating system platforms, and storage implementations.The StreamIO is responsible for using the SSDF or not.The usage of this service is driven by the six interfaces (distributed in two modules) written in appendixA.1:Stream wraps the stream itself.StreamFactory is the factory to create streams.FileStreamFactory is a special kind of stream factory that allows to create streams on �les.Streamable is the interface implemented by the objects supporting their externalization and internal-ization.StreamableFactory allows the streams to create new streamable objects where to internalize a state.StreamIO provides operations to write and read all the IDL data types (possibly using the SSDF).The steps to externalize an object are:1. Call a stream factory to get the desired kind of stream.2. Invoke the stream passing as a parameter the object reference to be externalized.3. The stream tells the object to externalize itself to the stream.4. The object writes its content to the stream (through the StreamIO interface).Later on, may be in a di�erent machine, the steps to internalize the previously externalized object are:
51

1. Invoke Stream::internalize on the desired stream.2. The stream object looks inside the stream for a key that helps it to locate a factory that can createan object with an implementation that matches the object (or objects) in the stream.3. The stream tells the streamable object to internalize itself.4. The object reads its contents from the stream (through the StreamIO interface).All this is part of the CORBA standard (concretely one of its services, as said in section 2.5). Therefore,it is always well-stated and the objects implementing it are interchangeable between di�erent ORBs. Be-sides, part of its implementation could be provided by a vendor (i.e. Stream, StreamFactory, FileStream-Factory, and StreamIO implementations). Its main weakness is that it forces you to record the wholestate of an object at a time, you are not allowed to externalize just a part of the state (it is all or nothing).This is because this service is not thought as to get persistence, but to copy or move object instancesfrom one machine to another one that is not connected to the former. However, in spite of its simplicity,it is really handy. If all the objects were streamable, it could be used to ease the task of other services.For example, the Persistent Object Service would just need a translation mechanism from the SSDF tothe desired storage mechanism in order to get persistence.4.1.5 The Persistent Object ServiceThis service, as was said in section 2.5, supports the capability of making persistent all or part of thestate of an object. It describes ways for the object to decide what state needs to be made persistent,and ways to store and retrieve that state. Its usage is not mandatory. Any object has the responsibilityof managing its state, but can delegate part of the work to the POS. An object could only use someof the POS components or all of them. All this results in quite a freedom to the persistent objects'implementors.The POS speci�cation is a merging between two proposals, one coming from IBM and another one fromSunSoft, submitted to the OMG. IBM proposal tried to integrate the RDBMSs into the OMA world, whilethe second one was directed towards establishing interfaces to the ODBMSs. As a result, the de�nitivePOS speci�cation is wide opened. It was conceived to make everybody happy, or at least, as much happyas possible. Any storage system can be plugged into the POS. Moreover, it ensures that client coderemains unchanged as object datastores are changed, by presenting the interfaces as a contract betweenthe POS and datastore vendors. Another important point to take into account about the conception of52

the POS is that, violating the OMG policy, it is not based upon well established market products.
Persistent
Identifier

Client

Persistent
Object

Manager

Persistent
Data

Service

Persistent
Object

Protocol

DatastoreFigure 4.2: Components of the POS [OMG98]The di�erent components of the POS are depicted in �gure 4.2 and described in [OMG94] and [OMG98]as:Client is who asks for recording a persistent object. It can exist or not depending on the persistentobject implementation o�ering the PO interface or not.Persistent Object (PO) is an object whose state is recorded in a Datastore. The persistence is pro-vided by the object itself, but by means of implementing the corresponding interface, it may let theclient to control when the state is recorded. An object is persistent or not independently of whetherit implements the PO interface or not. An object is persistent if it stores its data persistently bymeans of the POS.Persistent Identi�er (PID) describes the location on an object's persistent data in some Datastoreand generates a string identi�er for that data. An object must have a PID in order to store its datapersistently. It is passed as parameter to the POM, and is used to identify one or more locationswithin a Datastore. Note it is di�erent from the OID in that the PID identi�es data location, whilethe OID identi�es a CORBA object. A PID cannot be used as target for an invocation; it can onlybe used in the context of the POS.Persistent Object Manager (POM) provides a uniform interface for the implementation of an objec-t's persistence operations. An object has a single POM to which it routes its high-level persistence53

operations. Its role is simply to decide which PDS to pass the calls to. This allows the PO touse di�erent PDSs without changing its implementation but the PID. This routing function of thePOM serves to shield the client from having to know the details of how and where actual datastorage takes place. Thus, the POM will use non-standard operations to �nd out which protocolsand PDSs a given object can work with.Persistent Data Service (PDS) provides a uniform interface for any combination of Datastore andProtocol, and coordinates the basic persistence operations for a single object. It translates from theobject world to the speci�c Datastore world.Protocol provides one of several ways to get data in and out of an object. It is the way in which theobject interacts with the PDS. There is no an uni�ed protocol, three di�erent ones are de�ned in theservices speci�cation: the Direct Attribute (DA) protocol, the ODMG protocol, and the DynamicData Object (DDO) protocol. Moreover, any other environment or language speci�c protocol couldbe used, as well. For example, SSDF could be the fourth.Datastore provides one of several ways (i.e. at �le, RDBMS, ODBMS, etc.) to store an object's dataindependently of the address containing the object. It will typically o�er a CLI to access the datain it.With all this, [Ses96] describes the \typical" persistence request (a store invocation) as the client settingup the PID and invoking the store on the PO. The PO passes on the store request to the POM. The POMlooks at the PID and the object to determine which PDS can handle the request. The POM forwardsthe store request to the appropriate PDS. The PDS then takes over the store, interacting directly withthe object and the Datastore.Obviously, the POS just de�nes the IDL interfaces (listed in appendix A.2) and does not say anythingabout their implementations. Di�erent implementations are possible and even encouraged. The existenceof all those modules gives a great freedom degree to the implementors. Anyone of the modules couldbe implemented by a di�erent one, and everything would work together without problems. Concretely,it means di�erent storage systems could be used at the same time, and even interchanged, in spite ofranging from simple �le systems to DBMSs (while supporting the same protocol).Those interfaces propose two di�erent ways to control the persistence of an object. The �st one (connectmethod) establishes a \permanent" connection between the volatile and persistent data of an object. Anychange (while the connection is established) in the former is automatically reected in the Datastore. Afterdisconnection (disconnect method), the persistent data keep the values. About the second way, it allowsa client to control when data is stored and restored (methods store and restore). There exists anothermethod (delete) which deletes the object's persistent data from the Datastore location indicated by aPID. 54

The POS proposes a solution to wrap storage mechanisms (object oriented or not), so that they canbe used as object technology. It means the system is opened to any kind of data storage (includingRDBMSs). However, a problem arises when trying to use an ODBMS: it losses simplicity and e�ciency.Since the DBMS is not aware of the actual data structure of the objects it is recording, a direct mappingbetween memory and the storage system cannot be generated. The advantages of that mapping areprobably the main reasons to use an ODBMS instead of an RDBMS extended for objects. Therefore,the ODBMS vendors are not completely happy with this service (they promote the usage of an ODA inorder to get persistence).[KPT96] is a paper summarizing the weaknesses of the POS. The �rst one is the underspeci�ed semanticsof operations (i.e. connect, disconnect, etc.). The speci�cation does not specify what concretely had todo some of the operations, it is left to the implementor's discretion. Something similar happens talkingabout the POM, because proprietary solutions are expected to be introduced. Besides, the reusability ofother CORBA services is just briey mentioned. However, these problems were probably generated onpurpose. The OMG left some concretions for future revisions, which will be done after the shipment ofsome commercial products implementing the standard (it was previously mentioned that, exceptionally,this service is not based upon market products).Other commented problem in the standard is the lack of a \Compound Persistent Object Service". Itwould be responsible for the storage of the inter-object references. This will be really hard since the PIDand the object are loosely coupled.4.1.6 The Object Query ServiceProbably, the most suitable of the CORBA services for being used in BLOOM is the OQS, previouslyintroduced in section 2.5. In spite of the fact that it does not provide object persistence by itself, itis really useful to access information in storage systems. As described in [OMG94] and [OMG98], theOQS provides query operations on collections of objects. In this context, \query" stands for selection aswell as insertion, updating, and deletion. Those documents even mention that the OQS could coordinatemultiple nested query evaluators in a federated service architecture.Despite that another CORBA service is speci�cally devoted to collections, they are briey described aspart of the query service. It o�ers interfaces for creating and manipulating collections of objects, possiblyobtained as a result of a query. Those collections are de�ned as objects, with methods for adding andremoving members. Any system managing extensions of objects (as complex as needed) can be wrappedinto a collection object. Iterators (\cursors") are explicitly speci�ed, as well, and appear always bound toa given collection. They are used to manipulate collections, traversing them and retrieving their objects.55

The OQS is a front-end conceived to unify CORBA objects, RDBMSs, and ODBMSs into a single querytarget. As everything in the CORBA world, it is done by specifying an IDL interface, or set of interfaces.Anything implementing that interface can participate in the query system as a �rst class object. Itis expected the database vendors will implement this feature as part of their database systems. Theinterfaces o�ered by the OQS, and listed in appendix A.3 are:QueryEvaluator Evaluates query predicates and executes query operations using the speci�ed querylanguage.Query is the interface encapsulating a query by which it can be previously designed, saved, precompiled,and treated as any other object. It supports four operations: prepare, execute, get status, andget result.QueryManager is a specialization of QueryEvaluator which creates Query instances (it is a queryfactory at the same time).CollectionFactory is just a factory creating Collection instances.Collection allows you to manipulate grouped objects.QueriableCollection is a specialization of Collection and QueryEvaluator, both at the same time.Thus, it allows to evaluate queries on a given set of objects.Iterator is a movable pointer into a Collection.The query process begins when a client sends a query to a Query Evaluator, which could just be acollection supporting the corresponding interface, or a complex DBMS. The Query Evaluator passes thequery predicate to the collection, which then evaluates the predicate and performs query operations onan appropriate member object, receives any result, combines such results with all other participatingobject results, and returns this to the caller (as a single object or a collection). As said above, there is noproblem in nesting the process, that is the members of a collection could be collections, and the membersof a QueriableCollection could be QueriableCollections.The steps to execute a query and obtain the result are:1. Create a Query object by invoking create on a QueryManager.2. Prepare (precompile) the query.3. Execute the query as many time as you like.4. Get the result. 56

5. Create an Iterator on the returned collection (if a collection was returned).6. Read the �rst element in the collection.7. Go to the next object in the collection and read it as well.The �rst three steps could be simpli�ed by just submitting the query by invoking evaluate on the QueryE-valuator. This will be much faster if the query is going to be executed only once. However, since in thiscase it is not precompiled nor stored, its repeated execution would be pretty slower.In describing the OQS, [OMG98] uses the term \object" in the general sense to include data. It means thecontents of a collection do not have to be CORBA objects but just a set of data. This solves the problemfound in other services, here the objects implementation does not need to be modi�ed nor extended to getpersistence. The data is stored in a storage system and retrieved using a query language. A completelynew view point is o�ered: less work, less service. You are not recording �rst class CORBA objects butjust their "plain" data. It seems thought as a simpli�cation to win people for the CORBA cause.In the same way, it is expected the QueryEvaluators to support at least SQL-92 Query or OQL-93 Basic,to be useful for relational as well as for object oriented users. The query languages are evolving fast, andthis will change as soon as one supporting relations and objects appear in the market.4.2 Meeting BLOOMCORBA is conceived like a \mecano" with complementary pieces. None of the solutions proposed abovesolves all the problems in the BLOOM architecture, rather all them working together will improve theBLOOM system. In spite of that, some seem more useful than others, depending on where you want touse them.At �rst, the POS seems really attractive to wrap the CDBs. It is a service conceived to get persistencewhich covers all the possibilities. However, some problems arise when looking in depth: it is too complexand has not been implemented yet. If implementations of some of its interfaces (i.e. PDS, POM, and PID)are not in the market, the adhoc implementation of the whole POS seems unfeasible. The problem is thatthis does not seem going to happen because it is the most questioned service. There exists a confrontationof interests between RDBMSs and ODBMSs vendors. The former do not completely support CORBA,while the others are more interested on the ODA than on the POS. The OMG is close to issuing a RFPfor POS 2, having the coexistence with POS 1.0 interfaces as a requirement. Maybe that will be thesolution to the problem. 57

The easiest and best way to access the CDB would be by means of an ODA. Nevertheless, one of thestrongest constraints in the BLOOM architecture is to keep the autonomy of the CDBs. That autonomyis no problem if it is the case of an ODBMS (almost for sure it is going to have an ODA in the market),but there are no ODAs for RDBMSs, and the CDBs should likely have to transfer part of their autonomyto the federation in order to build that relational ODA (let apart its implementation costs).The Externalization Service or speci�c object loaders seem to be a quite simple way to get persistence.They are really easy to implement and no \external" aid is needed. If every object implements its ownstorage method, everything goes smoothly. This is a magnitude problem: who is going to implementthe hundreds or thousands of di�erent methods to record and recover the existing objects if they are notimplemented yet? Furthermore, the BLOOM CDBs have to maintain their autonomy. Therefore, theirobjects cannot be modi�ed in order to get persistence (we run up against the same wall again).
CDB1 CDB2

Query
Evaluator

Query
Evaluator

Query
Evaluator

QueryEvaluator Interface

BLOOM system

CDBn...

...

CLIFigure 4.3: BLOOM-OQS architectureProbably, the problems outcrop because we are trying to store what is already stored. The data in theCDBs are already persistent. Rather, just a query system is needed. A simple three-tier architectureseems to �t well here, because it will allow the CDBs to keep their autonomy. Their machines do notneed to be modi�ed at all if they o�er a way to query the databases (this does not seem an unfoundedassumption, because almost all DBMSs o�er a CLI). Besides, the typical three-tier architecture could beimproved to bene�t from CORBA. If every CDB is wrapped into a QueryEvaluator, CORBA will hidethe system heterogeneities (just the semantic ones left). See �gure 4.3.The absolute autonomy and security of the CDB can be easily guaranteed just by means of the CLIoperations each one o�ers to the federation, and the speci�c implementation of the QueryEvaluators.The heterogeneities in the CDBs are smoothed out at the same level. Furthermore, CORBA will hidethe actual location of the puzzle pieces, which will facilitate the evolution of the system. Moreover, allthe BLOOM system could be wrapped into a QueryEvaluator as well, to obtain a nestable architecture.O�ering a QueryEvaluator interface to the federation will not be an excessive e�ort, and will let plug the58

federation into another federation.The OQS does not seem to be necessary in all this. Its interfaces are so simple, we could just forget thoseand easily rede�ne them to our own liking. However, why should we reinvent what is already inventedand standardized. We do not need to waste time thinking what was already clearly stated. Moreover,using a standard would make easy the joining of new CDBs to the federation, not to mention in the nearfuture, hopefully, the DBMSs could o�er their own implementation of the OQS interfaces, complementingthe current CLIs, to be integrated in a CORBA environment.Obviously, OQS is not the perfect solution to be always used everywhere. CORBA o�ers lots of possibil-ities and all them should be carefully taken into account to implement a cooperative system. As it waspreviously said, all the proposals in this chapter could be combined to �t the needs of the system, mainlydepending on the kind of CDBs.Leaving the data in the CDBs aside, storing the data of the di�erent modules in the BLOOM executionarchitecture is another completely di�erent story. We do not have to keep any autonomy at all, and theymust be implemented from scratch. It means we can choose the CORBA service �tting the best intoour needs. The Directory is probably the most special and interesting of the modules attending to theirpersistence. It is a database about the databases, keeps the information needed to integrate them (i.e.schemas at the di�erent levels, mappings between those schemas, security information, transactional data,etc.). Once the POS is discarded, the externalization service seems a good, wide accepted alternative.However, since there could be lots of di�erent objects, and it is more a database than a distributedsystem, a database storage system would �t much better. Doubtless, if we can choose the database touse, the best choice is an ODA. Using a database o�ering an ODA implementation for the given ORB(or ORBs) will provide transparent persistence for all the data in the CORBA objects, or transparentCORBA access to any data in the database (depending on the point of view). This way we get thedistribution of a CORBA system plus the persistence storage of a database without any extra e�ort.On the contrary, the other modules in the BLOOM execution architecture (those that are not the Di-rectory) are more a part of a distributed system than a database. Therefore, the best is the simplestsolution: the Externalization Service. It will allow the modules to store any possibly persistent data theyhandle without any problem. Moreover, together with the Life Cycle Service, it can be used to copy ormove a given module execution from one machine to another.
59

Chapter 5Conclusions5.1 Two storage trendsThe main obstacle to the imposition of CORBA is the �ght between ODBMSs and RDBMSs. They arestruggling for the market, and CORBA is a corner-stone in the future of software. It is the center nobodywants to lose. The storage system is probably the most important part of an information system. Theway it is o�ered drives the future of the whole information system technologies.The di�erence can be stated as providing a single-level or a two-level storage system. In the former, theclient is not aware of whether the object is in memory or disk. The DBMS (ODBMS in this case) hidesthe location of the data to the users. From the user point of view, the objects are always in memory. Theother kind of storage systems (RDBMSs) clearly separates memory and persistent storage. The user isresponsible for explicitly retrieve and store the data.Nowadays, most databases are relational. The ODBMSs are limited to some speci�c business areas(i.e. CAD, CAE, etc.), and do not seem to gain market space in others. Nevertheless, since CORBAuses object technologies, it seems the ODBMSs should be treated favourably. Moreover, the single-levelstorage provides better performance, and solves the impedance mismatch problem. However, the weightof RDBMSs in business is not negligible. Some CORBA speci�cations are a trade-o� between whatshould be and what really is (e.g. POS speci�cation and its interfaces).Probably, the POS is the most clear example of what is happening. It was proposed to allow any kind ofstorage mechanism. It does not say how but what, and its interfaces are as general as possible in orderto be used by relational as well as OO storage systems. However, the generality, in this case, favors a60

two-level store model at the expense of a single-level one, because it o�ers two operations, i.e. store andrestore, which clearly is a two-level store view. The signs of this battle are also found in the OQS whichforces, at least, two di�erent query languages: SQL and OQL.It is not mandatory to use the POS to get persistence nor the OQS to query storage systems, any otherfacility could be used instead of them. Thus, as a result of all these problems, none of the contenders fullybacks those disputed services. The ODBMSs bet on the ODA solution, while the RDBMSs do not seemto bet on anything, yet. Trying to satisfy everybody is not always the best. The storage disagreement isa brake for CORBA.The di�erences will likely (hopefully) be smoothed by means of the Transaction service, which can makea two-level store look like a one-level store, or vice versa, depending on the point of view. A one-levelstorage system could be seen as two-level storage system with the restores grouped at the begin and thestores grouped at the commit of transaction (as proposed in [Ses96]).5.2 Squaring CORBA and BLOOMBLOOM and CORBA are two of a kind. The two of them make a good match to manage heterogeneitiesin multidatabase systems. While CORBA handles the system heterogeneities, BLOOM tries to solve thesemantic ones. Clearly, it is a teamwork, where each one is specialized in a di�erent facet. CORBA savesBLOOM problems in dealing with \second class" heterogeneities.The system heterogeneities (in hardware, operating system, communication protocols, etc.) are cumber-some to study the integration of autonomous (or semi-autonomous) information systems. They are wellunderstood, and have already proposed solutions (CORBA is a good example of this). Thus, when tryingto study such systems, we could assume those heterogeneities are already solved. By means of CORBA,BLOOM can forget them and only look at the semantics of the di�erent schemas to be integrated.This does not mean we can just say the system heterogeneities are solved and go straight to the semantics.The interaction between both systems must be carefully studied. CORBA is a new born, still evolvingstandard, and there does not exist an implementation of BLOOM, yet. Therefore, neither supply nordemand are well stated.This paper tried to give an overview of how that interaction could be seen. It seems clear to divide itinto two di�erent parts. The one is how CORBA can be used to wrap the CDBs, and the other is howCORBA can wrap the modules in the BLOOM execution architecture to help their distribution.61

On wrapping the CDBs, CORBA has potential. However, at present day, it is not evident how will bedone. There are a lot of helpful services, which have not been fully implemented, yet. Some, becausehave been standardized recently. Others, because it is not obvious how the standard will be concreted.Sometimes, the standard is quite vague, and the implementors got a high degree of freedom. It seemsCORBA will do a good job, but how it will cannot be ensured by now. The most promising service isthe OQS. However, an implementation is not available, yet.About the second way CORBA can help BLOOM, it seems much more realistic. It does not depend somuch on the services, but on the ORB itself. The ORB was standardized before the services. Thus, itsimplementations are better established in the market, and it is much easier to say what it does and whatit will do. The idea here is to wrap each BLOOM module into a CORBA object to be able to ship themacross the network. This will solve the location problems, and will help to distribute the load of thesystem between the di�erent machines participating in the cooperative information system. By meansof CORBA, every machine (actually machine administrator) can dynamically choose which modules areallowed to be run on it.It is certain that CORBA will help BLOOM to build a federation of databases. Maybe, the question iswhen. Full CORBA implementations are not available today, and the standard is still evolving and grow-ing. Nevertheless, there can be no doubt that when the standard become stable and the implementationswell rooted in the market, CORBA will be the indispensable tool to build a cooperative informationsystem.

62

GlossaryAPI Application Programming Interface.BLOOM BarceLona Object Oriented Model. Note that it is used to refer to the data model itself, aswell as the whole project (canonical model, schemas architecture and execution architecture).BOA Basic Object Adapter.CAD Computer Aided Design.CAE Computer Aided Engineering.CDB Component DataBase.CDM Canonical Data Model.CLI Call Level Interface.COMTM Component Object Model (Microsoft).Cooperative Information System Set of information systems, possibly distributed over large andcomplex computer/communication networks, which manage large amount of information and com-puting services, and support individual or collaborative human work. [MDJ+98]CORBA Common Object Request Broker Architecture.DA Direct Access protocol.DB DataBase.DBA DataBase Administrator.DBMS DataBase Management System.DDL Data De�nition Language.DDO Dynamic Data Object. 63

DII Dynamic Invocation Interface.DLL Dynamically Loaded Library.DSI Dynamic Skeleton Interface.DSOMTM Dynamic SOM (IBM).FDBMS Federated DataBase Management System.Federated Database Management System Collection of cooperating but autonomous componentdatabase systems, possibly heterogeneous. [SL90]GUI Graphical User Interface.HEROS HEteRogeneous Object System. [AULM98]IDL Interface De�nition Language.IIOP Internet Inter-ORB Protocol.IMLTM Implementation Mapping Language (Digital).Interface De�nition Language Language used to de�ne CORBA object interfaces (quite similar toC++).JDBCTM Java DataBase Connectivity (Sun Microsystems).METU Middle East Technical University (Turkey).MIND METU INteroperable DBMS. [DDK+96]MMLTM Method Mapping Language (Digital).OA (Generic) Object Adapter.Object Identi�able, encapsulated entity that provides one or more services that can be requested by aclient. [OMG95]Object reference Object name that reliably denotes a particular object. Speci�cally, an Object Refer-ence will identify the same object each time the reference is used in a request. An object may bedenoted by multiple, distinct object references. [OMG95]ObjectStoreTM Concrete ODBMS implementation (Ideal Object).ODA Object Database Adapter.ODBC Open DataBase Connectivity.ODBMS Object oriented DBMS. 64

ODL Object De�nition Language.ODMG Object Database Management Group.OID Object IDenti�er.OLETM Object Linking and Embedding (Microsoft).OMA Object Management Architecture.OMGTM Object Management Group.OO Object Oriented.OQL Object Query Language (de�ned by the ODMG).OQS Object Query Service.ORB Object Request Broker.OSLTM Object Server Language (Sun Microsystems).OrbixTM Concrete ORB implementation (IONA Technologies).PDS Persistent Data Storage.PID Persistent IDenti�er.PO Persistent Object.POA Persistent Object Adapter.POM Persistent Object Manager.POS Persistent Object Service.Request Event by means of which a client requests a service. The information associated with a requestconsist of an operation, a target object, zero or more (actual) parameters used to pass data to thetarget object, and an optional request context. [OMG95]RDBMS Relational DBMS.RFI Request For Information.RFP Request For Proposals.RMITM Remote Method Invocation (Sun Microsystems).SD Synchronized Data.SOMTM System Object Model (IBM). 65

SQL Standard Query Language.SSDF Standard Stream Data Format.

66

Bibliography[AULM98] E. M. Antunes-Uchoa, S. Lifschitz, and R. N. Melo. HEROS: A heterogeneous object-orienteddatabase system. Lecture Notes in Computer Science, 1460:435{447, 1998.[Bak97] Sean Baker. CORBA Distributed Objects - Using Orbix. ACM Press, Adison Wesley, 1997.[CBB+97] R. G. G. Cattell, D. Barry, D. Bartels, M. Berler, J. Eastman, S. Gamerman, D. Jordan,A. Springer, H. Strickland, and D. Wade. The Object Database Standard: ODMG 2.0. MorganKaufmann Publishers, Los Altos (CA), USA, 1997.[DDK+96] A. Dogac, C. Dengi, E. Kilic, G. Ozhan, F. Ozcan, S. Nural, C. Evrendilek, U. Halici,B. Arpinar, P. Koksal, and S. Mancuhan. A multidatabase system implementation onCORBA. In Sixth International Workshop on Research Issues in Data Engineering - Inter-operability of Nontraditional Database Systems, pages 2{11, Washington - Brussels - Tokyo,February 1996. IEEE Computer Society.[ION97] IONA Technologies. ORBIX + ObjectStore adapter. White paper, IONA Technologies PLC.,1997.[KPT96] Jan Kleindienst, Franti�sek Pl�a�sil, and Petr Tuma. Lessons learned from implementing theCORBA persistent object service. In Proceedings of the Conference on Object-Oriented Pro-gramming Systems, Languages, and Applications, volume 31, 10 of ACM SIGPLAN Notices,pages 150{167, New York, October6{10 1996. ACM Press.[KS98] G. Kappel and B. Schroeder. Distributed light-weight persistence in Java | A tour on RMI-and CORBA-based solutions. Lecture Notes in Computer Science, 1460:411{424, 1998.[MDJ+98] Georgio De Michelis, Eric Dubois, Matthias Jarke, Florian Matthes, John Mylopoulos,Michael P. Papazoglou, Klaus Pohl, Joachim Schmidt, Carson Woo, and Eric Yu. Coop-erative information systems: a manifesto. In Michael P. Papazoglou and Gunter Schlageter,editors, Cooperative Information Systems, pages 315{363. Academic Press, San Diego, 1998.[OH98] Robert Orfali and Dan Harkey. Client/Server Programming with JAVA and CORBA. JohnWiley & Sons, New York, 2 edition, 1998.67

[OHE97] Robert Orfali, Dan Harkey, and Jeri Edwards. Instant CORBA. Wiley Computer Publishing,John Wiley and Sons Inc., 1997.[OMG94] OMG. Object services architecture. Documentation available at http://www.omg.org, ObjectManagement Group, 1994. Revision 8.0.[OMG95] OMG. The common object request broker: Architecture and speci�cation. Documentationavailable at http://www.omg.org, Object Management Group, July 1995. Revision 2.0.[OMG98] OMG. CORBAservices: Common object services speci�cation. Documentation available athttp://www.omg.org, Object Management Group, December 1998.[ROSC97] Elena Rodr��guez, Marta Oliva, F�elix Saltor, and Benet Campderrich. On schema and func-tional architectures for multilevel secure and multiuser model federated database systems. InS. Conrad et al., editor, Proceedings of the International CAiSE'97 Workshop on EngineeringFederated Database Systems (EFDBS'97), pages 93{104. Springer, Magdeburg (Germany),1997.[Ses96] Roger Sessions. Object Persistence { beyond object-oriented databases. Prentice Hall, 1996.[Sie96] Jon Siegel. CORBA: Fundamentals and Programming. John Wiley & Sons Inc., New York, 1edition, 1996.[SL90] Amit P. Sheth and James A. Larson. Federated database systems for managing distributed,heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3):183{236, Septem-ber 1990. Also published in/as: Bellcore, TM-STS-016302, Jun.1990.[Sri97] Prashant Sridharan. Advanced Java Networking. Prentice Hall, 1997. ISBN 0-13-749136.[SV97] Douglas C. Schmidt and Steve Vinoski. Object interconnections. SIGS C++ Report, April1997.[Vin93] S. Vinoski. Distributed object computing with CORBA. C++ Report, 5(6):32{38, July-August 1993.[Vin97] Steve Vinoski. CORBA: Integrating diverse applications within distributed heterogeneousenvironments. IEEE Communications, 35(2):46{55, February 1997.
68

Appendix AService IDL interfacesA.1 Externalization Servicemodule CosExternalization fexception InvalidFileNameError fg;exception ContextAlreadyRegisteredError fg;interface Stream : CosLifeCycle::LifeCycleObject fvoid externalize(in CosStream::Streamable theObject);CosStream::Streamable internalize(in CosLifeCycle::FactoryFinder there)raises (CosLifeCycle::NoFactory, StreamDataFormatError);void begin context() raises (ContextAlreadyRegistered);void end context();void ush();g;interface StreamFactory fStream create();g;interface FileStreamFactory fStream create(in string theFileName) raises (InvalidFileNameError);g;g;
69

module CosStream fexception ObjectCreationError fg;exception StreamDataFormatError fg;interface StreamIO;interface Streamable : CosObjectIdentity::Identi�ableObject freadonly attribute CosLifeCycle::Key external form id;void externalize to stream(in StreamIO targetStreamIO);void internalize from stream(in StreamIO targetStreamIO, in CosLifeCycle::FactoryFinder there)raises (CosLifeCycle::NoFactory, ObjectCreationError, StreamDataFormatError);g;interface StreamableFactory fStreamable create uninitialized();g;interface StreamIO fvoid write object(in Streamable obj);void write string(in string aString);void write char(in char aChar);...Streamable read object() raises (StreamDataFormatError);string read string() raises (StreamDataFormatError);char read char() raises (StreamDataFormatError);...g;g;

70

A.2 Persistent Object Servicemodule CosPersistencePO finterface PO fattribute CosPersistencePID::PID p;CosPersistencePDS::PDS connect (in CosPersistencePID::PID p);void disconnect(in CosPersistencePID::PID p);void store(in CosPersistencePID::PID p);void restore(in CosPersistencePID::PID p);void delete(in CosPersistencePID::PID p);g;interface SD fvoid pre store();void post restore();g;g;module CosPersistencePOM finterface POM fCosPersistencePDS::PDS connect (in Object obj, in CosPersistencePID::PID p);void disconnect(in CosPersistencePID::PID p);void store(in CosPersistencePID::PID p);void restore(in CosPersistencePID::PID p);void delete(in CosPersistencePID::PID p);g;g;module CosPersistencePDS finterface PDS fPDS connect (in Object obj, in CosPersistencePID::PID p);void disconnect(in CosPersistencePID::PID p);void store(in CosPersistencePID::PID p);void restore(in CosPersistencePID::PID p);void delete(in CosPersistencePID::PID p);g;g;
71

module CosPersistencePDS DA ftypedef string DAObjectID;typedef sequence<string> AttributeNames;typedef string ClusterID;typedef sequence<ClusterID> ClusterIDs;interface PID DA : CosPersistencePID::PID fattribute DAObjectID oid;g;interface DAObject fboolean dado same(in DAObject d);DAObjectID dado oid();PID DA dado pid();void dado remove();void dado free();g;interface DAObjectFactory fDAObject create();g;interface DAObjectFactoryFinder fDAObjectFactory �nd factory(in string key);g;interface PDS DA : CosPersistencePDS::PDS fDAObject get data();void set data(in DAObject new data);DAObject lookup(in DAObjectID id);PID DA get pid();PID DA get object pid(in DAObject dao);DAObjectFactoryFinder data factories();g;interface DynamicAttributeAccess fAttributeNames attribute names();any attribute get(in string name);void attribute set(in string name, in any value);g;interface PDS ClusteredDA : PDS DA fClusterID cluster id();string cluster kind();ClusterIDs clusters of();PDS ClusteredDA create cluster(in string kind);PDS ClusteredDA open cluster(in ClusterID cluster);PDS ClusteredDA copy cluster(in PDS DA source);g;g; 72

module CosPersistenceDDO finterface DDO fattribute string object type;attribute CosPersistencePID::PID p;short add data();short add data property(in short data id);short add data count();short add data property count(in short data id);void get data property(in short data id, in short property id, out string property name, out any property value);void set data property(in short data id, in short property id, in string property name, in any property value);void get data(in short data id, out string data name, out any data value);void set data(in short data id, in string data name, in any data value);g;g;

73

A.3 Object Query Servicemodule CosQueryCollection fexception ElementInvalid ;exception IteratorInvalid ;exception PositionInvalid ;enum ValueType f TypeBoolean, TypeChar, TypeOctet, TypeShort, TypeUShort, TypeLong, ..., TypeNumericg;struct Decimal f long precision; long scale; sequence<octet> value; g;union Value switch(ValueType) fcase TypeBoolean: boolean b;...case TypeNumerical: Decimal n;g;typedef boolean Null;union FieldValue switch (Null) fcase FALSE: Value v;g;typedef sequence<FieldValue> Record;typedef string wstring;struct NVPair f wstring name; any value; gtypedef sequence<NVPair> ParameterList;interface Collection;interface Iterator;interface CollectionFactory fCollection create(in ParameterList params);g;interface Collection freadonly attribute long cardinality;void add element(in any element) raises (ElementInvalid);void add all elements(in Collection elements) raises (ElementInvalid);void insert element at(in any element, in Iterator where) raises (IteratorInvalid, ElementInvalid);void replace element at(in any element, in Iterator where) raises (IteratorInvalid, PositionInvalid, ElementInvalid);void remove element at(in Iterator where) raises (IteratorInvalid, PositionInvalid);void remove all elements();any retrieve element at(in Iterator where) raises (IteratorInvalid, PositionInvalid);Iterator create iterator();g;interface Iterator fany next() raises (IteratorInvalid, PositionInvalid);void reset();boolean more();g;g; 74

module CosQuery fexception QueryInvalid ;exception QueryProcessingError string why;;exception QueryTypeInvalid ;enum QueryStatus f complete, incomplete g;typedef CosQueryCollection::ParameterList ParameterList;typedef CORBA::InterfaceDef QLType;interface QueryLanguageType fg;interface SQLQuery : QueryLanguageType fg;interface SQL 92Query : SQLQuery fg;interface OQL : QueryLanguageType fg;interface OQLBasic : OQL fg;interface OQL 93 : OQL fg;interface OQL 93Basic : OQL 93, OQL Basic fg;interface QueryEvaluator freadonly attribute sequence<QLType> ql types;readonly attribute QLType default ql type;any evaluate(in string query, in QLType ql type, in ParameterList params)raises (QueryTypeInvalid, QueryInvalid, QueryProcessingError);g;interface QueriableCollection : QueryEvaluator, CosQueryCollection:Collection fg;interface QueryManager : QueryEvaluator fQuery create(in string query, in QLType ql type, in ParameterList params) raises (QueryTypeInvalid, QueryInvalid);g;interface Query freadonly attribute QueryManager query mgr;void prepare(in ParameterList params) raises (QueryProcessingError);void execute(in ParameterList params) raises (QueryProcessingError);QueryStatus get status();any get result();g;g;
75

