
Security in a

Distributed Processing Environment

by.

Elizabeth Mary Joyce

B,Sc. (Hons)

A thesis submitted to the University of Plymouth

In partial fulfilment for the degree of

DOCTOR O F PHILOSOPHY

Department of Communication and Electronic Engineering

Faculty of Technology

In collaboration with

lONA Technologies, pic.

& Orange

December 2001

' 8 SEP 2002r
Class

IF

Security in a Distributed Processing Environment

Elizabeth Joyce

B.Sc (Hons)

Abstract
Distribution plays a key role in telecommunication and computing systems today. It
has become a necessity as a result of deregulation and anti-trust legislation, which has
forced businesses to move from centralised, monolithic systems to distributed systems
with the separation of applications and provisioning technologies, such as the service
and transportation layers in the Internet. The need for reliability and recovery requires
systems to use replication and secondary backup systems such as those used in e-
commerce.

There are consequences to distribution. It results in systems being implemented in
heterogeneous environment; it requires systems to be scalable; it results in some loss
of control and so this contributes to the increased security issues that result from
distribution. Each of these issues has to be dealt with. A distributed processing
environment (DPE) is middleware that allows heterogeneous environments to operate
in a homogeneous manner. Scalability can be addressed by using object-oriented
technology to distribute functionality. Security is more difficult to address because it
requires the creation of a distributed trusted environment.

The problem with security in a DPE currently is that it is treated as an adjunct service,
i.e. and after-thought that is the last thing added to the system. As a result, it is not
pervasive and therefore is unable to fully support the other DPE services. DPE
security needs to provide the five basic security services, authentication, access
control, integrity, confidentiality and non-repudiation, in a distributed environment,
while ensuring simple and usable administration.

The research, detailed in this thesis, starts by highlighting the inadequacies of the
existing DPE and its services. It argues that a new management structure was
introduced that provides greater flexibility and configurability, while promoting
mechanism and service independence. A new secure interoperability framework was
introduced which provides the ability to negotiate common mechanism and service
level configurations. New facilities were added to the non-repudiation and audit
services.

The research has shown that all services should be security-aware, and therefore
would able to interact with the Enhanced Security Service in order to provide a more
secure environment within a DPE. As a proof of concept, the Trader service was
selected. Its security limitations were examined, new security behaviour policies
proposed and it was then implemented as a Security-aware Trader, which could
counteract the existing security limitations.

Acknowledgements

I would like to thank the following:

• Prof. Peter Sanders, my Director of Studies, who provided me with the

opportunity to undertake this research and for all his support and advice

during my time with the Group;

• Prof. Paul Reynolds, Supervisor, for his advice and insights;

• Dr. Steven Fumell, Supervisor, whose unending help and collaboration I

deeply appreciate;

• Everyone in the Network Research Group;

• Declan O'Sullivan, my mentor, and everyone in lONA Technologies PLC,

for all their help and collaboration;

• Dr. Joseph Morrissey, for his support and patience when listening to

endless hours of rhetorical questions;

• And finally, to my parents and family, who have always been there for me,

and provide a constant source of support and encouragement.

Declaration

At no time during the registration for the degree of Doctor of Philosophy has the

author been registered for any other university award.

Relevant scientific seminars and conferences were regularly attended at which work

was presented; external institutions were visited for consultation purposes, and the

papers prepared for publication.

The work presented in this thesis is solely that of the author.

Signed fiJll^'MUa.fl... . C / - ^ ? ^ .

Date 3.f.A/0.^....

I l l

Glossary of Abbreviations

AA Audit Agent

ACA Access Control Agent

A C L Access Control List

A C M Access Control Matrix

A K B Audit Knowledge Base

API Application Programming Interface

AR Audit Responder

ASA Audit Sampling Agent

as-UAP Access session related User Application

AuthA Authentication Agent

CA Certification Authority

C C M CORBA Component Model

C C S Comprehensive CORBASec

CISS Comprehensive Integrated Security System

C L Capability Lists

C O R B A Common Object Request Broker Architecture

CSI Common Secure Interoperability

CSM Communications Session Manager

DBMS DataBase Management System

D C E Distributed Computing Environment

DES Data Encryption Standard

DMA Domain Mapping Agent

IV

D P E Distributed Processing Environment

E M E R A L D Event Monitoring Enabling Responses to Anomalous Live
Detection

G I O P General Inter-ORB Protocol

GSS-API Generic Security Service Application Protocol Interface

lA Initial Agent

I D L Interface Definition Language

IDS Intrusion Detection System

HOP Internet Inter-ORB Protocol

IN Intelligent Networks

I S E Integrated Service Engineering

ISO International Standards Organisation

K B Knowledge Base

kTN Kernel Transport Network

M A C Message Authentication Code

MD-5 Message Digest 5

M F C Microsoft Foundation Classes

N C C E Native Computing and Communications Environment

NIDES Next-generation Intrusion Detection Expert System

NRAdj Non-Repudiation Adjudicator

NREA Non-Repudiation Evidence Agent

NRS Non-Repudiation Store

O D B C Open DataBase Connectivity

O D L Object Definition Language

ODP Open Distributed Processing

O M G Object Management Group

C O Object-Oriented

O R B Object Request Broker

OSI Open Systems Interconnection

O T S Object Transaction Service

PA Provider Agent

PAC Privilege Attribute Certificate

P C M Profile/Context Manager

PCM Policy/Context Manager

PoC Proof of Concept

PS Persistence Service

QoP Quality of Protection

QoPA Quality of Protection Agent

R A C E Resource Access Control Facility

RM-ODP Reference Model for Open Distributed Processing

RSA Rivest, Shamir, and Adleman

SecA Security Agent

S E C I O P Secure Inter-Orb Protocol

S F Service Factory

SHA Secure Hash Algorithm

SIA Secure Interoperability Agent

SOAP Simple Object Access control Protocol

SSC Security Services Component

SSL Secure Socket layer

SSM Service Session Manager

ss-UAP Service session related User Application

VI

T C B Trusted Computing Base

T C S M Terminal Communications Session Manager

TINA Telecommunications Information Networking Architecture

TMN Telecommunications Management Networks

T T P Trusted Third Party

UA User Agent

U R L Uniform Resource Locator

use User Sponsor Code

USM User Session Manager

WAP Wireless Application Protocol

V I I

T A B L E O F C O N T E N T S

G L O S S A R Y O F A B B R E V I A T I O N S I V

1. I N T R O D U C T I O N 1

1.1 S E R V I C E E N G I N E E R I N G AND S E C U R I T Y 1
1.2 A I M S AND O B J E C T I V E S OF T H E R E S E A R C H 3
1.3 T H E S I S S T R U C T U R E 4

2 . I N T E G R A T E D S E R V I C E E N G I N E E R I N G A N D D I S T R I B U T E D
P R O C E S S I N G E N V I R O N M E N T S 7

2.1 INTRODUCTION 7
2.2 INFLUENTIAL T E C H N O L O G I E S IN I S E 8

2.2.7 Open Distributed Processing 5
2.2.2 Object-Orientation 10

2.3 TELECOMMUNICATIONS INFORMATION N E T W O R K I N G A R C H I T E C T U R E 12
2.5.7 Hie Overall Architecture 72
2. J.2 The Service Architecture 75
2.3.3 Hie Computing Architecture and the DPE 7 7
2.3.4 Hie Management Architecture 79

2.4 COMMON O B J E C T R E Q U E S T B R O K E R A R C H I T E C T U R E 21
2.4.1 CORBA Interface Definition Language (IDL) 22
2.4.2 CORBA Object Request Broker (ORB) 23
2.4.3 CORBAservices 24

2.5 T H E T R A D I N G S E R V I C E 26
2.5.7 77ie Trader Data Structures 27
2.5.2 Attributes 28
2.5.3 Interfaces 28
2.5.4 Linked Traders 30
2.5.5 Uses of an Unsecured Trader. 32

2.6 T H E S E C U R I T Y S E R V I C E 33
2.7 SUMMARY 39

3. L O G I C A L S E C U R I T Y I N D I S T R I B U T E D S Y S T E M S 4 0

3.1 INTRODUCTION 40
3.2 S E C U R I T Y PRINCIPLES 41

3.2.1 Access Control Service 41
3.2.2 Authentication Service 43
3.2.3 Confidentiality Service 45
3.2.4 Integrity Service 47
3.2.5 Non-Repudiation and Auditing Service 48
3.2.6 Security Management 57

3.3 O T H E R PRINCIPLES R E L E V A N T TO D P E S E C U R I T Y 52
3.3.1 Security Domains and Trust Models 52
3.3.2 Distributed Trusted Computing Base 54
3.3.3 Interoperability 55

V I I I

3.3.4 Mechanism Independence and the Separation of Mechanism & Service
Management 60

3.4 SUMMARY 6 0

4. R E Q U I R E M E N T S F O R A N E W F R A M E W O R K F O R D P E S E C U R I T Y 6 2

4.1 INTRODUCTION 6 2
4.2 REQUIREMENTS FOR D P E S E C U R I T Y 6 2

4.2.1 Distributed Object Complications 63
4.2.2 Review of Currently defined GDOS Security Requirements 64
4.2.3 Analysing the DPE Security Problem Domain 71

4.3 F O R M U L A T I N G A D P E S E C U R I T Y FRAMEWORK 74
4.4 A N E W S E C U R I T Y FRAMEWORK FOR D P E S 8 0

4.4.1 DPE Security Service Overview 80
4.4.2 Realisation and Deployment Issues 84
4.4.3 DPE Security Management Overview 5 5

4.5 D P E S E C U R E D S E R V I C E E X A M P L E 9 6
4.5.1 Logging in to the Provider 97
4.5.2 Starting a New Service Session 101

4.6 SUMMARY 107

5. S E C U R E I N T E R O P E R A B I L I T Y I N A D P E 108

5.1 INTRODUCTION 108
5.2 D P E S E C U R E INTEROPERABILITY REQUIREMENTS 109
5.3 D P E S E C U R E INTEROPERABILITY - T H E ISSUES 112

5.3.1 Conflicting Security Mechanisms 112
5.3.2 Conflicting Security Policies /14
5.3.3 Conflicting Security Protocols 116
5.3.4 Different Trust Domains 116

5.4 A N E W S E C U R E INTEROPERABILITY FRAMEWORK 120
5.4.1 New Policy Configuration Structure 120
5.4.2 New Secure Interoperability Protocol 124
5.4.3 New Secure Interoperability Service Objects 128
5.4.4 Secure Interoperability Example 133

5.5 SUMMARY 140

6. S E C U R I T Y - A W A R E D P E S E R V I C E S 142

6.1 INTRODUCTION 142
6.2 S E C U R I T Y ISSUES FOR SUPPORTING S E R V I C E S IN A D P E 143
6.3 S E C U R I T Y ISSUES R E L A T E D TO T R A D I N G & T R A D E R S 146

6.3.1 Authentication 146
6.3.2 Access Control 146
6.3.3 Integrity and Confidentiality 149
6.3.4 Non-Repudiation 150

6.4 C U R R E N T LIMITATIONS 151
6.5 N E W F A C I L I T I E S R E Q U I R E D 155

6.5.1 Security-Aware Trader Attributes 7 5 5
6.5.2 Security-Aware Trader Data Structures 756

ix

6.5.3 Security-Aware Trader Interfaces 158
6.5.4 Security-Aware Trader and the new Framework for DPE Security.. 164
6.5.5 New Facility Summary 166

6.6 O T H E R S E C U R I T Y - A W A R E S E R V I C E S IN A D P E 167
6.7 SUMMARY 169

7. V E R I F I C A T I O N O F T H E NEW F R A M E W O R K 171

7.1 INTRODUCTION 171
7.2 MAPPING T O C O R B A S E C 171

7.2.1 CORBASec vs. DPE Requirements 172
7.2.2 Mapping to the new Comprehensive CORBASec 176
7.2.3 Management and Mechanism-Independence 7 7 7
7.2.4 Authentication & Authorisation Enhancements 180
7.2.5 Integrity &. Confidentiality Enhancements 187
7.2.6 Non-Repudiation & Audit Enhancements 191
7.2.7 Secure Interoperability 201
7.2.8 Security-Aware Trader 203

7.3 SUMMARY 2 0 4

8. P R O O F O F C O N C E P T 206

8.1 INTRODUCTION 2 0 6
8.2 T H E PROOF OF C O N C E P T PROTOTYPE 207

8.2.1 Implementation of the Prototype 209
8.2.2 A Practical Demonstration Scenario 220
8.2.3 Requirements Matrix 2 2 5

8.3 V E R i n c A T i O N 2 2 8
8.3.1 Performance Modelling 2 2 5
8.3.2 Standards Verification 240

8.4 SUMMARY 249

9. C O N C L U S I O N S 251

9.1 A C H I E V E M E N T S OF T H E R E S E A R C H 2 5 1
9.2 LIMITATIONS OF T H E R E S E A R C H 2 5 2
9.3 SUGGESTIONS FOR F U T U R E W O R K 2 5 3
9.4 SUMMARY OF R E S E A R C H CONCLUSIONS 255

10. R E F E R E N C E S 257

APPENDIX A - I D L for Comprehensive CORBASec 271

APPENDIX B - I D L for Security-Aware Trader Service 321

APPENDIX C - I D L for Generic Security Service API 338

APPENDIX D - Cryptlib and Prototype Information 346

APPENDIX E - Papers 352

APPENDIX F - Letters 379

T A B L E O F F I G U R E S

F I G U R E 2-1 T I N A O V E R A L L A R C H I T E C T U R E 13

F I G U R E 2-2 S T R U C T U R E O F T I N A S Y S T E M 14
F I G U R E 2-3 T I N A SESSIONS 16
F I G U R E 2-4 D P E A R C H I T E C T U R E 18
F I G U R E 2-5 T I N A M A N A G E M E N T A R C H I T E C T U R E 2 0
F I G U R E 2-6 O M G C O R B A A R C H I T E C T U R E 2 2
F I G U R E 2-7 C O R B A O R B S T R U C T U R E 2 4
F I G U R E 2-8 T R A D E R INTERACTIONS 2 6
F I G U R E 2-9 T R A D E R . 31
F I G U R E 2-10 C O R B A S E C U R I T Y S E R V I C E 3 4
F I G U R E 2-11 C O R B A S E C U R I T Y O B J E C T S 3 6
F I G U R E 3-1 X . 5 0 9 C E R T I F I C A T I O N A U T H O R I T Y H I E R A R C H Y S T R U C T U R E 4 5
F I G U R E 3-2 MONITORING A G E N T S T R U C T U R E 4 9
F I G U R E 3-3 INTEROPERABILITY B R I D G I N G SOLUTIONS 57
F I G U R E 4-1 T I N A S E R V I C E E X A M P L E 76
F I G U R E 4-2 A N E W S E C U R I T Y F R A M E W O R K FOR D P E S (OPERATIONAL) 80
F I G U R E 4-3 E X A M P L E OF S E C U R I T Y S E R V I C E O B J E C T D E P L O Y M E N T 85
F I G U R E 4-4 ADMINISTRATIVE P O L I C Y C L A S S , 8 9
F I G U R E 4-5 S E C U R I T Y S E R V I C E O B J E C T S - M A N A G E M E N T 91
F I G U R E 4-6 N E W S E C U R E L O G I N E X A M P L E S 9 8
F I G U R E 4-7 N E W S E C U R E S E R V I C E E X A M P L E 104
F I G U R E 5-1 S E C U R E INTEROPERABILITY PROTOCOL M E S S A G E S E Q U E N C E 128
F I G U R E 5-2 N E W S E C U R E INTEROPERABILITY L O G I N E X A M P L E 135
F I G U R E 6-1 T R A D E R A C C E S S C O N T R O L 147
F I G U R E 6-2 T R A D E R S E R V I C E O F F E R A C C E S S C O N T R O L 148
F I G U R E 6-3 P R O T E C T I N G S T O R E D D A T A 149
F I G U R E 6-4 S E R V I C E O F F E R A C C E S S C O N T R O L WITH R E G I S T R Y S E C U R I T Y PROPERTY

153
F I G U R E 6-5 S E C U R I T Y - A W A R E T R A D E R ' S ADMIN I N T E R F A C E 160
F I G U R E 6-6 S E C U R I T Y - A W A R E T R A D E R ' S L O O K U P I N T E R F A C E 162
F I G U R E 6-7 S E C U R I T Y - A W A R E T R A D E R 167
F I G U R E 7-1 COMPREHENSIVE C O R B A S E C OBJECTS 177
F I G U R E 7-2 C C S DOMAINMANAGER 180
F I G U R E 7-3 C C S AUTHENTICATION 184
F I G U R E 7-4 C C S INTEGRITY AND CONFIDENTIALITY 190
F I G U R E 7-5 C C S NON-REPUDIATION 196
F I G U R E 7-6 C C S A U D I T 201
F I G U R E 7-7 CSl M E S S A G E T Y P E S 2 0 2
F I G U R E 8-1 SUMMARY OF ISSUES IN R E S E A R C H 209
F I G U R E 8-2 O B J E C T IMPLEMENTATION 2 1 2
F I G U R E 8-3 C C S O B J E C T S IMPLEMENTED 213
F I G U R E 8-4 S E C U R I T Y - A W A R E T R A D E R INTERFACES IMPLEMENTED 214
F I G U R E 8-5 INTERCEPTOR INITIATED C A L L S 2 1 6
F I G U R E 8-6 D I R E C T C A L L ON OBJECTS 217

XI

F I G U R E 8-7 AUTHORISED PATHS THROUGH T H E DEMO WITH N E W S E C U R I T Y S E R V I C E
2 2 3

F I G U R E 8-8 ADMINISTRATION S E L E C T I O N S C R E E N 2 2 3
F I G U R E 8-9 S E C U R I T Y S E R V I C E ADMINISTRATION S C R E E N S 2 2 4
F I G U R E 8-10 AUTHORISED PATHS THROUGH T R A D E R D E M O WITH N E W S E C U R I T Y

S E R V I C E 225
F I G U R E 8-11 T R A D E R S E C U R I T Y ADMINISTRATION & Q U E R Y S C R E E N S 2 2 5
F I G U R E 8-12 AUTHENTICATION E V E N T S E Q U E N C E C H A R T 2 3 0
F I G U R E 8-13 A C C E S S C O N T R O L E V E N T S E Q U E N C E C H A R T 2 3 0
F I G U R E 8-14 QoP E V E N T S E Q U E N C E C H A R T 231
F I G U R E 8-15 NON-REPUDIATION E V E N T S E Q U E N C E C H A R T 2 3 2
F I G U R E 8-16 A U D I T E V E N T S E Q U E N C E C H A R T 233
F I G U R E 8-17 S E C U R E INVOCATION E V E N T S E Q U E N C E C H A R T 2 3 4
F I G U R E 8-18 OPERATIONAL O B J E C T INVOCATION COMPARISON 235
F I G U R E 8-19 N U M B E R OF ADMINISTRATION O B J E C T M E T H O D S 2 3 8

T A B L E O F T A B L E S

T A B L E 2-1 C O R B A S E R V I C E S 2 5
T A B L E 4-1 G D O S S E C U R I T Y REQUIREMENTS 7 0
T A B L E 4-2 SUMMARY OF T I N A vs. DPE S E C U R I T Y REQUIREMENTS 7 9
T A B L E 5-1 REQUIREMENTS FOR D P E S E C U R I T Y 110
T A B L E 5-2 ADDRESSING S E C U R E INTEROPERABILITY SCENARIOS 119
T A B L E 5-3 P O L I C Y CONFIGURATIONS 123
T A B L E 5-4 S E C U R E I N T E R O P E R A B I L I T Y P O L I C Y S T R U C T U R E 129
T A B L E 5-5 S E C U R E I N T E R O P E R A B I L I T Y P O L I C Y S T R U C T U R E 132
T A B L E 5-6 U S E R / P R O V I D E R S E C U R E I N T E R O P E R A B I L I T Y P O L I C I E S 134
T A B L E 5-7 A T T R I B U T E AND R O L E MAPPINGS 134
T A B L E 6-1 T R A D E R S E C U R I T Y P O L I C I E S 155
T A B L E 6-2 S E C U R I T Y - A W A R E T R A D E R ' S S E R V I C E T Y P E REPOSITORY E X A M P L E 157
T A B L E 6-3 S E C U R I T Y - A W A R E T R A D E R ' S R E G I S T R Y E N T R Y E X A M P L E 158
T A B L E 7-1 D P E S E C U R I T Y REQUIREMENTS A V A I L A B L E IN C O R B A S E C 173
T A B L E 7-2 ADMINISTRATION O B J E C T S 178
T A B L E 7-3 AUTHENTICATION & AUTHORISATION S E C U R I T Y S E R V I C E O B J E C T

MAPPINGS TO C C S 184
T A B L E 7-4 QoP S E C U R I T Y S E R V I C E O B J E C T MAPPINGS TO C C S 189
T A B L E 7-5 C C S NON-REPUDIATION MAPPINGS 194
T A B L E 7-6 S E C U R E INTEROPERABILITY S E R V I C E O B J E C T MAPPINGS T O C C S 203
T A B L E 8-1 OPERATIONAL O B J E C T INVOCATION COMPARISON 2 3 5
T A B L E 8-2 ADMINISTRATION O B J E C T S 2 3 6
T A B L E 8-3 COMPARISON OF T H E NUMBERS O F ADMINISTRATION O B J E C T M O D E L S . . .237
T A B L E 8-4 S E C U R I T Y - A W A R E TRADER'S S E C U R I T Y O B J E C T INVOCATIONS 2 3 9

X I I

1. Introduction

1.1 Service Engineering and Security

Computers are pervasive throughout the telecommunications industry. They are

utilised by the core infrastructure, e.g. in switches, by the software applications

operating and controlling the infrastructure, e.g. Intelligent Networks combine these

technologies to create a means of separating switching and logic functions in order to

build a more flexible distributed architecture for service provisioning. The Internet

provides another illustration of how distributed computer systems are combined with

an underlying telecommunication network.

Object-Oriented technologies are also playing a key role in integrating heterogeneous

systems across the globe. E-commerce companies use it to wrap legacy applications

and make them available to an Internet audience. Telecommunication companies use

distributed object systems to build their Telecommunication Management Networks

(TMN), and so manage their vast telephone networks. Such systems need to be

supported. This is where the concept of Integrated Service Engineering (ISE)

emerges. ISE supports the development, deployment and provisioning of services. It

is accomplished through the use of a Service Machine, a key component of which is

the Distributed Processing Environment (DPE). The DPE provides an object bus and

a set of supporting services, which allow distributed objects to be created, activated,

operated and destroyed in a stable and consistent environment. Future modifications

and technology innovations may make it even more difficult to distinguish between

computer and telecommunication technologies. Therefore ISE. which acts as the

Chapter 1: Introduction

standard providing all these services, needs to cope with the new demands of this

environment.

On May 4, 2000, the " I L O V E Y O U " worm, also known as the "Love Bug",

bombarded email systems around the world [1]. Users received an email asking them

to check the attached "Love Letter". The attachment was a script that contained the

payload. If the attachment was opened the computer was infected. The "Love Bug"

changed registry settings so that it would be run every time the computer was

rebooted and sent copies of itself to everyone listed in the user's address book. It also

destroyed multimedia files, such as JPEGs and MP3s. It is estimated that over two-

thirds of the Fortune 500 Companies were affected at a cost of $6.7 billion [2, 3].

Although the "Love Bug" was a computer worm, it required the underlying

telecommunication network to allow the worm infect on a global scale.

Security has always been an issue. It has been used by governments and private

individuals to protect resources they deemed valuable and therefore at risk.

Cryptography, the science of hiding information from unwanted eavesdroppers, has a

long history [4]. While it was realised that security was required in

telecommunications and computing when they were two distinct technologies,

distributed systems suffer from a new set of security problems. The system itself is

distributed and therefore is not necessarily under the complete control of the users.

For example, if you are sending an email, it may pass over several insecure networks

before reaching its destination. The distribution also results in increased access to the

system, i.e. it provides more points of vulnerability for attack. While security on this

new media was not originally a primary concern, viruses such as the "Love Bug" have

heightened security awareness. Businesses, governments and individuals are now

Chapter 1: Introduction

realising that they are at risk and must protect themselves and their assets in this
technology arena.

Computer telecommunications are subject to serious threats. These threats can happen

within any part of society - civilian or government, and can have far reaching even

global consequences. ISE is a key component, as it facilitates the provisioning of

services in this distributed environment. By its very nature, this environment is more

vulnerable and security is seen as the single most important design criteria in many

systems today [5]. Therefore ISE must deal with security and all the problems it

presents.

1.2 Aims and Objectives of the Research

The aim of this research is to investigate and facilitate the security of DPEs. The

research recognises the importance of security in distributed systems in e-commerce

and telecommunications environments. The study has five objectives.

1. Understand the DPE and its security requirements: The study needs to

understand DPEs, define the security requirements of distributed systems and

identify any requirements that are particular to the ISE environment. Through

analysis of the State of the Art in ISE it should be possible to identify those

areas of the requirements that need to be addressed using current and novel

security techniques.

2. Define a framework for DPE security: The research needs to define a new

security framework for DPEs. This framework needs to address all the of the

reqirements defined in objective I .

Chapter J: Introduction

3. Assess how D P E security is maintained across a heterogeneous
environment: The framework needs to ensure that it preserves security in a
fully distributed heterogeneous environment. It must be able to work on and
across multiple hardware platforms. It needs to be able to inieroperaie across
multiple security domains, where different security policies and mechanisms
are in operation.

4. Assess the impact of D P E security across all services: DPEs also provide a

set of distributed services to support distributed objects. The research wil l

assess how secure these services are and whether the new Security Framework

can adequately protect them.

5. Assess practical implementation and veriFication of D P E security

framework: The research wil l be verified by mapping it to a DPE

specification and then implementing the Security Framework, verification wil l

be based on this implementation.

1.3 Thesis Structure

The thesis has been structured so that most of the background information (mainly the

state of the art survey work) is confined to the initial chapters.

Chapter 1 - Introduction - This provides an introduction to the research project

objectives and how they were accomplished.

Chapter 2 - Integrated Service Engineering and Distributed Processing

Environments - This chapter discusses the general principles applied in ISE Service

Machines and their key component, the DPE. Current DPE architectures are

Chapter J: Introduction

described, including a detailed description of one service, the Trading service, which
is used in a later chapter to identify service-related issues.

Chapter 3 - Logical Security in Distributed Systems - The general principles of

security are discussed, along with security issues that are specific to distributed

systems.

Chapter 4 - Requirements for a new Framework for D P E Security - The

requirements of DPE security are analysed and, as a result, a new set of DPE security

requirements are defined. The current problems in DPE security are then identified,

and this directed the recognition of the need for a new security framework, which is

then presented to address these issues.

Chapter 5 - Secure Interoperability in a D P E - The Secure Interoperability Service

is defined in this chapter. Although it is a key component of the new Security

Framework, the substantial work involved in designing this service requires a separate

chapter to fully consider the new features,
I

Chapter 6 - Security-Aware D P E Services - This chapter investigates how the DPE

security service interacts with other DPE services to see i f there are any security

issues. The Trading service was selected for a detailed analysis of the topic. On

finding numerous security problems, a new Security-Aware Trader is then proposed

and defined to overcome the existing vulnerabilities.

Chapter 7 - Verification of the New Framework - The research provides a proof of

concept by mapping the new Security Framework to a particular DPE specification,

namely the Object Management Group's (OMG) Common Object Request Broker

Chapter I: Introduction

Architecture (CORBA). This chapter describes how this was achieved, the issues that
were discovered and how they were addressed.

Chapter 8 - D P E Security Prototype - This chapter describes the implementation of

a prototype of the proof of concept defined above, in order to prove that it is viable in

practice. Although an implementation proves that the research can be constructed,

other verification work is required to ensure that it is feasible in a real-world scenario.

This chapter provides performance-modelling data and evaluates the future trends of

DPEs, indicating where this research can play a part.

Chapter 9 - Conclusion - The final chapter assesses the research and whether the

objectives were successfully met. It defines future work in the DPE security arena that

should be considered.

A number of appendices are also included, which provide a range of supporting

materials, including published papers.

2. Integrated Service Engineering and Distributed

Processing Environments

2.1 Introduction

Integrated Service Engineering (ISE) considers the problem of service development,

deployment and provision in today's distributed heterogeneous telecommunications

environment. A service machine is the technology, both hardware and software, used

in provisioning and deploying these services. A key component of the ISE service

machine is the Distributed Processing Environment (DPE), which helps support the

lifecycle of these objects and allows them to inter-operate across heterogeneous

operating systems, networks, languages, applications, tools, and multi-vendor

hardware [6].

ISE initially began in the realms of the telecommunications world, but with the

emergence of computing technologies such as integrated circuits in the 1960's, the

telecommunication providers began to realise they could harness the technology to

enhance their own networks and services. The main influences to this work were

Intelligent Networks (IN) and Open Distributed Processing (ODP). By using both of

these technologies, telecommunication providers could increase their services and

fully utilise the existing infrastructure resources. Another influential computing

technology was object-orientation. This was seen as another very useful technology in

the telecommunications environment. With deregulation impending, the network

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

providers would be forced into interoperability and would have to be able to provide

new services quickly and efficiently i f they were to remain competitive.

ISE did not remain solely in the telecommunication sphere. The Internet, which

utilises existing telecommunications networks, is a strong user of ISE standards. It too

is a distributed system that requires flexible implementation independent provisioning

of services, even though the services are of a different nature to the ISE originators

(e.g. e-commerce). Many businesses are interested in ISE because it promotes

heterogeneous interoperability, and so allows them to take advantage of Internet

technologies to access their legacy systems. This chapter wi l l now look an ISE DPE

and its supporting principles.

2.2 Influential Technologies in ISE

The areas that most significantly influenced in ISE were ODP and object-orientation,

the relevant principles of which are examined in the following sub-sections.

2.2.1 Open Distributed Processing

All distributed processing, be it object-oriented or not, is based on the work of the

International Standards Organisation (ISO). The following is a definition of a

distributed processing "ideal":

"Within a permissible domain of interest, anyone should be able to access and use
any resource at any location and at any time, with only the desired knowledge of
the underiying infrastructure, and with a response time acceptable for the required
purpose" [7].

Chapter 2: integrated Service Engineering and Distributed Processing Environments

The ISO works on standardisation in Open Distributed Processing (ODP). It has

developed a framework (or reference model) called the Basic Reference Model of

ODP (RM-ODP) [8]. It specifies an architecture that integrates support for

distribution, interoperability and portability. Fundamental to the RM-ODP is the

notion that distributed processing systems can be studied and described from several

viewpoints. Each viewpoint represents a different abstraction of a distributed system

[9]. The viewpoints are as follows [10]:

• Enterprise: directed to the needs of system users, it provides a view of how

the information system is placed and used within an enterprise;

• Information: directed to the needs of information managers, engineers and

analysts, it provides an information model with a view covering information

sources and sinks, and the flows between them;

• Computational: directed to the needs of application designers, it provides a

view on how information processing facilities, functionally or logically,

perform the information processing tasks;

• Engineering: directed to the needs of system and communication designers, it

provides a view of the distributed mechanisms and the various transparencies

needed to support distribution;

• Technology: directed to the needs of programmers, system maintainers and

system managers, it provides a view of the components and links that are used

to build a distributed system.

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

Distributed systems are capable of offering substantial benefits to their users. The key

characteristics have been identified as follows [11]:

• Resource sharing, which may relate to items of data, software components

(this includes distributed objects) or hardware components.

• Openness is the requirement for the availability of well-defined interfaces to

resource managers.

• Concurrency brings the benefit of higher performance.

• Scalability has been a dominant concern in distributed systems. The

replication of data and the distribution of load between servers are the key

techniques that are used to address it.

• Fault tolerance can be addressed more efficiently in distributed systems than

in more centralised system architectures, e.g. hardware redundancy and

recovery from hardware and software failures,

• Transparency addresses the need of users and application programmers to

perceive a collection of networked computers as an integrated system hiding

the distributed nature of the resources used to perform the user's task.

2.2.2 Object-Orientation

Another key area for ISE, which has influences in both IN and ODP, is Object-

Orientation (0 0) . OO is the organisation of software as a collection of discrete

objects that incorporate data structure and behaviour. 0 0 supporters believe that it

promotes future reuse and reduces errors and maintenance [12]. The distributed

10

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

processing community has also adopted it because it hides implementation details -

an important issue in a distributed environment.

The key 0 0 principles are as follows [11]:

• Object: a piece of code that owns Attributes (data values) and provides

services through Methods (also called functions or operations).

• Classes: a collection of like objects make up a class (sometimes called a type).

A class acts as a template that describes the behaviour of a set of objects.

Therefore objects are actually run-time instances of a class.

• Encapsulation: hides the internal implementation details of an object from

other objects. An object can publish a public interface that defines how other

objects can interact with it, while still keeping the implementation private.

• Polymorphism: allows the same method to do different things. Depending on

the type of object, the method wil l produce a different effect/action.

• Inheritance: allows a new child class to be created from an existing class. The

subclass or derived class inherits the methods and data structure of its parent

class, and can then add its own methods and data structures, without affecting

the parent. This promotes savings in code and simplifies the overall

understanding required within a system.

11

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

2.3 Telecommunications Information Networking

Architecture

The Telecommunications Information Networking Architecture Consortium (TINA-

C) is a consortium of about 40 communications companies, computer and network

equipment vendors. TINA-C defined the de facto standard Telecommunication

Information Networking Architecture (TINA), based on Bellcore's original INA,

which hoped to guarantee interoperability between information networks designed

using the architecture by defining a set of principles and concepts for the

specification, design, implementation, deployment, execution, and operation of

software for telecommunication systems. Telecom systems are complex; TINA breaks

them down into manageable units through logical/functional partitions and

separations [13].

TINA has a business model [14], which describes the stakeholders and how they

interact in the TINA environment. Consumers buy services from Retailers. However,

the service is actually provided by Third Party Service Providers, while connectivity

streams are supplied by Connectivity Providers. Brokers act like a telephone

directory, and allow stakeholders to obtain references to other providers.

The following sub-sections wil l outline the TINA overall architecture, and its relevant

constituents.

2.3.1 The Overall Architecture

The overall architecture was defined as follows (and is depicted in figure 2-1 below

[15]):

12

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

• Service Architecture: design, specification, implementation and management

of services;

• Network Architecture: design, specification, implementation and

management of the transport network;

• Management Architecture: design, specification and implementation of the

software systems to manage services and resources;

• Computing Architecture: design, build and distribute software and the

supporting software environment.

/ Overall ^
\ ^ Architeaure J

Service \ (Network ^ / M a n a g e m e n t ^ Computing A
Architeccure y Architecture y \^ Architecture J \^ Architeaure J

(Session Subscription ^ Network ^ Conf igurat ion^ Fauh \ f D P E ^

Model Model y VResource Model/ \^ Mangement y \ ^ Managementy \^ Architeaure y

Figure 2-1 TINA Overall Architecture

The *Basic Separation Architecture' [16] is one of the key principles in TINA-C. It

states that there are computing separations between different layers of software. The

architecture is made up of a collection of interconnected computing nodes (see figure

2-2 below). The lowest level of a node is the hardware. Above this the Native

Computing and Communications Environment (NCCE) is found. This is made up of

the operating systems for the local hardware. The NCCE provides a type of

13

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

transparency, as the Distributed Processing Environment (DPE) is unaware of die

hardware and operating systems used. The DPE is sub-divided into the DPE Bottom

and the DPE surface. The DPE Bottom offers services such as trading which are

available on every node, while the DPE surface offers other services to all nodes but

they wil l only be resident on certain nodes. The complete DPE handles distributed

processing and provides transparency between the nodes and the telecommunication

applications, which exist on the highest level.

TINA Applications

DPE Surface

DPE Bottom ^ Inter-DPE ^1 DPE Bottom

NCCE

Hardware

Interface

Ngtworh

NCCE

Interconnections
Hardware

Nddel Node 2

Figure 2-2 Structure of TINA system

TINA was structured in this way to provide true independence (i.e. technology

independence and portability) as it states that non-TINA DPEs can be part of the

system. This also implies that federation with the non-TINA systems should be

possible.

14

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

Within the TINA application layer of this architecture there is further layering, based

on the Telecommunication Management Network (TMN) [17, 18] layers. They are

defined as follows:

• Element Layer: populated by objects that represent atomic units of physical

or logical resources, defined for allocation control, usage and management

purposes;

• Resource Layer: .populated by objects that maintain, view and manipulate

collections of elements and their relationships (it provides the service layer

with an abstracted view of the elements);

• Service Layer: populated by objects involved in provision of services to

stakeholders; objects can be service-specific or service-independent.

From this Overall Architecture, the Networking Architecture is considered outside the

scope of this research and so wil l not be presented in any further detail. The Service,

Computing and Management Architectures all have some relevance to the work and

are now considered in more detail.

2.3.2 The Service Architecture

The traditional concept of a call in telecommunications is substituted by the more

flexible concept of a session. A session represents the information used by all

processes involved in the provision of a service [19]. For example, in a

videoconference the information about connections, charging and user profiles may

change during the conference as participants join and leave. The session helps keep
15

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

such information coherent throughout the conference. Sessions are not just for

complex services, and can represent something as simple as a web-search. The session

can be further refined into access, service usage and communications separations, see

figure 2-3 [15] below.

User Domain Provider Domain ii User Domain

Access Session ion^^^^^^ (^^^^^ Access Session

/User Serv ice \ /Provider Services /User ServiceN

>i Session y "V Session y Session /

Service Session

Communication Session

Figure 2-3 TINA Sessions

Before being able to participate in a session, each user must establish an access

session with the provider; this is comparable to a login session on a multi-user

computer. The access session corresponds to the establishment of the terms and

conditions of the session. It allows the user to start, combine and participate in several

sessions, i f authorised to do so. The service session corresponds to the provision of

the service itself and ensures overall coherence of control and management. It is

divided into the User Service Session, which manages the state of each user's activity

and resource attributes (e.g. charging context), and the Provider Service Session,

which contains the service logic and offers the functions allowing the user to join a

session, or be invited to session. The service session contains only one provider but

16

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

can have multiple users. The communication session provides an abstract view of the

actual transport network connections.

TINA also uses the concept of domains [20]. One type of domain is an administrative

domain where all the objects in the TTNA system are under the ownership of a single

stakeholder. A simple example of this is illustrated in figure 2-3 above, where the user

and provider domains are depicted.

2.33 The Computing Architecture and the D P E

The Computing Architecture adopted the basic concepts of RM-ODP. It uses

viewpoints to model complex systems (see section 2.2.1). One such viewpoint is

Engineering, which describes the framework for deploying applications and

describing the DPE.

The DPE Architecture consists of the DPE Kernel, the Kernel Transport Network and

the DPE services, as illustrated in figure 2-4 below [14]. The DPE Kernel provides

support to object life-cycle control, i.e. creation/deletion of objects at run time, and

inter-object communication, which provides mechanisms to support the invocation of

operations provided by operational interfaces of objects. The Kernel provides the

basic, technology-independent, functions that represent the capability of most

computing systems (i.e. the ability to run programs and the ability of programs to

communicate with each other). The DPE Kernel is assumed to be present on all nodes

that contain a DPE.

The Kernel Transport Network (kTN) facilitates communications between remote

objects, i.e. DPE kernels on different nodes. The kTN provides a technology

17

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

independent view of the communication facilities provided by the NCCEs of the DPE

nodes. It is a virtual network that is logically different from the transport network.

TINA differentiates between the DPE Kernel and DPE Services. The DPE Kernel

provides a basic set of capabilities that are expected on all nodes, while DPE services

are considered more advanced capabilities that may not be present on all nodes. The

DPE services provide operational interfaces to support the runtime execution and

communication of objects.

DPE 2 Applications

DPE Kernel DPE Kernel

Kernel Transpon Network

Transport Network with Distributed
Nodes

Figure 2-4 D P E Architecture

A subset of the DPE services are listed below [21]:

• Trading: provides binding between objects that use a service and objects that

provide the service;

• Notification: enables objects to receive notifications without being aware of

the set of recipient objects;

18

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

o Transaction: consists of three main management functions - transaction,

concurrency control and deadlock management;

o Security: authentication, authorisation and security conn-oiling;

o Object Lifecycle: object creation, deletion, activation, deactivation and move.

The Computing architecture also defines the TINA Object Definition Language

(ODL) [22]. TINA-ODL is used to define objects and their interfaces, and supports

stt-eams or asynchronous messaging.

2.3.4 The Management Architecture

The TINA Management Architecture (depicted in figure 2-5 below [14]) is a set of

concepts and principles used to build and manage systems that wil l manage TINA

systems. The architecture can be divided into two forms of management, Computing

and Telecommunications. However, before looking at these, some generic

management principles within TINA wil l be slated. Firstly, management can be

functionally separated using the Open System Interconnection's (OSI) system

management FCAPS, i.e. Fault, Configuration, Accounting, Performance, and

Security [23]. Secondly, management systems are modelled so that management

operations and relations can be defined. Managed entities are represented as objects

and provide operational interfaces to allow managing objects to manipulate them.

Computing Management involves the management of computers (NCCE), DPE and

of the software that runs on the DPE. Software management (i.e. deployment,

installation and operation of software computing nodes) and Infrastructure

19

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

management (i.e. how to manage NCCEs, DPEs, and kXN) are the main concerns of

this type of management.

Service Resource Element

Applications

Kernel Transport Network

Generic
Mgmt

Figure 2-5 TINA Management Architecture

Telecommunication Management involves the management of the transpon network

and the management of the appHcations that use and control this network and the

management services. Therefore telecommunication management deals with both the

service and network architectures.

TINA has been adopted by the Object Management Group (OMG) as the basis for its

Common Object Request Broker Architecture, which has many commercial

implementations available.

20

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

2 . 4 Common Object Request Broker Architecture

The TINA architecture has been adopted, in particular by the OMG. It defines a

middleware standard - Common Object Request Broker Architecture (CORBA),

which adheres to both of the previously mentioned Open Distributed Processing

(ODP) standards (see section 2.2.1) and object-orientation (0 0) standards (see section

2.2.2).

CORBA (see figure 2-6 below [24]) currently consists of an ORB and 15

CORBAservices (see Section 2.4.3 below for CORBAservices overview) [24]. Its

function is to allow objects, which are implemented across a heterogeneous and

distributed platform, to communicate. The ORB is an object bus» which allows objects

to transparently make/receive requests to/from other objects, whether they are local or

remote. The CORBAservices are a collection of system-level services that

compliment the ORB by providing a robust environment and extending a distributed

object's behaviour, i.e. all the basic services an object wi l l need during its lifecycle

such as security and persistence. CORBA was designed to allow intelligent objects to

discover each other and inter-operate on an object bus. In addition, CORBAfacilities

are specified. They are classed as either horizontal or vertical. Horizontal facilities

apply to all application domains and there are currently only four defined - printing

facility, secure time service, intemationalisaiion service and mobile agents facility.

Vertical or Domain facilities relate to particular application fields; they are defined as

collections of IDL-defined frameworks that provide services, which applications can

use directly. There are currently nine domains working on defining industry

21

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

appropriate IDL, e.g. Healthcare, Financial, Insurance, Telecommunications, Utilities,

Electronic Commerce, Manufacturing, Transportation and Life Science Research.

<

Application Obiects

Coimnon Fadfities (CORBAfacilities)
Vertical Common Facilities

• • •
Horizontal Common Facilities

Distributed Systems
Documents

Info.
Mgmt

Mgmt
Task

Mgmt.

Object Request Broker (ORB)

Naming Persistence UfeCyde Properties Concurrency CoOedions Security Trader

• • « ^ •
Extemalization Events Transactions Query Relationships Time Ucendng

Common Object Services (CORBAservices)

Figure 2-6 O M G C O R B A Architecture

2.4.1 C O R B A Interface Dennition Language (IDL)

Distributed objects are accessed through their interfaces. So, in order to provide

flexibility, interfaces are defmed not in code but in an Interface Definition Language

(IDL). This means that the interface is now accessible across different languages,

tools, and operating systems. The IDL defines the operations a distributed object can

perform, the parameters required and any exceptions that may be generated in the

process.

Although IDL appears to be a subset of the C++ language, it is not a programming

language. It is used to specify the contract that exists between the client and server.

22

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

Some additional keywords have been added to deal with distribution issues. It is

currently mapped to several languages, e.g. C, C-H- [25], Java [26], Ada, Smalltalk

and COBOL. Programmers are able to deal with CORBA objects using their native

language constructs. Since the DDL provides implementation-independent access to

objects in the ORB, client and server objects that are written in different languages are

able to inter-operate. Therefore IDL provides the basis for interoperability and

transparency.

2.4.2 C O R B A Object Request Broker (ORB)

The ORB is the middleware that allows clients and servers to communicate. It allows

clients to transparently invoke a server method, while the client is unaware of where

the server is located or how it is implemented. Figure 2-7 [24] below illustrates the

CORBA ORB structure.

On the client side, the ORB intercepts a client call and then finds an object to

implement the request. It passes the parameters, invokes the service and then returns

the results. The client IDL stubs provide static interfaces to objects, by defining how

clients invoke corresponding services on servers. The stub acts as a local proxy for a

remote server object. The server operations are defined in DDL and the stubs are

generated by an IDL compiler, and include any marshalling' code required.

' Marshalling is the conversion from one data represeniaiion type to another in communication
software and is a key component in distributed applications.

23

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

Object
Implementation o Client

interface
RepositoiyJ

Ciient IDL
Stubs

ORB
Interface

Skeletons

Object Adapter

Impl.
ReposltoivJ

Object Request Broker (liOP)

Figure 2-7 C O R B A O R B Structure

On the server-side, the ORB locates the server object adapter, gives it the parameters,

and then gives control to the object implementation via the server IDL skeleton. The

server IDL skeletons are generated by an IDL-compiler. They provide static interfaces

to each exported server.

The Object Adapter accepts requests for services on behalf of the server's objects. It

provides a run-time environment for instantiating server objects, passing requests and

assigning object references to server objects.

The Implementation Repository (also known as the Server Repository) holds

information on the classes that servers support and their corresponding runtime

objects and object references.

2.4.3 CORBAservices

The CORBAservices are a set of system level services that are used to extend the

ORB functionality. Currently 15 such services are defined, as listed in Table 2-1

24

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

below. Every service can be accessed by every client (i f security allows) and basic

CORBAservices are used by both applications and CORBAfacilities [27].

No. CORBAservice Function

1. Life Cycle Service Creates, copies, moves and deletes objects on the ORB.

2. Persistence
Service (PS)

Stores components persistently on a variety of storage
servers.

3. Naming Service Locates components by name (i.e. provides clients with
an object reference to a server).

4. Event Service Register/Unregister interest in specific events" - basic
publish and subscribe messaging service.

5. Concurrency
Control Service

Lock manager working for threads or transactions.

6. Object Transaction
Service (OTS)

Two-phase commit co-ordination among recoverable
components using fiat or nested transactions.

7. Relationship
Service

Creates dynamic links between objects, and mechanisms
for traversing the links that group objects together.

8. Extemalisation
Service

Stream-like mechanism used to get data into and out of
objects.

9. Query Service Query operations for objects (superset of SQL).

10. Licensing Service Meters the use of objects for licensing purposes.

11. Properties Services Associates properties (named values) with objects.

12. Time Service Synchronises time in a distributed environment.

13. Security Service Framework for distributed object security.

14. Trading Service "* Advertises object services; similar to the naming
service, it is used by clients to find server object
references.

15. Collection Service Manipulates objects in a group as opposed to
manipulating them individually (e.g. queues, stacks,
lists, etc.).

Table 2-1 CORBAServices

^ An Event is an occurrence within an object specified to be of inieresi to one or more objects, e.g.
when security administrator objects register interest in when the security alarm object is set to
"alarm-raised".

^ The Trading Service Is selected as the example service for the research and will be studied in more
detail.

25

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

2.5 The Trading Service

The Trader is often described as the DPE's Yellow Pages. I f a client is looking for a

service, but does not have a name of the service provider, the client can go the Trader

and ask for the names of all the service providers of the required service. Traders have

an important role to play in future Internet and telecommunication networks. The

interest in security in web-based [28] and other distributed systems [29, 30] means

that Traders wi l l have to incorporate security i f they are to be included in this future.

Trader
^ Linked Tradcis ^ / lyadcr A

\Export

f Importer \ Service ^ f Exporter 1 f Importer
/ [ntcTBction y Exporter 1

Figure 2-8 Trader interactions

Trading is the process of matching a service request, against a list of supported

services provided by potential servers, as illustrated in figure 2-8 above [31]. The

basic function of the Trading services involves an exporter (i.e. a server) advertising

its available services, by notifying the Trader. The Trader keeps a Registry of such

advertisements. An importer (i.e. a client) makes a request on the Trader for a

particular service, specifying any conditions that need to be met. The Trader checks

its Registry to find a matching service type, with corresponding conditions. The

Trader then notifies the importer of the exporter and the service.

26

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

2.5.1 The Trader Data Structures

The Trader uses two data structures the Repository and the Registry. The Repository

(or Service Type Repository) holds details of service types. This generally consists of

the interfaces to a service and a set of properties that would describe the service. For

example, i f the service were a data store, the service description would hold details

such as the type of data store, e.g. file server or database, the location of the store,

amount of space available, whether it supports backup or replication, etc. A property

can also specify its iriode. The property mode attributes have the following

connotations:

• mandatory - an instance of this service type must provide an appropriate

value for this property when exporting its service offer.

• readonly - i f an instance of this service type provides an appropriate value

for this property when exporting its service offer, the value for this

property may not be changed.

I f a property is defined without any mode, it is defined as being "optional" (i.e., an

offer of that service type is not required to provide a value for that property name, but

i f it does, it must be of the type specified in the service type), and the property value

subsequently may be modified. The "mandatory" mode indicates that a value miisi be

provided, but that subsequently it may be modified. The "readonly" mode indicates

that the property is optional, but that once given a value, subsequently it may not be

modified. Specifying both modes indicates that a value must be provided and that

subsequently it may not be modified.

27

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

These service details are static details, but a Trader can also hold dynamic properties.

Dynamic properties are not held in the Trader and have to be obtained at run-time via

a dynamic property evaluator interface with the specified service. For example a

dynamic property of the datastore could be the ''space available", which the Trader

would obtain at runtime [32].

The second data structure is the Registry. It holds instances of the service types

described in the Repository, i.e. it holds the details of actual datastores, e.g.

"Departmental FileServer", Floor 2, 3 gigabytes available, supports SQL. So by

specifying a service type and a list of properties, a client can ask a Trader to provide a

list of all the datastores that are support SQL and have over 1 gigabyte of space

available.

2.5.2 Attributes

Each Trader also has Attributes. These define a Trader's characteristics, i.e. policies

for functionality supported and policies for scoping the extent of a search. Attributes

are initially specified when a Trader is created and can be modified or interrogated via

an administration interface.

2.5.3 Interfaces

Importers, Exporters and the Traders are all part of the Trading Community, i.e. all

objects that interact to import/export services [31]. Interaction between members of

the community is via a set of defined interfaces. Interfaces are also defined to other

Trader components.

28

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

The interfaces described below are the TINA specification. This specification was

originally produced by the OMG for the CORBA Trading Service [33], which was

itself based on the ISO's ODP Trader specification [31]. The interface names are

defined in uppercase bold, and the operation names are in italics.

• The L O O K U P interface is used by importers to discover and import services,

via the Query operation.

• The O F F E R I T E R A T O R interface is used to return a set of service offers

from the Query operation by enabling the service offers to be extracted by

successive operations on the interface.

• The R E G I S T E R interface is used by exporters to advertise their services.

They can advertise the services using the Export operation; the Withdraw

method removes a service offer from the Trader; Describe returns the

information about an offered service that is held by the Trader; Modify is used

to change the description of a service as held within a service offer.

• The D Y N A M I C P R O P E R T Y E V A L interface is provided by an exporter who

wishes to provide the value of dynamic properties at runtime, e.g. when

exporting a datastore interface, a dynamic property could be "space available"

which can only be derived at runtime. The exporter provides a reference to the

interface so that the Trader can invoke the evalDP operation to obtain a

property value.

• The L I N K interface allows a Trader to use the services of another Linked

Trader. Links can be added, removed, listed and modified via the interface.

29

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

• The P R O X Y interface allows a Trader to determine at runtime the object

reference of a service offer, because although the Trader has the offer name

and type it does not have an object reference.

• The S E R V I C E T Y P E R E P O S I T O R Y interface allows service types to be

created and managed in the Repository. It provides operation to allow the user

to add, remove, list and modify service types in the repository.

• The ADMIN interface allows the administrator to configure the system and

set various parameters. There are four methods. The Attributes and Set

operations allow administrator to set and return the values of the current trader

attributes. Listjoffers allows the administrator to perform housekeeping by

obtaining a handle on each of the offers (excluding proxy offers) within a

Trader. List_proxies returns a set of offer identifiers for proxy offers held by a

Trader.

2.5.4 Linked Traders

Traders from different domains can create links or federations and so pool their

service offers. I f a Trader cannot find a matching service, it wil l then pass the request

onto another Linked (or Federated) Trader. The linked Trader can then check its

Registry to see i f it can match the original request. So when a Trader links to other

Traders, it makes the offer spaces of those other traders implicitly available to its own

clients, i.e. linked trading allows an importer access to multiple Trading domains.

30

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

Proxy

PFtOXy(expon_Proxy.
'ithtimw_Proxy, Descrtba^Pmxy)

Exporter J

ReGISTER(Expon. Withdiaw. Doscribe]
'iihdjaw_Using_Constmini, Rosotve)

y) DYNAMICPROPERTYEVAL
^ (gvalDP}

SERVICE_7YPE_REPOSlT0RY(Add_Typo.
Removo_Type. ListJType, Descnbe_Type,

Fui!y_Descjibe^Type, MaskJType.
Unma$k_Type) ^

Importer

LOOKUPiOueiy)

TRADER

Service Type
Repository

Registry

OFFERITERATORC
NBxt_n. Maj^Loft.

UNK(Add^Unk.
RaTiove_Unk.
Descrfbo_UnK

UsLUnks.
Modity_Unk}

Linked
TRADER

ADMIN(Aniibutes, Set.
psLOffers. UsLPmperties)

Admin strator

Figure 2-9 Trader

A Trader has to be explicitly linked to another. However, these other Traders may be

linked to yet more Traders, and so the initial Trader can reach a large number of other

Traders. This can also cause a problem by providing too much choice. In order to

narrow the search parameters on service offers, Traders provide Policies, Constraints

and Preferences. Policies are used to provide information that affects a Trader's

behaviour at runtime, e.g. allow the client to specify the scope of a search, how the

search is to be performed or how many trader links can be traversed. Constraints

allow the client to specify search criteria, by using a well-formed expression

conforming to a constraint language. For example, a client could use SQL as a

constraint language. Preferences allow the client to specify the order in which offers

are returned. Figure 2-9 illustrates an example of a basic Trader structure described.

31

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

2.5.5 Uses of an Unsecured Trader

Apart from the core function of the Trader providing references to server objects, it

has also been suggested by Resnick [34] that the Trader could be used to standardise

Worid Wide Web (WWW) facilities. There are a number of search engines, web

crawlers and white pages such as Yahoo, HotBot, and Alta Vista. However, these

facilities, especially the search engines, lack a programmatic interface and differ not

just in implementation but also in how they are accessed, how predicates are formed

and how Uniform Resource Locators (URLs) are registered. Therefore a synergy

between the Trader and the Internet facilities would offer a solution. Search engines

would benefit from a standardised programmatic API, which is important when the

search engines are not just interested in web pages, but also in intelligent objects that

export functional interfaces, and the clients seeking them are not people using GUI

interfaces but client objects using APIs. The search engines offer highly scalable data

stores, with fast search algorithms and accumulated stores of server objects that have

already been categorised. This opens up a whole new opportunity for offering

services, of any kind provided by intelligent objects, to both users and client objects in

a distributed environment.

It is also important to remember that ODP and Trading is not just for Internet use. It is

designed to work on any heterogeneous distributed object environment. Therefore

some other possible uses of the Trader have been suggested by the Disnibuted

Systems Technology Centre (DSTC) research group in University of Canberra,

Australia [35]:

32

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

• real-time trading, e.g. dynamic configuration of services within
telecommunications switches (combining bandwidth from local and trunk
carriers to provide an end-to-end service);

• large scale trading, e.g. using trading to access network elements from

network management applications for a national telephone system.

2.6 The Security Service

While the security principles and the current DPE security model wi l l be discussed in

the following chapters, a brief description of the CORBA security service, which wil l

be used later in the research, wi l l be presented in this section. The CORBA Security

Service (CORBASec) [36] provides a framework for distributed object security.

There are two levels of security. Levell provides protection for applications that are

"unaware" of security, by transparently calling security functions on object

invocation. Level2 security provides more facilities and allows applications

themselves to control the security provided, i.e. security-aware applications.

CORBASec currently supports certain levels of authentication, access control,

confidentiality, integrity and non-repudiation. Another feature of CORBA security is

the use of credential delegation between objects. It allows credentials to be

propagated along an object request chain.

33

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

Object Referenc

Clicnl Kcqucst

request request rrcii

O R B S c c u r i U ' R f r M C C SfccuritA' Ser\ ice K>RB

Secure
liivoration

Viiuli Secure
liivocntion orate N

/Secure
^ontexi^ ^ V n u t M

ecurilv tokens ill usAocinlin

nmteci messuces

Figure 2-10 C O R B A Security Service

Security is implemented by a number of objects, as shown in figure 2-10 above. Apart

from the specific security interfaces, CORBA makes use of two objects. Current and

Credentials. Current, a pseudo-object initially used by the transaction service to

propagate transaction context, has been adopted by security to propagate the security

context. It does so by holding a reference to Credentials. Once a user is authenticated,

a Credentials object is created. It holds information such as roles, privileges and an

authenticated ID.

In order to provide "out-of-the-box" interoperability across multi-vendor ORBs,

CORBA now defines different Common Secure HOP (CSl) profiles [37]:

34

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

• CSI Level 0 security provides identity-based policies without delegation.
Therefore only the identity (no other attributes) of the initiating principal is
transmitted from the client to the target, and it cannot be delegated.

• CSI Level 1 security provides identity-based policies with unrestricted

delegation. As in CSI Level 0 only the identity is transmitted from the client to

the target. However, the identity can be delegated to other objects, using

simple unrestricted delegation.

• CSI Level 2 security provides identity and privilege-based policies with

controlled delegation. Therefore, all attributes can be passed form client to

target, including access, and audit identities and any privilege attributes such

as role or group. These attributes can be delegated, but are subject to any

restrictions placed on the delegation process by the initiating principal.

CSI Level 0 is addressed by SSLIOP, an implementation of HOP over a Secure

Socket Layer (SSL) [38] connection. The full-scale security version of HOP, SECIOP,

is used by the other mechanisms'*. Both protocols lie between the network transport

layer (TCP/IP) and the GIOP protocol layer, and so are considered mutually

exclusive.

Figure 2-11 below summarises the objects that are specified in the CORBA Security

Service specification [36]. These objects are categorised into their security service

functionality.

•* CSI version 2 is addressing the use of SSLIOP to cover Level I and 2, by inu-oducing Privilege
Aiuibuie Certificates, so ihai S S L can provide access conirol.

35

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

Authentication
& Authorisation

Secure Invocation
&QoP

Non-Repudlatlon
& Audit

Current

Credentials

AccessDcclslon Vault NRCredentlals AuditDcclslon

Required Rights h

Principal
Authentlcator

SecurityContext t] AudltChannet

DomafnAccoss
Policy

AccessPollcy

Sec u rein vocation
Policy

NRPolIcy AudltPolIcy d
Dotogatlon Policy

Figure 2-11 C O R B A Security Objects

The object functionality is defined as follows:

Operational Objects:

• Current: represents service state specific information associated with the

current execution context and is available to both clients and servers.

• Credentials: represents a particular principaPs credential information. It

includes information such as that principal's privilege and identity attributes,

such as an audit id. It also includes some security-sensitive data required when

this principal is involved in peer-entity authentication. However, such data is

not visible to applications. It is referenced by the Current object.

• PrincipalAuthenticator: responsible for authenticating principals and

creating Credentials containing their privilege attributes.

36

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

• AccessDecision: responsible for determining whether the specified

Credentials allow an operation to be performed on a target object. It uses

access control attributes for the target object to determine whether the

principal's privileges, obtained from the SecurityContexl (see below) are

sufficient to meet the access criteria for the requested operation.

• RequiredRights: specifies which rights are required to use which operations

of an interface, and is generally used by AccessDecision.

• Vault: facilitates creating Credentials objects and establishing security

contexts between clients and targets when they are in different trust domains.

• Security Context: hold security information about the client-target security

association and are used to protect messages, and is generally created by the

Vault object.

• NRCredentials: hold the identity and attributes of a principal, which are

specifically used for non-repudiation operations. The attributes include

whatever is needed for identifying the user when generating and checking

evidence, e.g., it might include the principal's key (or provide access to it)

when required to sign evidence. NRCredentials is available via the Current

object.

• AuditDecision: used to obtain information about what needs to be audited for

the specified object/interface in this environment.

• AuditChannel: used to write audit records.

37

Chapter 2: integrated Service Engineering and Distributed Processing Environments

Administrative Objects:

• DomainAccessPoIicy: implements the access policy, by granting/revoking a

set of named "subjects" (e.g., users) with a specified set of "rights" (e.g., get,

set, manage, use) to perform operations on the "objects" in the domain.

• AccessPolicy: defmes what subjects are available in a domain, and what rights

they can be granted, for particular operations.

• DelegationPolicy: controls which credentials are used when an intermediate

object in a chain invokes another object.

• SecurelnvocationPoHcy: specifies secure invocation policies for security

associations, including controlling the delegation of client's credentials, and

message protection.

• NRPolicy: holds the non-repudiation policy information, such as the evidence

types required.

• AuditPolicy: identifies which operations (if any) on an object wil l be audited.

The ful l CORBASec specification [36] contains more comprehensive details on these

objects and the security service.

38

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

2.7 Summary

This chapter has studied the concepts of ISE and Distributed Processing

Environments. A l l DPEs have a defined set of requirements such as independence,

openness, transparency, scalability and object-orientation in order to provide a

flexible environment that can adequately support distributed objects. These

requirements wi l l have to be taken into consideration when defining any security

framework within this environment.

The main focus of the ISE study was TINA, the telecommunications architecture,

which has widely influenced the telecommunication and distributed research

environment. The TINA DPE architecture consists of the DPE Kernel, kTN and DPE

services. It is the DPE security service and the management security function that is

of interest to this research and they wil l be examined in more detail in the following

chapter.

TINA is also a practical standard that has been adopted by the OMG for its ORB

technology. CORBA, along with its Trading and Security Services was described, and

wil l be used later in the research. The next chapter wi l l now look at security in general

and the issues and principles that arise within the context of a DPE.

39

3. Logical Security in Distributed Systems

3.1 Introduction

According to Price Waterhouse Coopers [39], it is estimated that in 2000 hackers wi l l

cost businesses around the world almost 1.6 trillion US dollars and that 40,000 person

years^ of productivity due to computer downtime. However, the survey is believed to

underestimate the total cost because it only refers to companies with over 1000

employees and so does not take small to medium sized enterprises into account. This

highlights the extent of the problem on a global scale, and figures indicate that the

problem is getting worse. The latest CERT/CC statistics show that the number of

security incidents is increasing. In 1988 only 6 incidents were reported, while in 2000

21,756 were reported [40], With such a high cost, security cannot be ignored; the

situation has to be addressed.

Security refers to procedural, logical, and physical measures that are aimed at

preventing, detecting or limiting any system misuse, be it accidental or deliberate.

Procedural measures refer to administration and policies such as changing passwords

regularly or selecting trustworthy staff. Physical measures are those taken to ensure

security by tangible means such as locking doors. Logical measures are those such as

authentication and access control. It is the logical measures that are examined in this

chapter.

* One person year is defined as one person working a 24-hour day, 365 days a year.

40

Clutpicr 3: Logirnl Security in Distributed Systems

General security concepts, which have well accepted, standardised specifications, wi l l

be explained. Other general security principles, relevant to the research wil l also be

presented; they wil l prove useful in guiding the definition of a DPE security

framework in the up-coming chapters.

3.2 Security Principles

Security for distributed systems uses a set of overlapping concepts or services, as

specified by the International Standards Organisation (ISO) [41] - authentication,

access control, confidentiality, integrity, and non-repudiation. Security management is

also considered. By applying these concepts, a system can be made more secure. The

ISO security services relate to distributed environments and to the Open System

Interconnection (OSI) Reference Model [42], and so the concepts also apply to a

DPE. The following sections wil l look at each of the services and what they provide.

3.2.1 Access Control Service

The ISO states that "security is used to minimise the vulnerabilities of assets and

resources" [41]. An asset is anything of value in a global computing system and a

vulnerability is any weakness that could be exploited to violate a system and its

information. Therefore, one obvious way to minimise threats is to limit the users who

can have access to assets/resources [43]. This means that all data, programs and

services need to be protected, but not just from users but also from illegal access by

other programs and services. It should be noted that threats occur from two basic

areas, external and internal. Generally, external threats can be minimised by denying

41

CluipierUt^ical Secuviiy in Distribnwd Sysic.nrs

access to the network, e.g. permitting external access only through a firewall [44].

Internal threats are more difficult to handle, or even to recognise. However, internals

threats are a significant problem as numerous studies have shown that they have

typically accounted for about 80-85% of security breaches [45], although the CSI/FBI

2000 survey shows, external incidents are increasing because of the Internet [46].

Threats can be deliberate or accidental. They can occur as the result of:

• destruction of assets;

• corruption or illegal modification of assets/resources;

• illegal or unauthorised disclosure of data;

• interruption or denial of services.

Therefore control of access needs to be addressed at several levels:

• access into the network / DPE;

• access to an asset or resource;

• type of access to an asset or resource.

The Access Control Security Service protects resources from unauthorised use. It can

be used on various assets, e.g., communications packages, stored data, or components.

The service can be broken down into several core components [47]:

• Subjects & Objects: the entities to which access control is applied to or

utilised by.

42

Chapter 3: Uigiad Security in Disiribuied Systems

• Access Operations: Access operations specify the type of access that is

permissible. It requires the definition of Access Rights [48] and Access

Attributes [49].

• Access Control Structures: The basic access control structure is an Access

Control Matrix (ACM). Two derivatives of the A C M are the Access Control

List (ACL), where access rights are stored with the object, and the Capabilities

List (CL) where access rights are stored, using an un-forgeable token, with the

subject.

• Intermediary controls: Administration needs to be as simple and effective as

possible, therefore intermediary controls are introduced. Privileges collect the

right to execute a certain set of operations under a particular activity, e.g.

system administration. Privileges are often specified in a predefined set of

Roles, where subjects derive their access rights from the role they are

performing.

3.2.2 Authentication Service

One type of threat is known as a masquerade; that is when an entity successfully

pretends to be some other legal entity and thereby gains illegal access to a resource.

Therefore before granting access to a user or resource, the security service should be

able to guarantee that the user/resource is actually who/what it claims to be [50, 51];

this is the responsibility of the authentication service.

In the case of connection-oriented environments (i.e. CORBA), peer entity and peer-

to-peer authentication apply. Peer entity authentication provides corroboration of the

43

Chapter 3: Logical Security in Distributed Systems

identity of a principal within the context of a communication relationship (only one

entity is identifying itself, either the client or the server), while peer-lo-peer

authentication (also known as mutual authentication) involves both client and server

entities authenticating each other. The process involves the exchange of

authentication information. The information exchanged wil l depend on the

authentication technology used. It is generally based one of the following:

• secret knowledge - e.g., passwords;

• cryptographic techniques - e.g., digital signatures [52, 53];

• characteristic - e.g., biometrics [54, 55];

• possessions - e.g., smartcards [56].

A key authentication concept, which should be mentioned at this point, is the Trusted

Third Party (TTP) [57]. In the case of public keys, it is actually impossible to be sure

that a particular user's public key is not a forgery unless a digital certificate is used

[58]. The certificate contains the user's public key and an endorsement that the key is

real, made by a TTP's digital signature. The issue of trust is now shifted to the TTP -

so i f an entity trusts the TTP, he can trust that the user's public key he received is real,

and not a forgery. Such TTP's are called Certification Authorities (CA). The X.509

Authentication Framework [59] specifies a framework for certificates and a

hierarchical structure for CAs, as illustrated in figure 3-1 below.

44

Cluiiuer ^: Lygical Security in Disiribnied Systems

User 2

User I

Figure 3-1 X,509 Certification Authority Hierarchy Structure

In the above figure, Userl and User2 do not currently trust each other because they

are in different domains, using different CAs, CAi and CA2 respectively. However,

they do have a common CA when the hierarchy structure is used, CA4, and because

CA4 has issued CA2, that means that Userl can trust User2's certificate. Similarly,

User2 wil l trust Userl's certificate, because working through the hierarchy, CAi is

issued by CA3, which in turn is issued by the trusted CA4.

3.2.3 Confidentiality Service

Confidentiality on a network means being able to guarantee the privacy and secrecy

of an asset, such as a data file containing personnel details. Confidentiality can be

applied to data, whether it is in storage or in transit, and may be applied to only

selected fields, instead of a whole message/record, in the interests of enhancing

performance while still providing adequate protection. There are two basic

cryptographic approaches:

45

Chapter J: Lo\>ical Security in Distributed Systems

o Symmetric: where the encryption and decryption keys are the same, and

therefore keeping the key secret is imperative. An example of this is the Data

Encryption Standard (DES) [60];

o Asymmetric: where the encryption and decryption keys are different. In this

case the encryption key (or public key), is available to everyone so that they

can encrypt plaintext and then send the ciphertext to user A. However, only

user A wil l know the decryption key (or private key) and, therefore, only he

can decipher data sent to bim. An example of this is the Rivest Shamir

Adleman (RSA) algorithm [61, 62].

The existence of certain regulatory requirements, in relation to cryptography,

complicates access to and use of cryptographic mechanisms in certain countries [63].

There are two main issues - key length and cryptography use. The cryptographic

algorithm and key length define the strength of encryption. Some countries have

export laws that limit the key length of a given algorithm, e.g. US, France, Russia.

The other issue relates to the use of cryptography, i.e. whether it is used for

authentication and integrity purposes versus its use for confidentiality. When used for

confidentiality, the export laws are usually more stringent. However, in the case of the

US, new regulations were defined in January 2000 that considerably relaxed the tight

restrictions that were previously in place [64].

46

Clutpier 3: Loginil Security in Disirihnied Systems

3.2.4 Integrity Service

Integrity of resources ensures that attempts to modify data can be detected no matter

what corruption attempts have been made on them [65]. In a comprehensive security

survey database, maintained by Cohen, the attack section lists 95 possible classes of

attack that can be used in networked systems, it includes everything from computer

viruses to input overflows. Of these 95 classes, 66 are used to corrupt information

[66]. Therefore any integrity services must guard against any threats involving illegal

asset/resource modification. Integrity is applied to both data and system resources.

Data integrity ensures that the data has not been accidentally or maliciously altered or

destroyed [67]. System integrity ensures that all resources in a network are available

to users and that the system remains in a state consistent with strictly defined security

rules and regulations [68].

Cryptography can be utilised in the integrity service. An important cryptographic

mechanism is the one-way hash function. It takes a variable-length string (called a

pre-image) and converts it to a fixed-length output string (called a hash value). It

works in one direction, i.e. it is easy to compute a hash value from pre-image, but it is

difficult to generate a pre-image that hashes to a particular value. Another desirable

attribute of a one-way hash function is to ensure that it is also collision-free, i.e. it is

hard to generate two pre-images with the same hash value. Therefore a one-way hash

function can be used as a fingerprint to a particular pre-image, e.g. Secure Hash

Algorithm (SHA) [69] and Message Digest 5 (MD-5) [70]. A one-way hash function

with the addition of a secret key is known as a message authentication code (MAC)

[71]. The hash value is a function of both the pre-image and the key. Therefore only

47

Chapter 3: Logical Sccuriiy in Distribttied Systems

someone with the identical key can verify the hash value. This is useful for providing

authenticity.

3.2.5 Non-Repudiation and Auditing Service

Repudiation is the denial of an action by an entity. For example, a user may deny

sending or receiving a message. Non-repudiation forces an entity to be accoimtable

for its participation in some action [72]. The ISO defines the types of evidence

required in a Non-Repudiation service [73]. There are several proofs, some of which

are described below:

• Proof of Origin: provides the recipient with unforgeable proof that the message

originated from the originator.

• Proof of Receipt: provides the originator with unforgeable proof that the message

was received by the original recipient.

• Proof of Submission: provides the originator with unforgeable proof that the

message was submitted for delivery to the original recipient.

• Proof of Delivery: provides the originator with unforgeable proof that the

message was delivered to the recipient.

Non-repudiation is made up of a set of supporting facilities that are required to

provide a full service; it includes evidence generation and verification, evidence

storage and transmission, and an adjudicator to settle any disputes using the evidence

produced. A notary is also required.

48

CInipii'.r U^gical Security in Disirihiiied Systems

Auditing is an intrinsic part of Non-Repudiation. It records security relevant events*

in an audit trail (log) for later analysis. This analysis can be used to help identify

unauthorised activity within the system. The audit service can also be used to generate

alarms to indicate that a more immediate response is required. ISO defines that the

security audit function needs to provide trail analysis, archiving and examining, and

alarm handling.

A specialisation of auditing is Intrusion Detection. It covers the monitoring of

network activity and the analysis of data for potential vulnerabilities and attacks,

historical or current. It is an important component in system security. There is a lot of

research emphasis on this subject, (he most prominent are Next-generation Intrusion

Detection Expert System (NIDES) [74] and more recently Event Monitoring Enabling

Responses to Anomalous Live Disturbances (EMERALD) [75]. There are also many

commercial products available [76].

Deployed h
Samplerl

Deployed
SampterN

MONfTORED
SYSTEM

Sampler

Knowledge
Base

Analyser

Responder

Figure 3-2 Monitoring Agent Structure

* A security relevant event is any action within the system, which has been niarked as being of interest
to the security service, e.g. user authenticaiion, object creation, or database access.

49

Chiipier 3: Logical Security in Distributed Systems

In Intrusion Detection Systems (IDS), there are three basic processes involved

monitoring, analysis and response. These functions are represented in the generic IDS

solution, the Monitoring Agent [77] illustrated in figure 3-2 above. It is comprised of

the following components:

• Sampler: pulls information from the system and produces audit logs;

• Knowledge Base (KB): keeps the sum of all knowledge that the monitoring

system requires to operate. The KB will hold the following types of information:

- security policy to ensure that the monitoring is in accordance with the

overall system policy;

security log to record recent events that have taken place in the system;

profiles of the activities of every user and resource in the system;

- sampling information to generate the security logs;

- analysis information that is required by the analysis techniques;

- response information that is required by the responder.

• Analyser: takes information from the sampler and compares it with the data

stored in the KB and from an analysed conclusion, it determines whether a

security violation has taken place.

• Responder: takes the analyser output and information from the KB, and it decides

and implements the action to be taken.

50

Chitpicr 3: Lfji^ical St'curity in Disiribuwd Sysiams

3.2.6 Security Management

The ISO [41] defines a security policy as a set of criteria for provision of security

services. It defines what is and what is not permitted in the area of security during

general operation of a secured system. It must be implemented by taking the

appropriate security measures. However, security measures wil l not be effective

unless the user understands what needs to be protected and can determine what

mechanisms are used, i.e. what the policy is. Security needs a complete and usable

administration system that wi l l allow administrators to maintain and operate security

on a day-to-day basis.

Administration occurs within a domain. A security domain is defined by the ISO as a

set of resources where a specific security policy should be applied. Security

management must control and support security within its own domain and possibly

allow for inter-domain security interaction. OSI defines three categories of security

management; security system management, security services management, and

security mechanism management.

• Security System Management is responsible for applying security

management to the whole system. Firstly, it ensures that the security policy is

implemented. Secondly, it must manage interactions with other management

functions and with the other security management systems (described below).

• Security Service Management deals with all events in relation to security

services. It wi l l decide which mechanisms wil l implement a service. It wi l l

negotiate for these mechanisms and then invoke them.

51

Cluiptcr 3: Loi;iatl Security iu Disirihitwd Systems

• Security Mechanism Management ensures that mechanisms can operate by

providing all the necessary resources. For example, in the case of key

management, it wi l l generate suitable keys, determine which entities should

receive a copy of the key and then distribute keys securely.

3,3 Other Principles relevant to DPE Security

While the security principles described above apply to any type of system requiring

protection, the following sub-sections outline some principles that are particularly

pertinent to a DPE.

3.3.1 Security Domains and Trust Models

Within any security system, trust is involved somewhere, e.g. the receiver a certificate

has to trust the Certificate Authority's process of registration and certification; a

system administrator has to trust that users wi l l not give their userids and passwords

to unscrupulous hackers; users have'to trust system administrators not to abuse their

privileges and access private data; Internet shoppers have to trust on-lines businesses

to protect their data, especially their credit card numbers. When trust breaks down the

consequences can be devastating. I f the trust is misplaced, a system can be

compromised. A hacker can use a password to break into a system and steal, modify

or damage data or available services. If , as happened to several on-line companies,

credit card information is compromised [78] then companies can go out of business

because the consumer has no confidence in the company's ability to protect their data.

52

CInipier 3: Loiiical Securiiy ii} Disin'hiticJ Sysicnis

Trust is not only integral to a security model, it is necessary to the successful

operation of the security system.

Three possible trust scenarios can function in an interoperability model:

• No trust: The issue of having no trust existing between disparate security

domains means that mutual suspicion exists. No attempt wi l l be made to

establish trust and the domains wil l continue to treat each other with suspicion.

This type of behaviour can be implemented through the use of *guest'

privileges, which allow an untrusted entity very restricted and controlled

access to a system.

• Pre-existing trust: This scenario refers to the fact that two disparate security

domains trust each other due to a previously negotiated trust between them.

This type of trust is generally achieved by security administrators from the

domains agreeing the terms and conditions of secure interoperability. This can

include defining recognised userids that would operate in both domains and

defining security mapping between the access control privileges of each

domain, i.e. administrative co-operation between the two domains is

necessary. For example, in domains that use roles and access privileges to a

file system, "UserAB" is defined in domain A and domain B. In domain A,

"UserAB" is a member of the ^'manager" group and has "read" and "write"

access to all files on the files server. In domain B, "UserAB" is a member of

the "technician" group and has "update" access to files in the technician's

directory.

53

Chi/pier 3: Utgical Security in Disirihnicd Systems

• Trust needs to be established: In the pre-existing trust scenario above, the

trust was defined between specific domains and required administrative

interaction in both domains. There is one other scenario. This is when trust can

be established between two domains that have no prior knowledge of each

other. An example of this is the use of Secure Socket Layer (SSL) [79] with

certificates and Certificate Authorities. "UserAB" is a member of domain and

has a certificate issued by Certificate Authority 1. "UserAB" tries to access a

server in domain B. Domain B has no knowledge of domain A, but it does

recognise Certificate Authority I . Therefore it can authenticate UserAB*s

certificate and allow access to the server. In this case, domain A and B have

no prior knowledge of each other but they do have a common trusted third

party, Certificate Authority 1, which is used to establish trust.

3.3.2 Distributed Trusted Computing Base

Security trustworthiness is the ability of a system to protect resources from exposure

to misuse from malicious or accidental means. However, this is more complex in a

DPE than in a centralised system such as IBM*s Resource Access Control Facility

(RACF) [80]. Trust in a centralised system is usually static because servers are

generally trusted and remain trusted through their entire life. Trust is also confined to

a single security facility, such as RACF in an OS/390 environment. This is not the

case in a DPE. The security model can exist over multiple distributed platforms with

various security mechanisms, such as Sesame [81], Kerberos [82] or SSL, and the

trust model is not static over the lifetime of an object, because an object can be both

54

Chupier Loviical Sccuriiy in Disiribtiied Systems

client and server and so can be both trusted and untrusied depending on the role it is

playing at a given time.

A Trusted Computing Base (TCB) is the totality of protection mechanisms within a

computer system, including hardware, firmware and software, the combination of

which is responsible for enforcing a security policy. The ability of a TCB to enforce

correctly a unified security policy depends on the correctness of the mechanisms

within the TCB, the protection of those mechanisms to ensure their correctness and

the correct input of parameters related to the security policy [83]. In a DPE the notion

of a distributed TCB has to be adopted, because the mechanisms, data and program

logic used by the TCB could also be distributed. Therefore, a distributed TCB can be

seen collection of objects and mechanisms that must be trusted so that a secure end-

lo-end connection can be made between a client and server. This implies that the

distributed TCB may need to include parts of the Native Computing and

Communications Environment (communication network, operating system and any

security mechanisms resident therein), the DPE kernel, DPE services (including the

security service itselO and possibly some related TINA applications (such as

management applications).

3.3.3 Interoperability

Interoperability relates to the problem of allowing an interaction to occur between two

disparate domains. There are several approaches that can be used to deal with the

issue. The various merits and applicability within a DPE environment of these

approaches wil l be discussed in the following sections.

55

Chapier 3: Logical Security w Distrilmwd SysU'.ms

3.3.3.2 Bridges

A bridge provides a point of connection between two disparate domains. It can

provide translation between the domains, so that interoperability is possible. The

bridge can exist at any level. One example of a bridge is the Wireless Application

Protocol (WAP) Gateway [84]. WAP is the de-facto standard for the presentation and

delivery of wireless information and telephony services on mobile phones and other

wireless terminals. The WAP specification uses standard Web proxy technology to

connect the wireless domain to the Web.

There are two basic types of bridge, immediate and mediated. Immediate bridges are

full bridging solutions between two domains. They map specifically from one domain

to another. Immediate bridges provide a fast and efficient solution but are inflexible

because they only provide a mapping between two specific domains. Therefore, i f

there are n domains, which require bridges to interoperate, then the number of bridges

required is:

• (n^-n)/2

In the example below there are 4 terminals, each in its own domain. Therefore the

number of bridges required in the immediate bridging solution is 6.

56

Chiipier 3: La^ical Security in Disirihnied Systems

Immediate Bridging Mediated Bridging

,SL Temiinal

}^^mi Bridge

Figure 3-3 Interoperability Bridging Solutions

Mediated bridges provide the translation lo some common domain. In this case, only

n bridges are required between n domains, and therefore the number of domains can

be easily extended without increasing the number of bridges exponentially. In the

example illustrated in figure 3-3 above only 4 bridges are required for the 4 domains.

However, the use of mediate bridges is not as efficient as immediate bridges for small

number of domains, because it requires two bridges between any two domains, i.e.

every message is translated twice.

These bridges deal with bridging technology domains. The issue of bridging security

domains presents other problems. When considering a mechanism level security

bridge, one obvious problem comes to the forefront - any message that is subject to

encryption or an integrity check has done so using a specific security mechanism

(algorithm). Therefore, to translate lo another mechanism, the bridge is required to

decrypt and then re-encrypt the message. This would add a considerable performance

overhead, to a service that may already be stricken by performance degradation from

57

Clwpfer 3: Lot^iatl Sccifrity in Disiribitwd Systems

the initial encryption, or integrity checksum. If a mediated bridge is used then this

performance hit wil l be doubled because two bridges wil l exist and translate the

message. I f a mediated bridge is used then the issue of trust and deployment exist. For

example, the bridge wil l need to have access to both types of mechanism and could

possibly reside in one of the two domains. This scenario would imply that the bridge

is not necessary as the domain already would have access to the mechanisms.

However, the bridge could also reside outside both domains with a TTP, but then trust

must be established between each of the domains and the T I P , as the TTP wil l have

access to the original message at some point during the translation process. As such it

offers another point of vulnerability over which the two domains have no control.

3.3.3.2 Standard Mechanisms

The use of specific bridging technology is only one solution. Another solution is to

use common technologies between the client and server. There are two requirements:

o Common protocol that wi l l undertake the initial negotiation between client and

server;

o Common set of security mechanisms available in the client and server

installations.

The common protocol wi l l begin the negotiation between the client and server. It wil l

allow the client and server to select a common security mechanism(s) that meet the

requirements for the secure association between them. Once the negotiation has been

completed, the agreed mechanism(s) can be used to provide the secure context

58

Chapter 3: Lov^ical Security in Di^itribnied Systems

between client and server. The most common example of this is the SSL protocol,

which uses the SSL Handshake protocol to define what mechanisms wil l be used by

the client and server to provide a secure context. The secure communication is then

provided by the SSL Record protocol. The assumption here is that the client and

server are able to agree a common set of mechanisms that meet the minimum security

requirements of their respective security policies, e.g. both client and server policy

specify that they require encryption, and an appropriate mechanism is available to

secure the communication.

3.3.3.3 Generic Tokens

A generic token is standardised, non-specific data that can be used to provide data

between two entities. Such tokens are commonly used as a means of communicating

data for many different purposes. For example, a generic token is the format that

NIDES (see Section 3.2.5) uses to distribute and work with audit data. Another

commonly used example is the Generic Security Service Application Protocol

Interface (GSS-API) [85]. It provides portability between distributed security

architectures by using simple interfaces to security services and generic tokens, which

can then be implemented and utilised by a range of underlying mechanisms and

protocols. The generic tokens are successful because they use opaque data,

mechanism identifiers for a standard set of mechanism, and standardised status codes.

This means that GSS-API is extensible and can easily adopt new mechanisms.

Therefore, any generic token should use these devices to ensure that it remains

portable across multiple mechanisms and environments.

59

Chupier 3: D.>j;iafl Security in Distribmed Systems

3.3.4 Mechanism Independence and the Separation of Mechanism & Service

Management

Mechanism independence is the notion that a service's functionality is not dependent

upon the mechanisms that implement it, in other words different mechanisms can be

used by the service to provide the same service functionality. This results in two

benefits. Firstly, since the user is not concerned with what mechanism is used to

implement a service (e.g. a service object), it means that the service should be

portable across different implementation platforms and also assists with the OO

objective of encapsulation. Secondly, a result of mechanism independence is the

separation of mechanism from service management. This facilitates fiexibility and

allows the introduction of new mechanisms without compromising the service

functionality. This feature also assumes that the protocol is designed to accommodate

generic tokens/data types that the appropriate mechanism can then utilise, i.e. the

protocol or any object interfaces are not mechanism dependent. Architectures such as

the Comprehensive Integrated Security System (CISS) [86] actively promotes

independence by utilising a layered architecture. GSS-API also promotes

independence by utilising generic interface definitions that are not dependent on any

underlying mechanism.

3,4 Summary

This chapter has looked at logical security for distributed systems. Firstly, it examined

general security principles, which apply to all systems requiring protection. They

include all the security services - authentication, access control, integrity,

60

CImpier 3: Lo^icul Secio iiy in Disfrihuted Systems

confidentiality and non-repudiation - which need to be applied in a DPE security

solution.

The discussion proceeded to cover other principles that wi l l prove important in

defining DPE security by addressing issues encountered when operating in a

distributed, heterogeneous, multi-domain environment. The discussion proposes some

methodologies for addressing these problems and they should also be considered in a

DPE security solution.

The next chapter wi l l provide an analysis of the security requirements for DPEs, and

how they can be achieved, which wil l then assist in the definition of a new DPE

security framework.

61

4. Requirements for a new Framework for DPE

Security

4.1 Introduction

This chapter reviews the currently defined security requirements for DPEs and

identifies that they do not fully cover the problem space to support the design of an

appropriate security framework. The problem domain is then analysed with an

industrial partner ^ and goes on to provide a complete set of the DPE security

requirements.

These requirements are then applied to the TINA security model, which is found to be

wanting by comparison with the requirements. The chapter concludes with a new

security framework that address the requirements identified in the new DPE problem

domain.

4.2 Requirements for DPE Security

Chapter 3 outlined the general security services (see section 3.2) and also identified

some principles such as trust models and distributed TCB (see section 3.3) that would

prove useful in defining a DPE security model. However, they do not provide a

complete set of DPE security requirements, necessary to define a framework.

^ Research was done in collaboration with Onuige (Prof. Paul Reynolds), and reviewed by an industry
expert.

62

Chapter 4: Requirements for a / U M V Framework for DPE Security

This section considers the particular requirements of a generic distributed object

system (GDOS), which have been collated from current literature. Such systems are

the genesis of a distributed processing environment. By their nature GDOS are less

secure than client/server because the act of distribution transparency means that the

traditional operating system cannot be trusted to protect the server resources and data

in transit. Therefore servers in a distributed system have to find new ways to protect

themselves without adding an unacceptable overhead effecting performance and

availability.

4.2.1 Distributed Object Complications

A distributed object system is considered less secure than traditional client/server

systems [24, 36] for the following reasons:

o A distributed object can have the roles of both client and server: In

traditional client/server systems, servers can always be trusted. However this

is not true for distributed systems, as roles are not clearly defined, e.g. a single

entity can act as both a client and a server and so the trust model is more

complex.

o Distributed object interactions are not transparent: Because of

encapsulation^ [I I] , a client is not fully aware of the interactions that take

place when it invokes an object and so they are more difficult to control.

Encapsulation consists of separating the external aspects of an object, which are accessible to other
objects, from the internal implementation details of the object, which are hidden from other objects.

63

Chapter 4: Kcquiretnents for a ne\\^ Framework for DPE Seatrity

• Distributed objects are polymorphic: Objects can be replaced without any

interruption to the system, as long as the interface remains the same. This

provides a perfect opportunity for Trojan Horses^ to infiltrate a system.

• Distributed objects can scale without limit: There are no theoretical limits

on the number of servers or clients in a system, therefore a security system

wil l have to scale and be able to cope with the large number of resources and

users that could possibly be involved.

• Distributed objects are dynamic: Objects are created, operate and can then

be destroyed. Such dynamics have to be performed securely. The system is not

static and the security system needs to be flexible enough to securely

accommodate this.

4.2.2 Review of Currently defined GDOS Security Requirements

The following is a summary of an analysis into the security requirements as currently

stated by TINA [87] and the OMG [88]. Each requirement, and its implications upon

the functionality of the security model, is described and then summarised in Table 4-

I .

R E Q U I R E M E N T #1: The security system must support Identification and

Authentication: Within a secure object system, it is imperative to identify and

authenticate an entity. This process should support any authentication mechanism and

should result in a unique set of certified credentials for the entity.

^ A Trojan Horse impersonates a legitimate entity to illegally obtain data or perform some other
malicious activity.

64

Chapter 4: RequiremeiUs for a / U M I ; Framework for DPI: Security

There are two possible scenarios, intra and inter-DPE authentication. In the first, the

entity seeks authentication within the local system, and is identified and authenticated

locally. Therefore, die validation can be trusted locally. In the latter, the entity may

have been identified and authenticated in another system within the distributed

environment. Thus the security service has to support the validation of such an entity.

This is achieved by either a Trusted Third Party (TTP) (see sections 3.2.2 and 3.3.1)

from which the local security system can obtain a proof of identity or a proof that the

identification and authentication is trustworthy, i.e. was executed within a trusted

system or, by the use of a single sign-on facility, which would lower the number of

user logons required (a facility which cryptographically can have a high overhead due

to the authentication process).

Many different types of entities need to be authenticated, not just users. Services and

objects wi l l also request access to other services, data and system resources. Al l such

requests have to be validated. Therefore, authentication wil l apply to entities at all

levels of the system - users, services, and objects.

R E Q U I R E M E N T #2: The security system must support Access Control and

Authorisation. Once an entity has been authenticated, it also requires privilege

information that wil l define what objects (operations) it can access. This requires a set

of privilege attributes be assigned to the entity.

There are multiple schemas that can be used for access control and the security model

should be able to use them, including the use of roles/groups to reduce the

administrative overhead (see section 3.2.1). Again two forms of operation are

65

Chapter 4: Requirements for a new Framework for DPE Secnrily

envisaged, one within a local system, and another via a TTP to allow access across

different domains.

R E Q U I R E M E N T #3: The security system must support Propagation of

Attributes. Due to the nature of distributed object systems, objects need to be able to

delegate their privileges/attributes to other objects. However, they also need to be able

to apply constraints specifying when and where these delegated privileges can be

used, otherwise the privileges could be used at anytime and in any domain by a rogue

entity.

With different domains, different security policies may present some difficulty and

require a trust relationship to be established between two domains. The attributes

from one domain should be mapped to authorised attributes in the other domain to

provide validation for access control and auditing.

R E Q U I R E M E N T #4: The security system must support Secure

Communications. Communication, both for operational and system data, needs to be

secured (see sections 3.2.3 and 3.2.4), but flexible.

The user should be able to select the Quality of Protection (QoP) required (e.g.

cryptographic strength) and should also be able to select how much of the message

needs to be protected. Again, the system should have the ability to support different

encryption and integrity mechanisms.

R E Q U I R E M E N T #5: The security system must support Secure Stored Data.

Objects are the definition of both behaviour and data, thus any data within an object

or utilised by an object needs to be protected.

66

Chapter 4: Hequin'meiUs for n new Frumework for DPE Security

While the security service may not be able to secure the data, it should have the

ability to indicate that the data is considered sensitive and so should be stored

securely, thereby allowing external mechanisms to secure it, i.e. the Quahty of

Protection required.

R E Q U I R E M E N T #6: The security system must support Security Audit. Auditing

of security relevant events is essential. The system should be able to identify events

based on their classification and assign the audit information to an audit trail and/or an

alarm process.

The audit records also need to be protected from any modification, both in transit or

when stored in the audit trail. Tools are required to analyse trails, and access to a

generic toolset (i.e. sampler, knowledge base, analyser and responder refer to section

3.2.5) and the audit trail records should be available to facilitate intrusion detection.

R E Q U I R E M E N T #7: The security system must support Non-Repudiation. To

ensure accountability, non-repudiation facilities are required (see section 3.2.5). Non-

repudiation will include the generation, verification, transmission and storage of

evidence. Such a service also requires access to an adjudicator for dispute settlements.

R E Q U I R E M E N T #8: The security system must support Security Management.

Security management needs to support the distribution system, service and

mechanisms (see section 3.2.6). An administrative interface to handle each function is

required; these interfaces should be comprehensive and easy to use, as usability will

ensure that security is properly applied.

67

Chapter 4: RcquirenunMs for a new Framework for DI^E Security

R E Q U I R E M E N T #9: The security system must support Interoperability. DPEs

provide for an open and distributed environment, and allow interactions between

different administrative domains.

Thus security policies and administration within a local domain need to be preserved,

but this has to co-exist with the preservation of inter-domain security. Interoperability

is required at both the invocation and security service level. Thus a secure invocation

initiated in one domain to be completed in another requires the security services to

inter-operate in order to facilitate this, and may require security attributes, i.e.

credentials and privileges, to be mapped from one domain to another because they

support different schemas. It will also require some negotiation to allow common

security mechanisms and protocols to be agreed between different domains. Another

option is the use of a gateway to translate between attributes/mechanisms/protocols

(see section 3.3.3).

R E Q U I R E M E N T #10: The security system must support system Scalability. The

architecture should accommodate and allow the evolution of networks, services and

management capabilities from small to large (global) scale in terms of its ability to

handle the number of users, nodes, and administrative domains required.

The security service itself must be scalable in order to cope with an "carrier class"

large-scale systems, and so should support the use of roles/groups to reduce

administrative costs and also allow the use of multiple inter-working security

domains.

R E Q U I R E M E N T #11: The security system must support Integration with

existing environments. There is already a huge investment in technology by the

68

Chaplcr 4: Reqiiirctmnns for (i / K M V t'ramcw urk for DPE Seciirilv

telecommunication and data processing industry. Therefore, if this model is to be

successful it must integrate with the existing technologies. This requires a flexible

structure that will allow the security model to deal with multiple options for service

and mechanism implementations and allow the flexibility to manage each of these

different types and their data formats (see section 3.3.4 on mechanism independence

and separation of mechanism and security management). This requirement also covers

the need to meet the differing regulatory requirements that exist in different countries

(e.g. rules regarding the use of cryptography).

R E Q U I R E M E N T #12: The security system must support system recovery. The

recovery system should establish consistent security states after security failures by

taking various actions. This involves the maintenance of the rules used to react to real

or suspected security violations, the remote reporting of apparent violations of system

security, and security administrator interactions [41]. Within the system a Knowledge

Base (KB) could hold the maintenance rules, while the "Sampler" would be used to

collect system data that is then processed by the analyser. The "Responder" defines

the system response that should be taken in accordance with the rules stored in the KB

(see section 3.2.5. for IDS).

The following table summarises the identified requirements, and lists the functionality

that is required by a DPE security framework to facilitate the requirements.

69

Chaplcr4: Rctjuirernejtt.s for a new Framework for DPE Secitritv

No. Security
Requirement

Functionality required

I. Identification and
Authentication

Identify entities and generate identity attributes
Use multiple authentication mechanisms

2. Authorization &
Access control

Generate privilege attributes
Use multiple authorization mechanisms
Use role/groups

3. Propagation of
security attributes

Specify when propagation is required
Specify constraints on propagation

4. Secure
communications

Ability to select Quality of Protection
Ability to select amount of message to be protected

5. Secure stored data Ability to specify that data needs to be secured
Ability to specify the Quality of Protection

6. Secure Auditing Audit security relevant events
Produce audit records
Issue alarm
Protect audit information in transit or in trail
Should be extended to facilitate intrusion detection

7. Non-repudiation GenerationA^erification of evidence
Storage of evidence
Secure transport of evidence
Adjudication facility

8. Management:
System
Service
Mechanism

Administrative interfaces required to handle
management of each of these management functions

9. interoperability Interoperability at all levels-
- Invocation

Security Service, Mechanism and Protocol
Mapping of attributes between domains

10. Scalability Security service must be scalable itself as well as
working in scalable environment
Use of domains
Use of groups etc in administration

11. Integration with
existing
environments

Flexible structure to allow the model to integrate with
other technology environments/security models
Facilitates regulatory requirements

12. System Recovery Knowledge base system

Table 4-1 GDOS Security Requirements

Whilst the twelve requirements identified above originated from a DPE environment

(i.e. TINA and OMG), they do not specifically address the complete DPE problem

70

Chapli'r4: Requirements for a new Framework for DPE Security

domain, and can be applied to any distributed object system. It is necessary to

consider a new definition of the problem domain for DPEs, and focus on requirements

in the secure DPE space.

4.2.3 Analysing the D P E Security Problem Domain

Figure 2-3 (see section 2.3.1) illustrates the framework of TINA system, of which the

unifying component is the DPE. In order to have a comprehensive set of requirements

it is necessary to view the DPE as part of the overall architecture and the layers

around the DPE need to be included in the analysis to ensure that any relevant

security functionality that extends beyond the DPE layer boundary is included.

The procedure for identifying the requirements for DPE security was to define the

domains of security within the TINA system structure and secondly to identify what

domains are relevant to the DPE security model, i.e. identify the scope of DPE

security. The results of this analysis are grouped around the definition of three sub-

domains of the TINA framework.

4.23J Transport Sub-Domain

The transport sub-domain covers both the N C C E and Hardware layers and relates to

the security of the hardware and operating systems utilised by a TINA

implementation.

R E Q U I R E M E N T #T1: The security system must support the procedures, both

physical and logical, for preventing any intrusion or modification of networking or

computing resources, i.e. it must support intrusion detection.

71

C.h<q}ier4: Requirements for <i nc.\>; Frtimeworkfur DPE Seamly

R E Q U I R E M E N T #T2: The security system must support such actions as ensuring

correct installation and adequate protection of hardware and software, addition of

software patches, and control of communications ports through firewall technology.

[N.B. this requirement is considered outside the scope of the DPE security model,

with the exception of the management of mechanisms, in particular security

mechanisms, both hardware and software based, that may be utilised by the DPE

security. The reason that this management function is considered an exception is

because of the importance of mechanism-independence to DPEs and the fact that the

kTN (providing a logical transport network for the DPE, using the N C C E resource)

will be part of the NCCE.]

4.2,3,2 The Middleware Sub-Domain

The middleware sub-domain covers both the DPE Kernel and DPE Security Service

concerned with the protection of TINA service objects, i.e. the computational objects

used to create services. This security will need to operate at three separate levels:

operational, control and administrative.

R E Q U I R E M E N T #M1: The security system* must support functions such as

ensuring only authorised access to objects, based on authenticated identities, and also

the protection of any inter-object communications.

R E Q U I R E M E N T #M2: The security system must support the operational concerns

of a TINA service, e.g. the video conferencing session, is secured. This includes the

maintenance of integrity and confidentiality of any data streams and ensuring only

authorised subscribers use the service.

72

Chapier 4: ReqniremenLs for (i new Fnmiework for DPE Secnrify

R E Q U I R E M E N T #M3: The security system must support the control concerns of

the TINA service by ensuring that information controlling the service configuration,

e.g. the Quality of Service of a video stream, is protected. This involves securing the

control data and ensuring audit services are available to track any control changes.

R E Q U I R E M E N T #M4: The security system must support the administrative

concerns of the DPE, which includes the assurance that the security data relative to

the service and subscriber (e.g. user and service profiles) is available and, that it can

be administered securely.

R E Q U I R E M E N T #M5: The security system must support the DPE kernel. The DPE

kernel is resident on every node. Although its internal security needs to be provided

by local implementation means, inter-DPE security will have to be supported, as

individual objects of logical DPEs may physically reside in different domains.

4.2.3.3 Application Sub-Domain

This sub-domain entails the protection of the applications built in the lop layer of the

system structure.

R E Q U I R E M E N T #A1: The security system must support adequate security by

authenticating participants, only allowing authorised access to services, securing any

inter-participant communications and providing adequate audit and non-repudiation

facilities as required.

R E Q U I R E M E N T #A2: The security system must be provided in accordance with a

security policy. It should be simple to administer and hide distribution issues, such as

location, from the user.

73

Chapter 4: Requirements for a m.*iv Framework for DPE Security

R E Q U I R E M E N T #A3: The security system must operate at two levels because there

is no guarantee that security is available in every domain.

Firstly, security-inactive applications (i.e. those that do not employ any security

facilities themselves, but they are still subject to any DPE security that is specified by

the active security policy within that domain) require that although a security provider

operating in a DPE may not have any security policy, the DPE will automatically

provide security. It may be assumed that this type of security is always available in a

secure DPE.

Secondly, security-active applications i.e. those applications that are consciously

implementing security themselves, are required to be able to access the DPE security

service. Security-active applications are still subject to the DPE security policy, as

with security-inactive applications, but they are also managing and implementing

their own application security by utilising the DPE security service directly.

4.3 Formulating a DPE Security Framework

Prior to the proposal of a new security framework for a DPE it is necessary to visit the

existing security framework and juxtapose this with the previously developed security

requirements. This analysis will highlight differences and opportunities that will form

the basis of the new framework proposals. (N.B. This is supplemented by using a

service example of a videoconference).

The current TINA security model is focussed on the access session (see section 2.3.2),

which defines the terms and conditions for its operation. Sessions and other

74

Chapter 4: Requiremenis for a new Framework for DPE Seeiiri/y

information objects are mapped onto service objects'^, which present an interface to

the client, through which they operate; the client is not concerned with the internals of

the object (i.e. its implementation is of no consequence to the client). Figure 4-1 [15]

and the example below illustrate a simple case of two users using a service in a

provider domain.

Access session related objects provide a framework for offering secure and

personalised access to services and for supporting mobility. The Initial Agent (lA) is

the initial contact point for the Provider Agent (PA) wishing to interact with the

provider, and is used to gain an access session with the User Agent (UA). The

Provider Agent and User Agent objects interact within a secure and trusted

relationship between the user and the provider (an access session). They support

authorisation, authentication and customisation of the user's service access and

provide a secure mechanism for starting and joining sessions. In terms of the access

session, the user domains take access user roles; the provider domain takes an access

provider role. The access session related User Application (as-UAP) provides the

user interface for the user to interact with the provider. It interacts with the Provider

Agent to perform user requests, e.g. to establish an access session, and use services.

'** Precisely these are known in TINA syntax as Componenis. Components reside in a computational
space and are not deployable yet maintain the characteristics of objects. For ease of understanding the
term object has been used throughout to mean both computational componenis and technology objects.

75

Chapier 4: Hcquiremems for a new Framework for DPF Secnritv

User Domain

US-UAP

PA
14 14

i : UA UA

^c^ess-relatei

Provider Domain

SS-UAP ss-UAP

TCSM TCSM

S^ion-relatQd

r r

\Coitmmnicptjoi^r^

User Domain

US-UAP

PA

Figure 4-1 TINA Service Example

Service session related objects provide a framework for defining services, which can

be accessed and managed across multiple domains. In the provider domain. Service

Session Managers (SSMs) and User Service Session Managers (USMs) are

instantiated by Service Factories (SFs) based on requests from User Agents. A

Service Session Manager and User Service Session Manager provide session control

capabilities — a Service Session Manager supports those shared among the users, and

a User Service Session Manager supports those dedicated to a user. The service

session related User Application (ss-UAP) in the user domain allows a user to

interact with a service session and acts as an end point for session control.

76

Chapter 4: Requirements for a riew t'rtuneworkfor DPE Security

The communication session related objects provide end-to-end connectivity. Figure 4-

1 (based on session example from 18) shows a Communications Session Manager

(CSM), using a Terminal C S M (TCSM) to establish a stream binding between two

stream interfaces on the users' User Applications.

Although recognising the need for security, the TINA architecture does not provide a

security framework. It provides some notion of authentication and authorisation

functionality in the access session, but there is no detailed or formal specification on

the topics. For example, although a user profile is a recognised information object in

the TINA information model, there is no specification of what data needs to be held to

represent an authenticated user in the system, e.g. the user*s security attributes, so that

they can be propagated through the distributed system. The issue of inter-domain

authentication and authorisation is not addressed, e.g. the use of TTPs and attribute

propagation. The other security facilities of integrity, confidentiality, audit and non-

repudiation are not addressed by any of the service objects. Indeed, there are no

service objects specified for security, the security function is just listed as part of the

existing service objects such as the Initial Agent, Provider Agent and User Agent, and

there are no interface definitions to assist system developers when building these

objects. Indeed, it is this type of ambiguity that has led to confusion and proprietary

solutions, which has hampered interoperability between product vendors, and service

providers [89].

Security management is mentioned in the management architecture as part of the

FCAPS framework. In relation to security, it. requires that FCAPS functions be

considered in the service architecture [15] under the description of management

77

Chapter 4: Re.(piiremenls for a new Framework for DPF Securi/y

contexts. FCAPS defines the rules that govern particular management functional areas

during a session, for example the accounting management context might contain

information such as the tariff structure, which would calculate charge/charging-rate

for a service. TINA also mentions management policies, i.e. a set of rules governing a

particular management function in the domain that is associated with the policy.

However, its specifications do not address what security contexts or policy

configurations are required.

Security is also limited to the access session. It is not mentioned within the service

session. This is an unrealistic expectation, because it assumes that security is only

considered when the service is initially accessed by a user, and does not account for

the times when security requirements many change during the life of the service, e.g.

if a video conference session has several participants, and during the session the

conference leader, and therefore conu-oller, leaves and hands his responsibility over to

another participant. In this case the security service would need to verify that the new

leader is authorised to take this responsibility and update his profile.

Scalability is not seen as a problem because the TINA system is designed to be

scalable through its use of service objects. It is accepted that this has not been proven

and the scalability issue has only been addressed by means of modelling techniques.

Secure interoperability has not been approached. The TINA architecture states that it

should be able to inter-operate with non-TINA systems. However, since it does not

address a full TINA security model, it is impossible to evaluate how it can integrate

with other existing security models.

78

Ctuip/er 4: Requirements for a new Framework for DPE Secnn'tv

Security within the DPE itself has not been addressed. There is no mention of how the

DPE will be secured or how interaction with DPE services will be accomplished

securely. The issue of a distributed T C B is not mentioned, and there is no

specification of how applications will interact with DPE security.

The DPE's failure to meet the specified security requirements is summarised in table

4-2 below. Simply stated, TINA does not provide a security framework to protect ISE

services.

No. Security Requirement Addressed in TINA
1 Identification and Authentication Yes - but limited
2 Authorization & Access control Yes - but limited
3 Propagation of security attributes No
4 Secure communications No
5 Secure stored data No
6 Secure Auditing No
7 Non-repudiation No
8 Security Management No
9 Interoperability No
10 Scalability Yes - use of objects
11 Integration with existing environments No
12 System Recovery No
T l Intrusion Detection No
T2 Management of hardware/software protection No
MI Secure, authenticated inter-object communications Yes - but limited
M2 Secure operation of TINA services Yes - but limited
M3 Secure control of TINA services Yes - but limited
M4 Secure administration of TINA services No
M5 Inter-DPE security No
AI Secure participant interaction with applications No
A2 Secure, usable administration of applications No
A3 DPE security for security in-active and security

active applications
No

Table 4-2 Summary of TINA vs. D P E security requirements

79

Chapter 4: Retpnrements for a new Framework for DPE Secariiy

4.4 A New Security Framework for DPEs

The following defines a new security framework for DPEs using syntax and semantics

in line with TINA specifications. The operational service objects and their interactions

within the service architecture are described first. Issues relating to implementation

and deployment are also addressed. The management framework is then defined,

along with the information structures required by the framework.

4.4.1 DPE Security Service Overview

Twelve new operational-level security service objects, illustrated in figure 4-2 below

and functionally described thereafter, have been identified.

General Pollcy/Contexl|
Manager SecurityAgeni

Authentication &
Authorisation

Authorisation AccessControi
Agent Agent

Secure
Communications

OoP
Agent

Audits
Non-repudiation

AuditSamplei
Agent AudilAnalyser Audit

R e s p o n d e r AuditKB

NREvidence
Agent NRStoie NRAdjudicator

Figure 4-2 A New Security Framework for DPEs (Operational)

4.4.1.1 General Layer

The general layer has two security objects

• Pronie/Context Manager (PCM): The PCM retrieves any security

management data required by the operational level security objects. It will

80

Chapter 4: Requirements for a m?iv Framework for DPE Security

access security policy information, facilitating security service object actions.

For example, the Profile/Context Manager can retrieve authentication data to

validate a user logging into the system. It is used to control user interaction

with the security management data and objects.

• Security Agent (SecA): The Security Agent acts as an initial point of contact

with the security system, and therefore plays a role in the access session, h is

not required in the service session because the objects used here are

considered part of the T C B and the user will not have direct interaction with

these service objects. Security Agent controls the user interaction by

preventing a user directly interacting with security service objects.

4.4.1.2 Authentication and Authorisation Layer

The Authentication and Authorisation Layer has two security objects:

• Authorisation Agent (AuthA): Encapsulates the authentication process for

the TINA system. Authorisation Agent authenticates the user with the

authentication data presented by the user, via the Provider Agent and Initial

Agent, and validates it against the policy data retrieved by the Profile/Context

Manager. Authorisation Agent is TINA service independent and security

mechanism independent. It is also responsible for initialing the creation of the

user's security context, and instantiating it with the appropriate identity and

privilege security attributes.

• Access Control Agent (ACA): When a user makes a separate request, the

security access control is handled by the Access Control Agent. It is based in

81

Chapter 4: Requirements for a'new Framework for DPE Security

the provider domain, because access is a server-side issue in ISE. It takes the

user's security context information and uses it to compare to the access control

policy (via the Profile/Context Manager), to decide whether the user is

authorised to make the service request. If authorised, the user is allowed to

proceed with the access session. The Access Control Agent can also be used

by the service-session objects, when they are requesting a new service that

may be restricted.

4.4.1.3 Secure Commimications Layer

The Secure Communications Layer has one security object:

o Quality of Protection Agent (QoPA): The Quality of Protection Agent is

responsible for providing secured communications between service objects. It

is able to compare the QoP policies, via the Profile/Context Manager, of the

communicating parties and then decide what QoP will be implemented. The

Quality of Protection Agent is also utilised by the audit and non-repudiation

facilities.

4.4.1.4 Audit and Non-Repudiation Layer

The Audit and Non-Repudiation Layer has seven objects:

e Audit Sampling Agent (ASA): The Audit Sampling Agent is deployed

throughout the TINA system and is responsible for collecting any audit data. It

is responsible for deciding whether an event is security relevant. If it is, then

the appropriate data is retrieved and forwarded to the Audit Analyser.

82

Chdpier 4: RequircnunUs for it new tr ante work for DPE Security

• Audit Analyser (AA): The Audit Analyser analyses the information sent by

the Audit Sampling Agent to decide i f the event is anomalous. It indicates the

analysis result (i.e. whether a system violation has occurred or whether

suspicion levels should be raised) and produces an analysis token; the latter is

used to provide a ful l justification of the analysis results, i f required.

• Audit Knowledge Base (AKB): The Audit Knowledge Base stores all data

related to the auditing process, which includes audit sampling records (i.e. the

audit trail), audit analyser tokens, audit responder actions, and any profiling

and analysis data used to identify any anomalous behaviour.

• Audit Responder (AR): The analysis result and token are then sent to the

Audit Responder, which decides what to do. The responder has two basic

types of response - saving the data to a specific audit log or producing some

alarm. The alarm may be sending an email or screen message to an

administrator, or it may involve a partial or complete system

shutdown/lockout. These responses can be constructed using service objects.

• Non-Repudiation Evidence Agent (NREA): Whenever the NR security

policy defines that evidence is required, e.g. proof of receipt, the Non-

Repudiation Evidence Agent wil l be able to generate/verify evidence token for

the appropriate service object.

• Non-Repudiation Store (NRS): The Non-Repudiation Evidence Agent

interacts with the Non-Repudiation Store also, to store evidence tokens when

required.

83

Chapter 4: Requirements for a new Framework for DPE Senirily

• Non-Repudiation Adjudicator (NRAdj): The Non-Repudiation Adjudicator

represents a notary that can make judgements on any disputes. A TTP wil l be

used to verify evidence and then prove/disprove claims made by clients or

servers. I l provides the following capabilities:

o specify the tokens and identities of the disputing objects;

o return a decision and the supporting token (i.e. the token that validates

the decision).

The adjudication process has two phases - the first is an on-line adjudication.

The on-line adjudication allows the adjudicator (without any human

intervention) to validate the evidence tokens, i.e. make sure they have valid

signatures and that the times are correct. I f one-evidence token is found to be

invalid, then the process wil l be able to settle the dispute by deciding in favour

of the valid token holder. However, i f both tokens are valid, then one of three

options is possible. I f the Non-Repudiation Adjudicator is implemented as an

expert system, then it may still be able to settle the dispute based on some

existing rules it contains. I f not, it can either signal for human intervention and

request assistance in the adjudication process or it can return a judgement of

''undecided".

4.4.2 Realisation and Deployment Issues

There are several issues within the Computational model of the new DPE security

framework that should be addressed before proceeding to the service example, as they

84

Chapter 4: Rcquiretm'nls f<ir a new Framework for DPE Secitrify

will help clarify the service example presented in the following section. Figure 4-3

below is used to help illustrate these issues (based on service example in 18).

User Domain Provider Domain

US-UAP

AuthA

\Access-j;eiat4d

J QoPA

ss-UAP

NREA

NRAdj
S&sston-rea

TCSM

l^ommun/cat/orw

Figure 4-3 Example of Security Service Object Deployment

4,4,2,1 Absence of data storage objects

The TINA service example (see section 4.3) has a notable absence of any data storage

objects. Such specification is often left to the information model. However, in the

85

ChapU'v 4: Requircnwnls for a /u.nv Framework for DPE Security

security framework it was deemed necessary to identify the Audit Knowledge Base

and Non-Repudiation Store within the model for the following reasons:

o The data stored in the Audit Knowledge Base and Non-Repudiation Store is

very important to the overall framework and its security. The audit

information wi l l help identify intrusions and the non-repudiation evidence

tokens are required for adjudication.

© The Audit Knowledge Base stores a variety of information, and therefore wi l l

present a variety of interfaces to the Audit Analyser, Audit Responder, and

Audit Sampling Agent.

o The data in both repositories needs to secure data, both in transit and in

storage. Therefore as service objects both the Audit Knowledge Base and

Non-Repudiation Store wil l be able to utilise security mechanisms to secure

the data internally, and they wil l also have security policies that wi l l allow

them to negotiate security contexts with any clients, e.g. the Audit Analyser

and Audit Knowledge Base wil l use the Quality of Protection Agent to create

a secure communication channel between them so that audit records can be

transported securely over the network.

4.4,2.2 DPE service object placement in relation to the DPE Node

It was previously stated that DPE services, such as security, are not necessarily

present on all DPE nodes. However, it is recommended that any DPE node involved

in security would have most of the security service objects available locally, to reduce

the overhead of accessing remote service objects. The exceptions to this rule are the

86

Chapter 4: Requirements for a new Framework for DPE Security

Audit Knowledge Base, Audit Responder, Audit Analyser, Non-Repudiation Store

and Non-Repudiation Adjudicator. The reason for this is that all the other agents are

involved in almost every service - authorisation, access control and secure

communications are usually requirements in a protected system. The audit and non-

repudiation functions are not always required, because they generally incur a high

overhead. However, i f required the Audit Sampling Agent and Non-Repudiation

Evidence Agent wil l be frequently utilised by the service objects and so should

available locally.

4,4,23 Availability of security service objects in session model

The security service objects are not restricted to any single session type; their

availability wi l l be dependent on the security service requirement within each session.

The access session is generally concerned with authentication and access control,

therefore the Security Agent, Authorisation Agent, Access Control Agent, and

Profile/Context Manager are available. Secure communications can be required in

both the access session (to secure the authentication process) and service session (to

secure the TINA service), and, therefore, the Quality of Protection Agent is available

to both. The CSM is considered outside the scope of the DPE security model.

However, the Service Session Manager in the service session can utilise the Quality of

Protection Agent when requesting the CSM to provide a secured communications

stream. The audit and non-repudiation service objects are available in the access or

service session depending on the security policy requirements.

87

Chapter 4: Requiretneiils for a new Franieu ork for DPE Secnritv

4,4,3 D P E Security Management Overview

The new security framework separates the management of services and mechanisms

and thereby provides the required mechanism-independence. It involves the following

steps:

definition of new policy classes to separate management function;

use of opaque data types to assist abstraction;

definition of policies for all security functions for consistency;

ability to locate the new policies;

ability to handle security active/inactive policies.

4.4,3,1 New Policy Classes

A new Policy superclass is defined^ see figure 4-4 below. It wil l have two derived

classes, ServicePolicy and MechanismPolicy, to administer security services and

security mechanisms respectively.

88

Chapter 4: Reqitirements for a new Framework for DPE Security

Pdicy

type (abstract)

get {abstract}
set {abstract)
query {abstract)

ServicePolicy Mechanism Policy

type
mech_used {abstract}
expiry_time
version

type
Mech_specilic_data {abstract)

type
mech_used {abstract}
expiry_time
version get

set
query
update (abstract}
delete {abstract)

get
set
query

get
set
query
update (abstract}
delete {abstract)

Figure 4-4 Administrative Policy Class

The Policy superclass has a single data attribute type, which identifies the object(s) or

service objects to which the policy applies. Policy defines three abstract operations,

get, set and query, used to maintain policy data, get retrieves a single administration

record, based on a known identifier, while set updates a single administration record

based on the identifier, query is able to retrieve a complete set of records (a 'bulk'

implementation of the get operation - a standard 'multiple record get' optimisation

used in 0 0 programming). The query method also allows the user to use any data to

select the records. For example, i f the get method used on a video conferencing

object, retrieved the identifier and reference to the videoconference, the user could

then use the query method find out the details of the conference, e.g. bandwidth

required, etc, to see i f he could request access to the conference. ServicePolicy has

three data attributes. mech_used specifies the mechanisms to be used implementing

the policy. This is an identifier that refers to an instance of the MechanismPolicy

89

Chapter 4: Requiremejif.s for a new Framework for DPE Secnritv

class. The expiryjime and version specify the expiration time of the policy and its

version. Operations to update/delete entries are not listed, as some policies wi l l not

want this to occur, e.g. non-repudiation policies. Policies that do require such

operations wil l add them to the their own class definition, which inherits the

ServicePolicy class. The MechanismPolicy object has one data attribute,

Mech_specific_data. This holds mechanism specific information, and thereby

provides the means for mechanism (technology) independence. The MechanismPolicy

also has remove and update operations.

4,4,3,2 Abstraction through generic data types

To preserve mechanism independence data items that are considered opaque data

types should be used, because their internal structure has no significance to the

interface or the caller, but has meaning to the underlying mechanism, e.g. GSS-API

and CORBA use such data types. Another useful method of abstraction is the use of

codes to indicate generic and mechanism specific errors (the use of exceptions can be

implementation specific, e.g. C-f+ use of native exception handling). I f required, the

codes can be divided in to major (generic) and minor (mechanism-specific) structure

to preserve the mechanism independent nature of the service, while still passing

useful mechanism-specific failure information. Also another reason that exceptions

are not used is because, by standard 0 0 programming practice, they should indicate

an exceptional circumstance that only occurs between 5-10% of the time. In this case

the errors can be a valid response that occurs on a regular basis, e.g. security

credentials expiring or corrupt signature.

90

Chapter 4: Requirements for o new Framework for DPE Security

4,4,3.3 Consistent Management Structure

Providing a structured management system that operates across all the security

facilities ensures consistent management. Currently, there is no standardised

administration for each of the DPE security facilities. No management contexts or

policies are defined. Therefore the policy and mechanism administration service

objects should be applied across all of the security facilities to provide a

comprehensive and coherent administration structure.

M A N A G E M E N T A G E N T S
Available In securi ty domain

Authentication
Pol icy

Authentication
Mech

A c c e s s C o n t r o l
Pol icy

A c c e s s C o n t r o l
Mech

Q o P
Pol icy

Q o P
Mech

Audit
Pol icy

Audit
Mech

NR
Pol icy

NR
Mech

Figure 4-5 Security Service Objects - Management

• AuthenticationPolicy (AuthPolicy) & AuthenticationMech (AuthMech): Two

objects now administer the authentication process. Authentication Policy is

responsible for holding the following:

91

Chapter 4: Requtreme/its for a new Framework for DPE Security

o identifying an access session User Application and the authentication

mechanism associated with it, e.g. the video conferencing service may require

smartcard authentication;

o authentication policy for a user, i.e. it identifies the authentication mechanism

allowed for a user and the associated authentication data - for password

identification it identifies the user*s ID and password;

o security identity, which is used to create a user's security identity context that

can be propagated throughout the TU^A system.

Authentication Mechanism administers the authentication mechanisms. It holds

data relating to the mechanism name and its object identifier within the system.

The ISO/IEC specifications for Abstract Syntax Notation One (ASN.l) [90] and

Basic Encoding Rules (BER) [91] are used to define what mechanism is used. For

example, the Object Identifier 1.2.840.113554.1.2.2 identifies the Kerberos V5

mechanism. It may also identify the authentication data types required, e.g.

character string is required for password authentication.

• AccessControlPolicy (ACPolicy) & AccessControlMech (ACMech): The

access control service-level administration, AccessControlPolicy, includes the

following data:

o identification of the access control mechanism used for the service;

o user privilege attributes that wi l l be used to create the user*s privilege attribute

context to be propagated through the system (this wi l l be linked with the

92

Chapter 4: Requirements for a new Framework for DPE Security

user's identity context), and wil l be used to evaluate whether a user is

authorised to access a particular service. This wi l l also include the delegation

status of the credentials, i.e. which, i f any, of the attributes that can be

delegated through the TINA system;

o provider-required privilege attributes, which identify what privileges are

required for a user to access the provider's service (the user's privilege

attribute context wi l l be evaluated against this).

The ACMech holds the data relation to the administration of the access control

mechanisms. It identifies the mechanisms used, along with other implementation

information such as version and expiry date.

• QualltyofProtectionPolicy (QoPPoiicy) & QualityofProtectionMech

(QoPMech): Integrity and confidentiality management are handled by QOPPoIicy

and QOPMech. The QOPPoIicy is responsible for the following data:

o the QoP to be used, i.e. whether integrity, confidentiality or both are required

to secure data;

o identifying what mechanisms are required by a particular service object. This

should identify the required mechanisms and other supported mechanisms that

may be used instead, to provide flexibility;

o for transit data, how much of a message wil l be encrypted, e.g. the whole

message or just selected portions.

93

Chapter 4: Requirements for a new Framework for DPE Secnritv

The QoPMech lists the mechanism and its object identifier. It wi l l hold any

other mechanism specific information, such as the location of keys, version

number etc.

• AuditPolicy & AuditMech: The system audit information is administered by

these objects. AuditPolicy manages the following data:

o event selectors identify what event is considered security-relevant and what

details of the event need to be recorded, e.g. an service access request should

be audited and the selectors include the time, the user making the request, the

service requested and whether the request failed or succeeded;

o Audit Analyser and Audit Responder used. There may be several analysers

and responders available, each possibly using different mechanisms or used

for different sub-domains;

AuditMech is used to administer the entire audit mechanisms, Audit Analyser,

Audit Responder, and Audit Sampling Agent. It wil l hold mechanism specific

details, such as location, object identifier etc.

NRPolicy & NRMech: NRPolicy, responsible for non-repudiation administration,

specifies the following:

o the type of evidence required by a service object for a particular request;

o the QoP for the delivery of non-repudiation evidence;

o the storage object where evidence wil l be held;
94

Chapter 4: Requirements for a new Framework for DPE Security

o the accepted authorities (includes adjudicators and delivery authority);

o the NR mechanism to be used to generate the evidence.

NRMech specifies the mechanism-specific details for the non-repudiation

mechanisms.

• Policy/Context Manager (PCM): One further service object that can be included

in this model is the Profile/Context Manager (already specified as an operational

service object), which is used as the point of contact between the operational and

management models. It is responsible for finding the appropriate administration

object within a domain, retrieving security management information from policies

and building security contexts with this data. The Profile/Context Manager

abstracts the DPE-defined contexts from the actual security service

implementations.

4.4.3.4 Facilitating Security Active/inactive Applications

The security requirements analysis (see section 4.2.3) outlined the need for security-

active and security-inactive applications. This implies that two security policies could

exist for a single application, one as a domain default to handle all applications (both

active and in-active) and then the particular security-active policy for an application.

Therefore the management system needs to be able to administer the separate policies

and define the rule of operation when two conflicting policies exist. The issue of

allowing two policies to exist is addressed by identify the policy type, e.g. the policy

95

Chapter 4: Requirements for a new Framework for DPE Security

type can be defined as active or inactive. The second issue is more complex and wi l l

be addressed in more detail when interoperability is discussed in Chapter 5.

4 . 5 DPE Secured Service Example

The example presented in this section illustrates a service session that is secured using

the new security framework. The following assumptions are made:

• only one user and one provider are involved;

• only one security domain is involved (even though the figure shows

User/Provider domains which would normally be different security domains -

the issue of interoperability between security domains wil l be addressed in the

following chapter);

• not all service object interactions are shown, in order to simplify the

illustration, e.g. Profile/Context Manager interactions to build contexts are not

shown.

The video conferencing service example, which is based on the standard TINA

service architecture example [15], presents two security relevant scenarios. The initial

TINA scenarios assume that all the operations are successfully completed (no error,

no fault, and no rejection) for simplicity. Some of the alternate outcomes wil l be

outlined in each section. The example also does not address the issue of secure

interoperability between disparate domains; it assumes that the security technology

96

Chapter 4: Requirements for a new Framework for DPE Sectin'ty

and policies are compatible. Inter-domain secure interoperability wi l l be dealt with in

chapter 5.

4.5,1 Logging in to the Provider

This example shows userA establishing an access session with their named user agent

of the provider. The user wishes to make use of the provider's services, which the

user has previously subscribed to.

Preconditions:

The user has contacted the provider, and the Provider Agent has an interface reference

to an Initial Agent of the provider.

The new security preconditions required:

o security is available in both the user and provider domains;

o user A is defined as an authorised user in the provider domain;

o a QoPPolicy is available for the Provider Agent and User Agent;

o there are no audit or non-repudiation policies related to the login process

o the user and provider domains are in a single security administration domain

and therefore secure interoperability is not an issue.

Scenario:

(The new security interactions are steps 3,4, 5, 6, 7, 8, 10, 12 and 13.)

97

Chapter 4: Requirements for a new Framework for DPE Security

1. User A uses an access session related User Application to login to the

provider, as a known user. The access session related User Application

requests the user authentication information such as the UserlD and

password. The user then requests the Provider Agent to login to the

provider, as a known user. The access session related User Application

supplies the security information to the Provider Agent.

2. Provider Agent requests that an access session is set up with the named

User Agent of the user. Provider Agent provides the usemame of the user

to the Initial Agent.

3. The Provider Agent sends the security information to the Security Agent in

the user domain. Security Agent".

Usei Domain Piovider Domain

, as-UAP t:

1,
14.

i:

. PA q:: UA

AuthPollcy

flO.

^ c t d)

AuthA
A C P o l l c y

SecA 4. 13.

12../I0. (ctd) 11

OoPA
12. (ctcl)

A.
SecA

Q o P P o l i c y

OoPA OoPA
. X ' 7. <ctil)

Figure 4-6 New Secure Login Examples

4. Security Agent" sends the information to Security Agent in the provider

domain (Security Agent**), to authenticate the user.

98

Chapicr 4: Re(iuiremcnts for a /u'lv Frumework for UPE Security

5. Security Agent^ coniacis Authorisation Agent, which retrieves the

authentication policy from AuthPolicy to authenticate the user.

6. Once authenticated, Authorisation Agent also retrieves UserA*s privilege

attributes from ACPolicy, to create the user's security context.

7. Security Agent^ contacts the Quality of Protection Agent, to see i f secure

communication is required with the user domain; Quahty of Protection

Agent, finds the appropriate QoPPolicy, and returns the information to the

user's security context.

8. The completed security context is associated with the User Agent.

9. An access session has been established. It returns the interface reference of

the user's User Agent.

10. Provider Agent retrieves its security policy information, via the Security

Agent*^ to see i f secure communication is required.

11. Provider Agent sends information about the user domain to the User

Agent. This information is termed the Provider Agent context, and wil l

include the security context information such as the QoP required by the

Provider Agent.

12. In this example, both domains require secure communications, i.e.

integrity and confidentiality. The Provider Agent and User Agent request

the Quality of Protection Agents in both domains, to negotiate what

mechanisms are to be used, via the security context information, i.e. they

99

Chapter 4: Requirements for a / U M V Framework for DPE Securify

find a common set of mechanisms to use for both integrity and

confidentiality, such as MD4 and 3DES.

13. A secure communication channel is established between Provider Agent

and Initial Agent.

14. Provider Agent returns success to access session related User Application.

Post-conditions:

User has setup an access session between the Provider Agent and named User Agent.

The named User Agent is personalised to the user, and has knowledge of interfaces of

the Provider Agent.

Any interface references of the Initial Agent held by the Provider Agent wi l l be

invalid.

The new security post-conditions required are:

o a Provider Agent context containing security information has been created;

o a security context containing UserA's security information is associated with

the User Agent;

o a secure communication channel exists between Provider Agent and User

Agent.

Alternatives within scenario:

There are several alternatives available within this scenario, of which two key issues

are listed:

100

ChapWr 4: Rctjuircmcnt.s for a new Frtuuework for DPE Sccnriiy

• The user may have been unknown. The authentication could have failed at

step 6 or the user could have been logged in with guest privileges. The

outcome would be dependent on the domain policy in relation an un

recognised user.

• The known user may have supplied incorrect authentication information, e.g.

an invalid password. In this case the login would have failed at step 6 and the

session would have been terminated. A similar situation would arise for an

expired/revoked user ID.

Other alternatives relate to the security policies defined with in the domains, e.g. audit

of the authentication process may have been required etc. For simplicity, it was not

included in this scenario.

4.5.2 Starting a New Service Session

This example shows a user starting a new service session. The user is assumed to be

in an access session with the provider and to have a valid subscription to the service

(the service type is web-cast). The service session related User Application is

assumed to be present on the user's terminal. Steps 2, 3, 4, 9, 10, 11, 12, 13 and 14 are

new security related interactions.

Preconditions:

An access session exists between the Provider Agent (user A) and User Agent (in

provider domain). An access session related User Application shows the user the

services that can be started.

101

Chapier 4: Requiretiiin)i.s for a new Framework for DPE Seciirily

The new security preconditions are:

• a security service exists in both the user and provider domains;

• the user's has already been authenticated, a security context for the user is

available to the provider and is associated with the User Agent;

• a secure communication exists between the Provider Agent and User Agent;

• the provider domain specifies an audit policy that records when a new web

cast session is started;

• the provider non-repudiation pohcy requires a proof of origin for a new web

cast request;

Scenario:

1. The access session related User Application requests a list of services from the

Provider Agent, which the user has subscribed to. The Provider Agent makes

the same request to the User Agent.

2, The User Agent contacts the Security Agent^ to see what services the user is

authorised to see. Security Agent^ already has the user's security context and

needs to compare it to the required attributes for services.

3. Security Agent contacts the AccessPolicy, via the Access Control Agent, to

see what attributes are required for the list of available services.

102

Chdpicr 4: Requircmetus for <i H C I W Framework for DPE Security

4. Once Security Agent** defines the list of authorised service, i.e. those services

which the user has the required privilege attributes for, it returns the list to the

User Agent.

5. The User Agent returns the list to the access session related User Application,

which displays the list to the user. The user selects a service to start, a

recorded web-cast. The access session related User Application requests

Provider Agent to start the service.

6. The Provider Agent starts the service session related User Application,

associated with this service session, and informs it of the service type that it

should start (web-cast).

7. The service session related User Application requests a new service session of

service type web-cast, from the Provider Agent. (The service session related

User Application may pass information about itself to the Provider Agent,

including session models and feature sets supported, and references to its

operational and stream interfaces.)

8. Provider Agent requests to start a new service session of the service type

(web-cast), to (user A's) User Agent. (It may also pass the information about

the User Application.)

9. Before User Agent starts a service, it wil l contact the Security Agent** to

request that it checks the security policy for that particular service.

103

Cfuii}ter4: Requirements for <t new Framework for DPE Secnritv

10. The Security Agent^ wi l l contact the Quality of Protection Agent, which wil l

use QoPPolicy, to see i f there are any secure communication requirements for

the web-cast session. In this case there is no QoP requirement.

Usei Domain

as^JAP

1.

PA

5.(ctd):
i.i

6

5.1 8. I d

7.

\20.

SS-UAP 21 USM U SSM

Provider Domain

AccessPolicy

3/(ctd)

ACA
QoPPolicy

3.f QoPA

S e c A P 10.

\ l>N
ASA K

12. AKB

1 3 \ 11.(ctdjr' AuditPolicy

NREA \J± NRS

13.\jctd)

NRPolicy

Figure 4-7 New Secure Service Example

11. The Security Agent^ wil l contact the Audit Sampling Agent, which wil l use

AuditPolicy, to see i f there are auditing requirements for a web-cast session.

The policy specifies that new web-cast session requests wil l be audited.

12. In response to this, the Audit Sampling Agent generates an audit record, which

is forwarded to the Audit Knowledge Base. No analysis is required, as the

policy only requires the event to be logged. (For simplicity, the negotiation of

104

Chapter 4: Hequirements for a /u.-iv Fnwicwork for DPE Security

the secure connection, by the Quality of Protection Agents, between the Audit

Sampling Agent and Audit Knowledge Base is not illustrated).

13. The Security Agent*' wi l l contact the Non-Repudiation Evidence Agent, which

wil l use NRPolicy, to see i f there are non-repudiation requirements for a web

cast session. Their policy specifies that a proof of origin is required for the

request.

14. In response to this, the Non-Repudiation Evidence Agent generates a proof of

origin token using the user's security information associated with the User

Agent. This token is forwarded the Non-Repudiation Store. (For simplicity,

the negotiation of the secure connection, by the Quality of Protection Agents,

between the Non-Repudiation Evidence Agent and Non-Repudiation Store is

not illustrated).

15. User Agent gets a reference to a service factory, which can create service

session objects for the service type (web-cast).

16. User Agent requests that a new session of the service type (web-cast) be

created by the Service Factory.

17. Service Factory creates an Service Session Manager and a User Service

Session Manager and initialises them. In this case a security context is

associated with the Service Session Manager, which describes the services

security requirements, e.g. i f it has audit and non-repudiation requirements.

18. Service factory returns interface references of the User Service Session

Manager and the Service Session Manager to the User Agent.

105

Ch(tpti*r 4: Rcqinrements for ft new f 'nwicwork for DPE Si'cnritv

19. User Agent returns references of the User Service Session Manager and

Service Session Manager to the Provider Agent.

20. Provider Agent returns references of the User Service Session Manager and

Service Session Manager to the service session-User Application.

21. The service session related User Application and User Service Session

Manager (and Service Session Manager) can interact using service specific

interfaces or interfaces defined by session models, including the T I N A session

model. Some interactions between these objects may be necessary before the

user can use the service.

22. At this point User A is the only user involved in the web-cast session. Some

services may be single user services.

Post-conditions:

A web-cast session is established between the user and provider.

The new security post-conditions are:

• An audit record for the request exists in the provider's Audit Knowledge Base.

• An evidence token for the proof of origin (i.e. the user) exists in the provider's

Non-Repudiation Store.

Alternatives within scenario:

• I f the User Agent were unable to start the service, it would have raised an

exception in step 15 or one of the later steps (e.g. when the Service Factory

was creating the Service Session Manager, or User Service Session Manager).

106

Chapter 4: Requiremenis for a new Framew ork for DPE Secitrity

• I f the web-cast service were already running, then the audit and non-

repudiation policy information would already have been available, via the

Service Session Manager's security context.

4.6 Summary

This chapter has specified the DPE security requirements through analysis of the

current literature and providing a new definition of the DPE security problem domain.

As a result, a new DPE security framework has been defined. It provides a two-tier

model that addresses the operational and administrative needs of a DPE environment.

The operational service objects provides all of the ISO defined security services, and

the management objects provides the fiexibility and consistency required by using

mechanism-independence, abstraction and a complete set of management objects to

administer all of these services. As the framework has been defined using service

objects, it is scalable and can be easily distributed across the DPE.

However, there are still two major issues that have to be considered, namely

interoperability, and the interaction between the security framework and the existing

DPE services, such as the trader. Both of these topics are covered in detail in the

following chapters.

107

5. Secure Interoperability in a DPE

5,1 Introduction

A fundamental characteristic of a distributed system is that physical nodes and

distributed objects require interoperability. It facilitates interaction between entities

resident across heterogeneous platforms, where such entities may be implemented

using different technologies or different paradigms. Although computers can be

networked, this does not imply interoperability has been achieved. Interoperability has

to solve the challenge of differences in protocols, data formats, programming

languages and, paradigms. For example, although it may seem a simple task to

provide a graphical front-end interface to a legacy mainframe system, interoperability

obstacles have to be addressed including: the front and back-ends operating in two

different paradigms, (object-oriented and procedural) and data conversion and

manipulation so that it can be understood by each system. Even within the Internet,

where currently millions of nodes are connected and are able to interoperate, new and

more optimal solutions are still being sought to support distributed transparency, for

example the Simple Object Access Protocol (SOAP) [92]. SOAP defines an Remote

Procedure Call mechanism, using HTTP as the transport and X M L documents for

encoding requests and responses, in order to provide an object invocation mechanism

built on standardised Internet solutions.

108

Chapter 5: Secure Interoperabiliry in a DPE

For DPEs, CORBA provides one interoperability solution using a combination of

brokers (ORB) and language independent IDL interfaces (see Section 2.4) " . C O R B A

also supports interoperability to other non-CORBA distributed systems, such as COM

[93], Other organisations, are now explicitly addressing interoperability with their

frameworks, e.g. Microsoft committed one quarter of its budget in 1999 to

interoperability [94, 95]. However, these solutions currently only address insecure

communications. When security requirements are added a significant increase the

difficulty of the task is noted. Although secure interoperability is not a new topic in

DPEs, this chapter deals specifically with the issues currently encountered and

presents proposals on how they can be alleviated with the New Framework

previously described (see chapter 4).

5.2 DPE Secure Interoperability Requirements

Secure Interoperability within and between DPEs can be described as the ability to

provide a secure association between a client and target even when they exist in

different security domains.

In addressing secure interoperability, the requirements need to be established. Table

5-1 below summarises the DPE security requirements specified in the previous

chapter. These requirements will be evaluated to see how they apply to secure DPE

interoperability.

" The OMG has even sponsored CORBAnei, a research project ai the Disu-ibuted System Technology
Centre in Australia, whose specific function is to demonsuaie interoperability between different ORB
vendors [111.

109

Chapter 5: Secure Interoperability in a DPE

No. Security Requirement
1 Identification and Authentication
2 Authorization & Access control
3 Propagation of security attributes
4 Secure communications
5 Secure stored data
6 Secure Auditing
7 Non-repudiation
8 Security Management
9 Interoperability
10 Scalability
11 Integration with existing environments
12 System Recovery
T l Intrusion Detection
T2 Management of hardware/software protection
M l Secure, authenticated inter-object communications
M2 Secure operation of TINA services
M3 Secure control of TINA services
M4 Secure administration of TINA services
M5 Inter-DPE security
A l Secure participant interaction with applications
A2 Secure, usable administration of applications
A3 DPE security for security in-active and security active

applications

Table 5-1 Requirements for D P E Security

Interoperability is listed as a requirement for secure DPEs. As DPEs are distributed, it

would be unreasonable to assume that all objects would be distributed within a single

security domain. Therefore all inter-domain communications still have the same

security requirements as intra-domain communications, and many of the issues have

already been addressed in chapter 4. Authentication and Authorisation (Requirements

#1 & #2) stated the need for inter-DPE authentication, i.e. the ability to authenticate

through a TTP and the need to allow access to remote clients (see section 4.2.2).

110

Chapter 5: Secure Interoperability in a DPE

Auditing, non-repudiation, secure communications and storage of data are still

required (Requirements #4-#7). However, interoperability of these services now

highlights new requirements.

R E Q U I R E M E N T #11: The trust relationship between two disparate security

domains has to be established. Authentication and authorisation already require

some form of trust to exist between two entities or services. However, in the case of

interoperability, the trust model (see section 3.3.1) needs to be defined between the

domains.

R E Q U I R E M E N T #12; Attribute mappings need to exist between disparate

domains. Propagation of attributes constitutes a more complex problem in an inter-

domain scenario; this is because the attributes in two domains may differ, and

therefore a mapping needs to exists between the attributes so they can be converted

when necessary.

R E Q U I R E M E N T #13: Middleware sub-domain interoperability requires secure

operational-level interaction. As the middleware sub-domain is responsible for

operational services, it needs to ensure that compatible mechanisms can be used for

secure inier-domain DPE interactions.

R E Q U I R E M E N T #14: Middleware sub-domain interoperability requires secure

control and administrative interaction. As the middleware sub-domain is

responsible for control and administration of services, it needs to ensure that the

policy configurations of services are compatible for secure inter-domain DPE

interactions.

I l l

Chapter 5: Secure Interoperability in a DPE

R E Q U I R E M E N T #15: Application sub-domain interoperability requires the

negotiation of a secure inter-domain context. As the application sub-domain is

responsible for establishing a secure context between a target and client, it needs to

begin the negotiation process to allow all domains create the appropriate agreed

environment.

5.3 DPE Secure Interoperability - the issues

The interoperability requirements highlight the fact that there are four possible

inconsistencies that need to be resolved:

• conflicting security mechanisms (requirement #/JJ;

• conflicting security policies (requirement #/2, ^14);

• conflicting security protocols (requirement #/5J;

• different trust domains (requirement #/7).

These issues and their possible solutions are discussed in the following sub-sections

and then summarised in table 5-2

5.3.1 Conflicting Security Mechanisms

I f two domains are using different security mechanisms, interoperability is a serious

issue. For example, i f they have differing encryption algorithms (e.g. DBS and IDEA)

The issue of different paradigms is noi considered because it is assumed that all DPEs will be using
object-oriented technology.

112

Chapter 5: Secure Interoperability in a DPE

it wil l not be possible for these two domains to provide a secure association between

their members because they cannot interact cryptographically.

Solutions to this problem include:

• the provision of a bridge (see section 3.3.3.1) that wil l perform the appropriate

conversion between encryption mechanisms. However, when using this with

cryptographic mechanisms, it complicates the situation by adding overheads (due

to the decryption and re-encryption of messages) and providing another point of

vulnerability between the two domains.

• the use of a standard set of mechanisms and the provision of a protocol to

negotiate a common mechanism to be used (see section 3.3.3.2). For example,

SSL provides such a facility for secure Iniemel communication. The drawback for

DPEs is that they require access to a common set of mechanisms and a common

protocol.

• the use of generic tokens (see section 3.3.3.3). For example, GSS-API provides

such a facility, but it does require the definition of the token structure and the use

of appropriate interfaces/protocol to utilise the tokens. Definition of a generic

tokens can prove difficult as it needs to ensure that the token is truly generic and

caters for all protocol requirements; also i f opaque data types are used a

performance overhead can be incurred due to the data marshalling required.

113

Chapter 5: Secure Interoperability in a DPE

5.3.2 Conflicting Security Policies

A security policy is defined as a set of criteria for the provision of security services. It

defines what is and what is not permitted in the area of security during general

operation of a secured system. These criteria can and do differ between domains. For

example, a client in domain A has an authentication policy specifying that server-side

(peer-entity) authentication is required. A server in domain B has an authentication

policy specifying that mutual (peer-to-peer) authentication is required; i.e. the client

has to authenticate itself to the server as well. However, the client in domain A has no

way of authenticating itself to the server, e.g. i f digital certificates were used for

authentication, the client in domain A may not possess a certificate. Therefore, in this

example, a secure association, that satisfies both security policies, can never be

established between domain A and B because the client wi l l never be able to

authenticate itself to the server.

A solution to this problem is to allow negotiations between the security policies of the

two domains. It requires each domain to define what is supported and what is required

by a policy. A policy requirement is a security service function that must be complied

with; otherwise a secure association cannot be established, such as mutual

authentication in domain B in the above example. A supported policy is one that is

available but not necessary for a secure context. The requirements for a DPE in the

provision of this solution are two-fold:

• the definition of security policy configurations for the security services

between two domains;

114

Chapter 5: Secure Interoperability in a DPE

• ihe definition of a protocol to negotiate the policy configuration.

This solution wil l also have an impact on the mechanisms used. Mechanism-

independence (see section 3.3.4) facilitates the negotiation process. It wi l l abstract the

policy (security service) required from the mechanism. However, a successful policy

negotiation does not necessarily guarantee a secure context can be established

between two disparate domains. For example, i f domain A requires non-repudiation,

but domain B does not support any compatible mechanism with domain A, then

secure interoperability wi l l not be possible. The security policy defines the rules of

secure engagement between two domains, and therefore it should be negotiated first.

A policy issue that is not dealt with by this solution is the existence of different

attributes in disparate domains. For example, domains A and B both support access

control using Access Control Lists. However, domain A defines different user roles

and access rights to domain B. There are three possible courses of action.

• users can be logged in with restricted privileges, as their attributes are not

recognised in the foreign domain; this solution will restrict the interactions that

can occur.

• the administrators of both domains can add the appropriate foreign domain users

to their own domains; this adds an administrative overhead, and requires the

administrators to have agreed on the appropriate user access rules.

• the attributes could be mapped to appropriate corresponding attributes in the

foreign domain; this approach also requires a certain amount of upfront

115

Chapter 5: Secure Interoperability in a DPE

agreement/trust between the domains, but it considerably reduces the

administrators' subsequent overhead while still providing interoperability.

533 Conflicting Security Protocols

A security protocol is used to establish a security context between the client and

server and facilitate the secure association once it has been created. I f a client and

server are using different security protocols, they wil l never be able to agree on the

security context that needs to be used because they wil l not understand each other.

The problem for DPEs is that there is currently no adequate security protocol defined.

For example, the OMG solution is the Internet Inter-Orb Protocol (HOP) and its

secure version Secure Inter-Orb Protocol (SECIOP) [96], however it does not address

all of the DPE requirements. Some protocols are functionally restricted, e.g. SSL does

not provide any access control mechanisms. Others are environmentally restricted, i.e.

they are designed for a particular environment such as Open Software Foundation's

Distributed Computing Environment (DCE) [97, 98]. None of the available protocols

address all the features mentioned in the sections above - negotiation of mechanisms

and policy configurations, and the use of generic tokens.

5.3.4 Different Trust Domains

Interoperability between different security domains within a DPE brings to the

forefront issues concerning the use of a distributed TCB (see section 3.3.2) and use of

different trust models (see section 3.3.1). I f a client and server exist in two separate

domains, A and B, and they wish to communicate, although they are considered to be

116

Chapter 5: Secure Interoperability in a DPE

using a single TCB, it is distributed across two domains and so wil l have different

levels of trust in different objects. For example, while the DPE wil l trust the security

service in its own security domain, it may not trust the security service in the other

security domain. Therefore trust has to be established between these objects. The

security service in Domain A needs to trust the security service in Domain B is

operating in a secure fashion, e.g. i f single sign-on is operating between the domains.

Domain A needs to trust the following:

• the authentication information that Domain B is holding, in order to login to

domain A, is adequately protected;

• the security service in Domain B properiy authenticated and authorised the

administrator or user that entered the login information;

• the mechanisms used for the security service are trustworthy.

In a DPE, using a distributed TCB, the trust model wi l l affect the amount of

interaction required between two separate security domains. The three basic models

define the amount of overhead required:

• No trust: Mutual suspicion exist and so all services are required, e.g.

authentication, authorisation (providing restricted 'guest' privilege) and any

user interactions should be carefully monitored and/or restricted;

• Pre-existing trust: The number of services may be reduced, e.g.

authentication may not be required (user attributes may just be mapped to the

local domain attributes), and monitoring may be reduced;
117

Chapter 5: Secure Interoperability in a DPE

• Established trust: The interaction initially requires the authentication process

to validate a user via a TTP. Once authenticated, the can be authorised to

operate as a trusted user.

Therefore a DPE needs to be able to adapt to each of these scenarios, and judge when

each is required. This places three requirements on secure interoperability in DPEs:

• the interaction needs to be recognised as an inter-domain operation;

• the security services needs to be able to configure the security policy

accordingly to the requirements;

• the security service needs to be able to adopt the required mechanisms to

enforce the security policy.

The possible inconsistencies that may arise, along with their possible solutions are

summarised in table 5-2 below.

118

Chapter 5: Secure Interoperability in a DPE

Scenario Addressing Secure Interoperability

Inconsistent
policy

Standard Policy Configurations

Both domains need to use a common policy to interoperate. The
use of standard policy configurations and any mappings to such
configurations wi l l overcome the inconsistent policy problem.
Another possible requirement is the existence of an attribute
mapping facility, between the domains.

Mechanism-Independence

Mechanism-Independence implies that security mechanisms and
security services (and their governing policies) are managed
independently of each other. Therefore it is possible to allow
negotiations so that appropriate mechanisms or appropriate
services (policies) can be selected to allow interoperation.

Inconsistent
mechanism

Standard Mechanisms

The provision of a standard set of mechanisms should ensure that
the problem of inconsistent mechanisms does not arise, as both
domains should always have at least one mechanism that they
both support for the service.

Generic Tokens

The use of generic tokens, wi l l allow help abstract security
service implementations from the mechanisms used.

Both of these facilities help provide mechanism-independence.

Inconsistent
protocols

Standard Handshake Protocol

A common protocol that can negotiate the security policy and
mechanisms that wi l l be used to provide a secure communication
between a client and server.

Inter-domain
Trust

Trusted Tliird Parties

Trust is essential for secure interoperability. The domain
administrator needs to know whether he can trust the foreign
domain. The use of 11 Ps wil l be essential in any inter-domain
service, e.g. X.509 Certification Authorities.

Table 5-2 Addressing Secure Interoperability Scenarios

119

Chapter 5: Secure Interoperability in a DPE

5.4 A New Secure Interoperability Framework

Based upon the previous analysis, a new secure interoperability framework has been

defined for DPEs. The framework comprises three new elements:

• the policy configuration structure,

• a security interoperability protocol, and

• a set of security service objects together with their interactions.

5.4.1 New Policy Configuration Structure

The issue of ensuring compatible policy configurations can be used to facilitate secure

interoperable control and administration of services, requires a standard policy

configuration to exist between both domains (Requirement #14). While certain

security policy features have been negotiated in existing protocols, e.g. the negotiation

of mutual authentication in SSL, there is no definition of a complete DPE security

policy negotiation. The objective is to specify all the services that need to be agreed

and the possible options that wil l be used for these services. The configuration is

summarised in table 5-3.

The services should include the fu l l set of ISO 7498/2 facilities: i.e. authentication,

access control, integrity, confidentiality and non-repudiation.

• Authentication has one attribute. Type ' , which defines the type of

authentication required - 'client', 'server' or 'mutual', 'client' and 'server'

represent peer-entity options where only the client or the server needs to be

authenticated.

120

Chapter 5: Secure Interoperability in a DPE

• Access control also has only one attribute, ^Mapping'. Although the

mechanism revolves around the comparison of attributes, there are still

innumerable variations on the possible values of the attributes, e.g. *read,

write, execute', 'get, set, mange'. Another problem is the use of administrative

aids such as roles, and groups, which increases the number of options

exponentially. Although the research initially hoped to define common sets of

attributes and possible their groupings (e.g. 'read, write, execute' defined as

the *Unix' attribute set) it was deemed to be an unrealistic solution. There

were too many variables, and the set definitions could easily become outdated,

and the resulting synchronisation of the sets among different domains would

prove difficult . Therefore, a solution was to provide the option to reference a

domain mapping object. This object would record the details of the mapping

between two specified domains. I f the object reference for a particular instance

of the domain mapper is provided, the interacting domains wil l use the

mappings specified. I f the object reference is ' N i l ' , then no domain mapping

exists and one of the following wil l occur, either they wil l authenticate the

client and then assign rights, or restricted attributes such as guest-privileges, or

the client wi l l already be defined because of previous adminisn-alor

interaction.

• Integrity and confidentiality services have been aggregated into a single

service Quality of Protection (QoP). There are two options. The Type ' option

lists whether no protection or a selection from integrity, confidentiality,

DetectMisordering and DetectReplay are applied. The last two options are

121

Chapter 5: Secure Interoperability in a DPE

included because they can be addressed through time-stamping and

sequencing when combined with the integrity and confidentiality algorithms.

The second option is ^Message Part', this is defined under the assumption that

a DPE protocol wi l l be defined that wi l l allow the QoP mechanisms to be

applied in this fashion. I f a non-DPE protocol is used, then the message part

segment may not be applicable. In an effort to reduce the performance

overhead, the policy tries to configure the amount of message sent between the

two domains that should be protected. The protocol message is broken up into

its constituent parts and the policy defines the portion to be protected, the

operation called, the parameter passed, target destination and any other

information that might be included, such as transaction related details.

• Non-repudiation is specified by identifying the types of evidence to that are

required (see section 3.2.5). Each domain needs to know that the foreign

domain can produce the requested evidence; otherwise one of the participants

may be vulnerable to repudiation.

• TTP is specified by identifying the role the TTP wil l play in a service, e.g. a

TTP for authentication, or a TTP for non-repudiation delivery authority. A

object reference is then associated with the specified role.

122

Chapter 5: Secure Interoperability in a DPE

Service Policy Options Policy Configuration Values

Authentication Type Client, Server, Mutual

Access Conn-ol Mapping Ni l , <Reference>

QoP Type

Message Part

NoProtection, Integrity, Confidentiality,
DetectMisordering, DeiectReplay

parameters, operations, destination, info

Non-Repudiation Evidence Type Proof of Origin, Proof of Receipt,
Proof of Submission, Proof of Delivery

TTP <Role> <Reference>

Table 5-3 Policy Configurations

No audit section has been specified because the audit information is considered to

remain local to each domain. Each security service wi l l create audit records for any

security-relevant event that occur within their own domain, and this information does

not need to be propagated across the domain boundaries. There are only two instances

when such inter-domain audit would occur. Firstly, i f a single audit service is running

over both domains. In this case, the audit records could be directed to a single central

repository that both domains could access, as a single audit policy would actually be

in operation. Secondly, i f a security incident, such as an attack occurred, then the

administrators from both domains may wish to share audit information to help track

the culprit. However, this administrative interaction would generally occur off-line

and with the direct assistance of the administrators. It is not required for the inter-

domain interaction described here.

123

Chapter 5: Secure Interoperability in a DPE

5.4.2 New Secure Interoperability Protocol

Based on requirements defined in the previous chapter, the secure interoperability

protocol needs to have the ability to:

• provide the appropriate translation ability between domains, e.g. the ability to

map security attributes (Requirement #12);

• utilise compatible security mechanisms (Requirement #13);

• utilise compatible security policies (Requirement #14);

• define a secure context through the negotiation of an agreed policy

configuration and through the use of compatible security mechanisms

(Requirement #15);

• establish a trust relationship (Requirement #11).

A protocol has been defined to meet the needs of secure inter-domain DPE

interactions. The messages utilised are listed in table 5-4 below.

124

Chapter 5: Secure Interoperability in a DPE

MessageName Function
CreateContext Passed by the client to the target when a secure context needs

to be created.
NegotiateContext Used by the client or target during context establishment to

pass further messages to its peer as part of creating the context.
AcceptContext Returned by the target to indicate that the association has been

established.
DeleteContext Used to indicate to the receiver that the sender of the message

has discarded the identified context. Once the message has
been sent the sender wil l not send further messages within the
context.

ProcessContext When a secure context is established, messages are sent within
the context using this message.

ErrorContext Used to indicate an error delected in attempting to establish an
association either due to a message protocol error or a context
creation error.

Table 5-4 Secure D P E Interoperability Protocol Message Types

A l l messages wil l contain a header with an object reference. An object reference

identifies the target. It can contain information such as the host (a DNS name or IP

address), port number (identifies the port the server is running on), server name where

the object resides.

CreateContext wi l l use four parameters, Contexildenlifier, ContextldentifierType,

PolicyConfiguration and Token. Contextldentifier is a unique identifier created by the

client an associated with the context. ContextldentifierType is used to define describe

the state of the identifier; it can be Client, Server, or Peer. A Client identifier is one

that is used by the client before a context is agreed; similariy a Server identifier is

used by the server; a Peer identifier is one that is used by both client and server once a

context is agreed by both. PolicyConfiguration describes the client's policy settings. It

defines the mechanisms, policies and mappings configurations, and lists those items

125

Chapters.- Secure Interoperability in a DPE

that are required (have to be provided to ensure a context can be created) and

supported (other possible configurations available that meet or exceed the context

requirements). It is the information held in the SecurelnvocationPoIicy described in

section 5.4.3.1 below (see tables 5-5 and 5-6). Token is used to provide the client with

the opportunity to send authentication information to the server, i f client

authentication is required. The server wi l l use the configuration information specified

in PoIicyConfiguration to identify the mechanism and policy requirements of the

token, i.e. what mechanism is used (e.g. X.509) and what type of policy is used (e.g.

mutual authentication).

Once the client has established its parameters with the server, the server responds with

the NegotiateContext message. NegotiateContext uses the same four parameters as

CreateContext - Contextldentifier, ContextldentifierType, PoIicyConfiguration and

Token. It provides the sever with a means of specifying policy requirements, and also

providing authentication information to the client. The NegotiateContext message can

be used by both client and server until a policy configuration is found and one or both

parties are authenticated, i f required. Once negotiation is complete, the server wi l l

issue the AcceptContext message with two parameters, Contextldentifier (an agreed

Peer identifier) and PoIicyConfiguration (the final and agreed security context

configuration).

ProcessContext can contain any message internally and to accommodates this by

providing two parameters, Contextldentifier and MessageBuffer. The message buffer

is an opaque datatype that can contain any datatypes thereby allowing the message to

hold encrypted, or integrity checked messages; the context is providing the secure

126

Chapters: Secure Interoperability in a DPE

channel between client and server and is not concerned with the content of the

message that is secured (this includes any errors returned by the application or server

that are not related to a context error); the message wil l be processed by the DPE.

The DeleteContext message has one parameter, Contextldentifier and is used by either

the client or server to indicate that the context wil l not be utilised and wil l be

destroyed.

The ErrorContext indicate that an error has occurred in the context, either in the

protocol or during context creation, therefore ErrorContext requires 3 parameters,

Contextldentifier, ContextIdentifierType(as the Peer identifier may not be available

yet), and Error. Error contains the error data.

The message sequence chart, figure 5-1 below, is used to illustrated how the protocol

operates. The interaction takes place between a client and a target that exist in

different security domains, and therefore a secure context needs to be established.

The process begins with the client issuing a CreateContext message to the target. It

provides the client's requirements for a secure context, i.e. the policy configuration

(see section 5.4.1 above) the client requires. The server responds with the

NegotiateContext message, which defines the servers* policy configuration. The

NegotiateContext message can be used a number of times while the client and target

establish the secure context. The server wi l l eventually send an AcceptContext

message i f it agrees to the context; otherwise it wi l l send a DeleteContext to stop any

further interaction and remove the context.

127

Chapter 5: Secure Interoperability in a DPE

Once a secure context has been established, both client and server use the

ProcessContext message to send data. A ErrorContext message (not shown on chart)

is used to show that a protocol or context error has been detected.

When interaction is completed, a DeleteContext message can be sent by either client

or server. It is acknowledged by a corresponding DeleteContext from the other party.

I CreateContext

L NegotlateContext "1
1 NegotiateContext J

AcceptContext

ProcessContext

ProcessContext

DeleteContext

DeteteContext

Figure 5-1 Secure Interoperability Protocol Message Sequence

5.4.3 New Secure Interoperability Service Objects

Three new service objects are required to provide the secure interoperability

functionality for DPEs: the Security Interoperability Policy (SIPolicy), the Domain

128

Chapter 5: Secure Interoperability in a DPE

Mapping Agent (DMA), and the Secure Interoperability Agent (SIA). They are

described in detail in the following sub-sections.

5.4.3,1 Secure Interoperability Policy

The SecurelnteroperabilityPolicy object caters for the negotiation of all security

services to establish a security context between a client and target. As such, it holds

the configuration information for each of the services specified in table 5-3 above.

Therefore, a basic structure is applied to each of these security services to facilitate

negotiation, as shown in table 5-4 below. Each component of the structure is then

discussed.

Section Structure

Mechanisms Required: identifies the mechanisms required for the
specified service. This wi l l be the minimum security
required by the object for this service.

Supported: identifies mechanisms that the object can
support, other those that specified in Required. Again, this
can be specified for each of the security services.

Policy Configuration Identifier: identifies the policy
configuration being used, be it standard or customised.

Date: the date the policy was set.

Mapping Mapping Identifier: identifies the domain mapping being
used on the policy configuration

Date: the date the mapping was set.

Table 5-4 SecurelnteroperabilityPolicy Structure

o Mechanism has a Required/Supported structure for the security services. This

wil l list the required (i.e. minimum) security mechanism to be used and then any

other possible supported mechanisms. Both required and supported mechanisms

wil l supply references to the MechanismPolicy objects, so that any mechanism-

129

Chapter 5: Secure Interoperability in a DPE

specific data required can be accessed from there. The reason that the

SecurelnteroperabilityPolicy does not access the security services policies, such as

Authentication Mechanism (see Section 4.4.3), directly, is because the

administrator may wish to enforce only certain mechanisms for interoperability,

e.g. he may wish to make inter-domain operations use a higher level of security

than that available in the local domain. Using the authentication service as an

example, the Required mechanism may be 'Password', while the supported

mechanisms could be 'SmartCard', 'Fingerprint', and 'Retinal Scan'. 'Password'

is the minimum requirement, as it requires the user to possess certain knowledge,

i.e. the password. However, the other mechanisms rely on users possessing

another form of authentication, such as a card, or some biometric measurement.

To enhance performance and reduce negotiation, at least some of the mechanisms

used should be based on a standard common set of mechanisms.

• Policy defines the identifier of the policy configuration used. Use of standardised

policies configurations (see sections 5.3.1) facilitates the negotiation of a common

policy. As in the Mechanisms section, a Required/Supported structure wi l l specify

the required policy configuration, and alternate policy configurations that can be

supported.

• Mapping includes an identifier to the mapping that is held by the Domain

Mapping Agent object. This is used to locate the mapping that is applied to

translate the policy configuration specified in the policy section to the policy

configuration required for interoperation with a foreign domain. The section also

contains a date field to identify when the mapping was set. The use of dates in the

130

Chapter 5: Secure Interoperability in a DPE

Policy and Mapping sections allow the DPE to check that the mapping remains in-

synch with the policy configuration. I f the policy configuration is updated, then

the mapping should possess a date equal to or greater than the date specified for

the policy; otherwise the Mapping may be from an old configuration and may no

longer be sufficient to translate the new configuration.

The whole SecurelnteroperabilityPolicy structure is summarised in table 5-5 below.

The identifier section allows the administrator to set different policies for different

object types with different domains and, thereby, optimise performance and tailor

security requirements.

131

Chapter 5: Secure Interoperability in a DPE

Service Basic Structure Function
General Identifier Uniquely identifies the policy - and the object

and donnain it applies to.
General

Object type Identifies the object type (i.e. class) the policy
applies to. If set to default, then the policy
applies to all Object Types (without a specified
policy).

General

Domain id Identifies the foreign domain the policy applies
to. If set to default^ then the policy applies to
invocations on all foreign domains (without a
specified policy).

Authentication Mechanisms List the authentication mechanisms required and
supported by the domain

Authentication

Policy List the authentication policy configurations
required and supported

Access Control Mechanisms List the access control mechanisms required and
supported by the domain

Access Control

Policy
- Attribute

Identifies the mappings that can be applied to the
Attributes

QoP Mechanisms List the QoP mechanisms required and
supported

QoP

Policy
- Type, Msg_pan

Lists the QoP policy configurations for Type and
Msg_part

Non-Repudiation Mechanisms Lists the non-repudiation mechanisms required
and supported

Non-Repudiation

Policy
- Evidence

Lists the non-repudiation policy configurations
required and supported

Trust Authority Id of a TTP that can be used to validate domain
administration (a public key certificate)

Trust

Expiry time Expiry time of SecurelnteroperabilityPolicy

Table 5-5 SecurelnteroperabilityPolicy Structure

5,4.3.2 Domain Mapping Agent

The Domain Mapping Agent can be considered a registry/repository for mappings

between policy configurations. The policy can be accessed through a unique

identifier, which identifies the domains involved in the mappings, and uniquely

identifies the instance of the Domain Mapping Agent, e.g. A_B_LO identifies the

version 1 mapping between domains A and B. The Domain Mapping Agent maps

values between two sets of attributes, as agreed by the domain administrators.
132

Chapter 5: Secure Interoperability in a DPE

5,4,3,3 Secure Interoperability Agent

The Secure Interoperability Agent is responsible for taking control of an inter-object

communication, once it has been identified as an inter-domain interaction. Before

contacting another service object, the client wi l l need a reference to it. Within llOP,

this involves an object identifier that immediately identifies that object as originating

in a foreign domain. Any DPE interoperability protocol wil l include such a facility,

because even though location transparency is provided to the client, the DPE needs to

possess this type of knowledge to locate the object. Once the QoP Agent has

identified the target object as being in a remote domain, the SIA wil l be called, it wi l l

then retrieve the secure Interoperability policy and possibly any necessary domain

mapping information, in order to begin negotiations for a secure context with the QoP

Agent and Secure Interoperability Agent of the remote domain.

5.4.4 Secure Interoperability Example

The following example illustrates how the secure interoperability components would

work together to help create a secure association between different domains. Table 5-

6 below lists the relevant SecurelnteroperabilityPolicy values for the client and server.

As non-repudiation is not included in the example, it is not included in the table. The

policy was specifically created to allow interaction between the specified domains.

Both use ACLs for access control, but have agreed a domain mapping for their

attributes and roles (see table 5-7). The use of RoleB2 and RoleB2_l is deliberate, to

illustrate the fact that Domain B only had two roles (RoleBI, RoleB2) while Domain

A had three roles defined. Therefore, when agreeing the mapping, Domain B's

133

Chapter 5: Secure Interoperability in a DPE

administrator created another role (sub-group), RoIeB2_l. Both client and server

require integrity checks.

Service & Level Config. User Policy (A) Provider (B)
Identifier Default_1.0 A B 1.0
Object Type Default Default
DomainlDs Default A
Authentication
Mechanism

Required: -
Supported: -

Required: -

Authentication
Policy

Type Required: -
Supported:

Required: Client
Supported: -

Access Control
Mechanism

Required: ACL Required: ACL

Access Control Mapping Mapping: A<=>B Mapping: A<=>B
QoP Mechanisms Integrity/

Confidentiality
Required: -
Supported:DES, RSA

Required: RSA, DES
Supported: -

QoP Policy Type
Msg_part

Confidentiality

TTP <TTP_Acert> <TrP_B cert>

Table 5-6 User/Provider SecurelnteroperabilityPolicies

A o B
Attributes in A o Attributes in B

read and/or execute get
write and/or execute set
read, write, execute manage

Roles in A o Roles in B
RoleAl (write, execute) RoIeBl (set)

RoleA2 (read) o RoleB2 (get)
RoleA3 (read, write,execule) o RoleB2_l (manage)

Table 5-7 Attribute and Role Mappings

In the example, a user A (client), whose role is defined as *RoleA2* and has access

right 'read' in Domain A is requesting an existing service (server) in Domain B (see

figure 5-2 below). The example is a sub-set of the 'logging into a provider' scenario

(see section 4.5.1). Therefore the user in Domain A wishes to log into the provider in

134

Chapter 5: Secure Interoperability in a DPE

Domain B, and both are in different administrative security domains. Once the

Security Agent realises that the provider is in a remote domain, it wil l use the Secure

Interoperability Agent and QoP Agent to create a secure context. The example is

detailed below.

Secure Interoperability subset of Logging in to a Provider in a Foreign Security

Domain:

This example shows the user A establishing an access session with their named user

agent of the provider. The user wishes to make use of the provider's services, which

the user has previously subscribed to.

Usei Domain

SIPolicy

SIA "

SecA"

QoPA

Piovidei Domain

as-UAP : i

1.
] ;

:2.
PA I I lA

SiPollcy

y/(ctd)

UA (ciu)
S e c A ^ /

6. DeatqContexl (->}
(c^S.Negoti^tbConiexi

lOJicceptGtjntext
ll.PiocesiContexl

QoPA
—!

Figure 5-2 New Secure Interoperability Login Example

Preconditions:

The user has contacted the provider, and the Provider Agent (PA) has an interface

reference to an Initial Agent (lA) of the provider.

The new security preconditions required:
135

Chapter 5: Secure Interoperability in a DPE

• security is available in both the user and provider domains;

• user A is defined as an authorised user in the provider domain;

• a QoP Policy is available for the Provider Agent and User Agent;

• there are no audit or non-repudiation policies related to the login process;

• to facilitate secure interoperability, the administrators have defined a mapping

between the security attributes and roles of the domains.

Scenario:

(The new secure interoperability interactions are steps 4 to 11.)

1. User A uses an access session related User Application to login to the

provider, as a known user. The access session related User Application

requests the user authentication information such as the UserlD and password.

The user then requests the Provider Agent to login to the provider, as a known

user. The access session related User Application supplies the security

information to the Provider Agent.

2. Provider Agent requests that an access session is set up with the named User

Agent of the user. Provider Agent provides the usemame of the user to the

Initial Agent.

3. The Provider Agent also sends the security information to the Security Agent

in the user domain. Security Agent^.

4. Security Agent^ now has the Initial Agent reference and is aware that it is in a

foreign domain. Therefore, in order to send the information to the Security

136

Chapter 5: Secure Interoperability in a DPE

Agent in the provider domain (Security Agent**) to authenticate the user, a

secure association must be established. Security Agent" now contacts the

Secure Interoperability Agent in the user domain (Secure Interoperability

Agent").

5. Secure Interoperability Agent" retrieves user A*s secure interoperability

policy information for Secure Interoperability Policy".

6. In conjunction with the QoP Agent", Secure Interoperability Agent" contacts

the Secure Interoperability Agent** in the provider domain to establish a secure

association, using the CreateContext, which contains the client's security

context information, which is comprised of the association options and a

security token. The security token is a generic token that is hiding the security

mechanism-dependent information (in this instance the security token consists

of user A's request for the TTP_B's RSA public key certificate, along with

1TP_A*s public key certificate).

7. Secure Interoperability Agent** receives the request, via Security Agent**. It

extracts the security context information (the certificate request), along with

the other interoperability options defined from Secure Interoperability Policy",

Secure Interoperability Agent** then contacts the Secure Interoperability

Policy** to obtain the provider's policy. In comparing the options, the provider

decides to use RSA and DES to provide QoP, and utilise the domain mapping.

It also extracts TTP_A's certificate.

137

Chapter 5: Secure Interoperability in a DPE

8. Secure Interoperability Agent** then sends a NegotiateContext, in conjunction

with QoP Agent, to Secure Interoperability Agent^. It defines the accepted

association options, and the security token contains the TTP_B's certificate,

and is encrypted using TTP_A's public key.

9. Secure Interoperability Agent" receives the message, decrypts it with the

private key, extracts TTP_B*s certificate, and is ready to accept the association

options. Therefore it now responds with NegotiateConiext, to Secure

Interoperability Agent^ where the security token now contains a DES secret

session key and user A's security id and privileges, which is encrypted using

TTP_B's public key. |
< ^

10. Secure Interoperability Agent** receives the message and decrypts i t using

TTP_B's private key. It can extract the secret session key and also extract user

I
A's security privileges. The user and provider have now established a trust

relationship between the domains, using the TTPs. It then access the

appropriate Domain Mapping Agent, and can translate user A's privileges

using the mapping. Secure Interoperability Agent** sends a AcceptConiext,

using the DES session key.

11. A secure communication channel has now been established between the

domains, and the user's original request to the Initial Agent can be transmitted

in a ProcessContext message, via the Secure Interoperability Agent.

12. Session wi l l continue using the Secure Interoperability Agents and QoP

Agents for secure interoperability.

138

Chapter 5: Secure Interoperability in a DPE

Post-conditions:

The new security post-conditions required are:

• secure context exists between the domains;

• user A*s privileges have been mapped to the provider domain, even though

user A is not identified as an authenticable user by the provider.

Alternatives within scenario:

There are several alternatives available within this scenario:

• i f both domains did not support compatible mechanisms for any of the

services, the interaction would fail;

• i f the user did not exist in the provider's domain, and there was no TTP to

authenticate the domain, or domain mapping, available then the

interoperability would fail;

• Secure Interoperability Agent/Secure Interoperability Policy can be used to

ensure that domains are compatible, even i f a domain mapping is not required

(i.e. the user profile exists in the provider domain, and so the user can be

authenticated and have id and privilege attributes assigned in the usual

manner).

Although the introduction of the new Secure Interoperability Service constitutes

additional overheads, it should be noted that the service allows two domains to

139

Chapter 5: Secure Interoperability in a DPE

interoperate with the minimum administrative interaction, e.g. domain A and B in the

example above can interoperate i f they provide TTP certificates and a secure

Interoperability mapping (assuming that the domains have common mechanisms and

certificates are available to the appropriate clients/servers) - this is instead of domain

A having to add all of domain B's users to its security policies and domain B having

to complete similar actions for domain A's users.

5-5 Summary

Although secure interoperability is not a new concept, its application to DPEs is new

in this research. In existing DPEs, secure interoperability is a real problem. It exists

because disparate domains can have different mechanisms, policies, protocols, and

trust models. A l l of these differences have to be overcome in order to provide

interoperability. There are several mechanisms that can be used to help overcome this

issue. Bridges provide a quick and easy solution, but they do have limitations.

Immediate bridges are not flexible for large numbers of interoperating domains,

whereas mediated bridges can increase the performance overhead because they

increase the number of times a single messages has to be encrypted and decrypted.

Standardisation of mechanisms and policy configurations provides two benefits, it

allows clients and servers to negotiate their secure context, and it also facilitates

mechanisms and service (policy) independence. The use of generic tokens also

facilitates these characteristics. A l l of these methodologies can be applied to any DPE

to help solve the secure interoperability problem.

140

Chapter 5: Secure Interoperability in a DPE

Although the standardisation of mechanisms used, policy configuration and

mappings, may seem unrealistic, it is not. In the selection of standard mechanisms for

use, there already are obvious leaders in each of the security services. For example,

access control is generally done by A C L or Capability lists; QoP would find 3DES,

RSA, and MD5 as some of the most frequently used mechanisms. Policy

configurations are limited to the key issues, which are completely mechanism

independent, and the mappings apply to these policies. The fact of using such

standards can be seen as a limitation to any system. However, as always there is a

trade-off, limitation of mechanisms used versus the ability for interoperability to

occur without any user or administrator intervention. In large-scale distributed

systems, which may cross many boundaries, the administrative overhead would be

prohibitive i f interoperability required specification of mechanisms, policies and

agreements for each domain-boundary crossing.

Up to this point in the research, consideration has been given to security in the DPE,

with respect to the security services itself and how it can interoperate between

disparate domains. However, the research needs to extend this scope and look at

secure interaction with other DPE services. The following chapter wi l l now look at

how DPE supporting services can improve security by becoming 'security-aware*.

141

6. Security-Aware DPE Services

6.1 Introduction

The research has, until now, concentrated on end-to-end security between a client and

server. However, this is making the assumption that only the core ORB and its

security service are necessary to complete a secure client-server invocation. But a

DPE is more complex than this. According to TINA-C (see Section 2.3.3), the main

function of DPE [99] is to provide uniform execution environment and basic

capabilities for interaction between objects in heterogeneous network, and this is

supported by a range of DPE services to provide extra functionality to application

objects.

According to the ISO architecture, security should be provided in a modular formal

[41]. This architecture divides system management into functional units, FCAPS - the

'S' being the security module. A system should be able to function independently of

the security service, and when the security module is introduced the same system

should now operate in a functionally similar but secured fashion. In other words, the

service should be a self-contained module that can provide security without having to

change any other services. This type of thinking is practical in a centralized system

such as IBM's Resource Access Control Facility (RACF) [80]. Here the TCB is

contained within a single system. The security service can monitor all requests and

provide the required security functionality. However, distributed systems are more

complex. As previously discussed in section 4.2.1 distributed objects introduce

complications and the TCB is no longer contained in a single system and may need to

142

ChdpicrO: Scruriry-Awarc DPE Services

operate across multiple systems, i.e. security domains (see Section 3.3.1 and 3.3.2).

This results in an extended set of security requirements for a DPE (see Section 4.2).

Therefore the modular solution may be inadequate.

While it is recognized that security should be pervasive [41], the issue in a DPE is

what the term pervasive means. I f pervasive security in a DPE should be part of the

whole environment, which implies that the supporting services should also be

secured, then the modular solution may not be sufficient.

The objective of this chapter is to look at these services with particular reference to a

Trader Service (see section 2.5) and see i f in the current modular security architecture

is adequate to secure them. This topic has not been investigated in previous literature.

It concludes with recommendations for supporting secure operation of the Trader.

6 . 2 Security Issues for Supporting Services in a DPE

As described in Chapter 2, the DPE is reliant on a set of services to provide support

for distributed objects, i.e. to handle distributed processing and provide transparency

between clients and servers. Some of the TINA DPE services previously identified

(see section 2.3.3) are listed below:

• Trading: provides a binding between objects that use a service (importer) and

objects that provide the service (exporter);

• Notification: enables objects to receive notifications without being aware of

the set of recipient objects;

143

Chapter 6: Sa itrity-Awarc DPE Services

• Transaction: consists of three main management functions: transaction,

concurrency control and deadlock management;

• Security: authentication, authorisation and security controlling.

Each service is implemented by a number of objects. Currently security is

implemented by applying the security rules to these service objects. This means that

access can be granted to a client, when requesting use of a service object, i f the client

possesses the appropriate privilege attributes. However, even looking at an overview

of the services some security issues become apparent. They are outlined below;

• Persistence Service: The Persistence Service stores components persistently

on a variety of storage servers. Although access to the persistent storage

objects are controlled, the stored data is not secured - the security service has

no control over this; it would be an implementation level detail, i.e. i f the data

was stored in a database, the implementer would enable database security.

• Naming Service: The Naming Service locates components by name. Once an

object can access the naming service, it can access all names in the service, as

there are no security restrictions. Also Naming services can be federated, i.e.

two naming services are linked together to operate like a single service. I f the

federation exists across different security domains the client is unaware that he

is crossing a domain boundary and security controls could be by-passed

• Event Service: This service allows 'consumers' to register/unregister interest

in specific events. The 'suppliers' then generate information about this event

and send it to the consumers via an event channel. It is a basic

144

(huptcr 0: Sct:iiriry-A\\ arc DPE Services

publish/subscribe or notification service. Security has not been defined for the

event channels, i.e. access control is not available for specific events on a

single channel, and there is no indication whether the channel requires

encryption. Also the event service demands a certain amount of Quality of

Service (QoS), i.e. guaranteed delivery, persistence of event data in the event

of an event channel failure and use of logging facility. I f the event channel

was subject to encryption then the supporting QoS mechanisms, would also

need to ensure security, e.g. the persisted data would have to be protected.

o Query Service: This allows a client to use query operations for attributes

associated with objects, in much the same way SQL can be used to query a

database of records by querying the fields in the records. It provides for

asynchronous query, so that the query can be issued and the client does not

have to block while waiting for a response. No security precautions have been

added and so there is no way to identify what attributes a client can perform

queries on, e.g. does the client have the security clearance to query a payroll

attribute on an employee database. Another problem is Denial of Service, e.g.

a rogue client can Hood the query service with too many asynchronous or long

running synchronous queries thereby causing the services to halt or crash.

o Trader Service; Similar in function to the Naming Service, the Trader allows

an importer to locale an object, published by an exporter, but it does so by

identifying a set of required properties. A security problem could arise i f some

of the services offered by the trader require higher security clearance than

others; there is no way of controlling access to particular offers in a single

Trader.

145

Chapter 6: Set:nnr\'-A^ are OPE Servici'

There are security issues that exist in DPE services that are not currently addressed.

The above descriptions are just high-level overviews of such problems, but the

problem demands further detailed investigation. Therefore a single service, the

Trader, was selected and examined in detail (see section 2.5 for a detailed description

of the Trader).

6.3 Security issues related to Trading & Traders

Traders in a distributed environment are open to attack, as is any part of a system. The

research has defined the areas where Traders are most vulnerable to security breaches,

and categorised them below within the five ISO security concepts.

6.3.1 Authentication

Traders receive requests for impons/expons from members of the trading community.

Like any system resource, they are susceptible to masquerade (see Section 3.2.2).

Authentication is the service required to counteract this threat. It is a two-way

process; Traders, as well as importers and exporters should be identifiable and

authenticatable.

6.3.2 Access Control

Access Control needs to be handled at two different levels. Firstly, access control of

the Trader itself should be considered, i.e. who has access to the Trader. Secondly,

access control of service offers must be handled, i.e. which service offers an importer

146

Chapter 0: Sct iirin-Av^ are DPK Services

can see within a Trader. The access control rules need to be preserved across linked

Traders.

6.5.2.7 Unauthorised Trader Access

Traders should have access control information, just like other objects in a distributed

system. It should be listed in the access control mechanism, e.g. an ACL (see section

3.2.1). I f trading community objects, e.g. Trader and exporter, are listed in the ACL,

then the access control manager, i.e. Authorisation Agent (see section 4.4.1.2), would

be able to make decisions relating to access, e.g. who can make requests on a

specified Trader. For example, a Trader operating in a domain where access is

controlled on the basis of roles, may use the roles of 'Role2' and 'RoleT, where

'RoleT has a higher security classification than 'Role2', i.e., 'Role2' < 'Rolel ' . In

figure 6-1 below, the Traderl can only be accessed by 'RoleT, where as the Trader2

can be accessed by both 'Role2' and ^RoIeT.

access granted Traderl
'Rotel' access only

Userl with role
'Roler

Trader2
y 'RoleV &'Role2'

access granted access access

User2 with role:
•Role2'

Figure 6-1 Trader Access Control

147

Chapter 6: Scritruy-A^ are DPE Services

63.2,2 Unauthorised Service Offer Access

Even i f an importer has access to a Trader it may not have access to all the service

offers that the Trader holds. Some of the service offers may be of a higher security

classification, for example, the security classification of the exporter could, by,

default, be assigned to the service offer. Alternatively the exporter could specify a

security classification equal to or lower than its own classification.

Taking the scenario in the previous section 6.3.2.1, where Trader2 allows both

'Rolel ' and *Role2' to access the Trader, i f service offer access is enforced then some

of the service offers wi l l only allow ^RoleT to view them and some service offers wi l l

allow both *Roler and *Role2* to view them, as illustrated in figure 6-2 below.

User1 with role:
'RoleV

User2 with role:
'Role2'

Query Trader2

Query Trader2

Rolel - service 1
Rolel - service 2
Rolel • service 3
Role2 - service 1
Role2 - service 2

Role2 - service 1
Role2 - service 2

Rolel - service 1
Rolel - service 2
Rolel - service 3
Role2 - service 1
Role2 -service 2

Figure 6-2 Trader Service Offer Access Control

148

Chufylcr 0: Scntriry-Aware DPE Services

6.3.3 Integrity and Confidentiality

Iniegrily and confidentiality of data, stored [100] or in transit [101], must be

guaranteed in a distributed system; this has to include trading-related data.

6.3.3.1 Stored Data

Details of service offers, including an object reference, are stored in the Registry. It

must be protected, as an intruder may try to gain access to a service by gaining illegal

access to the object. Similarly details of the Service Type held in the Repository,

should be protected to ensure that intruders do not have knowledge of *how* to use

the service type, i.e. interface details, parameters, etc.

Integrity & Confiedentiality ^
Protected Trader

Trader

Intruder

Unprotected
Persistant Storage

Database

Unprotected
Persistant

Storage

hlathile

Figure 6-3 Protecting Stored Data

It cannot be assumed that the Trader's backend data, i.e. the data stored in the

Registry and Repository, is hidden behind object interfaces and, therefore, is not as

149

Chapter 6: Srruriry-Awarc Dl^li Services

vulnerable to attack as object references that are exported through the interface.
Intruders do not always use legitimate access mechanisms and, therefore, the
'backdoor' entry must be considered - see figure 6-3 above. Such data wi l l usually be
held in persistent storage, such as a database, or flat fi le. Therefore the Trader, i f
operating as a security-aware service, should be able to guarantee that the data is
secure, even when i i is in storage. Cryptographic mechanisms (see section 3.2.3 and
3.2.4) are used to ensure that the confidentiality and integrity of the data is preserved.

6.3.3.2 Inter-Community Communications

Since a Trader is operating in a distributed environment, this provides an intruder with

ample access to intercept any communications between members of a trading

community. Object references and service type details are transmitted to exporters,

importers and other Traders. From such interceptions, one may be able to re-construct

Registry/Repository information. Therefore transmitted data has to be protected. A l l

communications between trading community members should be secured to ensure

the confidentiality and integrity of all messages.

6.3.3.3 Secure Interoperability

The issue of secure interoperability was covered extensively in the previous chapter,

and is particularly pertinent to the issue of federated trading, when the Traders exist in

disparate security domains.

6.3.4 Non-Repudiation

The trading community is made up of distributed objects, which are less predictable

due to their flexible and granular nature [24]. There are two problems. Firstly, i f the

150

(Chapter 6: Scetiriry-Awarc OPE Services

intruder is an authorised user, or is successfully masquerading as an authorised user,

how can their actions be discovered? For example, an intruder can masquerade as an

importer, and query Traders to find useful service offers. The process of monitoring a

database may help, by providing clues to an intruder's activities. Secondly, i f

interactions are taking place, how can it be proven that a specific interaction or event

took place, i f one party wishes to deny the event, i.e. accountability? Irrefutable

evidence is required from a non-repudiation service.

1. Monitoring: A l l security related events should be monitored. These events are

defined by the security policy. Apart from notifying an administrator, via an

alarm, that an illegal action has be taken, monitoring could also provide clues

to a previously unknown intruder, e.g. an importer making multiple

unauthorised import requests on several Traders. However, this requires data

filtering to find trends, which can be used to raise a system administrator's

suspicions.

2. Irrefutable Evidence: Non-repudiation is used to provide irrefutable evidence

that certain events took place. For example, digital signatures can be used with

audit logs to record events. Just as other system resources are subject to a non-

repudiation policy, so too are all the trading community members.

6.4 Current Limitations

Within the current DPE specification of TINA, security of a DPE service is not

defined. Although the access session does provide a limited notion of authentication

and authorisation (see section 4.3), there is no specification of how this is applied to a

151

Chapter (): Secttriry-Au arc DPE Servit:i\s

service. As the location of Trader objects, within the service environment has not

been specified, it is initially assumed that they are available only within service

sessions. The current model suggests that there is no security available and so the

trading actions are not secure. If, however, the assumption is made that a Trader can

be available in both service and access sessions, then access-session objects can be

secured through authentication and authorisation, but the service session Trader is still

insecure. Additionally, in both of these scenarios, there is no Quality of Protection

(QoP), audit or non-repudiation security available. Similarly the lack of a secure

interoperability protocol provides a problem, especially in the case of federated

trading across security domain boundaries.

The current DPE specification is insecure for DPE services. If, however, the new

Security Framework is applied it still does not address all the issues specified in the

previous section. Although access control of the Trader can be handled by the security

framework, via the Authorisation Agent (see section 4.4), the access control of the

service offers within the Registry cannot. The new security service has no way of

associating security data with a particular service type instance stored in the Registry;

it only associates security policies with objects or methods on an object. It would

require the storage of a security property in the Registry itself. The reason for this is

that such a property would be used to sort and make selections when providing

service offer lists to importers. This problem is also linked to delegation as the

security property would be set in the Registry and would probably be delegated from

the exporter, e.g. use the exporter's security level.

152

Chapter 0: Set urir\-Aw are DPE Service

IMPORTERS EXPORTERS

seivtCQ 1
SOTVicO 2
service 3 wiih lole

RolOl

Usei2 with lole:
'Role2*

Tradet2
o l e l f t 1^0102'accosi

•Rolc2*vfew

StmncE SECURTTY
SOTVfcO 1 'Rote2*

setvice 2 •RoIe2*

sendee 3 RoleT
servico 1
seMco 2

Exporter
role:

'Role2*

Exporter
role:

•Rolel '

Exporter
role:

•RoloT

Figure 6-4 Service Offer Access Control with Registry Security Property

In figure 6-4 above, three exporters are exporting services to a Trader. The first

exporter has the 'RoIe2'. When it exports a service offer, the Trader takes 'Role2* as

the required security role for access to the services, i.e. as the security properly values

in the Registry. TTie second exporter has 'Rolel ' . When exporting its service offer, it

specifies *Role2' as the required security role. This is possible because *Role2' has a

lower security classification, i.e. 'Role2'<'Roler. Finally, the third exporter has a

'RoleT. It exports its service offer to the Trader and accepts the default security

property of *RoIer. In the example, when an importer invokes the lookup operation

on the Trader, only the appropriate services offers are returned, i.e. the importer can

only view service offers with security properties (Role) less than or equal to their own

security property (Role).

Securing trader data, such as that held in the Registry and Repository, needs to be

addressed. Currently these databases are not encrypted. In addition, trading

community communications should be secured. The level of security would depend

on the objects involved and their security level, as well as the level of the service

offers being exported/imported.

153

Chapter 6: Seeuriry-Aware DPE Services

Securing transmitted data requires the use of cryptographic mechanisms to preserve
the integrity and confidentiality of the messages. The use of secure contexts, as
specified in section 4.4 via the QoP Agent, would provide protection.

As for stored data, there are a several possible solutions. The data could be encrypted

before it is written to storage and then decrypted after it is read. This is a solution

most suited to flat file systems. It could also be applied to database systems. However,

most databases today employ a security service of their own, i.e. they wil l secure the

data [102]. These systems are designed to maximise efficiency while still ensuring the

security of the data and, as such, it would be preferable to utilise these facilities.

There is one further option that would offer a generic DPE solution as opposed to the

product-dependent solutions above. This option involves the use of a DPE Persistence

Service. This service would have to be aware that security was in operation and that

the stored data needed protection, i.e. it needs to be security-aware. The data for the

Registry is stored in some persistent storage facility such as a database or file. The

data is stored using the Persistence Service [103]. I f the Persistence Service is

security-aware it wi l l ensure that when the data is held in the data stores (e.g. a

database or file) it wil l be protected. However, DPEs are unable to deal with securing

stored data because they do not provide security-aware services, and there are no

other facilities to handle the encryption of stored data or utilise product-encryption

facilities.

154

Chapter 6; Sccuriry-Aw are DPE Services

6.5 New Facilities Required

The previous section illustrates that the new Security Framework and Trader

specifications are inadequate to provide security. Both the Trader modifications,

described in this chapter, and the Security Framework (including secure

interoperability), described in chapters 4 and 5, are required for a Security-Aware

Trader. The new Trader facilities wi l l now be discussed.

6.5.1 Security-Aware Trader Attributes

Attributes are already used in the Trader specification to provide a framework for

describing the behaviour of any Trader (see Section 6.3.2). Security Attributes are

now introduced into the Trader. They wil l control the security behaviour of a Trader,

by specifying which security services it uses, i.e. just how security-aware the Trader

is. Security Attributes are defined in Table 6 -1 below.

Security Attributes Function Indicated

Security-aware Indicates that some attributes are checked as the
Trader is using security (at some level)

Access_control_trader Include Trader in A C L and uses authentication with
trading community members, etc.

Access_control_service_offers Provide access control on the service offers listed
in a query

Encrypt_s tores Encrypts Registry and Repository according to
policy

Encryptjcomms Encrypts communications according to policy
Integrity_check_stores Integrity checks Registry and Repository according

to policy
Integrity _checkjcotnms Integrity checks communications according to

policy
NR trade Non-repudiation of Trading related events
Audit_trade Audit Trading related events

Table 6-1 Trader Security Policies

155

Ciuiptcr 6. Security'A'^ arc DPE SerMiccs

It is now possible to have several types of secured Trader. For example, a Trader

could be a 'Public Trader . This means that everyone would have access to it and it

would have no security applied, i.e. the Security-aware attribute would be set to off,

indicating that all other security attributes were also turned off. Alternatively a Trader

may be a 'Secured Trader'. It would be security-aware and have all other attributes

turned on, i.e. it would use all the available security services. Another option is to

make a Trader a *Security-Aware Trader'. In this case the security-aware attribute

would be on, and some of the other attributes would be on, e.g., Encryptjstores and

Int€rity_check_stores, but not NR_trader or Auditjrader, thereby providing a

specified level of security according to the policy within the domain.

6.5.2 Security-Aware Trader Data Structures

The two Trader data structures are the Repository and the Registry. The Repository

should not have to be modified significantly, as it wi l l hold the security properties in

the same manner as it currently holds any other properties. The only change that is

required is operational, i.e. i f the Trader is security-aware or secure, then there must

be a security property available in the data structures. The security property wil l be

'mandatory' and 'readonly', to ensure that it is available and cannot be modified.

Table 6-2 below shows an example entry in the Repository. The security properly is

highlighted in bold italic.

156

Chapter 6: Set:uriry-Av\ are DPI: Services

Service Property Name Property TypeCode Property Mode

DataStore Supports SQL Boolean DataStore

Available Space (M) Long Readonly

DataStore

Location String Mandatory

DataStore

Security String Mandatory,
Readonly

Table 6-2 Security-Aware Trader's ServiceType Repository Example

Table 6-3 below shows an example of two entries in the Registry that are based on the

Repository service type example in Table 6-2 above. The example assumes that Roles

are used as the security property and that 'Role2'<*Roler. Each entry holds the

service type that is being specified; in this case it is a DataStore service. It specifies

the service instance name and the list of appropriate properties and their values. The

'Supports SQL' property has no mode specified, and therefore is an optional

parameter; as a result there is no entry for it in the *DB Store'. Since the Security

property is 'mandatory' and Readonly', it always has a value, which cannot be

subsequently modified. For the 'DB Store', the service exporter was a Rolel, and so

his *Roler role was delegated to the service offer. In the case of the T i l e Server

Store', the service exporter was a 'Role l ' , however the exporter specified the Security

property as 'Role2' so that all staff members could access the data store.

157

Chapter 6: Sccitriry-Aware DPh Services

ServiceType Service Property Name Property Value

DataStore 'File Server Store' Supports SQL No DataStore 'File Server Store'

Space Available 600

DataStore 'File Server Store'

Location 'Server room 2'

DataStore 'File Server Store'

Security 'Role2'

DataStore 'DB Store* Supports SQL Yes DataStore 'DB Store*

Space Available 800

DataStore 'DB Store*

Location 'Server room T

DataStore 'DB Store*

Security 'RoleV

Table 6-3 Security-Aware Trader's Registry Entry Example

6.5.3 Security-Aware Trader Interfaces

There are eight interfaces defined. However, only five of these interfaces should have

to be modified, namely the Admin, Lookup, Register, Proxy and Link interfaces.

6.5.3.1 Admin Interface

The Attributes and Set methods wil l now have to deal with the additional security

attributes specified in table 6-1 above. The Attribute methods allow the administrator

to query the security attributes to find their current values. Set allows the

administrator to modify the security attribute values, thereby allowing the

administrator lo specify the *security-awareness' of a Trader.

I f Security-aware is set to ' on \ then at least one other security attribute must be set to

'on'; otherwise an error wil l be returned on the Set method. I f Security-aware is set to

' o f f , then all other security attributes must also be set to ' o f f ; otherwise an error wi l l

be returned on the method. These attributes control interaction with the Security

Framework. When as security attribute is set to on, it implies that a security service is

158

Cliapter 6: Sccnriry-A^yarc DPE Services

available and that a security policy for the Trader must exist. The following example

in figure 6-5 wil l illustrate this. A Public Trader has been created by Userl, i.e. it is

security-unaware and all the security attributes are set to *off . Userl then calls the Set

method to make the Trader security-aware and sets the Accessjcontroljrader

attribute to *on', i.e. access to the Trader is subject to the Security Framework's

Access Control Agent. Userl has a security role of *Roler. The Default AccessPolicy

in the system assigns the security role 'Role2' to the object because 'Role2' is the

lowest security role available in this system. Therefore when the Trader becomes

security aware and requires an AccessPolicy, the Security Service checks the system

to see firstly i f an AccessPolicy already exists for the Trader; i f it existed it would be

used by the service to control access to the Trader. However, in this case, no such

policy exists. Therefore the security service finds the Default AccessPolicy and also

Userl's AccessPolicy. It finds that Userl's policy is of a higher security classification

and, therefore, creates a new AccessPolicy for the Trader and assigns the higher

classification ^Rolel' to it. This wi l l be achieved through the AccessPolicy

component, via the Policy/Context Manager.

159

Chapter d: Security-Aw are DPE Service

Trader Owner
TRolel)

Updaling the
Secuiiiy Anilbutes

Trader

ADMIN

SftcuiiiyAniibufes
Securlty^awaie =1
Access_conTiol_nadei =1
Access_contiol_servico_oflei - 0
Encrypi^Bloies ° 0
Encrypl_comms =0
lntegiiiy_check_sloies - 0
rntogilty^chock_eomins =0
NR_nad« - 0
Audit_tiadei ° 0

Security Fiamcwoik

AccessPolicy
Trader = *ROIGI;

AccoEcPol icy
O w n e r - ' R o l e l

AccessPolicy
Defaim - "Rolea

Figure 6-5 Security-Aware Trader's Admin Interface

The same procedure would apply to all security attributes:

1. Set the attribute to on;

2. Check i f the appropriate policy object exists for the attribute;

3. I f it exists, the policy wi l l be used; i f it does not exist then find the Default

and Owner policies;

4. Create a new policy for the Trader based on the most secure option available

between the Default and Owner policies.

6.5.3.2 Lookup, Register and Proxy

The Lookup, Register and Proxy interfaces now inherit the security attributes, i.e. an

object with a reference to one of these interfaces wil l be able to query the security

attributes to see how 'security-aware' a Trader is. This wil l allow trading community

160

Chapter 0: Seciiriry-Aware DPE Services

members to make decisions relating to how they wil l behave in response to a

Security-Aware Trader. The following example, depicted in figure 6-6 below, wil l

illustrate this.

In this scenario, Userl again has a security classification of 'Rolel ' and is acting as an

Importer. She wants to query a Trader to look for a DataStore service, but also wants

to ensure that the Trader is security-aware and controls access to its data. Userl has

the object reference for the Trader's Lookup interface, and so reads the Secitriry-

Aware Attribute for the Trader to see i f it is secured. She can also read the other

security attributes to check what security facilities are used - in the example both

access control attributes are set. Now that Userl knows she is dealing with a secure

Trader, she invokes the Lookup::Query() method to find service offers for DataStores.

On the Trader side of the invocation, the attributes indicate that the Trader firstly

needs to check i f Userl is authorised to Query the service offers. The Security Service

uses Access Control Agent (ACA) to find whether a client needs to have security

classification of 'Role2' or 'Role l ' to access the Trader. Userl's credentials, 'Rolel ' ,

can be delegated through the DPE. The Access Control Agent then decides that she

can access the Trader interfaces. Secondly, the attributes show that the service offers

themselves are access controlled. Since both service offers are less than or equal to

the 'Rolel ' classification, the Trader returns both DaiaStore service offers to Userl.

161

Trader

Security Attributes
Security aware =1
Access_control_trader =1
A c c e s s control service offer=1

Registry

Service Offer
DB Store-
File Server Store-

Security
•RoleV
'Role2'

Importer = Rolel
Querying Trader

for DataStore Service

Access
Control
Agent

delegated
credentials

Figure 6-6 Security-Aware Trader's Lookup IntiTfait'

The Register and Proxy interfaces operate in a similar fashion, but are used by

Exporters. Again an exporter can check the type of Trader it wants to export its

services to - a Public Trader or a Security-Aware Trader. Then, on the method

invocation, the Trader is able to use the Security Service to provide the functionality

set by the security attributes, i.e. access control, confidentiality, integrity, non-

repudiation or audit. The one difference would be when the Exporter is exporting a

service, the security property for that service wil l either be taken from the exporter's

own security classification (the default action) or the Exporter can specify a security

classification equal to or less than his own.

162

i.h(ip!cr 6: Sct:iinry-A\v(irc DPE Services

6.5.3.3 Link Interface and a New Link Policies

The Link interface also inherits the Security Attributes as the Lx>okup, Registry and

Proxy interfaces did above. It wi l l affect Trader behaviour when two Traders are

creating a link. However, there is one other change - the introduction of a new policy.

This link policy wi l l define how Security-Aware Traders can be linked. The new

policy is Link_seciirity and it defines the lowest security classified Trader that can be

linked with, e.g. i f Link_security is set to 'Rolel ' in Trader T l , then Trader T2 must

have a security classification of 'RoleT or higher i f it wants to invoke

Link::Add_Link() on T l . This preserves the security of the immediately linked traders.

However, in order for this to operate effectively the security interoperability service is

necessary. I f the two linked traders are in disparate security domains, then the

credentials may have to be mapped so that the Link_security policy can be preserved.

For example, Trader T l is in domain A, is classed as a 'RoIeT, and the Link_security

is specified as ^RoleT. Trader T2 is in domain B, is classed as an 'administrator' and

the Unk_security is specified as 'administrator'. A mapping exists between A and B

so that 'RoleT maps to 'administrator'. Without secure interoperability, T l and T2

could not be linked; however, with the mapping available, they can be linked and

allowed to communicate securely.

6.5.3.4 Other Interfaces

For all other interfaces and methods:

o Security attributes wil l be treated like the other attributes;

o Security properties in the Repository wil l be handled like any other

'mandatory, readonly' property;

163

Chapter 6: Sct uriry-A^^ arc OPE Services

• Security properties wi l l be handled like all other properties in the Registry;

• Security properties wi l l be able to be used in Constraints and Preferences;

• Security properties wil l raise properly errors as all other properties do, e.g.

PropertyTypeMismatch in Export method on the Register interface.

6,5.4 Security-Aware Trader and the new Framework for D P E Security

The security attributes now allow the Trader to make use of the Security Service. The

following sub-section looks at the problem areas identified in section 6.2 and

describes how the problems, that would have been experienced by the DPE, have

been overcome using the new Security Framework.

The Access_control_trader and Access_coturol_service_offers attributes allow the

Trader to make use of the access control facilities. Access_control_trader ensures that

a Trader*s access control information, e.g. a security level, is available in the system,

i.e. it has an AccessPolicy. A principal wil l own (he Trader object, and the principaPs

credentials wil l be delegated to the Trader. Altematively, the principal may specify a

security level lower than its own for the Trader, e.g. the Trader may be specified as a

'Public Trade' (see Section 6.6.1). The Access Control Agent now supervises all

access requests to the Trader (in accordance with the AccessPolicy), and all requests

made by the Trader, e.g. a 'Role2' importer wil l not be allowed access a 'RoleT

Trader, as it is considered less secure. Access_control_senfice_ojfers enables a

security property value in the Registry and places an exporter's access control

information in the Registry as the security property whenever Export is invoked, e.g.

i f an exporter has security role 'Role l ' , then the service offer exported wil l

automatically take a default value of 'RoleT as its security property value. The

164

exponer may also specify a security level lower than his own, e.g. he may specify a

security role 'Role2' which is lower than his own, *Rolel* role. The Security-Aware

Trader now makes selections based on the security property when creating service

offer lists, e.g. i f a 'Role2* importer is looking for a service, it wi l l only be shown

'Role2' service offers - it wi l l not see any offers with a security level higher than its

own.

The Encrypt _store. Encrypt jcomms. Integrity _check_stores, and

Integrity_check_comms control integrity and confidentiality in a Trader. A l l four

security attributes enable the encryption and integrity facilities that are specified in the

QoPPolicy object. This facilitates the separation of both stored and transit data

policies and therefore the level of protection can vary i f required. For example, stored

data is held for a longer period of time than transmitted data and, therefore, it is more

vulnerable to attack and so it may require a higher level of security.

Transmitted data wil l utilise the secure service objects, QoP Agent, and

SecurelnvocationPolicy. For stored data, the most generic solution was described in

section 6.5, and involves the use of a security-aware Persistence Service. In this case

the Persistence Service has two options, it can apply mechanisms to the data before it

is written to storage or it can utilise the security facilities of the storage product.

The NR_trade fiag enables/disables non-repudiation for a Trader, i.e. non-repudiation

is available but can be disabled i f not required, e.g. a Public Trader may not require it

or it may be a trade-off in an effort to improve performance. A Security-Aware

Trader, with enabled NRjrade fiag, wi l l utilise the non-repudiation service objects,

i.e. Non-Repudiation Agent, Non-Repudiation Store, Non-Repudiation Adjudicator

and QoP Agent in accordance with the specified Non-Repudiation Policy.

165

Chapter (): Sct uriry-Au arc DPE Scr\:i(:es

The Auditjrade flag controls the Trader*s access to the audit service. When set to on,
Aiidit_trade allow the Audit Sampler Agent to decide whether events are to be
audited, in accordance with the Audit Policy. I f an event is audited the Audit Analyser
and Audit Responder wi l l decide what to do, by referencing the Audit Knowledge
Base.

6,5.5 New Facility Summary

The following figure 6-7 (based on figure 2-9 of the Trader, see section 2.5.4),

summarises the modifications that are required to create a Security-aware Trader:

1. New Trader security attributes;

2. Use of ^mandatory, readonly* security property in Repository;

3. New Registry security property;

4. Modified Admin interface, inherits Security Attributes;

5. Modified Lookup interface inherits Security Attributes;

6. Modified Registry interface inherits Security Attributes;

7. Modified Proxy interface inherits Security Attributes;

8. Modified Link interface, inherits Security Attributes, and new link

policy Link^security;

9. Use of the new Security Framework, including secure interoperability;

10. Use of security-aware DPE services.

166

ChapJer 0: S(:i:tiriry-A\^ are DPtl Services

Security-Aw are Trader and Trading Community Members

Trader

DPE services

8,

bxponer
Roglcto^

Pioxy

Secuihy-Awjie Tiodei

Attiibutcs

1. New Sccuiity Attributes

Reposttoiy

New Secuiity Piopeity
2. mandatory, readonly

Reglsiry

3.New Secuiily Properly

Administrator

jnterActioi^ Enhanced
Security
Seivlce

10.!
Inter^ctior^l Secuiity-Awon

Persistance
Service

Figure 6-7 Security-Aware Trader

6.6 Other Security-Aware Services in a DPE

The previous sections have concentrated on the issues surrounding security and the

trading services. The problems were addressed by the security behaviour of the trader

using attributes and the new security framework.

Section 6.2 highlighted that security problems are apparent in other DPE services and

not just the Trader. They can also be addressed using the same mechanisms as the

Trader. The Naming service could also utilise attributes to decide whether a client has

access rights to view a particular object name or reference. The Persistence Service is

rather more complex. It could use attributes to decide whether data needs to be

167

Cha{)tcr 0: Sanriry-Awarc typE Services

encrypted, but then it would need to provide generic interfaces that allowed it to issue
encryption commands. This would require integration with the security service's
encryption mechanisms or with the encryption facilities of the data storage
mechanisms, e.g. a database. These issues can be dealt with by providing separation
between policy (service) and the mechanisms used to implement them.

In all of these cases it could be argued that the 'security-awareness' characteristic is

not necessary. Instead the system administrators could, for instance, set up multiple

Traders, each of which would have different access rights and therefore the service

would not have to concern itself with the security attached to the individual offers

available within the system. However, this increases the administrative overhead and

therefore the likely-hood of human errors, which could result in a security

vulnerability. In the case of large scale distributed systems it is not always possible to

set up multiple Traders each with different access rights. This also relies on the fact

that each exporter wi l l know the Trader it is supposed to advertise its services in, i.e.

know the Trader with appropriate security clearance and also assumes that enough

resources wil l be available to allow multiple traders to exist concurrently. A security-

aware Trader provides a simpler solution - it is less costly on resources and simpler to

administer because the trader can handle security, and therefore provides a more

secure solution. The same arguments apply to the other DPE services.

It can be surmised that at a DPE level, supporting services are required to be security-

aware in order to fully secure the environment. This can be accomplished by using the

following devices:

• Use of security attributes to indicate that security is required within a

supporting service;

168

Chapter 6 ; Set:itrify-A\varc OPE Services

• Separation of mechanism and policy (service), so that when a security

attributes indicates the security service is required, the ability to provide the

service is not mechanism dependent;

• Secure interoperability to allow this functionality to operate across disparate

domains.

6.7 Summary

Security is an issue for supporting DPE services. Although many of the services

appear to have security issues, the only way to investigate fully was to select a

specific service such as the Trader. Traders are an important DPE service because

they allow clients to finding objects that are required, whether they are local or

remote, which is pivotal to the success of a DPE. However, the Trader provides a very

vulnerable point for attack, providing an intruder with access to a multitude of

services. Therefore, it should be made security-aware. It should be able to ensure that

only authorised clients can access it, and that clients can only view the service offers

that they are authorised to see. To provide a Security-Aware Trader, new facilities are

required in the Trader. This entails providing the Trader with security attributes that

wil l govern its security behaviour. The Trader^s Registry wil l also hold security

properties that are associated with each service offer held. The security attributes wi l l

decide which security services the Trader wi l l have access to, and the security

properties wil l be used in access control. Therefore, the administrator can decide just

how secure a Trader should be.

169

Cha{)t<'r 6: Sccuriry-A^ eirc DPE Services

Security cannot be completely treated as an add-on facility. Within DPEs, each

service has to be aware of security. This does not just apply to the Trader. It has

already been suggested that other services such as the Persistence Service need to be

security-aware i f a distributed system is to provide a truly generic and secure

environment.

The lessons learned from the Trader study can be applied to all DPE services.

Security attributes, a complete security service that is mechanism-independent, and

the use of secure interoperability, allow services to become security-aware and work

together to provide a more secure environment. Having covered the theory of how a

new Security Framework and security-aware service, such as the Trader, would

operate to provide a more secure environment, the discussion now moves on to look

at mapping this work to an implementable DPE specification.

170

7. Verification of the New Framework

7.7 Introduction

A new framework to provide security in DPEs has been defined in the previous

chapters. It comprises three main components:

• security service objects - operational and management providing the main

security service functionality;

• secure interoperability service objects to provide secure interaction between

disparate security domains;

• security-aware DPE services, such as the Trader.

The entire framework has been defined in accordance with the TINA specification,

which describes at a high-level, how DPEs operate. To verify the work, this chapter

wil l map the framework to a current, OMG DPE specification CORBA.

7.2 Mapping to CORBASec

Before performing the mapping, it is necessary to first understand what aspects of the

new security framework are missing from CORBASec. This is accomplished by

evaluating CORBASec against the DPE security requirements previously specified in

section 4.2.

171

Chapter 7: Verification of the New Security Framework

7.2.1 CORBASec vs. DPE Requirements

Table 7-1 below summarises CORBASec against the list of security requirements

defined by this research (see section 4.2). The indicates that the required

functionality is present. The indicates that while some of the functionality may be

present, the ful l requirement is not met by CORBASec.

Security Requirement Functionality required
1. Identification and

Authentication
Identify entities & generate identity attributes
Use multiple authentication mechanisms

•

2. Authorization & Access Generate privilege attributes
control Use multiple authorization mechanisms

Use role/groups
3. Propagation of security

attributes
Specify when propagation is required
Specify constraints on propagation

4. Secure communications Ability to select Quality of Protect
Ability to select amount of message to be
protected

5. Secure stored data Ability to specify that data needs to be secured
Ability to specify the Quality of Protection

-

6. Secure Auditing Audit security relevant events
Produce audit records
Issue alarm
Protect audit information in transit or in trail
Should be extended to facilitate intrusion detection

7. Non-repudiation GenerationA^erification of evidence
Storage of Evidence
Secure transport of evidence
Adjudicator facility

8. Administrative interfaces System Management
Service Management
Mechanism Management

9. Interoperability Interoperability at all levels-
Invocation
Security Service, Mechanism and Protocol
Mapping of attributes between domains

-

10. Scalability Object system that can be distributed
Use of domains
Use of groups etc in administration

11. Integration with existing
environments

Flexible structure to allow the model to integrate
with other technology environments/security
models
Facilitates regulatory requirements

172

Chapter 7: Verification of the New Security Framework

Security Requirement Functionality required
12. System Recovery - -
T l Intrusion Detection Physical/logical procedures to prevent

intrusion/modification
-

T2 Hardware/software
protection

Mechanism management -

M l Inter-object
communications

Authenticated & authorised object access
Secure object communications

M2 TINA services Authorised service subscribers
Secured service operation

M3 TINA services Secure control data
Audit service available

-

M4 TINA services Secure administration data
Secured access to administration data

M5 Inter-DPE security Authentication & access control
A l Secure participant

interaction
Authentication & Access control
Secured participant communications
Audit
Non-repudiation

A2 Application Admin Usability
Secured

A3 DPE applications security Security active
Security in-active

-

11 Establish Trust Authentication & TTP
12 Attribute Mappings Domain mapper -
13 Operational interoperability Mechanism-compatibility -
14 Control/Administration

interoperability
Policy configuration compatibility -

15 Application Security
Context

Secure interoperability protocol

Table 7-1 DPE Security Requirements available in CORBASec

It is clear from the above table that the main areas of concern can be addressed by

applying the proposed new framework, as it addresses the following issues, which are

missing or inadequate in CORBASec:

• Management: requires consistent, comprehensive management framework

that separates mechanism and service administration;

173

Chapter 7: Verification of the New Security Framewfork

• Securing Stored Data: requires management of relevant policies and the
ability to integrate with a security-aware DPE service;

• Audit: requires ful l auditing facility that can address IDS requirements;

• Non-repudiation: requires the fu l l compliment of non-repudiation facilities

(storage, delivery and adjudication);

• Interoperability: requires secure interoperability with entities in a disparate

security domain;

Some of the DPE specific requirements are not fully addressed in this verification.

Firstly, the segment of the Native Computing and Communications Environment

(NCCE) security domain, i.e. mechanism management, is not addressed because the

CORBA services are not mechanism-independent. Secondly, the differences in the

DPE Services and Kernel security are not addressed. Security of DPE services is not

considered. However, the issue of a distributed TCB (of which the kernel is the main

component) is discussed. It is reliant on two elements - the use of interceptors and the

trusted installation of security mechanisms. Interceptors are resident in the ORB and

are able to catch all invocations at particular points in the invocation path, e.g. when

leaving the client or when arriving at the server process. Security interceptors catch

every invocation and call the appropriate security services to ensure that a request is

in-line with the current security policy. Finally, application security is addressed. The

notion of active and in-active security applications is addressed by CORBA's

security-aware and security-unaware applications. Security unaware applications do

not have any knowledge of security and rely on the security interceptors to provide

174

Chapter 7: Verification of the New Security Framework

security. Security aware applications can use the defined security objects specified by
CORBASec.

The shortcomings found with CORBASec can be further illustrated by looking at the

products that are based on the specification [104, 105, 106]. A l l of the products have

certain features in common because they all need to extend past the CORBASec

specification because it is too restrictive:

• Extending the administration features through defining new interfaces;

• Using additional features to integrate with existing technologies, i.e. unitary

logon, bridge technology;

• Extending the audit facilities to help secure audit records or make them

available to monitoring tools.

However, there are still a number of restrictions:

• Replaceability is difficult and so they are all limited to specific sets of security

technologies/mechanism;

• Data storage is proprietary, e.g. use of LDAP;

• There is no monitoring/IDS integration available;

• Non-repudiation is not available;

• Interoperability is still limited to compatible domains and technologies

(although most have consulting divisions that provide customised solutions).

175

Chapter 7: Verification of the New Security Framework

Another important point to note is that, while it has not been tested by any of the
vendors, it would appear that none of these products wil l interoperate, out of the box,
because they all support different technologies.

7,2.2 Mapping to the new Comprehensive CORBASec

Applying the new security framework enhances the CORBASec specification, and

therefore it wil l be referred to as the Comprehensive CORBASec (CCS). The

complete IDL for CCS is available in Appendix A. The mapping preserves the overall

CORBA structure of an ORB using security interceptors. Therefore a direct mapping

from the TINA structure is not appropriate or possible, i.e. a one-to-one mapping

between TINA service objects and CORBASec objects is not possible. Defining new

objects and modifying existing object within CORBASec provides the required

functionality. Figure 7-1 below, summarises all of the objects involved in CCS. It

highlights three object types:

• Objects that were defined in CORBASec and remain functionally unchanged

from that specification;

• Objects that were defined in CORBASec, but are now significantly changed in

order to facilitate modified or new objects;

• Objects that are completely new to the DPE and are used to facilitate the

CCS*s new functionality.

The figure has been divided into sections that represent the main service facilities

available within the CCS. This can be compared with figure 2-11 in section 2.6,

which shows the objects defined within the CORBASec.

176

Chapter 7: Verification of the New Security Framework

AuthcnticaUon {
& Authorisation '

Secure Invocation
&QoP

NRCredentlals

NRDellver

NRStoro

NRAd udicator

NorvRepudlatlon
& Audit

UserAgent

Current

Credentials

Prlndpat
Authenticate r

AudltDcclsion

AudltChannel

AuditActlons

Required Rights Vault

AccessDeclslon I]
Security Con text

AuditAnalyser

AudltResponder

AuthPollcy

AuthMech

AccessPolicy

QOPPolIcy

QOPMech

AccessMech
NRPolicy

DelegatlonPollcy

Socurcin vocation
Policy

Delegation Mech

J]
NRMech

AuditPoltcy

AuditMech

Do main Mapping

CORBASec Objocta
-Unchanged

CORBASec Objects -
SlgnificanUy Changed

NEW Objects -
lor Enhanced Service

Figure 7-1 Comprehensive CORBASec objects

The following sections wil l examine ihe new and modified objects and how they

provide the new functionality, to ensure the new DPE security requirements are meet.

7.23 Management and Mechanism-Independence

The CCS separates the management of services and mechanisms and thereby provides

the required mechanism-independence. In uses the four methods identified in section

4.4.3:

I . definition of new policy classes to separate management function;

177

Chapter 7: Verification of the New Security Framework

2. use of opaque data types to assist abstraction;

3. definition of policies for all security functions for consistency;

4. ability to locate the new policies.

The CCS proposes the introduction of several administration objects, which are listed

in table 7-2 below:

Security Service Administration Objects
Authorization/Access control AuthPolicy, AuthMech,

AccessPolicy, AccessMech,
DelegationPolicy

Integrity/Confidentiality QOPPolicy, QOPMech
Non-Repudiation/Audit NRPolicy, NRMech,

AuditPolicy, AuditMech
Interoperability SecurelnvocationPolicy

Table 7-2 Administration Objects

To facilitate mechanism-independence, a new set of mechanism policy objects is

introduced for each of the security services - AuthMech, AccessMech, QoPMech,

AuditMech and NRMech. Each of these wil l describe the mechanisms used for the

service. There is no mechanism policy for delegation, e.g. DelegationMech, as

delegation is not handled by a separate mechanism; it wi l l use those employed by the

authentication and access control mechanisms, e.g. X.509 certificates, rights from an

ACL.

Two new policy objects are introduced, AuthPolicy and QoPPolicy. AuthPolicy is

responsible for the authentication security policy, i.e. the mechanism to be applied by

an application, the valid authentication mechanisms available to a user and the

relevant authentication data, such as ID and password. QoPPolicy holds the policy

178

Chapter 7: Verification of the New Security Framework

information in relation to establishing a secure context between a client and server,
i.e. the level of secure communication required.

The functionality of the remaining policy objects, which previously existed in

CORBASec, is significantly changed in CCS. In CORBASec, non-repudiation policy

was only supported at application level and only defined the rules for generation and

verification, while'the audit policy simply listed the types of application events
j

audited and specified an associated AuditChannel, i.e. where the record was written.

NRPolicy is now available at application and invocation level, and manages

authorities, event types and mechanisms (via NRMech). AuditPolicy now manages

the event selectors, the new audit objects responsible for monitoring, filtering and

delivery, and the multiple AudilChannel options now available (see section 7.2.6.1

below). SecurelnvocationPolicy is still used to manage secure invocations, however

its functionality has been significantly extended. It now provides more configuration

options, and is an inherent part of a new CCS interoperability service (see section

7.2.5.1 below), which manages negotiations between security domains at both service

and mechanism levels. Therefore, there is no separate mechanism policy because this

object is primarily used for negotiation, and it is more efficient to do so at one level

rather than involving another object in the communication protocol.

One further issues is the ability to find the new policies as accomplished through the

PCM in TINA. This is addressed by extending the DomainManager functionality

(previously in CORBASec). Getting access to a policy via the domain manager needs

to be updated to handle the new MechansimPolicy objects, as illustrated in figure 7-2

below. The DomainManager can now be queried to find the mechanism policies using

179

Chapter 7: Verification of the New Security Framework

a newly defined method called get_domain_mechanism, e.g.
DoniainManager::^e/_rf£7mfl//j_/Hec/if//i/5//Kaccess).

AccessPollcy

VomainManag&r:get_domain_policy(access)

Object
Object::get_domain^manager,

Domain Manager

[>>mainManagen:gbLpomain_mechanism(access).

AccessMech

Figure 7-2 CCS DomainManager

Therefore the functionality of all the management service objects in the new security

framework has been mapped to the new and modified management objects in CCS.

7.2.4 Authentication & Authorisation Enhancements

CORBA groups authorisation and authentication together, because they are so closely

linked. Therefore they wil l both be studied under this section.

7.2.4.1 CCS Authentication & Authorisation Overview

The Authentication & Authorisation services provide three new facilities:

• mechanism-independent alternative to the User Sponsor Code;

delegation controls;

• parameterised access control.

180

Chapter 7: Verification of the New Security Framework

CORBASec refers lo User Sponsor Code (USC), which is not part of the object
system because it is mechanism specific (it represents a logon module). Therefore the
CCS defines a UserAgent as a new object to provide a mechanism-independent means
of communication with users. It is representative of some of the access session related
User Application and User Agent functionality, which relates to security (see section
4.4). Although both of these objects already existed in the TINA model, they are
responsible for interfacing with (access session related User Application) and
representing (User Agent) the user in the system. Therefore it would be beneficial to
include them in the CCS model as it would allow the system to interact with users
irrespective of the logon mechanisms used, i.e. smartcard, biometrics, or password. In
this way the UserAgent wi l l provide the parameters to CORBA*s
PrincipalAuthenticator. The parameters are initially provided to the UserAgent using
the operations; set_security_name, set_aitth_data, set^privileges, set_name. This
provides a mechanism independent way of getting authentication information because
any product/mechanism can use these operations.

The UserAgent can then invoke the PrincipalAuthenticator with the user information.

If the UserAgenl is required to store any data it wil l have to consider the issues of

securing authentication information. It could do this by defining the QoP required for

the stored data (see section 7.2.5 below). A factory is a standard OO design pattern

that allows the creation of a particular object type [107]. The logon module wil l have

an associated UserAgent factory because it wil l need to generate a UserAgent for each

user logging into the system. It is evident therefore that the logon module does not

have a specific entity or principal, on whose behalf it is acting, as all other objects in

the system would. It would be beneficial to allow the logon module to be mechanism

181

Chapter 7: Verification of the New Security Framework

independent and therefore able to easily adapt to multiple authentication mechanisms,
e.g. a single console that can deal with password, certificate or token authentication
depending on the application being accessed. This is achieved by modifying how the
authentication policy works. AuthPolicy usually requests all the information that a
single principal requires to authenticate itself, e.g. a user's ID and password. The
AuthPolicy needs to differentiate between a logon module and normal system object.
This is accomplished by defining a PrincipalType - ^Principal* indicates a usual
system object that has a principal and therefore authentication data is required, while
'UserAgent' (UserAgent system entry point) indicates that authentication data is not
required because no single principal is involved, instead it associates the type of
authentication with a particular service/logon module.

With regard to authentication, the Authentication Policy and Authentication

Mechanism objects map directly onto the new and corresponding objects in CCS. The

PrincipalAuthenticator is representative of the AuthenticationAgent. When the user

has been authenticated it is the responsibility of the PrincipalAuthenticator to generate

identity attributes for the user, the Credentials object. There is no service object that

directly represents the Credentials, or indeed the Current objects. However, the data in

these objects wil l be available through management contexts and the UserAgent.

CORBASec previously defined two access related policies - DomainAccessPolicy

and AccessPolicy. The mapping now just provides for AccessPolicy because the

distinction between the previous two objects was that DomainAccessPolicy managed

the privilege attributes while AccessPolicy was used to query the access policy for a

particular set of Credentials. To preserve a consistent management framework,

DomainAccessPolicy functionality is provided in AccessPolicy. The

182

Chapter 7: Verification of the New Security Framework

AccessControlAgent is mapped directly onto AccessDecision as both are responsible
for deciding i f the presented credentials allow a user to perform a particular operation.

Another issue that is intrinsically part of authentication and authorisation, in DPEs, is

delegation. The main issue noted in [36], regarding delegation, is the inability to

restrict where and when credentials can be delegated. This also includes what

delegation modes (composite, simple) can be delegated. The issue is addressed by

modifying several object interfaces. Firstly, the new administration object,

DelegationPolicy wil l now also handle restrictions on where and when attributes can

be delegated. Two new operations are introduced - setjcontrols and get_controls.

These operations specify what privileges can be delegated, the delegation mode to be

used, the number of invocations permitted and an expiration time for when these

privileges can be delegated. This handles delegation from an administrative

perspective. However, CORBA already allows privileges held in the Credentials

object to be updated 'on-the-fly' using the set_privileges operation. Therefore the

set_comrol and getjcontrol operations need to be added to Credentials, so that

delegated privileges within it can be controlled.

The mapping can be summarised in the following table.

183

Chapter 7: Verification of the New Security Framework

New Securit>
Framework

Comprehensive
CORBASec (CCS)

Functionality

Access session-User
Application,
User Agent

UserAgent Act as interface between user
and system

AuthorisationAgent PrincipalAuthenticator Authentication
Generation of identity
attributes

User Agent Credentials
Current

Hold user related information

AccessControl Agent AccessDecision
RequiredRights

Decides i f access is granted to
a particular object/operation

AuthPolicy,
AuthMech
AccessPolicy,
AccessMech

AuthPolicy,
AuthMech
AccessPolicy,
AccessMech

Management of security
services and mechanisms

Table 7-3 Authentication & Authorisation Security Service Object Mappings to
CCS

7.2.4.2 CCS Authentication & Authorisation Example

:Authenticalion PoliCYfor
Application Standard Logon Screen

Password Mech ; (Application)

1

Details

ACL-Rights
Useri = -s

A (9 ctd)

Simple
Delegation

Figure 7-3 CCS Authentication

184

Chapter 7: Verification of the New Security Framework

Figure 7-3 above illustrates the new method of authentication within the CCS. The
process is described below.

A standardised logon screen for an application exists, it is a generic front end that can

be modified to suit multiple authentication mechanisms.

1. Find the current authentication mechanism for the application. The logon

module wil l query the AuthPolicy to find out what authentication policy is

implemented for the current system. In this example a password mechanism

identifier is specified in the application's AuthPolicy.

2. Obtain the authentication mechanism details. AuthPolicy wil l query

AuthMech to find the details of the identified mechanism, e.g. what

authentication parameters are required. The logon module screen is populated

and in this example the system now waits for the user to enter a user ID and

password.

3. Principal completes login to system. 'UserP now enters her user ID and

password. The interaction is now taking place with the UserAgent object. This

object wil l process the user authentication data, in this case a password and

ID. However, i f a smarlcard logon were used, the UserAgent would process

the user ID, user PIN and smartcard data.

4. Authenticate the Principal. The UserAgent, having all of the required

authentication data, now calls the PrinciapalAuthenticator to authenticate the

user.

185

Chapter 7: Verification of the New Security Framework

5. Verify the authentication data. The PrincipalAuthenticator wil l now query
the AuthPolicy object to see i f the user can be authenticated. AuthPolicy wi l l
confirm that Userl with password "Secret'* is a valid user of the system.

6. Get the user's access privileges. The PrincipalAuthenticaior now queries the

AccessPolicy object to see what the user's access privileges are. In the

example, an ACL with a Role attribute is used. Useri is defined as a 'RoleT

role with access rights *s'.

7. Get the delegation policy. The PrincipalAuthenticator wi l l query the

DelegationPolicy object to see what the delegation mode is to be used. In the

example, SimpleDelegation is used.

8. Create the credentials object. EVincipalAuthenticaior returns the

authenticated Credentials object to serve as the user's security ticket. It

contains attributes such as ID and privileges. This instance wil l hold the

'Role l ' role with right's' and SimpleDelegation mode for Userl.

9. Set the credentials of the execution environment. The Credentials object

reference is passed to the Current object.

10. Client invokes a secure method on a server. The security service mediates

the client/server interaction, by accessing the Current object to ensure that the

interaction is in accordance with the security policy.

11. Server executes the secure method. The server can access the Current object

to get information on the incoming client request, such as the client's rights

and privileges. The RequiredRights object can then be accessed to find what

rights are required to access the server method. This information wil l allow the

186

Chapter 7: Verification of the New Security Framework

server-side security service, i.e. the AccessDecision object, to make an
informed access decision. I f the client is allowed access, the server w i l l
execute the method. Userl's privileges can now be delegated to the server
object i f further invocations are required for the server to complete its
operation.

The authentication and authorisation of a user to the system is complete.

7.2.5 Integrity & Confidentiality Enhancements

CORBASec deals with integrity and confidentiality together under the title of Quality

of Protection (QoP). The new features that are added to QoP are:

o flexibility in configuring QoP by defining new policy objects;

o QoP for stored data.

7.2,5,1 CCS Integrity & Confidentiality Overview

Previously in CORBASec, there were no objects to independently handle integrity

and confidentiality. The SecurelnvocaiionPolicy had a set_associationjoptions

operation, which allowed the administrator to specify whether confidentiality and

integrity were to be applied to secure invocations. The CCS, however, now has two

new objects specifically dedicated to Quality of Protection (QoP), QOPPolicy and

QOPMech. These objects are used to define a secure context between a client and

server. The SecurelnvocationPolicy, is now specifically devoted to secure

associations between disparate security domains (see section 7.2.7).

187

Chapter 7: Verification of the New Security Framework

Section 4.2.2 noted that there is an issue regarding the security of stored data. Security
of stored data in this instance is defined as the implementation of a specified level of
QoP on the data held in a persistent data store. It could be assumed that database
integrity and security system would be able to handle these secure storage issues
without DPE intervention. However, database integrity is not the same as security
integrity. Database integrity refers to the accuracy, correctness and validity of data
(referential integrity) [108], and does not specifically deal with the issue of
unauthorised modification. With regard to database security, the mechanisms used are
very much product specific and, in many cases, database security revolves around
authentication, access control and the use of specific file formats that prevent file
modification. However, this does not protect data that is illegally viewed, and some
encryption mechanism has to be employed to ensure confidentiality and integrity. In
addition, there are other methods of storage that can be employed (e.g. a flat file) and
a DPE also has to be able to administer security for stored data in these
implementations.

The CCS proposes the use of the QOPPolicy and QOPMechanism to also administer

stored data security. QOPPolicy wi l l use get_stored_QOP_policy,

setjstoredjQOP_policy, and query_stored_QOP_policy operations (as opposed to the

get_QOPj)olicy, set_QOP_policy and query_QOP_poUcy). The reason that separate

methods are required is that the administrator needs to distinguish between a secure

communications context with an object, such as a database, and securing the data

stored within a database. Therefore two policies can exist for the same object, but they

will mean very different things. The parameters are almost identical to those used for

secure contexts, except that the administrator does not need to specify a direction or a

188

Chapter 7: Verification of the New Security Framework

message part that requires protection, because it is not dealing with a transmitted
message, it is protecting stored data. The QOP mechanisms can apply the policy-
specified encryption to a data structure before it is written to a database or file. The
process wil l be reversed when the structure is then read.

The following table summarises the QoP mappings.

New Security
Framework

CORBASec Functionality

QoPAgent Vault, SecurityContext Negotiate and build a secure
association

QoPPolicy,
QoPMech

QoPPolicy,
QoPMech

Management of secure
association options

Table 7-4 QoP Security Service Object Mappings to C C S

7.2.5.2 Example of CCS Integrity & Confidentiality

Figure 7-4 below illustrates the new method of QoP within the CCS. The process is

described below.

1. Client invokes a secure method on a server. The security service intercepts

the client/server interaction. The Vault object is used to establish a secure

context. It recognises the object as belonging within the trusted domain.

2. Client checks the QoP policy. The client queries the QoPPolicy to see what is

required for a secure context between the client and server.

3. QoPPolicy references QoPMech: It also returns the mechanism to be used,

via the QoPMech.

4. Secure context negotiation begins. A secure context wil l be initiated using

the client's QoP.

189

Chapter 7: Verification of the New Security Framework

5. Server Vault finds its secure invocation requirements. The server Vault
intercepts the new request, and queries its QoPPolicy and QoPMech.

6. Server returns its QoP. It can use this information to finalise the negotiation

with the client and so complete a secure context. Both client and server are

now utilising Security Context objects and can communicate in accordance

with the security policy. Server queries a data storage object. The server

needs to query a data storage object DBStore, in order to complete the method

invoked by the client. The DBSlore queries the QOPPolicy to see i f the data is

securely stored and, i f so, what QOP is applied. In this example, the data is

stored with a QOP of Confidentiality, using DES to encrypt the data structures

(in this scenario no secure communication with the DBStore was required, i.e.

the data is transmitted in the plaintext but stored in an encrypted format).

DBStore

ORB Core

Figure 7-4 C C S Integrity and Confidentiality

190

Chapter 7: Verification of the New Security Framework

7. Server method can be completed. When the record is read from the data
structure it is decrypted using the appropriate mechanism, DES (Note: in this
instance, any required key exchange is part of the read mechanism for the data
structure). The data is returned to the server. The server can now complete the
method invoked by the client. The response is returned via the secure context.

This completes the QoP events for transit and stored data.

7.2.6 Non-Repudiation & Audit Enhancements

Non-repudiation and audit have changed significantly in the CCS. Both employ new

objects and provide more facilities.

7,2,6,1 CCS Non-Repudiation Overview

The first change is that Non-Repudiation is no longer considered an optional service

as it was previously specified in CORBASec (Optional in CORBASec means that it

was not available to security-unaware application - the non-repudiation interfaces had

to be invoked by a security-aware application). It is available on every object

invocation. However, the service is also configurable so that it does not provide an

unacceptable overhead on ORB operations. Non-repudiation wil l be enforced on

every object invocation, in accordance with the specified policy. This policy wil l be

dictated by the new administration objects, NRPolicy and NRMech, which correspond

to the TINA service objects of the same name. NRPolicy is used to configure the

general non-repudiation policy - this means that it covers all of the non-repudiation

facilities, mechanisms, evidence types and adjudicators. The NRMech object holds

details of the non-repudation mechanisms including authorities used and evidence

191

Chapter 7: Verification of the New Security Framework

types. The NRCredentials object, as defined in CORBASec, is still used for evidence
generation and verification. The NRCredentials information is held in contexts and
User Agent.

Three other new objects are defined lo provide the missing non-repudiation facilities

as defined by the ISO - delivery, evidence storage and retrieval, and adjudication. The

delivery service is made up of two key elements - a delivery authority and the

NRDeliver object. The delivery authority (DA) is a TTP (see Section 3.3.2) that is

identified in the NRPolicy authorities list. The authority list provides the name of the

authority and its role, in this instance the role is "Delivery Authority". NRDeliver

uses the Delivery Authority, to provide a trusted delivery service. It makes use of the

SecurityContext objects already defined, in CORBASec, but creates new contexts to

deliver its own tokens and data as opposed to using the client/server context that

would already exist for an object invocation. For optimisation purposes, NRDeliver

could use the existing context i f it had the appropriate QoP, i.e. greater than or equal

to the non-repudiation QoP specified in NRPolicy. NRDeliver wil l be able to send

both generated and verified security tokens using the NRedeliverjoken method.

Another issue with the non-repudiation delivery authority is how it can prove that it

performed its function. This is achieved by adding two more proofs to the process

(see Section 3.2.5). This wil l include the client producing a Proof of Submission to

provide irrefutable evidence that the client submitted the non-repudiation request to

the Delivery Authority and secondly Proof of Delivery to create irrefutable evidence

that the server received the original invocation and token from the Delivery Authority.

These are created by the Delivery Authority for every delivery request and the

192

Chapter 7: Verification of the New Security Framework

evidence tokens are stored in the client's evidence store. The NRDeliver functionality
is mapped from the QoPAgent.

NRStore is the second of the new facility objects for non-repudiation, and

corresponds directly to NRStore in the new TINA framework. It provides the

interface to a storage facility for the tokens and certificates. It can add, get and query

stored records relating to non-repudiation evidence, and does so using the

NR_record_set, NR_record_get and NR_record_query operations.

The NRAdjudicator is mapped to its namesake in CCS. It is an interface to a notary

that can make judgements on any disputes. A TTP wil l be used to verify evidence and

then prove/disprove claims made by clients or servers. The adjudication process has

two phases -the first is an on-line adjudication. The on-line adjudication allows the

adjudicator process (without any human intervention) to validate the evidence tokens,

i.e. make sure they have valid signatures and that the times are correct. I f one

evidence token is found to be invalid, then the process wil l be able to settle the

dispute by deciding in favour of the valid token holder. However, i f both tokens are

valid, then one of three options is possible. I f the adjudicator is implemented as an

expert system, then it may still be able to settle the dispute based on some existing

rules it contains. I f the adjudicator still cannot settle the dispute, it can either signal

for human intervention and request assistance in the adjudication process or it can

return a judgement of "undecided**. This process is implementation independent and is

not of any concern to the CORBA objects involved in the dispute.

The following table summarises the mappings between the framework and CCS.

193

Chapter 7: Verification of the New Security Framework

New Security
Framework

CORBASec Functionality

NRCredentials Contexts, UA User credentials used for
evidence generation etc

NRDeliver QoPAgent Creates a secure context to
deliver non-repudiation
tokens

NRStore NRStore Holds non-repudiation tokens
securely

NRAdjudicator NRAdjudicator Makes judgements in the case
of disputes

NRPolicy,
NRMech

NRPolicy,
NRMech

Management of secure
association options

Table 7-5 C C S Non-Repudiation Mappings

7.2,6.2 CCS Non-Repudiation Example

The following section describes how the objects of the new Non-repudiation Service

interact in the CORBA environment (see figure 7-5 below):

1. Client invokes a secure method on a server. The security service

mediates the client/server interaction.

2. Client checks the Non-repudiation policy. The client knows it is about to

invoke the server and so in preparation it queries the NRPolicy to see what

non-repudiation actions need to be taken, i f any. In this example. Proof of

Origin is required.

3. Non-repudiation mechanisms used are identified. NRPolicy queries

NRMech to find the non-repudiation mechanisms used, e.g. X.509

certificates, and the accepted I I P acting as Notary.

4. The client requests the generation of irrefutable evidence. The client

requests the NRCredentials object to generate a token, using the

appropriate mechanisms.

194

Chapter 7: Verification of the New Security Framework

5. The Client's token is securely delivered to the Server. NRDeliver is
used to deliver the token. The Delivery Authority used by NRDeliver was
identified in NRPoIicy. NRDeliver wi l l query NRPolicy of both the client
and server objects to find the non-repudiation QoP (NRQoP) defined for
each. I f they are different, they are then merged to find a QoP that wi l l
meet both of their requirements. The NRQoP wil l then be compared to the
QoP of the invocation SecurityConiexl. I f the NRQoP provides an equal or
lower level of security, then NRDeliver uses the existing SecurityContext;
otherwise it wil l create a new Security Context using the higher NRQoP
level. Another function that has to be completed at this stage is the
generation of evidence to ensure that NRDeliver has completed its task.
This involves creating two proofs, firstly Proof of Submission to provide
irrefutable evidence that the client submitted the non-repudiation request
to the Delivery Authority and secondly Proof of Delivery to create
irrefutable evidence that the server received the original invocation and
token (not illustrated in the diagram for simplicity).

6. The Client's token is stored for possible future adjudication. During

step 5, NRDeliver wil l have retrieved the name/identifier of the data store

to be used by the client and server to hold evidence. In this example both

are using a single data store for the domain. NRDeliver wi l l have to create

another SecurityContext to deliver the token to NRStore; i f that store is not

available in server object, e.g. as in the example a separate data store is

used by all the objects. The token is stored using the add_record method

195

Chapter 7: Verification of the New Security Framework

on the NRStore object. In addition, the Proof of Creation and Proof of
Submission described in step 5 are also stored in the client's data store.

Client

ORB Core

Figure 7-5 CCS Non-Repudiation

7. The Server may dispute the invocation call origin at some later time.

The server can call on the NRAdjucator to settle the dispute.

8. The dispute is deliberated and settled. The NRAdjudicator can query the

NRStore to validate the client and server claims, i.e. validate their

supporting tokens. This would be done via a secure context through

NRDeliver (not shown in the diagram for simplicity). The NRAdjucicator

wi l l return a decision and the supporting token.

The non-repudiation action is completed.

196

Chapter 7: Verification of the New Security Framework

7,2.6.3 CCS Auditing Overview

Within the auditing service, there were several facilities, which were not catered for in

the original CORBASec specification. New objects have been introduced to

accommodate administration, filtering, routing, reporting and analysis. Firstly, the

administration objects, AuditPolicy and AuditMech. Although CORBASec specified

an AuditPolicy, this has been significantly modified. The original operations

set_audit_selectorSy clear_audit__selectors, replace _audit_selectors and

get_audit_selectors remain in place to manage the event types to be audited. They are

now extended to include the selection of which AuditAnalyser and AudiiResponder

(see below) are to be used with these selectors. The AuditMech allows the

administrator to manage all the different mechanisms employed in the auditing

facility (this includes analyser, responder, and knowledge-base mechanisms).

AuditDecision was specified in CORBASec, but its function has been modified.

Previously it was used to decide i f an audit record should be written to an

AuditChannel. It now just decides i f the event needs to be audited, using the

auditjieeded operation, because the AuditChannel has a new purpose (described

below).

New objects for the sampler, AuditSamplerAgent, and knowledge base, AuditKB, are

not required. The sampler is an object that is deployed in the system, but is not

accessed by any other object and therefore does not need an interface definition in

CORBA. Sampling wil l be achieved through the security interceptor. The knowledge

base does not need any interface because some of its data is already handled in other

CORBA objects, e.g. the security policy infonnation is available through

administration objects and the security log information is available in the AuditTrail

197

Chapter 7: Verification of the New Security Framework

(see below). Therefore the only information required wil l be the profile, analysis and
response information and it wi l l be utilised by the analyser and responder. This wi l l
be mechanism dependent and so wil l not require an object definition to be available.

After the AuditDecision has decided that an event needs to be audited, the new

AuditAnalyser analyses the information using the chosen analysis mechanism (e.g.

rule-based, profiling, etc.) to decide i f the event is anomalous. The analyser employs

two operations - analyse_data and justify. The former is used to request

AuditAnalyser to analyse the event data, indicate the analysis result (i.e. whether a

system violation has occurred or whether suspicion levels should be raised) and

produce an analysis token; the latter is used to provide a fu l l justification of the

analysis results, i f required.

The analysis result and token are then sent to the AuditResponder, which decides

what to do using the define_response operation; This operation decides what

AuditChannel wi l l be used to implement the appropriate response and it wi l l generate

the corresponding data to be processed by that channel's log or action.

The previously specified AudilChannel object in CORBASec was linked to a specific

AuditDecision object and used a single operation audit_write to write an audit record.

However, AuditChannels are now linked to two new objects, either an AudilTrail or

an AuditAction, e.g. alarms. This is accomplished in the AuditPolicy object using the

setjauditjohannel method. This means that several channels can now exist

simultaneously for a single AuditDecision, providing greater fiexibility and efficiency

from the single object. The AuditChannel can, i f required, establish a secure context

to the log or event action. This wi l l be specified by QoPPolicy or

198

Chapter 7: Verification of the New Security Framework

SecurelnvocationPolicy objects and is implemented by using the secure invocation
objects. This was not the case in the original CORBASec specification. The
AuditChannel now writes the audit_data specified by AuditResponder to its linked
object, i.e. trail or action.

The AuditTrail is a new object that represents an audit log. As the log now has a

standard interface, it can be easily accessed and queried. This wi l l facilitate the

generation of user-friendly interfaces to it. AuditTrail employs r€ad_record,

write_record and query^record operations. The AuditActions object wi l l allow the

administrator to define other generic responses to an audit event, e.g. sounding an

alarm or emailing a security supervisor. AuditActions uses the get_action_info

operation to return details of what the required action is and executejaction to

perform it.

7.2.6,4 CCS Audit Example

The following section describes how the objects of the new Audit Service interact in

the CORBA environment.

1. Client invokes a secure method on a server. The security service mediates

the client/server interaction.

2. Client checks i f the event should be audited. The client wi l l query

AuditDecision to see i f the event should be audited.

3. AuditDecision checks the Audit policy. The client queries the AuditPolicy to

see i f the action should be audited. In this example the server invocation is an

auditable event. AuditPolicy can query AuditMech to identify the specifics of

199

Chapter 7: Verification of the New Security Framework

the auditing mechanisms. AudiiDecision returns a response to the user,
indicating that the event should be audited and identifying the AuditAnalyser
to be used.

4. Client initiates the audit. The client invokes the AuditAnalyser identified by

AuditDecision. The possibility of multiple instances of AuditAnalyser exists

because of the multiple types of analysis mechanism that may be employed.

5. Information is accessed to help analysis. The AuditAnalyser can query the

data in the knowledge base to help it complete its analysis. This occurs at the

mechanism level.

6. Appropriate response is formulated. The AuditAnalyser then passes on its

analysis to the AuditResponder, where the appropriate response to the audited

event wil l be taken. The response can vary from writing a record to the audit

log, sounding an alarm, sending an alert message to the administrator's screen,

or even shutting down a specific application. (Note the AuditResponder can

also access the knowledge base in order to formulate the appropriate response;

this is not shown in the example).

7. Alert sent to administrator screen. In this example, the AuditResponder

decided that two actions were to be taken. The first action is to send an alert to

the administrator's screen. This is accomplished by invoking the AuditActions

object where the alert function is defined, via the AuditChanneL AuditChannel

wil l provide a suitable context i f required. I f the data is considered security

sensitive, an appropriate secure context wi l l be established to deliver the data

200

Chapter 7: Verification of the New Security Framework

to the AuditAction, thereby preventing any unauthorised access to the data
during transit.

8. Audit record writ ten to log. The second response that AuditResponder

required was to write the audit record to a log. The AuditTrail object is the

interface to the audit log, and again i f required, AuditChannel wi l l provide a

secure context to deliver the data.

Client

/Knowtedge \

ORB Core

Figure 7-6 CCS Audit

The auditing of the event is completed.

7.2.7 Secure Interoperability

The mapping of security interoperability has two parts, firstly the mapping of the

protocol and secondly the mapping of objects.

The protocol defined in chapter 5 (see section 5.4.2) is mapped to the OMG's

Common Secure Interoperability (CSI) [37] protocol. The table below lists the CSI

201

Chapter 7: Verification of the New Security Framework

message types, their function and the Interoperability Protocol Messages to which
they can be mapped.

CSI Message Function ORE Message
EstablishContext Passed by the client to the target

when a secure context needs to be
established.

CreateConiext

ContinueEstablishContext Used by the client or target during
context establishment to pass
further messages to its peer as part
of establishing the context.

NegoiiateContext

CompleteEstablishContext Returned by the target to indicate
that the association has been
established.

AcceptContext

DiscardEstablishContext Used to indicate to the receiver that
the sender of the message has
discarded the identified context.
Once the message has been sent the
sender wil l not send further
messages within the context.

DeleteConiext

MessageError Used to indicate an error detected
in attempting to establish an
association either due to a message
protocol error or a context creation
error.

ErrorContext

MessagelnContext When a secure context is
established, messages are sent
within the context using the
MessagelnContext message.

ProcessContext

Figure 7-7 CSI Message Types

The object mapping involves adding a new object, the DomainMapping, and

significantly altering the functionality of the SecurelnvocationPolicy object. Both of

these objects provide the functionality of the DMA and SecurelnvocationPolicy in the

TINA model (see section 5.4.3). However the SecurelnvocationAgent function is

added to the CORBASec Vault and SecurityContext objects. As these objects are

already providing the negotiation process of the QoPAgenl, the functionality only

202

Chapter 7: Verification of the New Security Framework

needs to be extended to address the issues of interoperability across disparate
domains.

The following table summarises the secure interoperability mappings.

New Security
Framework

CORBASec Functionality

D M A DomainMapping Define mappings between two trust
domains

Securelnvocation
Agent
QoPAgent

Vault,
SecurityContext

Negotiate and build a secure
association between different trust
domains

SIPolicy Securelnvocation
Policy

Management of secure association
options between different trust
domains

Table 7-6 Secure Interoperability Service Object Mappings to CCS

7.2.8 Security-Aware Trader

The CORBA Trader [109] is an implementation of the ODP Trader, as describe in

chapter 6. Therefore the mapping to CORBA of the new security-aware trader is

simplified as it can be accomplished by following the modification summary stated in

section 6.5.5 (the modifications are again listed below):

1. New Trader security attributes;

2. Use of 'mandatory, readonly* security property in Repository;

3. New Registry security property;

4. Modified Admin interface, inherits Security Attributes;

5. Modified Lookup interface inherits Security Attributes;

6. Modified Registry interface inherits Security Attributes;

7. Modified Proxy interface inherits Security Attributes;

203

Chapter 7: Verification of the New Security Framework

8. Modified Link interface, inherits Security Attributes, and new link policy
Link^security;

9. Use of the new Security Framework, including secure interoperability;

10. Use of security-aware DPE services.

The new security-aware trader IDL for CORBA is available in Appendix B. It covers

the modifications 1 to 8. However, the modifications for 9 and 10 do not produce any

IDL changes, but rather functional changes in how the Traders interact securely with

each other when they reside in disparate domains, and how they interact with the

security service.

7.3 Summary

The DPE specifications provided by TINA are high level and do not address many

implementation issues. To ensure that the new Security Framework is applicable, it

was considered necessary to map it to a DPE implementation specification. CORBA

is the leading specification and therefore was used for the mapping exercise. The

existing CORBA Security Service has been significantly re-designed to provide a new

more comprehensive and configurable service, in order to meet the needs of a DPE.

Firstly, the new administration structure, which facilitates service and mechanism

independence, is provided through the introduction of a new Policy super-class and

the use of this class to build service and mechanism management objects for each of

the service facilities. Secondly, each facility within the security service is also

enhanced. Audit is extended to include new monitoring (IDS) and data filtering

204

Chapter 7: Verification of the New Security Framework

facilities. Non-Repudiation provides new delivery and storage facilities. An interface
to an adjudicator is also provided to help settle disputes. Integrity and Confidentiality
are extended to provide greater configurability and deal with the issue of stored data
QoP. Thirdly, secure interoperability has extended its negotiation capabilities to
handle all of the new Security Service facilities, and is now capable of negotiating a
secure context between security domains with conflicting policies. Finally, the
CORBA Trader is now security-aware and can interact with the security service to
eliminate the trading security threats identified in section 6.4.

A l l of these mappings go beyond any enhancements planned by the OMG in the

future [110, 111] and far exceed the current realisation of security within current

implementations of CORBA. The next chapter wi l l now investigate the prototype

implementation of the new mappings to CORBA and verify their feasibility.

205

8. Proof of Concept

8.1 Introduction

The previous chapters have covered the core concepts of the new security framework

- the new security service, new secure interoperability and the security-aware DPE

service (Trader). A l l of these features address security vulnerabilities in DPEs and

offer improved secure functionality within the distributed environment. However, a

theoretical specification alone is not adequate i f the research is to prove useful in the

worid of distributed object systems. Therefore, the purpose of the implementation is

to build demonstration software that wil l act as a Proof of Concept for the theoretical

research defined. The prototype can then be used in the verification work.

This chapter wi l l look at both implementation and verification. With regard to

implementation, it wil l define the different aspects of the work - hardware, software,

the IDL defined and how the object implementations were achieved. Issues relating to

the implemented IDL, which were identified during the process, wi l l also be

examined. The verification wil l be performed in two ways.

o Performance Modelling;

o Standardisation (including implementation issues);

Firstly, performance modelling of the work is required to determine the implications

of implementing the new security services in real-worid environments, and not just

the research environment described in this chapter. Secondly, the work needs to be

acceptable within the current standards for ISE and DPEs. These standards have also

206

Chapter 8: Proof of Concept

progressed since the initiation of the research and the work wil l be evaluated to ensure
that it is still new and novel. Finally, the verification wil l entail looking at current
real-worid problems that the new security framework wil l solve.

8.2 The Proof of Concept Prototype

With regard to the scope of the implementation, it was decided that it should it wi l l

include all three aspects of the work:

1. Comprehensive CORBASec (CCS);

2. Comprehensive CORBA Secure Interoperability Service;

3. CORBA Security-aware Trader.

Each one needs to be a workable part, in order for the whole security solution to be

implementable. Within the CCS, the major security facilities implemented are as

follows:

• Authentication;

• Access Control;

• Integrity/Confidentiality (QOP);

• Non-Repudiation.

These enhanced facilities include all the new objects as defined in chapter 7, both at

administration and operational levels. The only facilities not implemented for the

service were the Audit and Recovery. Although Audit was theoretically defined in

section 7.2.6.3 (based on the components in Chapter 4), neither Audit nor Recovery

was implementable within the timeframe of the research. The implementation was

207

Chapter 8: Proof of Concept

restricted to a selection of facilities that were considered sufficient to provide a
prototype for the CCS.

The Comprehensive Secure Interoperability Service has also been implemented. It

operates at both the mechanism and policy levels defined in section 7.2.7 (based on

the components from chapter 5). It includes the extension of the secure context

objects so that they can handle the new policy configuration negotiations within the

new administrative structure of the CCS, as well as the introduction of a new object to

provide mappings between these configurations.

The final part of this implementation is the construction of a security-aware service,

which is the Security-aware Trader as described in chapter 6. The Trader

implemented is a *Stand-alone Trader', as defined in [59], implements the Lookup,

Register and Admin interfaces. Currently available trader implementations are

generally only Query or Simple Traders, i.e. they implement the Lookup or Lookup

and Register interfaces.

The justification for this research has already been covered in previous chapters and

has shown that DPE specifications for Security, Interoperability and the Trading

service, while providing a basis for secure operations, are still incomplete (CORBA

was used as an illustrative example). The inadequate management and operational

facilities leave DPEs open to many security vulnerabilities, which are listed in

sections 4.3, 5.2, and 6.3. This prototype verifies the work by defining a new DPE

specification framework (CORBA) comprised of new objects, administrative

structures, policy configuration structures and modes of operation between services to

ensure greater security. These issues can be summarised as follows:

208

Chapter 8: Proof of Concept

Topic Problem Research Solution

Security Missing facilities Provision of facilities with the
addition of new objects

Security

Inadequate administration Design and Implementation of
new administration system

Security

No Mechanism Independence Separation of mechanism and
service management

Interoperability Insufficient negotiation
abilities

New negotiation abilities of
interoperability objects

Interoperability

Unable to handle disparate
domains, e.g. different
policies

New structures introduced to
handle confiicting policy
negotiations and inter-domain
mappings

DPE Service Not security aware Creation of security-aware
service that utilises the CCS

Figure 8-1 Summary of Issues in Research

8,2.1 Implementation of the Prototype

The following subsections describe how the prototype was implemented. It details the

hardware platform, software configuration, structures used and how the Interface

Definition Language (IDL - see section 2.4.1) was used to ensure implementation-

independence at several levels within the demonstration software. Further prototype

hardware and software information is provided in Appendix D.

8.2.L1 IDL

CORBA IDL allows the specification of object interfaces in an implementation-

independent manner (see section 2.4.1). It is used by the middleware implementation,

i.e. Orbix, to generate C-H- code for the implementation. The IDL interface code

generates the client stub and server skeleton (see figure 2-8 in section 2.4.2). In the

implementation, three features were implemented using IDL-defined interfaces:

209

Chapter 8: Proof of Concept

• Comprehensive CORBASec;

• Security-aware Trader;

• GSS-API.

The CCS and Security-aware Trader were defined in BDL as they are new services and

had to be proven to be implemenlabie and operational within the distributed

environment. The GSS-API server vyas defined in IDL because it was necessary to

ensure that the other services could utilise GSS-API in order to preserve

standardisation.

The CCS IDL has several modules:

• Security: defines the data types used in the service;

• SecurityLevell: defines Level I security;

• SecurityLevel2: defines Level 2 security and basically includes all the

operational level objects required by the service;

• SecurityAdmin: defines the new security administration features;

• SECIOP: defines the enhanced Secure HOP required for the new service.

In CORBA there were two other modules, the NRService and SecurityReplaceable

modules; both have been integrated in to the SecurityLevel2 and SecurityAdmin

modules. There are two reasons for this. Firstly, non-repudiation is no longer an

optional service and, therefore, is now included in the main modules so that it is

accessible with all the other facilities. Secondly, security replaceability is no longer

required as mechanism and service independence is now built into the CORBA

210

Chapter 8: Proof of Concept

security structure and can transparently handle any replacement of mechanism and
policy objects that is required.

The Security-Aware Trader IDL module structure has not changed from the original

CORBA structure. It is still as listed below:

• CosTrading: defines the Security-Aware Trader that contains attributes,

including the new security attributes, and core interfaces, i.e. Admin, Lookup,

Register, Proxy, Link, and Offerlterator;

• CosTradingDynamic: defines the Trader's Dynamic Property interface, i.e.

DynamicPropEval;

• CosTradingRepos: defines the Trader's Service Type Repository interface,

i.e. ServiceTypeRepository.

While the CORBA object interfaces are still used, some of the parameter lists are

extended and a new security attribute interface has been added along with the new

link policy, Link_security.

The GSS-API IDL was created from the version 2 specification [85]. It contains a

single module:

• GSSAPI: defines all the data types and operations required by the version 2

specification.

The ful l IDL descriptions for these services and GSS-API are available in Appendices

A, B and C respectively.

211

Chapter 8: Proof of Concept

8,2.1.2 Object Implementation

This section wil l look at the structure of the Prototype software, what objects were

implemented and how they were utilised.

8.2.1.2.1 Implementation structure

The object implementation was accomplished in using Visual C++, cryptlib and

Microsoft Access in the Orbix environment. It was structured as depicted in figure 8-2

below:

Comprehensive
CORBASec

GSS-API

Security-Aware
Trader

ware

cryptlib Access

Figure 8-2 Object Implementation

The GSS-API server used the cryptlib software to provide the mechanisms required to

accomplish the security context, credential and protection operations defined in the

service. The CCS was then able to utilise these generic operations to complete its

defined methods on the security objects. It also used Microsoft Access as a method of

persistent storage for administrative data held in the security administration objects.

The Security-Aware Trader utilised Microsoft Access as a mechanism for persistent

storage of trading data, this includes attribute values and Repository and Registry

212

Chapter 8: Proof of Concept

information. The Trader wil l use the CCS to accomplish any security-related
functions that are required - such functionality or behaviour is indicated by the
security attributes.

8.2.1.2.2 Objects Implemented

As previously stated the prototype implementation does not implement all of the

newly defmed security facilities. Figure 8-3 below clearly illustrates which objects

have been implemented (it is based upon figure 2-11 in section 2.6).

Authentication
& Authorisation

Socuro rnvocation
a QoP

Non-Repudiation
& Audit

UserAgcnt

Current

Credentials

Principal
Authenticator

Required Rights

Access Decision

Vault

SecurityContexl

NRCredentials

NRStore

NRAd udlcator

AuthPolicy

AuthMoch •

Access Pol icy

AccessMech

DelogationPolicy

DelegatlonMoch
0

QOPPolicy

QOPIUech

Secure Invocation
Policy

DomalnMapping hi

NRPolicy

Figure 8-3 CCS Objects Implemented

In the Security-Aware Trader, the Lookup, Register and Admin interfaces (see section

6.5) are implemented. It was not necessary to implement the Link or Proxy interfaces

213

Chapter 8: Proof of Concept

lo prove the concept of security-aware services. Figure 8-4 illustrates the interfaces
implemented in the Security-Aware Trader.

o "5

O

11
•o
<

Core Trader
Interfaces

Lookup

Register
h

Other Interfaces

ServlceTypeRepltory h
Olferlterator I]

Admin

Figure 8-4 Security-Aware Trader Interfaces Implemented

Within the GSS-API IDL, the core operations relating to credential management,

context-level (establishment and management), and message-level (integrity and

confidentiality) were implemented. The support calls were not implemented for the

demonstration software, as the purpose of utilising GSS-API operations was lo use a

standardised API within the CCS.

8.2.1.2.3 How objects were utilised in the implementation

There are two basic methods of utilising the security objects:

o Interceptor initiated calls;

o Direct call from security-aware applications.

214

Chapter 8: Proof of Concept

Both of the methods are utilised in the implementation, and are necessary as they can

correspond to the security-inactive and security-active invocations (see section 4.2.3).

This section wil l illustrate how this is accomplished by showing some examples of

where these methods are applied in the demonstration software.

Interceptor initialed calls are utilised by the Security-Aware Trader. A security

interceptor has been created in the Security-Aware Trader. When a call is invoked on

the Trader, the interceptor intercepts it. It can then interrogate the Trader's security

attributes and apply the appropriate security facilities to the inbound call. For

example, as show in figure 8-5 below, i f a Security-aware Trader is using the

access_control_trader and nrjrade attributes, the interceptor wil l firstly run an

access control on the call, using AccessDecision, to ensure that the client is authorised

to access the Trader. I f the client has authorisation, the interceptor wi l l then check the

Trader's non-repudiation policy (NRPolicy) and find the evidence types required and

comply with the policy. I f 'proof of origin' is required, then the interceptor wil l ask

the client for such evidence. When it is received and verified, it wi l l be stored in case

of future disputes. The interceptor wi l l then forward the call to the Trader.

215

Chapter 8: Proof of Concept

Security
Attributes

Gssm

pomprehenslve

check
attributes

ho
us©

security
functions

complete
Trader

invocation

initiate
Trader

invocation

Security
interceptor

for
Security-

Aware
Trader

Figure 8-5 Interceptor initiated calls

Security interceptors can process all call invocations when security is to be applied

across a distributed system. This wil l ensure that the domain security policy wi l l be

applied to all application calls whether they are security-aware or not. This is how

Level 1 security is applied. However, as in the example above, security-aware

applications or services can also utilise interceptors to process all incoming

invocations.

The second method of utilising objects is that of a direct call from security-aware

applications. In this case, applications can make calls on security objects directly as

opposed to relying on interceptors. An example of such an application in the

implementation software is during the logon process. The logon facility initially

queries the AuthMech, via the AuthPolicy object, to find the authentication

mechanism used, e.g. password or smartcard. In this instance, the password logon is

defined as the required mechanism for the system and so a password logon screen is

presented. After the user has entered his ID and password, the logon facility generates

216

Chapter 8: Proof of Concept

a UserAgent to act on the user*s behalf. The UserAgent wi l l then initiate a call to the
PrincipalAuthenticator in an attempt to authenticate the user. I f successful, a
Credentials object wi l l be generated for the user and he wi l l be allowed access to the
remote system.

AccessPolicy

Access Mech

Security-Aware
Trader

Secunty
Attributes

Administration Application
for

Access Control

Administration Application
for

Security-Aware Trader

dministrator

Security-Aware
Trader
Owner

Figure 8-6 Direct call on objects

Another scenario in which an application can call security objects directly is

administrative applications as illustrated in figure 8-6 above. The demonstration

provides administration applications for each of the security services and does so by

accessing the administration objects, both service and mechanism level, to populate,

verify and update the security policies. An administrative application has also been

written to allow the Trader owner update the features used in a Security-aware Trader,

i.e. set the appropriate security attributes.

217

Chapter 8: Proof of Concept

5.2.7.3 Implementation issues

The first issue relates to the number of parameters that were used in the IDL

operations, e.g. the Vault object's init_securiryjcomext method clearly shows how the

number of parameters can become very long. The bold highlight shows the new

parameters added to the IDL.

Security::AssociationStatus initjsecurity_context (

in CredentialsList

in Security::SecurityName

in Object

in Security::OptionsDirectionPairList

in Security::MechanismType

in Security::Opaque

in Security::Opaque

incut short

out Security::MechanismType

out boolean

out boolean

out boolean

out boolean

out boolean

out boolean

out boolean

out boolean

out boolean

out Security::opaque

out SecurityContext

out Security::errormsg

out Security::maJor_status

out Security::minor_status

credsjist,

target_security_name,

target,

association_options,

mechanism,

mechjdata,

chan_binding,

lifetime _rec,

out_mechanism,

deleg_state,

mutual_state,

replay _detjstate,

sequence jstate,

anon_state,

trans_state,

prot_ready_state,

conf_availy

integ_avail,

security_token,

security jcontext,

error,

majorjsrror,

minor error

218

Chapter 8: Proof of Concept

The above method was constructed in this manner so that it was easily map to the
GSS-API method, GSSJnit_sec_context (see below) [85].

OM_uint32 GSSJnit_sec_context{

in gss_cred_id_t claimant_cred_handle,

in short input_context_handle,

in intemalname target_name,

inout objJd_seq mech_type,

in boolean deleg_req_flag,

in boolean mutual_req_flag,

in boolean replay_det_req_flag,

in boolean sequence_req_fiag,

in boolean anon_req_flag,

in short lifetime_req,

in octetstring chan_bindings,

in byleBuffer inpul_token,

in short tincount,

out short major_status,

out short minor_status,

out contexthandle output_context_handle,

out byteBuffer output_loken,

out short tcount,

out boolean deleg_slate,

out boolean mutual_state,

out boolean replay_det_stale,

out boolean sequence_state,

out boolean anon_state,

out boolean trans_state,

out boolean prot_ready_state,

out boolean conf_avail,

out boolean integ_avail,

out short lifetime_rec

);

219

Chapter 8: Proof of Concept

There are many other similar examples in the new IDL. GSS-API provides a generic
and standardised method to create a secure context and so is used by many security
implemenlers. Therefore it was used as the basis for the security implementation in
the demonstrator. However, the number of parameters in IDL is generally smaller, as
this helps reduce programmer error. Therefore it may be more conducive to place the
large number of parameters in a structure instead of listing them sequentially.

The second issues relates to the number of invocations required. While the

demonstrator was able to implement and operate all of the interfaces, it was realised

that the number of invocations required had substantially increased. This issue is

analysed in detail in the section 8.3.1 later in the chapter.

8.2.2 A Practical Demonstration Scenario

The prototype incorporates the use of a demonstration scenario, which itself involves

two applications, 'Local Application* and 'Remote Application', both of which have a

set of facilities within an new CORBA environment, i.e. they both utilise the CCS,

new Secure Interoperability Service, and 'Local Application' also utilises the

Security-Aware Trader. The scenario involves 'Local Application' users completing a

service authorisation request. In order to do so they need to access user profile

information in 'Remote Application', for the user making the service request.

'Local Application' has the following applications:

• Logon Application;

• Service Authorisation Application;

• Security-Aware Trader to find datastore services;

220

Chapter 8: Proof of Concept

• Security Administration Application;

• Security Aware Trader Administration Application.

'Remote Application' has the following Application:

• User Information Application, which can be remotely accessed by other

applications with the proper security authorisation.

For the purposes of the demonstration, a domain mapping has been agreed between

the administrators of the two security domains where 'Local Application' and

'Remote Application' reside.

The following table 8-1, illustrates the users in 'Local Application' and their roles and

the applications that they are authorised to use:

Users Local
Application

Remote
Application

Name Role Service
Request

Trader
Service

Trader
Admin.

Security
Admin.

User
information

Userl 'Roler X X X X

User2 'Role2' X X

Admin 'administrator' X

Table 8 - lUser Roles and Authorised Access

The main features of the demonstration are show as follows:

• CCS with new and enhanced facilities: the 'Local Application' wi l l be able

to operate in two modes, with security switched on or off. When security is on.

221

Chapter 8: Proof of Concept

the CCS wil l authenticate users and only allow them to access authorised
applications. It wi l l also employ the appropriate QoP and non-repudiation
functions;

• New Secure Interoperability Service: When users try to access the *Remote

Application' User Information Facility, the new Secure Interoperability wi l l

come into operation. If authorised, the user wi l l be allowed access to the

application;

• New Administration Structure: Only Admin is authorised to access the

Administration applications for the CCS. Admin wil l be able to make changes

to certain policies, and the updates wi l l be reflected the next time a user tries

to access the 'Local Application';

• Security-aware Trader: The Security-Aware Trader offers datastore services,

e.g. a user can query the Trader to find the most appropriate datastore to store

*Local Application' details. The Security-Aware Trader is administered by its

owner, i.e. Userl can update the security attributes. The Trader wi l l initially

operate as a Public Trader, i.e. with no security, and then after an

administration update it wi l l operate as a Security-Aware Trader. The

differences can be illustrated by observing who can access the Trader and

what service offers are returned.

Figure 8-7 below illustrates the authorised paths through the Prototype, when the new

CCS is in operation. A security service is active is active in both domains. User2 is

not authorised by the security service to access the remote application or to authorise

a service request.

222

User?

Chapter 8: Proof of Concept

Domain A Domain B

Local
Application

Remote
Application

adtnin

1

Security Security
Admin Service

Security
Service

J

Figure 8-7 Authorised paths through the demo with New Security Service

Only an administrator is allowed to access the security service through the

administration console, see figure 8-8 below.

PhO Demonilnrtion

•SetecloneandpiwtOK-

(»j Security Sefvk:cA<Snintt(iation

O Tiadei Secirity Adrvntiation

Sdect to set Ihe Secuity System On-

OK

C « r d

Figure 8-8 Administration Selection screen

Any access request, other than those displayed, should be denied. Without the new

Security Service, User2 would be able to access all functions - there would be no

protection.

223

SdM ma reoLirt aaririaaiwi «*BB-

G

1 Acc«iConDcfA<>Brwtanon

Gin

I

Figure 8-9 Security Service Administration Screens

The administrator wi l l be able to select the service he wants to manage by selecting it

from the security menu as shown in figure 8-9 above. The details of how the services

are administered can be entered using the individual security service screens, such as

the access control administration screen also illustrated in figure 8-9.

Figure 8-10 below, illustrates the authorised paths through the Security-aware Trader

demonstrator. Userl, as the trader owner, is the only authorised user allowed to access

the Trader administration console, i.e. she is the only one allowed to set the Trader

attributes. Both Userl and User2 are allowed to access the Trader; however, when the

new security service is in operation, User2 wil l only see the trader offers that he is

authorised to see. Userl, acting with 'Rolel ' , is allowed to view all the offers in the

Security-aware trader. Without the new security, User2 would either be denied any

access to the trader, or he would have full access and therefore the service offers

would be unprotected.

224

Chapter 8: Proof of Concept

User2
'Ro!e2

Userl
'RoteV

0ffer2
0tfer3

Userl
trader
owner'

•admin'

Trader
Service

i n ^ Trader
C 5 & ^ Admtn

Security
Admin

Security
Service

Figure 8-10 Authorised paths through Trader Demo with New Security Service

r Seiaci ons and prsn Of.

I R SectrtyAMoieTiadei

Accsn Cortai the I iAda

Accest Dv«o(tha Servica Qltai

I n Enoypt Iioffrifl Da<3 Staet

I p ; EncivpiiheTioAx)Comt»«MtiarB

! f j tntcffiti.CheciTi«fcg Daw Stow

rj. <5)ui*on 0* I radng Actrvtin

Tiadei - Quety Dialog

Pidoence |max "Space Avaiafats'

Ho«t Marv P

QMone

5(«)pofUSQL

Figure 8-11 Trader Security Administration & Query Screens

8.2.3 Requirements Matrix

To further illustrate the ability of the New Security Framework and the prototype to

meet the security requirements, the table below lists all of the DPE security

225

Chapter 8: Proof of Concept

requirements, and identifies which ones are meet by the original TINA security
model, the New DPE Security Framework, the original CORBA Security Service and
the Prototype (implemented as an extension to CORBA) (see section 4.3 and 7.2.1),

The matrix illustrates how the DPE Security Framework (and the resulting

implemented Prototype) is able to provide the necessary requirements for a secure

DPE. This has been achieved by several means, such as extending facilities such as

auditing and non-repudiation, which were previously not present or incomplete;

management has been re-structured and administration interfaces have been added or

extended to provide the flexibility required; and interoperability has been introduced

to deal with disparate security domains.

226

Chapter 8: Proof of Concept

Security Requirement TINA New DPE
Security

CORBA
Security

Prototype
(CCS)

1. Identification and
Authentication

2. Authorization & Access
control

3. Propagation of security
attributes

- •

4. Secure communications -
5. Secure stored data - -
6. Secure Auditing - -
7. Non-repudiation - -
8. Administrative interfaces -
9. Interoperability - -
10. Scalability
11. Integration with existing

environments
- - -

12. System Recovery - - - -
Tl Intrusion Detection - - - -
T2 Hardware/software

protection (Mech.Mgmt.)
- - -

M l Inter-object
communications

M2 TINA services -
operational

M3 TINA services - control
M4 TINA services -

administration
-

M5 Inter-DPE security -
A l Secure participant

interaction
-

A2 Application Admin -
A3 DPE applications security -
11 Attribute Mappings - -
12 Operational

interoperability
- -

13 Control/Administration
interoperability

- -

14 Application Security
Context

-

Table 8 - 2: DPE Security Requirements Matrix

227

Chapter 8: Proof of Concept

8.3 Verification

In order to verify the prototype, two approaches were used. Firstly, the practical

verification by performance modeMing was used to analyse the system. Secondly, a

more theoretical verification by analysing current standards was also used.

8.3.1 Performance Modelling

When assessing performance in a distributed object system, the cost of object

invocation is measured in milliseconds and so the number of invocations should be

carefully considered when analysing a system [112]. Therefore when considering the

performance of the CCS, it will be measured in object invocation calls. This will be

compared with the CORBA Security Service to see if significant overheads have been

added. The actual time of the invocation is not measured because it is subject to too

many other variables, e.g. platform, network load, bandwidth. Therefore the number

of invocations is deemed to be a more realistic measurement.

The modelling will consider three areas, operational level security, administration of

security and the security-aware CORBAservice.

8.3A.1 Operational level

For each of the six main seciirity facilities in the security service, i.e. authentication,

access control, QoP, audit, non-repudiation and secure invocation, an event sequence

chart is presented. It will map the number of calls used and provide a comparison

between the new Comprehensive CORBASec (CCS) and the current CORBA

Security Service by highlighting the new enhanced operations with a broken line.

Operations, which previously existed in CORBA, are illustrated by a solid line.

228

Chapter 8: Proof of Concept

When considering the number of invocations, the chan may illustrate the actual
method invocation on a server that initiates the security service, however this
invocation (identified as ^invoke' on the chart) will not be included in the object
invocation count - the count is restricted to security object invocations. Also in some
instances a 'create object' invocation is counted, because although it is not a specific
operation specified in the DDL it is considered an invocation on the constructor of a
security object.

Each chart will reference previous examples that have been presented in the thesis

descriptions of CORBASec and CCS, which will provide a basic explanation of the

objects utilised in that service.

Firstly, the authentication event sequence chart. In this scenario, a principal is logging

on to a system and wishes to be authenticated and presented with valid credentials

(see section 7.2.4.2 for the CCS example). CORBASec utilises 3 object invocations,

while the Comprehensive CORBASec (CCS) makes 8 object invocations.

229

Chapter 8: Proof of Concept

Citeni

|_set_name^|

|_set_authdal^

^ ^ ^ ^ ^ ^

authenticate

Lguery_Auth_pollc3^ I.

I I
I "

gel_controIs _

(create Credentials)

set credentials

Figure 8-12 Authentication Event Sequence Chart

Access Control is considered in the next event sequence chart. It considers the

scenario when a client invokes a server, and the server decides whether the client is

authorized to do so (see section 7.2.4fs.2 for CCS example). Here, both CORBASec

and the CCS utilize 4 object invocations.

I Invoke I

get_attribute^

accessJ allowed

g et_req u I red_ri ght^

Figure 8-13 Access Control Event Sequence Chart

230

Chapter 8: Proof of Concept

The next chart looks at QoP in both services. It considers the case of a client changing
the QoP it requires when invoking a server (see 7.2,5.2 for CCS example).
CORBASec makes 2 object invocation, while CCS makes 3 invocations.

I get_QOP_pollcy^|

overTlde_def autt _Q O P.

Invoke

Figure 8-14 QoP Event Sequence Chart

Non-repudiation considers a scenario where the client generates evidence, e.g. proof

of origin, which has to be verified by the server. The server then generates evidence to

support this verification. A single call to the adjudicator to settle a dispute is also

shown above (see section 7.2.6,2). CORBASec utilises only 6 invocations while CCS

makes I I .

231

Chapter 8: Proof of Concept

^ (serverj

I query_NRjolicy ^ 1
® 4BEI^ ^B^^ ^R^^^ jflD3^

generate_token

I I
forTn_complete_evidence

Invoke.

NR_se nd_ge ne rated_token

vertfy_token

generate.tpken

form_complete evidence

N R_send_gene rated_toke_n

NR_add_recoK

l_NR^add_recor^|

NF|_sett[e_disgute

Figure 8-15 Non-repudiation Event Sequence Chart

The Audit scenario involves a client invoking a server method. The server considers

whether the event should be audited and what the response should be when the event

is to be audited. A record is written to the log to record the event and an alarm is

raised to notify the administrator (see section 7.2.6.4 for example). CORBASec

invokes 3 objects while CCS invokes 9 objects.

232

Chapter 8: Proof of Concept

I invoke

JCS^k AS^A ^ B ^ A ^S^B J^^^^^^^^^^ ^ ^ ^ n ^ ^ ^ A
^̂ ^̂ 9 ^̂ Ŝ ^̂ ^̂W ^̂ B̂ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^̂ ŝ

audit
ncodca

analyse_data ^1 " 1 ^ "~ ^

dcfinc^response

audit write

auditlwrito

L wr']^ I
• record^'

_executo
acQon

Figure 8-16 Audit Event Sequence Chart

The final chart maps a Secure Invocation between a client and server. The server

requires a mapping between policy configurations, i.e. a domain mapping record. The

original invocation is then sent to the client, protected by the secure association and a

protected reply is returned by the server (see section 5.4.4 for example). CORBASec

requires 7 invocations and CCS requires 11 invocations.

233

Chapter 8: Proof of Concept

Invoke ^

>_poHcy

inil_seci rity_context

create client

^ e t Interoj >_poHcy

inil_seci rity_context

create client

gel_lnteroa
policy ^

acc

quer^

ept_security_con ext

create client

gel_lnteroa
policy ^

acc

quer^

ept_security_con ext

SecureContejlt

create server

CO itlnue_securily_ci intext

SecureContejlt

create server

CO itlnue_securily_ci intext
SecureConten

1
protect_message

reclalm_Lessage

I I I I

Figure 8-17 Secure Invocation Event Sequence Chart

Now that each of the security operations has been mapped on charts, the resulting

number of invocations for each facility can be compared.

As can be seen from both table 8-1 and the figure 8-18 below, the CCS makes more

invocations than CORBASec. However, this is to be expected as the CCS offers

significantly more facilities than CORBASec. For example, the increase in both non-

repudiation and audit in CCS can be accounted for because of the delivery, storage,

adjudication and monitoring facilities they now have. Similarly secure invocation now

offers policy level mappings and authentication is able to use the UserAgent and

utilise a comprehensive administration structure to build the credential. There is no

234

Chapter 8: Proof of Concept

increase in access control, but for QoP the number of invocations is increased by 1
(however this is a 100% increase). Even though there are increases, they average
about 3.3 object invocations per facility, i.e. a 90% increase in the number of
invocations required.

Service CORBASec CCS DifTerence % Diff.

Authentication 3 8 5 166%

Access Control 3 3 0 0%

QoP 2 3 1 50%

Non-Repudiation 6 11 5 83%

Audit 3 9 6 200%

Secure Invocation 7 10 3 42%

Ave.=3.3 Ave. 90%

Table 8-1 Operational Object Invocation Comparison

Authentication AudH

• CORBASec
• Enhanced Security Service

Figure 8-18 Operational Object Invocation Comparison

Therefore this overhead in object invocation is seen as minimal and bearable by the

system, when one considers the new and enhanced facilities that are now available in

235

Chapter 8: Proof of Concept

CCS. Also these examples are assuming that all services are used all the time, but in
any large distributed object system, the administrator would tailor the policies to
provide the maximum protection while minimizing the overhead.

83.1.2 Administration Level

Some of the administration objects, and how they are used at an operational level,

have already been considered in the previous section. However, this is only a small

number of the possible administrative methods available. This section will look at all

of the administration objects and their methods. It will not employ sequence charts,

but will simply compare object method numbers in both CCS and CORBASec.

Table 8-2 below, lists the administration objects and the number of methods available

on each in CCS and CORBASec.

Service CORBASec objects CCS objects

Authentication - AuthPolicy, AuthMech

Access Control AccessPolicy
DomainAccessPolicy
RequiredRights

AccessPolicy, AccessMech

Delegation DelegationPolicy DelegationPolicy, DelegationMech
QoP - QOPPolicy, QOPMech
Non-repudiation NRPolicy NRPolicy, NRMech
Audit AuditPolicy AuditPolicy, AuditMech
Secure Invocation SecurelnvocaiionPolicy SecurelnvocationPolicy,

DomainMapping

Table 8-2 Administration Objects

This highlights the fact that CCS provides a comprehensive administration structure

and so will provide more methods. However it should be noted that CCS provides

policy and mechanism level administration, while CORBASec only dealt with policy

236

Chapter 8: Proof of Concept

level administration. This fact is considered in table 8-3 below which compares the
number of object methods.

CORBASec CCS

Service Policy Policy Mechanism Total

Authentication - 6 5 11

Access Control 6 7 5 12

Delegation 2 10 - 10

QoP - 11 9 20

Non-Repudiation 2 6 13 19

Audit 5 6 9 15

Secure Invocation 2 15 - 15

Table 8-3 Comparison of the Numbers of Administration Object Models

As shown in figure 8-19 below, if one was to compare the total number of methods

available in administrative CCS objects with the number in CORBASec, then there

would be a significant overhead, approximately 12.1 object invocations per facility.

However, if the comparison is made based on comparing policy administration, then

the overhead becomes only 6.3 object invocations.

237

Chapter 8: Proof of Concept

• CORBASec
• ESS Policy Admin
• ESS Policy & Mech Admin

Figure 8-19 Number of Administration Object Methods

TTiis overall increase, although significantly less than the original comparison (almost

50%), still reflects the additional facilities provided by the new administration

structure. It provides a new flexibility and enables mechanism and service

independence. Therefore it is again an issue of weighing up the tradeoffs between

performance and security. Although the increase at administration level is double the

operation level (3.1 object invocations), it can be seen as a tolerable overhead because

these administration methods are generally only required at system set-up and for

maintenance purposes.

8,3.1.3 Security-A ware CORBAservices

The Security-Aware CORBAservice that was designed by this research was the

Trader. By using the figures already calculated for security invocations at an

operational level, the impact by security on the Trader service can be studied.

238

Chapter 8: Proof of Concept

Security Attributes Attribute Security Total

Invocations Invocations

Security-aware 1 - 1

Access_control_trader 1 3 9

Access_control _service_offers 1 - 1

Encrypt_stores, Inlegrity_check_stores 2 2 4

Encrypt_comms, lntegrity_check_comms 2 10 12

NR_trade 1 11 12

Audit_trade 1 9 10

Table 8-4 Security-Aware Trader's Security Object Invocations

Table 8-4 above, lists the security attributes defined for the Trader (see section 6.5). It

details the number of invocations required to get the attribute value and then defines

the number of operational level object invocations required to execute the appropriate

security facility. However, when calculating the average increase in the number of

object invocations for each attribute that is set on, two assumptions are made:

• Although two attributes are tested. Encrypt_stores and Integrity_check_stores,

the number of object invocations is kept to a single execution of a QoP

facility. This is because the implementation will be executed as one function.

• Similarly for Encryptjcomms and Integrity_check_comms the number of

object invocations is kept to a single execution of a Secure Invocation facility,

as the implementation will execute both as a single function.

The average number of object invocations for each attribute set is then calculated as

4.9 invocations. Again trade-off is an issue, this Security-aware Trader can provide

security that previously did not exist within the system and so this overhead has to be

239

Chapter 8: Proof of Concept

weighed against the added protection. Also the Trader will be tailored to suit the
system, with only the appropriate attributes set, so that performance and security will
be considered when deciding just how *security-aware' the Trader should be.

83.2 Standards Verincation

Having considered verification from the practical perspective, i.e. performance

modelling, it is relevant to now consider how the research relates on a more

theoretical level, i.e. the DPE implementation standards. Standards in a research area

do not remain static, they are constantly being revised and updated. The technologies

used can become outdate and replaced by new ones. This section will look at how the

standards and technologies used in the research, have been revised, and explain how

the new framework is still valid even with the recent changes.

8J,2.1 iSE and DPE standards

TINA has influenced groups such as the OMG, and it was not a surprise in September

2000, when the OMG announced that after TINA-C's decision to discontinue

operation, the OMG would continue TINA-C's work under their Telecommunications

Domain Task Force [113]. Therefore TINA will still remain the central ISE DPE

standard even though it has now transferred to the OMG. This obviously also

strengthens CORBA's position as an important standards-based DPE solution.

Another such recognition is the fact that CORBA is now recognised as an

international interoperability standard [114]. The International Standard's

Organisation (ISO) recently adopted CORBA's Interoperability platform as ISO/IEC

19500-2. The ISO have already adopted several other specifications such as DDL

(ISO/EEC 14750|1TU-T Rec. X.920), Trader (ISO/IEC 13235|1TU-T Rec. X.950) and

240

Chapter 8: Proof of Concept

ODP Type Repository (ISO/IEC DIS 14769|rrU-T Rec. X.960). The OMG has also
submitted CORBA's ORB specification for adoption.

8.3.2.2 CORBA Security Service Revision 1.5 and 1.7

The OMG follows a Technology Adoption Process [115], which will be outlined

before discussing the version issues of CORBASec. Initially a Task Force may issues

a Request for Information, which will eventually result in a Request for a Proposal

(RFP). Submitters can then reply to the RFP by a submission deadline with an Initial

Submission, which can later be updated as a Revised Submission. Once the OMG

Architecture Board (AB) has certified a submission, i.e. that it is compliant with

CORBA technology; the Task Force can then recommend to the Board of Directors

(BOD) that the submission become an Adopted Specification. A Revision Task Force

(RTF) can then carry out revisions on the Adopted Specification. The RTF only exists

for a specified length of time and is responsible for maintenance of an adopted OMG

specification, i.e. they clarify ambiguities and correct errors; they cannot extend a

specification with new functionality. Once certified by the AB and implemented by

one submitter, a BOD can vote to make the technology a formal Available

Specification.

When the research began, the CORBA 2 security service was actually at revision 1.2.

Since then, revision 1.5 was made the formal specification by the OMG in June 2000

[116] and, at the time of writing, revision 1.7 [117] is now being adopted by OMG

vote but it has not been accepted as a formal available specification. Revision 1.8 is

just at the RTF stage [118]. This section will examine the changes in revision 1.5 and

1.7 (it is too early to evaluate 1.8) and see whether the research is still valid with these

later versions.

241

Chapter 8: Proof of Concept

Two major changes occurred in version 1.5 as described below (other minor data type
changes occurred, but they are of no consequence to the research).

1. New Administrative Objects: Five new policy objects are introduced:

• MechanismPolicy: used to request the use of one specific set of

mechanisms when invoking a particular object reference;

• EstablishTrustPolicy: used to specify a particular policy between a client

and the target object;

• QOPPolicy: used to specify a particular Quality of Protect for messages

sent to a particular object reference;

• DelegationDirectivePolicy: used to specify the delegation policy used for

invocations on the target object;

• CredentiallnvocationPolicy: used to specify a particular set of Credentials

to be used when invoking a target object.

There had been some previous confusion with regard to how a client would

override default policies details - they were generally retrieved from and set in

objects such as Current and Credentials. Therefore to alleviate confusion and

provide a clear methodology for clients to specify this information when

attempting to invoke a server, the above policy objects were specified. They

all have a very simple structure - a single readonly attribute specifying the

detail policy value, e.g. the EstablishTrustPolicy contains a single attribute

structure that can be set to specify if trust is to be established in the client, the

target or both.

242

Chapter 8: Proof of Concept

2. SSL and S E C I O P : The SSLIIOP specification was previously a separate
document. It is now introduced as part of the specification.

A worked example of security, using revision 1.5, is provided in a paper by Chizmadia

[119].

In revision 1.7 only one major change has occurred.

1. New security object SecurityManager. SecurityManager does not introduce

any new functionality, it merely takes the security functionahty that previously

existed in the Current object and places it in a separate security object.

These changes are superficial. They do not extend or add new functionality - they

merely clarify procedures or move functionality to new objects. Within the

specifications, the list of main objects remains unchanged, and so it none of these new

objects have a substantial impact on the security service provided. Therefore all the

issues and problems identified in CORBASec remain unchanged, and the new

recommendations from the research still apply even to these later versions of the

service.

8.3.23 CORBA 3.0

In December 1999, the OMG voted to adopt the complete CORBA 3.0 specification.

CORBA 3 is actually a suite of specifications, which when taken together, adds a new

dimension of capability and ease-of-use to CORBA [120, 121]. Although much

discussed, the CORBA 3 is not yet adopted as the formal available specification, i.e.

243

Chapter 8: Proof of Concept

version 2.4.1 is still the latest official version for vendors to reference. The new
specification can be divided into three categories, which are described below:

1. Internet Integration:

a. New Java-tO'IDL Mapping specifications wi l l allow developers to

build distributed applications completely in Java and then generates the

CORBA I D L from the Java class files [122]. CORBA 2 already

provided a IDL-to-Java mapping.

b. The CORBA 3.0 Firewall specification defmes interfaces for passing

HOP through a firewall. It includes options for allowing the firewall to

perform filtering and proxying on either side [123].

c. The Interoperable Name Service [124] defines a URL-fonnat object

reference that can be typed into a program to reach defined services at

a remote location, including the Naming Service.

2. Quality of Service Control

a. The specification identifies a minimum compliance supporting

CORBA ORBs. This Minimum CORBA specification is designed to

jumpstart the use of CORBA embedded devices [125].

b. Real-time CORBA extends the CORBA specification for a new type of

ORB called the Real-time ORB [126].

c. Fault-tolerance for CORBA is also addressed, and defines a standard

based on entity redundancy and fault management control [127].

d. The Asynchronous Messaging specification has two components:

levels of quality of service (QoS) agreements and Interface Definition

244

Chapter 8: Proof of Concept

Language changes necessary to support asynchronous invocations
[128].

3. The C O R B A Component Model (CCM)

The CCM will specify a framework for the development of *plug-and-play'

CORBA objects. It encapsulates the creation, lifecycle, and events for a single

object and allows clients to dynamically explore an object's capabilities^

methods, and events. The specification has three major parts, which cover, a

container environment to provide services, integration with Enterprise

JavaBeans [129] and a software distribution format that enables a CORBA

component software marketplace [130].

Only one change specifically references the security aspect of CORBA, i.e. the

firewall specification. However, this is addressing a specific issue and not the overall

security limitations within the Security Service and CORBAservices. Therefore the

research is still valid and can still be applied in a CORBA 3.0 environment.

Component technology may be the driving force for CORBA 3.0, but components

still require Security, and CORBASec still requires the new objects and functionality

defined by this research.

The OMG has realised limitations of CORBASec. It has provided some suggested

future features within the specification, but has given no detail as to how they might

be accomplished. One example is the notion of an attribute mapper. It is identified in

the CORBASec specification [36]. There is also no indication of when any further

amendments would be introduced. The OMG recently drafted a roadmap [131], which

245

Chapter 8: Proof of Concept

lists several areas and features, but there is no timeline for their introduction or
whether they wi l l even be completed, e.g. under policy management the OMG
SECurity Special Interest Group (SECsig) has identified that negotiation of federated
domains is required, while under interoperability they have listed interoperability
across products. Many of the features listed in this new wish-list have already been
addressed by this research, which identified the problems some time before they were
acknowledged by the OMG.

8,3.2.4 Issues when implementing the standards

The previous sections have provided verification of the work by evaluation of a

performance model of the research and also by viewing the research against the latest

standards and technologies changes. This section looks at real-world problems that

have been encountered by vendors using the current version of the DPE security

The first example revolves around the current implementations of CORBASec

products that are currently available. These problems were covered in section 7.2.1.

Vendors such as Concepts, Dascom and Entegrity, all have a common set of problems

that they address with proprietary solutions. Firstly, they have a common set of

features they all need to extend past the CORBASec specification because it is too

restrictive:

• Extending the administration features through defining new interfaces;

• Using additional features to integrate with existing technologies, i.e. unitary

logon, bridge technology;

• Extending the audit facilities to help secure audit records or make them

available to monitoring tools.

246

Chapters: Proof of Concept

However, there are still a number of restrictions:

• Replaceability is difficult and so they are all limited to specific sets of security

technologies/mechanisms;

• Data storage is proprietary, e.g. use of LDAP;

• There is no proper monitoring/IDS integration available;

• Non-repudiation is not available;

• Interoperability is still limited to compatible domains and technologies

(although most have consulting divisions that provide customised solutions);

• Multi-vendor interoperability is also not available.

A l l of the above issues are addressed by the research. The separation of mechanism

and policy administration provides for mechanism independence and therefore

releases implemenlers from the constraints of using the same mechanisms and

technologies; it also obsoletes the notion of replaceability, because all objects should

be automatically replaceable because they have been abstracted from mechanism

dependencies. The new security service addresses issues such securing stored data and

extends it to persistent storage by introducing the concept of security aware services

(e.g. a security aware persistent storage service could operate in conjunction with the

security service). Other facilities such as non-repudiation and audit have been

extended.

While the above examples illustrate the issues that CORBASec implemenlers

encounter, the problem of inadequate DPE security is experienced in other areas.

247

Chapter 8: Proof of Concept

Take, for example, Ericcson's Research and Development team who have a new
product called FraudOffice [132], for Fraud Detection & Management in a
telecommunications network. The FraudOffice product family offers a complete end-
to-end package to network operators and service providers to combat fraud within
telecommunications networks, Ericsson provides the relevant software applications,
hardware platforms, systems support, fraud management services and fraud
competence training so that the telecommunications operator organisation is correctly
equipped to minimise the substantial financial losses and inconvenience caused by
fraudsters in a network, which can be up to as much as 5% of annual billed revenue.

One of FraudOffice's main selling points is its integration flexibility [133], which is

achieved through an open scalable CORBA-based platform. Because of this

integration ability, FraudOffice can maximise the potential use of the operators*

existing support systems (e.g. billing, data warehouse, MIS system, SS7 monitoring.

Customer Care). This wil l become an important consideration in the next generation

where the number of potential data sources for fraud detection is likely to increase

dramatically (e.g. credit card transactions, log examinations, balance reconciliation, IP

transactions, customer service applications, payment history, etc.) and become more

diverse.

However, Ericcson encountered some obstacles when developing this system. The

main problem was related to the fact that the CORBA security service was not

flexible or extensive enough for their requirements. As a result, they had to build their

own Security Manager and Audit and Alarm facilities [134], because they were

unable to use the CORBA security technology. I f the Comprehensive CORBASec had

248

Chapter 8: Proof of Concept

been available, it would have saved the developers time and also provide for
interoperability with other products using the same standards.

8.4 Summary

The purpose of the implementation was to prove that the new Comprehensive

CORBASec, the new Secure Interoperability Service and the Security-A ware Trader

are not just theoretical ideals, and that they are implementable. This chapter described

the implementation of the research and how it was achieved. The research

implemented all objects necessary within each of these services. It is important to note

that the method of implementation is not really important to proving the concept,

because the key issue is that the IDL-defined interfaces are workable. The

implementation proves this even when they are implemented in the rather limited

environment. Therefore details of the actual C++ implementation on a Microsoft NT

are not necessary, as the same objectives should be achievable using Java on a Sun

Workstation; after all this was the driving force behind CORBA distributed systems -

implementation and platform independence.

The service implementations have also been applied within an application scenario, in

order to illustrate cleariy how the services would function together. Therefore the

implementation has accomplished its objective by realising the services and using

them within an operational environment. Facilities that were missing and, therefore,

had to be built in-house are proposed as part of the CCS within the CORBA

environment, thereby saving time and reducing the risk of error.

249

Chapter 8: Proof of Concept

The chapter also evaluated the research system performance. Benchmark testing
against current CORBA security products is not appropriate in the case of the research
because the products could not act as an equivalent comparison to the research
implementation described. However, object invocation is the advised method of
performance modelling for object distributed systems, and was therefore used in the
research model.

Although there is an overhead for any security operation, it was kept to a minimum

and is, therefore, considered an acceptable trade-off against the extra security that is

provided. As in all systems, it is the job of the administrator to tailor policies and

system options to find the optimal solution, where performance and security can co

exists harmoniously. The CCS provides a comprehensive and flexible administration

system to provide the administrator with this ability.

Verification of the security issues in the CORBA DPE serves to verify the methods

used as generic DPE solutions. The principles used to provide new security features to

the security services, secure other DPE services and enable secure interoperability

between disparate domains have been proven effective and implementable in a

practical DPE environment.

250

9. Conclusions

9.1 Achievements of the Research

This chapter presents concluding thoughts on the research. The following summarises

the achievements of the research, which have met all of the objectives, defined in

chapter I .

1. A comprehensive analysis of the general requirements for distributed

system security was conducted exceeding any previous investigation of

this topic. As a result, a new set of DPE security requirements was defined

and a new definition of the DPE security domain was provided. When

evaluated against these requirements, the current DPE security model was

shown to be inadequate on all levels.

2. A new security framework for DPEs was defined. The service components

were defined at both an operational and management level. They provide

all of the necessary security functions: authentication, access control,

integrity, confidentiality and non-repudiation.

3. A new secure interoperability framework for DPEs was defined. A

distributed system, which operates across disparate security domains, can

use the new interoperability protocol to facilitate secure DPE inter-domain

interactions.

251

Chapter 9: Conclusions

4. The new and novel concept of security-aware DPE services was
introduced and found to be necessary to address security vulnerabilities
within the DPE services themselves. The Trader was selected as the proof-
of-concept, and a new security-aware Trader architecture was defined.

5. The theoretical DPE security framework was implemented and verified by

providing a mapping of it to an implementable DPE specification, the

OMG's CORBA, and then building a working proof-of-concept. The work

was further verified by providing object invocation analysis of the services

and also through analysis of standards and existing real-world issues.

It is therefore, considered that the research has made a substantial contribution to

knowledge within the domain of DPE security.

9.2 Limitations of the Research

The following sub-sections present the author's thoughts regarding the limitations of

the research.

1. Although the new audit objects were defined, they were not implemented.

This was decided as the audit implementation was a substantial

undertaking and would not have been achievable within the research

timeframe. Other areas were considered to be of greater significance to the

proof of concept.

252

Chftpwr 9: Conclusions

2. The issue of recovery, i.e. the system returning to a secure state, was not
considered within the research. It would take several years of research to
fully address this issue and, therefore, it was decided that it could not be
addressed within the scope of this work.

3. Although it was never the intention of the work to examine the security-

awareness of all DPE services, it was observed within the thesis that other

services, such as persistence, could provide generic solutions to security

problems i f ihey were also security-aware. How this could be achieved,

was not addressed within the research.

9.3 Suggestions for Future Work

There are six key areas where continuation of the research should be focused. This

work was considered outside the scope of this research or was considered too

complex to complete within the research timeframe.

1. Within the Audit service, there are several areas that could be further

investigated in order to complete the service definition. This would include

the specification of an Audit Record Format to enhance interoperability

between audit services working in different security domains. A common

audit record format would allow separate, and independently implemented,

audit systems to easily exchange information. Similariy the specification

of the Audit analysis token that is returned by the DPE AuditAnalyser

needs to be defined. The definition of more Audit Event and Selector types

could help provide a more flexible and configurable audit policy. Events

253

Chapter 9: Conclusions

and Selectors could be defined within specific vertical domains such as
financial or healthcare. The IDS domain is currently in the process of
being standardised by the Common Intrusion Detection Framework
(CIDF) [135] and the IETF [136]. This is expected to provide greater
interoperability among different analysis and response systems. However,
these standardisations are not complete. Therefore research in the area
would significantly help the security of DPEs.

2. A standard non-repudiation token, that could be written to the NRStore

object and would facilitate interoperability, needs to be defined.

3. There are many DPE supporting services, such as persistence, events and

time. This research has only considered two of those services. Trader and

Security, and how they can be enhanced to provide a more secure DPE.

The other services also need to be studied in order to define their security

vulnerabilities and solutions to these problems. In doing so it would

provide a complete analysis of security for DPE services.

4. It was proposed in the research that DPE services, such as the Persistence

and Query Services, could be made security-aware and then used to

provide secure generic solutions to problems such as secure persistent data

storage and retrieval - as would be required by the non-repudiation

servicers NRStore and many other objects. Another scenario could involve

the use of secure Event and Transaction services in order to provide secure

254

Chapter 9: Conclusions

recovery within a DPE. Although this would provide the ultimate generic
solution for a DPE, it is recognised that there are problems. With regard to
persistence, the definition has been recognised as not implementable in its
current state [137]. As some DPE services are, to-daie, not available in
detailed specifications, work is needed to ensure that when complete, they
wil l able to inter-work to provide secure generic solutions to several
problems.

9.4 Summary of Research Conclusions

According to the TINA consortium [138], the future of communications depends not

only on individual technical or standards-based solutions but also on one universal

generic software architecture solution. It also states that this approach has to be global,

and it needs to involve all areas of the industry; the ultimate aim is to produce a

complete set of specifications for building and managing services of any degree of

complexity. However, with the rise in security breaches found by recent surveys such

as that from the FBI/CSI [46], it is important to ensure security in this new open,

global environment, as such an environment wil l only provide more opportunities to

compromise a system. The current DPE security solution has been proven to be

inadequate and this research has addressed the problem.

The research achieved its objectives by assessing security in a DPE, defining the

current limitations and then proposing solutions to overcome these limitations. A new

security framework was defined, which provides a complete set of security facilities

and a comprehensive management structure. A secure interoperability service was

defined which facilitated mechanism and policy level negotiations, and a security-

255

Chapter 9. Conclusions

aware Trader was designed to prove the concept that security-aware DPE services
offer a greater level of security within a DPE.

This work provides a standardised solution to increase security. DPE security vendors

currently experience problems of interoperability between their products and also

have to create proprietary extensions to overcome other limitations of the security

service. These problems wil l be dissolved i f vendors adopt the new security solution

proposed in this research. It wi l l provide users with greater options and, therefore,

allow them to create a more secure distributed environment.

Further work can be pursued to ensure improved interoperability of the enhanced

security facilities, i.e. audit and non-repudiation token definition. Also improved

security for other DPE services can be achieved through the study of their security

limitations and the application of security-aware interfaces.

ISE is no longer limited to just the telecommunications arena, it is supported by the

data communications and processing industries. E-commerce is readily adopting the

technology because of its ability to quickly provide new services and facilities in a

heterogeneous, distributed environment. A l l of this research work wil l provide a more

secure distributed processing environment in which a multitude of applications can be

built. Whether it is finance or healthcare, education or just surfing the information

highways, the data wil l be available, but it wil l be protected.

256

10. References

[1] D.I. Hopper
"Destructive ILOVEYOU virus strikes worldwide"
CNN, 4 May, 2000, httt)://www.cnn.com

[2] M. Masterson
"Love bug costs billions "

CNN Financial News, May 5, 2000, http://www.cnnfn.com

[3] D. Duffy
"Cyberlnsurance: Prepare for the Worst"
Darwin Magazine, December 2000

http://www.darwinmag.com/read/l20100/worst content.html

[4] D, Kahn
"Vie Codebreakers: Hie Story of Secret Writing"
Macmillan Publishing Co., 1967.
[5] S. Foo, P. Chor Leong, S. Cheung Hui, S. L iu
"Security considerations in the delivery of Web-based applications - a case study
Information Management & Computer Security, Vol 7, 1999, pg. 40-49.
[6] R. Orfali, D. Harkey, J . Edwards
"Tlie Essential Distributed Objects Survival Guide"
John Wiley & Sons, Inc., 1996.

[7] P .F. Linington
"Introduction to the Open Distributed Processing Basic Reference Model"
Open Distributed Processing, Elsevier Science Publishers, 1992.

[8] ISO
''Basic Reference Model of Open Distributed Processing"
ISO/IEC JTCl / SC21AVG7 N838.

[9] N. Natarajan
"Principles of a software architecture for information networks"
Bell Communications Research

[10] J J . van Griethuysen
"Enterprise modelling, a necessary basis for modem information systems"
Open Distributed Processing, Elsevier Science Publishers, IFIP, 1992.

257

References

[11] G . F . Coulouris, J . Dollimore, T. Kindberg
"Distributed Systems Concepts and Design "
Addision-Wesley Publishing Company, 2"'' Edition, 1994.

[12] J . Rumbaugh, M. Blaha, W. Premerlani, F . Eddy, W. Lorensen
"Object-Oriented Modelling and Design"
Prentice Hall international Editions, 1991.

[13] W J . Barr, T . Boyd, Y , Inoue
"Tlie TINA Initiative"

IEEE Communications Magazine, March 1993.

[14] T I N A - C
"Business Model and Reference Points for TINA "
TINA-C, 2000, http://www.tinac.com
[I5]TINA-C
"Overall Concepts and Principles of TINA "
TINA-C, Deliverable TB-MDC.018_1.0_94, Version I.O, 17 Feb 1995.

[16] TINA-C
"Service Architecture"
TINA-C, Version 5, 31 March 1997.

[17] R.H.GIitho, S. Hayes
"Telecommunications Management Network: Vision Vs. Reality"
IEEE Communications Magazine, p47-52, March 1995.

[18] M. Knckelmans, E . de Jong
"Overview of IN and TMN Harmonisation"
IEEE Communications Magazine, p62-66, March 1995

[19] TINA-C
"Principles of TIN A"

TINA-C website, 2000, http://www.tinac.com

[20] TINA
"Domain Types and Basic Reference Points in TINA "
TINA-C, May 1995, http://www.tinac.com
[2I]N.D.Hoa
"Distributed Object Computing with TINA and CORBA "
N.D.Hoa, June 1997, http://www.nenva.ms.mff.cuni.cz/-hoa/tina/tina.html

258

References

[22] TINA
"TINA Object Definition Language (TINA-ODL) Manual"
TINA, Version 1.3, 20 June 1994, http://\vww.tinac.coin

[23] I T U
"ITU X. 700 Series - System Management"
m j , http://www.itu.int

[24] R- Orfali, D, Harkey, J , Edwards
''Instant CORBA"
J . Wiley & Sons, 1997.

[25] O M G
"C++ Language Mapping Specification "
OMG Document 99-07-36, July, 1999.

[26]OMG
"IDL to Java Language Mapping Specification "
OMG Document 99-07-53, July, 1999.

[27]J.Siegel
"CORBA Fundamentals and Programming"
John Wiley & Sons, Inc., 1996.

[28] D. Rodgers
"Developing Secure, Web-Based Applications"
Software Development Journal, May 1998,
http://vvww.sdmagazinc.com/suPDlement/ss/feature/s985f2c.shtm

[29] The Australian
"Mobile fraud runs riot"
The Australian, 22 September, 1998.

[30] E . Leahy
"Ericsson Fraud Management Solution - FraudOffice "
Ericcson, Business Evolution and Components Seminar, 12 March, 1999.

[31] ISO
"ODP Trading Function"
ISO/IEC JTCl/SC21,20June 1995.

[32] lONA Technologies P L C
"OrbixTrader- White Paper"
lONA web site, (http://www.iona.com)

259

References

[33] O M G
"Trading Object Service"
OMG Document 96-05-06, May 1996.

[34] R. Resnick
"Intergalactic Distributed Objects "
Dr.Dobb's SourceBook, January/February 1997.

[35] M, Bearman
"Tutorial on ODP Trading Function"

DSTC, University of Canberra, Australia, hup://www.dstc.edu.au

[36] O M G
"CORBA Security Service Version 1.2"
OMG, June 2000, http://www.omg.org
[37] O M G
"Common Secure Interoperability"
OMG Document, orbos/96-06-20, June 1996.

[38] Netscape
"SSL3.0 Specification"

http://home.netscaDe.eom/eng/ssl3/3-SPEC.HTM#2

[39] NUA
"Viruses, Hackers to Cost Businesses USD 1.6 bn"
NUA Internet Survey, September 1999, http://www.nua.ie/survevs/
[40] C E R T / C C
"CERT/CC Statistics 1988-2000"

CERT, December 2000, http://www.cert.orti/stats/cert stats.html

[41] ISO
"Infonnation Processing Systems OS! RM, Part 2: Security Architecture"
ISO/TC 97 7498-2, 1988.
[42] ISO
"Information Processing Systems OSlRM"
1SO/TC97 7498, 1998.

[43] ISO C D 10181-3
"Access Control Framework"
ISO, Geneva, Switzerland, 1991.

260

References

[44] F .M. Avolio
"Network Security Building Internetwork Firewalls"
Business Communications Review, January 1994.

[45] R Kay
"Top Security Tlireats"
BYTE, April 1995.

[46] C S I / F B I
"Issues & Trends: 2000 CSI/FBI Computer Crime and Security Survey"
CSI/FBI, 2000, httpV/www.gosci.org

[47] D. Golimann
"Computer Security "
Wiley & Sons, 1999.

[48] D. Belt, L . L a Padula
"Mitre Technical Report 2547 (Secure Computer System): Volume II"
Journal of Computer Security, 1996.

[49] E . I . Organick
"Tlie Multics System: An Examination of Its Structure"
M I T Press, Cambridge, M A , 1972.

[50] C . Laferriere, R. Charland
"Authentication and Authorization Techniques in Distributed Systems"
E E E Journal, 1993.

[51] ISO DIS 10181-2
"Authentication Framework "
ISO, Geneva, Switzerland, 1991.

[52] National Institute of Standards and Technology
"Digital Signature Standard"

NISTFIPS PUB 186, U.S. Department of Commerce, Feb 1994.

[53] M. Gantey
"Digital Signatures and their uses"
Computers & Security, 13, 1994.
[54] J .R. Vacca
"Stop Impersonators from Entering Your Network"
Internet Security Advisor, pg. 8-18, February 2000.

261

References

[55]A.P. Conn, J . H . Parodi, M. Taylor
"Tlie Place of Biometrics in a User Authentication Taxonomy"
Digital Equipment Corporation, June 1990.

[56] R. Bright
"Smart Cards: Principles, Practice, Applications"
Ellis Horwood, 1988.

[57] D. Bicknell
"Tlie key question"
Computer Weekly, 13 February, 1997.

[58] P. Wayner
"Who goes there?"
BYTE, volume 22, no. 6, June 1997.

[59] C C I T T
Recommendation X.509 "Tlie Directory-Authentication Framework"
Consultation Committee, International Telephone and Telegraph, International
Telecommunications Union, Geneva, 1989.

[60] National Bureau of Standards
"Data Encryption Standard"

NBS FIPS PUB 46-1, U.S. Department of Commerce, Jan 1988.

[61] R . L . Rivest, A . Shamir, L . M . AdleMan
"A Method for Obtaining Digital Signatures and Public-Key Cryptosystems"
Communications of the A C M , v. 21, n. 2 Feb 1978.
[62] R . L . Rivest, A. Shamir, L . M . AdleMan
"On Digital Signatures and Public Key Cryptosystems"
MIT Laboratory for Computer Science, Technical Report, MIT/LCS/TR-212, January
1979.

[63] Electronic Privacy Information Centre
"Cryptography and Liberty 1999: An International Survey of Encryption Policy"
EPIC, Washington DC, http://www2.eDic.org/reDorts/crvptol999.htmL 1999.

[64] Bureau of Export Administration
"Revisions to Encryption Items; Interim Final Rule"
Department of Commerce, 15 CFR parts 734, 740, et a l . , January 14, 2000.

262

References

[65] D.D. Chamberlin, J.N. Gray, I . L . Traiger
"Views, Authorisation and locking in Relational DataBase Systems"
Proceedings from the AFIPS NCC, USA, Vol . 44, 1975.

[66] F . Cohen
"Eliminating Common Software Security Faults"
Software Development, May 1998 (http://www.sdmagazine.com).

[67] Department of Defense
"Department of Defense Trusted Computer System Evaluation and Criteria" -Tlie
Orange Book;

DOD 5200.28-STD, Dec 1985.

[68] S. Muftic
"Security Mechanisms for Computer Networks"
Ellis Horwood, Ltd., Chichester, England, Dec 1988.
[69] National Institute of Standards and Technology
"Secure Hash Standard"

NIST HPS PUB 180, U.S. Department of Commerce, May 1993.

[70] R . L . Rivest
"Tlie MD5 Message Digest Algorithm"
RFC 1321, April 1992.
[71] G . Tsudik
"Message Authentication with One-Way Hash Functions"

A C M Computer Communications Review, Volume 22, Number 4, pp. 29-38, 1992.

[72] S. Herda
"Non-repudiation: Constituting evidence and proof in digital cooperation"
Computer Standards & Interfaces, Volume 17, 1995.
[73] ISO
"Non-Repudiation Framework "
SC2I N6167, July 1991.

[74] D. Anderson, T. Frivold, A . Valdes
"Next-generation Intrusion Detection System - A Summary "
Computer Science Laboratory, SRI-CSL-95-07, May 1995.

263

References

[75] P.G. Neumann, P.A. Porras,
"Experience with EMERALD to DATE"
Proceeding s of the 1̂ * USENIX Workshop on Intrusion Detection and Network
Monitoring, CA, pg. 73-80, April 1999.

[76] ISSO/NSA
"ID-Secure Intrusion Detection Tools Database"
Information System Security Organisation (lSSO)/NSA,
http://www.nswc.navv.mil/ISSEC/ClD, 1999.

[77]J. Morrissey, P.W. Sanders, C . T . Stockel
''Increased domain security through application of local security and monitoring''
Expert Systems joumal,Vol. 13, No. 4, November 1996, pp. 296-305.

[78] H Hamashige
"Cybercrime can kill venture: Small business es can be destroyed by hackers, but
security measure can help"
CNNfn, 10 March 2000, http://www.cnnfn.com

[79]Internet Engineering Task Force (I E T F)
"Secure Sockets Layer Version 3.0 (SSL V3,0) "
IETF, http://home.netscape.com/eng/ssl3/ssl-toc.html

[80] IBM
"RACE Version 2 Release 2 Technical Presentation Guide"
IBM ITSO Redbooks Publications, 2000,
http://www.redbooks.ibm.com/abstracts/gg242539.html

[81] D. Pinkas, T . Parker, P. Kaijser
"SESAME: An Introduction "
Issue 1.2, Bull, ICL, and SNI, September 1993.

[82] M I T
"RFC1510 - The Kerberos Network Authentication Service V5 "
RFC index, http://dsm-.ds.intemic.net/ds/rfc-index.html

[83] National Information System Security (I N F O S E C)
"National Information System Security Glossary"
INFOSEC, NSTISSI No. 4009, June 5 1992.

[84] WAP Forum
"Mreless Application Protocol White Paper"
WAP Forum, http://www.wapforum.org, June 2000.

264

References

[85] Network Working Group
"Generic Security Service Application Program Interface, Version 2"
RFC 2078, January 1997,

[86] S, Muftic, A, Patel, P. Sanders, R. Colon, J . Heijnsdijk, U. Pulkkinen
"Security Architecture for Open Distributed Systems"
J. Wiley & Sons, 1994.

[87] D. Brown, S. Montesi
"Requirements upon TINA-C architecture"
TINAC,TB_MH.002_2.0_94, 17, February 1995.

[88] O M G
"OMG White Paper on Security"
OMG, Issue: I.O, April 1994.

[89] C . Cavanagh
"CORBA Security White Paper"
Advanced Software, May 2001.

[90] I S O / I E C
"Specification of Abstract Syntax Notation One (ASN.I)"
ISO/IEC 8824, 1990.

[91] I S O / I E C
"Specification of the Basic Encoding Rules for Abstract Syntax Notation One
(ASN.I)"

ISO/lEC 8825, 1990.

[92] MSDN Magazine
"A Young Person's Guide to the Simple Object Access Protocol: SOAP Increases
Interoperability Across Platforms and Languages"

MSDN, httD://msdn.microsoft.com/masdmag/issues/0300/soaD/soaD.asp. March 2000.

[93] O M G
"COM / CORBA Mappings"
OMG, Document orbos/97-09-07, September 1997.
[94] M J . Foley
"MS middleware: An untapped goldmine "
Zdnet, http://www.zdnet.com, 22 April 1999.

265

References

[95] Microsoft
"Windows 2000 Interoperability Solutions for Business"
Microsoft, http://www.microsoft.com/windows2000/guide/server/solutions.
September 2000.

[96] O M G
"Common Secure Interoperability"
OMG Document, orbos/96-06-20, June 1998.

[97] W. Rosenberry, D. Kenney, G . Fisher
"Understanding DCE"
O'Reilly & Associates, May 1993.

[98] W, Hu
"DCE Security Programming"
O'Reilly & Associates, July 1995.

[99] P. Graubmann, W. Hwang, M. Kudela, K . MacKinnon, N. Mercouroff, N.
Watanabe
"Engineering Modelling Concept (DPE Architecture), version 2.0"
TINA-C, December 1994

[100] P. Kaijser
"Security Protection for parts of a data structure"
Computer Communications, volume 17, number 7, July 1994.

[101] L , Bruno
"Internet Security: How much is enough ? "
Data Communications, April 1996.

[102] S. Castano, M. Fugini, G . Martella, P. Samarati
"Database Security"
Addison Wesley, 1994.

[103] O M G
"Persistence Object Service Specification"
OMG Document: orbos /97-12-12, December 1997

[104] ION A
"OrbixSecurity Whitepaper"-
ION A, http://www.iona.com, August 1999.

266

References

[105] D. Sullivan
"Beyond CORBA Security: Providing Nenvork Authorisation Services"
Internet Security Advisor, Volume 2, Number 2, 1999.

[106] Entegrity Solutions
"NetCrusader/CORBA Security Services for CORBA Applications"
Entegrity Solutions Whitepaper v. 1.1, http://www.entegritv.com, January 2000.

[107] E . Gamma, R. Helm, R. Johnson, J . Vlissides
"Design Patterns - Elements of Reusable Object-Oriented Software"
Addison Wesley, 1995.

[108] C .J. Date
''An Introduction to Database Systems - Volume I f
Addison Wesley, ISBN 0-201-14474-3, 1985.

[109] O M G
"OMG RFP5 Submission: Trading Object Service"
OMG Document orbos/96-05-06, Version 1.0.0, May 19 1996

[110] O M G
"Issuesfor CORBA Security 1.8 Revision Task Force"
OMG, httn://cgi.omg.org/issues/sec-rev.hlmL September 2000.

[111] O M G
"Security Special Interest Group Roadmap"
OMG, http://www.omg/orE/homepage/sCCSig/securitv-sig-roadmap.htm, September
2000.

[112] R. Sessions
"Ten Rules for Distributed Object Systems"
OS/2 Magazine, Miller Freeman Inc. 1996.

[113] O M G
"TINA Standardization to Continue at the OMG"
OMG, September 2000, http://www.omg.org

[114] O M G
"CORBA Interoperability approved as ISO Standard"
OMG, October 2000, http://www.omo.org

[115] O M G
"Object Management Group Terms and Acronyms:
OMG, 2000, http://www.omg.org/gettingstarted/groupierms adn acronvms.htm

267

ReJ'erences

[116] O M G
"CORBA Security Service Version 1.5"

OMG, June 2000, http://www.omg.org/cgi-bin/doc7orbos/2000-06-25

[117]OMG
"Security Service Revision 7.7"
OMG, 2000, http://www.omg.org/cgi-bin/doc7securitv/99-12-02

[118] O M G
"Security L8 RTF"

OMG, 2000, http://www.omg.org/technologv/documents/formal/securitv-service.htm

[119] D.Chizmadia
" CORBASec: Securing Distributed Systems "
Software Development, June 1999.

http://www.sdmagazine.com/supplement/ss/features/s996fl.shtm

[120] O M G
"OBJECTMANAGEMENT GROUP OUTUNES CORBA 3.0® FEATURES"
Comdex Enterprise '98/Object World Conference, September 9, 1998
hnp://www.omg.com/
[121] J . Siegel
"What's Coming in CORBA 3"
OMG 1999-2000. http://www.omg.org
[122] O M G
"Java-to-IDL Mapping Specification"

OMG, 1999. http://www.omg.orc/cgi-bin/doc7orbos/99-03-09

[123] O M G
"CORBA 3 Firewall Specification"

OMG, 1998. htip://www.omg.org/cgi-bin/doc7orbos/98-05-04

[124] O M G
"Tlie Interoperable Name Service"

OMG, 1998, http://www.omg.org/cgi-bin/doc7orbos/98-10-l 1

[125] O M G
"Minimum CORBA Specification"
OMG, 1998. http://www.omg.org/cgi-bin/doc7orbos/98-08-04

268

References

[126] O M G
"Real-time CORBA Specification "

OMG, 1999, http://www.omg.Qrg/cci-bin/doc7orbos/99-02-OI2

[127]OMG
"Fault Tolerance RFP"
OMG, 1999,

http://cgi.omg.org/techprocess/meetings/schedule/Fault Tolerance RFPhtml

[128] O M G
"Messaging Specification "
OMG, 1998, httD://www.omg.org/cgi-bin/doc?orbos/98-05-05
[129] Sun Microsystems
"Enterprise JavaBeans Specification "
Sun Microsystems, 1998, http://iava.sun.com
[130] O M G
"Tlie CORBA Component Model"
OMG, 1999,
http://www.omg.org/cci-bin/doc7orbos/99-07-01
http://www.omg.org/cgi-bin/doc7orbos/99-07-02
http://www.Qmg.'org/cgi-bin/dQc7orbos/99-07-03

[131] O M G SECsig
"OMG Security SIG (SECsig) Roadmap"
OMG, 2000, http://www.omg/org/homepages/secsig/securitv sig roadmap.htm

[132] Ericcson
"FraudOffice Overview"
Ericcson, 2000, http://www.ericcsQn.com/fraudoffice/overview

[133] Ericcson
"FraudOffice Benefits"

Ericcson, 2000, http://www.ericcson.CQm/fraudoffice/benefits

[134] Ericsson
"Ericcson Fraud Management Solution FraudOffice "

Proceedings of Business Evolution & Components Seminar, Dublin, March 12 1999,

[135] C I D F
"Common Intrusion Detection Framework"
CIDF, 2000, http://www.gidos.Qrg

269

ReJ'erences

[13611ETF
"Intrusion Detection Work Group"
IETF, 2000, http://www.ietf.org

[137] O M G
'"Persistence service problems''
OMG web site (http://www.omg.org).

[138] T I N A - C
"TINA FAQ-
TIN A-C, 2000, htio://www.tinac.com/faQ/faq.htm#5

270

Appendix A: IDLfor Comprehensive CORBA Security

Appendix A - IDL for Comprehensive CORBASec

This appendix wil l present the IDL for the Comprehensive CORBA Security Service

(CORBASec). It has several structural changes from the original CORBA 2.0

Security Service, along with the modification and addition of new object interfaces.

IModule Structure
The modules used in the IDL are now:

• Security

• SecurityLevell

• SecurityLevel2

• SecurityAdmin

• SECIOP

The NRService and SecurityRepIaceable modules have had their interfaces now

included in the SecurityLevel2 and SecurityAdmin modules. There are two reasons

for this. Non-repudiation is no longer an optional service and therefore is now

included in the main modules. Also security replaceability is no longer required as

mechanism and service independence is now built into the CORBA security structure.

Object Interfaces

Comments through out the IDL code wil l explain the modifications to and addition of

new object interfaces. The new IDL code wil l be highlighted in bold.

271

Appendix A: IDLfor Comprehensive CORBA Security

IDL

/ / * Module: Security *
// * Function: Defines data types etc. *

#include <orb.idl>

module Security {

typedef string SecurityName;
lypedef sequence <ociel> Opaque;

// Used to define the Policy type
enum PolicyType {

ClientlnvocationAccess,
Ta rgetl nvocation Access,
ApplicationAccess,
ClientlnvocationAuthentication,
TargetlnvocationAuthentication,
ApplicationAuthentication,
ClientlnvocatibnQoP,
Target In vocationQoP,
ApplicationQoP,
Stored DataQoP,
ClientlnvocationAudit,
TargetlnvocationAudit,
ApplicationAudit,
ClientlnvocationNonRepudiation,
TargetlnvocationNonRepudiation,
AppIicationNonRepudiation,
ClientlnvocationDelegation,
TargetlnvocationDelegation,
AppHcationDelegation,
ClientSecurelnvocation,
TargetSecurelnvocation,
ApplicationSecurelnvocation,
Construction

);

// Used to define the Principal type for the Policy
// NOTE: UA represents the entry point for a user to the system.
// User has not yet obtained any id,attributes etc.
enum PrincipalType {

Principal,
UA

};

272

Appendix A: IDLfor Comprehensive CORBA Security

II extensible families for standard data types
struct ExtensibleFamily (

unsigned short family_defmer;
unsigned short family;

1;

// security association mechanism type
typedef string MechanismType;
typedef sequence <MechanismType> MechanismTypeList;

struct SecurityMechandName {
Mec han i smTy pe mech_ty pe;
SecurityName security_name;

};
typedef sequence <SecurityMechandName> SecurityMechandNameList;

// security attributes
typedef unsigned long Security AttributeType;

// identity attributes; family=0
const SecurityAttributeType Auditid = I ;
const SecurityAttributeType AccountingID = 2;
const SecurityAttributeType NonRepudiationId = 3;

// privilege attributes; family = 1
const SecurityAttributeType Public = 1;
const SecurityAttributeType AccessID = 2;
const SecurityAttributeType PrimaryGroupID = 3;
const SecurityAttributeType Groupld = 4;
const SecurityAttributeType Role = 5;
const SecurityAttributeType AltributeSet = 6;
const SecurityAttributeType Clearance = 7;
const SecurityAttributeType Capability = 8;

struct AttributeType {
ExtensibleFamily attribute_family;
SecurityAttributeTypeatlribute_type;

};

typedef sequence<AttributeType> AttributeTypeList;

struct Attribute {
AltributeType attribule_type;
sequence <octet> derining_authority;
Opaque value;

1;

273

typedef sequence<Attribute>

typedef sequence<octet>

// Authentication return status
enum AuthenticationStatus {

Success,
Failure,
Continue,
Expired

1;

// Association return status
enum AssociationStatus {

AoSuccess,
AoFailure,
AoContinue

};

//Authentication method
typedef unsigned long AuthenticationMethod;

//Access Control method
typedef unsigned long AccessMethod;

// Authentication Types
enum AuthenticationType {

Client,
Server,
Mutual

);

// Credential types which can be set as Current default
enum CredentialType {

InvocationCredentails,
OwnCredentials,
NRCredentials

};

// Declarations related to Rights
struct Right (

ExtensibleFamily rights_family;
string right;

1;

Appendix A: IDL for Comprehensive CORBA Security

AttributeList;
def.authority;

typedef sequence <Right> RightsList;

enum RightsCombinator {

274

Appendix A: IDLfor Comprehensive CORBA Security

AIIRights,
AnyRights

1;

// Delegation related
enum DelegationSiate {

Initiator,
Delegate

1;

//pick up from TimeBase
typedef TimeBase::UtcT UtcT;
typedef TimeBase: rlntervalT IntervalT;
typedef TimeBase: iTimeT TimeT;

// Security features available on credentials
enum SecurilyFeaiure 1

NoDelegaiion»
SimpleDelegation,
CompositeDelegation,
NoProtection,
Integrity,
Confidentiality,
Integrity AndConfidentiality,
DetectRepiay,
DetectMisordering,
EstablishTrustlnTarget,
Anonimity

1;

struct SecurityFeatureValue {
SecurityPeature feature;
boolean value;

};

typedef sequence<SecurityFeatureValue> SecurityFeatureValueList;

// Quality of protection which can be specified
// for an object ref and used to protect messages
enum QOP {

QOPNoProtection,
QOPIntegrity,
QOPConfidentiality,
QOPIntegrity AndConfidentiality

1;

275

Appendix A: IDL for Comprehensive CORBA Security

// Association options which can be administered on secure invocation
// policy and used to initialise security context
typedef unsigned short AssociationOption;

const AssociationOption AONoProtection = I ;
const AssociationOption AOIntegrity = 2;
const AssociationOption AOConfidentiality = 4;
const AssociationOption AODetectRepIay = 8;
const AssociationOption AODetectMisordering = 16;
const AssociationOption AOEstablishTrustlnClient = 32;
const AssociationOption AOEstablishTrustlnTarget = 64;
const AssociationOption AOAnonimity = 128;

typedef sequence <AssociationOption> AssociationOptions;

// Flag to indicate whether assocation options being administered
// are the "required" or "supported" set
enum RequiresSupports {

Requires,
Supports

1;

// Direction of communication for which secure invocation
// policy applies
enum CommunicationDirection {

Both,
Request,
Reply

};

// AssociationOptions-Direction pair
struct OptionsDirectionPair {

AssociationOptions options;
CommunicationDirection direction;

};
typedef sequence<OptionsDirectionPair> OptionsDirectionPairList;

// Delegation mode which can be administered
enum DelegationMode {

DNoDelegalion,
DsimpleDelegatibn,
DCompositeDelegaiion

1;

// Association options supported by a given mech type
struct MechandOptions {

MechanismType mechanism_type;

276

Appendix A: IDL for Comprehensive CORBA Security

AssociaiionOptions options_supportecl;
1;
typedef sequence <MechandOptions> MechandOptionsList;

//Audit
struct AuditEvenlType {

ExtensibleFamily event_family;
unsigned short event_type;

};
typedef sequence <AuditEventType> AuditEventTypeList;

lypedef unsigned longSelectorType;
// family = I , System event selectors
const SelectorType Intface = 1;
const SelectorType Obj = 2;
const SelectorType Operation = 3;
const SelectorType Sellnitiator = 4;
const SelectorType SuccessFailure = 5;
const SelectorType Time = 6;

typedef sequence<SelectorType> SelectorTypeList;

struct SelectorValue {
SelectorType selector;
any value;

I ;
typedef sequence <SelectorValue> SelectorValueList;

// used by AuditAnalyser in analyse_data
enum AnalyserResult {

O=no_violation,
]=raise_suspicion,
2=violation

)

// used by AuditAnalyser when justifying audit analysis
struct Auditjustifyi

string Justincation_message;
Opaque justiFication^data;

};

// Msg_part used by QOP to specify how much of the message should
// have integrity/confidentiality mechanisms applied
enum msg^part {

parameters,
parameters_operations,

277

Appendix A: IDL for Comprehensive CORBA Security

parameters_operations_targetId,
parameters_operations_targetId_servicelnfo

};
typedef sequence <msg_part> MsgPartList;

// Used in the Interoperability Interface
enum InteropPolicyType {

Std_niechs,
Translator

);

// Used to define operator types used in access decisions
enum OperatorType {

G T ,
L T ,
E Q ,
G E ,
L E ,
NE

);

// Used in securiiylevel2
typedef unsigned short minor_status;
typedef unsigned short niajor_status;
typedef'Opaque errormsg;

typedef Security::MechanismType NRmech;
typedef Securtty::ExtensibleFaniily NRPolicyld;

enum NRVerificationResult {
invalid,
valid,
ConditionallyValid

};

// The following are used for evidence validity duration
// month = 30 days; year = 365 days

typedef unsigned long durationJn_minutes;

const durationJn_minutes DURATION_HOUR =60;
const duralion_in_minutes DURATION_DAY = 1440;
const duraiionJn_minuies DURATION_WEEK = 10080;
const duration Jn_minuies DURATION_MONTH= 43200;
const duraiion_in_minutes DURATION_YEAR = 525600;

278

Appendix A: IDL for Comprehensive CORBA Security

typedef long time_offset_in_minutes;

// last_revocation_check_offset may be >0 or <0; add this to evidence
// generation time to get latest time at which mech wi l l check to
// see i f this authority's key has been revoked,
struct authorityDescriptor {

string aulhority_name;
string authority_role;
time_offset_in_niinutes last_revocation_check_ofl'set;

);
typedef sequence <authorityDescriptor> authorityDescriptorList;

// max_time_skey is max permissible difference between evidence
// generated time and time of service countersignature
// ignored i f trusted time not required,
struct mechanismDescriptor {

NRmech mech_type;
authorityDescriptorList authorityjist;
time_offsetJn_minutes max_time_skew;

};
typedef sequence <mechanisniDescnptor> mechanismDescriptorList;

enum EvidenceType {
ProofofCreation,
ProofofSubmission,
ProofofReceipt,
ProofofApproval,
ProofofRetrieval,
ProofofOrigin,
ProofofDelivery,
NoEvidence

enum EvidenceDirection {
Evidence,
RequestedEvidence

1;

struct evidenceDescriptor {
EvidenceType evidence_type;
duration_in_minutes evidence_validity_duration;
boolean must_use_trusted_time;

};
typedef sequence <evidenceDescriptor> evidenceDescriptorList;

279

Appendix A: IDL for Comprehensive CORBA Security

struct NRPolicyFeatures {
NRPolicyld p o l i c y j d ;
unsigned long policy_version;
NRmech mechanism;

1;
typedef sequence<NRPolicyFeatures> NRPolicyFeaturesList;

// features used when generating requests
struct requestPeatures {

NRPolicyFeatures
Security::EvidenceType
string
string
boolean

};

requested_policy;
requested_evidence;
requested_evidence_generators;
requested_evidence_recipients;
include this token in_evidence;

// Used in the NRAdjudicator and NRStore
enum DecisionType {

originator,
target,
undecided,
neither

};

enum ServiceType {
Authentication,
AccessControl,
Delegation,
QofP,
Audit,
NonRepudiation

};
typedef string Constraint;
typedef string Preference;
typedef unsigned long Mappingid;
typedef sequence<Mappingld> MappingldSeq;

struct domain_values{
sequence<octet> domainl_value;
5equence<octet> domain2_value;

};
typedef sequence<domaln_values> domain_va!ues Jist;

// Domain Mapping structure
struct Mapping {

Mappingid
ServiceType
string policy

mappingid;
ServiceType;
Classincation;

280

Appendix A: IDL for Comprehensive CORBA Security

unsigned short family.definerl;
unsigned short fami ly jd l ;
sequence<octet> attribute_typel;
sequence<octct> derining_authority 1;
unsigned short family_deriner2;
unsigned short familyjd2;
sequence<octet> attribute_type2;
sequence<octet> derining_authority2;
sequence<doniain_values> mapped.values;
Security: :UtcT . timeStamp;
Security: :Opaque remoteDomainld;
Security::Opaque remoteDomainAuthority;

};
typedef sequence<Mapping> MappingSeq;

//Interoperability Policy Slruciures
struct MechRequiresSupports {

sequence<string> mech_required;
sequence<Security::CommunicationDirection>
mech_required_direction;
sequence<string> mechs_supported;
sequence<Security::CommunicationDirection>
mechs_supported_direction;

);

struct AuthPolicyRequiresSupports{
AuthenticationType auth_type_required;
CommunicationDirection auth_type_required_direction;
sequence<AuthenticationType> auth_type_supported;
sequence<CommunicationDirection>
auth_type_supported_direction;

};

struct SecurelnvocationFamily {
string policy^classification;
ExtensibleFamily event_family;

};
typedef sequence <SecureInvocationFamily> SecurelnvocationFamilyList;

struct DelegationPolicyRequiresSupports{
// type = none^simple, composite

Security: :DelegationIVIode mode_required;
Security::CommunicationDirection mode_required_direction;
sequence<Security::DelegationMode> mode_supported;
sequence<Security::ComniunicationDirection>
mode_supported_direction;

};

281

Appendix A: IDL for Comprehensive CORBA Security

struct QOPPolicyRequiresSupports{
AssociationOptions
sequence<ConiniunicationDirection>
AssociationOptions
sequence<ConimunicationDirection>
MsgPartList
sequence<ConiniunicationDirection>
integ_msg_part_required_direction;
MsgPartList
sequence<ConiniunicationDirection>
integ_msg_part_supported_direction;
MsgPartList
sequence<ConiinunicationDirection>
conf_msg_part_requi red_d i rection;
MsgPartList
sequence<ConununicationDirection>
conf_msg_part_supported_direction;

};

qop_type_required;
qop_type_required_direction;
qop_type_supported;
qop_type_supported_direction;
integ_msg_part_required;

integ_nisg_part_supported;

conf_nisg_part_required;

conf_msg_part_supported;

e vidence_requi red;
struct NRPo!icyRequiresSupports{

Security::evidenceDescriptorList
sequence<Security::ConimunicationDirection>
evidence_required_dircction;
Security ::evidenceDescriptorList evidence_supported;
sequence<Security::ConimunicationDirection>
evidence_supported_direction;
Security::authorityDescriptorList authorities;

};

struct AuditPolicyRequiresSupportsj
Secunty::AuditEventTypeList event_required;
sequence<Security::ConimunicationDirection>
event_required_direction;
Security ::AuditEventTypeList event_supported;
sequence<Security::ConiniunicationDirection>
event_supported_direction;
Security::SeIectorTypeList selector_required;
Security::Se!ectorTypeList selector_supported;

// END OF SECURITY DATA MODULE
1;

/ / * Module: 1 *
// * Function: Security Level I Interfaces. *

282

Appendix A: IDL for Comprehensive CORBA Security

//module securitylevel I {

//interface Current: CORBAI::Current {
interface Current {

Security::AttributeList get_attributes (
in Security::AttributeList attributes

);

// END OF securitylevel 11 MODULE
1;

/ / * Module: securitylevel21 *
// * Function: Security Level 2 Interfaces (SL2) *

module securitylevel2 {
typedef string Identifier;
typedef string InterfaceName;

// moved RequriedRights because SL2 interfaces refer to RequiredRights.
// Previously these interfaces were in SecurityReplaceability module but they
// are all now part of SL2.
interface RequiredRights;
interface UserAgent;
interface PrincipalAuthenticator;
interface Credentials;
interface Object2;
interface Current;

// RequiredRights Interface
interface RequiredRights {

void get_required_rights(
in Object
in Identifier
in InterfaceName
in string
in Security: iGperatorType
in Security::Opaque
out Security::RightsList
out Security::RightsCombinator

object,
operation_name,
interface_name,
parameter_name,
operator,
parameter_va!ue,
rights,
rights_combinator

);

void set_required_rights (
in string operation_name,
in InlerfaceName interface_name,
in siring parameter_name,
in Security: :OperatorType operator,

283

Appendix A: IDL for Comprehensive CORBA Security

in Security: :Opaque
in Security::RightsList
in Security::RightsCombinaior

parameter.value,
rights,
rights_combinator

interface PrincipalAuthenticator {
Security::AulhenticationStatus authenticate (

in Security::AuthenticationMethod method,
in string securily_name,
in Security::Opaque auth_data,
in Security::AttributeList privileges,
out Credentials creds,
out Security::Opaque continuation_data,
out Security::Opaque auth_speciric_data

);

Security::AuthenticationStatus continue_authentication (
in Security::Opaque
inout Credentials
out Security::Opaque
out Security::Opaque

response_daia,
creds,
continuation_data,
auth_specific_data

);

1;

// Interface Credentials
interface Credentials {

void set_security_features (
in Security::CommunicationDireclion direction,
in Security::SecurityFeatureValueList security_features,
out Security: :errormsg error,
out Security: :major_stalus major_error,
out Security: :minor_status minor_error

);

Security::SecurityFeatureValueList get_security_features (
in Security::CommunicationDirection direction,
out Security::errormsg error,
out Security::major_status major_error,
out Security::minor_status minor_error

);

boolean set_privileges (

284

Appendix A: IDL for Comprehensive CORBA Security

in boolean
in Security::AttribuieList
out Security::AttributeList
out Securityiierrormsg
out Security::major_status
out Security::minor_status

force_commit,
requesied_pri vi leges,
actuaLprivileges,
error,
major_error,
minor error

);

Security: lAttributeList get_attributes (
in Security::AttributeTypeList attributes,
out Security::errormsg error,
out Security::major_status major_error,
out Security::minor_status minor_error

);

boolean set_controls (
in boolean
in Security::AttributeList
in Security::DelegationMode
in Security::UtcT
in Security::AttributeList
in long
out Security::errormsg
out Security::major_status
out Security::minor_status

);

boolean get_controls (
in Security::AttributeList
out boolean
out Security: iDelegationMode
out Security::UtcT
out Security::AttributeList
out long
out Security::errormsg
out Security::major_status
out Security::minor_status

);

boolean is_valid (
out Security::UtcT
out Security::erronnsg
out Security::major_status
out Security::minor_status

);

force_commlt,
required_attributes,
delegation_mode,
expiry_time,
privileges_delegated,
no_ofJnvocations,
error,
major_error,
minor error

required_attributes,
force_commit,
delegation_mode,
expiry_time,
privileges_delegated,
no_of_invocations,
error,
major_error,
minor error

expiry_time,
error,
major_error,
minor error

285

Appendix A: IDL for Comprehensive CORBA Security

boolean refreshQ;
};

typedef sequence<Credentials> CredentialsList;

// Interface object derived from Object
// providing additional operations on objref at this security level,
interface Object: CORBA::Object{

void override_default_credentials (
in Credentials creds

);

void override_default_QOP (
in Security::QOP qop

);

Security::SecurityFeatureValueList get_security_features (
in Security::CommunicationDirection direction

);

Credentials get_active_credentials();

CORBA::Policy get_policy (
long get_policy (

in Security::PolicyType policy_type
);

Security::MechanismType get_security_mechanismO;

void override_default_mechanism (
in Security::MechanismType mechanism_type

);

Security::SecurityMechandName get_security_names();

};

// Interface Current derived from securitylevell l::Current
// providing additional operations on Current at this security
// level. This is implemented by the ORB.

interface Current {
Security: :AttributeList get_attributes (

in Security::AttributeTypeList attributes
);

void set_credentials (
in Security: :CredentialType cred_type,

286

Appendix A: IDL for Comprehensive CORBA Security

in Credentials creds

readonly attribute CredentialsList rece i ved_creden ti a I s;

readonly attribute Security::SecurityFeatureValueList
received_security_features;

CORBA::Policy get_policy(
in Security::PolicyType

);
policy_type

readonly attribute RequiredRights required_rights_object;

// AUDIT OBJECTS

// Interface for AuditDecision
interface AuditDecision {

boolean audit_needed (
in Security::AuditEventType
in Security::SelectorValueseq

);
1;

// Interface for AuditAnalyser
interface AuditAnalyser {

boolean analyse_data (
in Security: :AuditEventType
in CredentialsList
inSecurity::UtcT
in Security: rSelectorSequence
in Security: :Opaque
out Security:: Analyser Result
out Security::Opaque

);

boolean justify (
in Security::Opaque
out sequence<AuditJustify>

) ;
};

// Interface for AuditResponder
interface AuditResponder {

boolean deFine.response (
in Security::AnalyserResult

event_type,
valuelist

event_type,
creds,
time,
descriptors,
event_specific_data,
result,
analysis_token

analysis_token.
Justification

result,

287

Appendix A: IDLfor Comprehensive CORBA Security

);

in Security::Opaque
out sequence<Security::Opaque>
out sequence<Object>

audit_token,
audit_data,
audit channels

};

// Interface AuditChannel
interface AuditChannel {

readonly attribute Object

boolean audit_write (
in Security::Opaque
out Security: :errormsg
out Security: :major_status
out Security: :minor_status

);
};

// Interface AuditTrail
interface AuditTrail {

boolean read_record (
in long
out Security::AuditEventType
out CredentialsList
outSecurity::UtcT
out Security::SelectorSequence
out Security::Opaque
out Security::AnalyserResult
out Security::Opaque
out Security::erromisg
out Security: :niajor_status
out Security: :minor_status

) ;

nnked_object.

audit_data
error,
major_error,
minor error

id,
event_type,
creds,
time,
descriptors,
event_speciric_data,
result,
analysis_token
error,
major_error,
minor error

boolean write_record (
in long
in Security: :AuditEventType
in CredentialsList
in Security::UtcT
in Security::SelectorSequence
in Security::Opaque
in Security::AnalyserResult
in Security::Opaque
out Security: :erromisg
out Security::niajor_status
out Security::minor_status

id,
event_type,
creds,
time,
descriptors,
event_speciric_data,
result,
analysis_token
error,
major_error,
minor error

288

Appendix A: IDL for Comprehensive CORBA Security

);

boolean query_record (
inout sequence<long> id,
inout sequence<Security::AuditEventType> event_type,
inout sequence<CredentialsList> creds,
inout sequence<Security::UtcT> time,
inout sequence<Security: :SelectorSequence> descriptors,
inout sequence<Security::Opaque> event_speciric_data,
inout sequence<Security::AnalyserResult> result,
inout sequence<Security: :Opaque> analysis_token,
out Security: :erronnsg error,
out Security: :major_status major_error,
out Security: :minor_status mlnor_error

) ;
};

// Interface AuditAction
interface AuditAction {

boolean get_action_info (
in long
out Security::Opaque

);

id,
action data

};

boolean execute_action (
in Security: :Opaque
out Security: :erronnsg
out Security: :major_status
out Security::niinor_status

) ;

action.data
error,
major_error,
minor error

// * Module: NRservice *
// * Function: Non-Repudiation interfaces *

//Interface NRCredentials
interface NRCredentials {

boolean set_NR_features (
in Security::NRPolicyFeaturesList
in Security::NRPolicyFeaturesList

);

requested_features,
actual features

Security::NRPolicyFeaturesList get_NR_featuresO;

//
void generaie_token (

in sequence <octet> input_buffer.

289

Appendix A: IDL for Comprehensive CORBA Security

:Opaque
:EvidenceType

in Security:
in Security:
in boolean
in boolean
in Security::requestFeatures
in boolean
out Security:
out Security
out Security
out Security
out Security

'::Opaque
:Opaque
:errormsg
:major_status
:minor status

input_buffer,
generate_evidence_type,
include_data_in_token,
generate_request,
request_features,
input_buffer_complete,
nr_token,
evidence_check,
error,
major_error,
minor error

//

);

Security::NRVerificationResult veri
in Security: :Opaque
in Security::Opaque
in boolean
in boolean
out Security::Opaque
out Security::Opaque
out sequence <octet>
out boolean
out boolean
out Security::TimeT
out Security::TimeT
out Security::errormsg
out Security::major_siatus
out Security::minor_siatus

fy_evidence (
input_token_buffer,
evidence_check,
form_complete_evidence,
token_buffer_complete,
output_token,
d a t a j nc 1 u d e d j n_token,
data_includedJn_token,
evidenceJs_complete,
trusted_time_used,
compIete_evidence_before,
complete_evidence_after,
error,
major_error,

minor error

);

void get_token_details (
in Security::Opaque
in boolean
out string
out Security:
out Security:
out Security:
out Security:
out Security:
out boolean
out boolean
out Security:
out Security:
out Security:
out Security:

NRPolicyFeatures
EvidenceType
UtcT
UtcT
duration in minutes

requestFeatures
errormsg
major_status
minor status

token_buffer,
token_buffer_complete,
token_generator_name,
policy_features,
evidence_type,
evidence_generation_time,
evidence_valid_start_time,
evidence_validity_duration,
dataJncludedJn_token,
requestJncluded_in_token,
request_features,
error,
major_error,
minor_error

290

Appendix A: IDL for Comprehensive CORBA Security

);

boolean form_complete_evidence (
in Security: :Opaque
out Security::Opaque
out boolean
out Security::TimeT
out Security::TimeT
out Security::errormsg
out Security::niajor_siatus
out Security::minor_slatus

input_token,
output_loken,
trusted_tinie_used,
coniplete_evidence_before,
compleie_evidence_after,
error,
major_error,
minor error

);
1;

// interface NRDeliver
interface NRDeliver {
//NR_send_generated_loken will send a token and
//target object specified.

boolean NR_deliver_token(
in Security::Evidence Direction
in Security::EvidenceType
in Security: :Opaque
in Security: :Opaque
in boolean
in Object
in Object
out Security: :erromisg
out Security::niajor_status
out Security::minor_status

);

its input data to the

evidence_direction,
evidence_type,
nr_token,
evidence_check,
data_in_token,
originator,
target,
error,
major_error,
minor error

// interface NRStore
interface NRStore {
//The NR_record_add method returns a value of True/False depending on
//whether the record was added successfully. If False, errormsg will
//contain a systems message, explaining the problem, or the minor_error
//will contain a mechanism dspecific message (GSS-API compliance).
//Otherwise the error parameters will be null,

boolean NR_record_add (
in Security: :Opaque
in CredentialsList
in Secunty::EvidenceDirection
in Security: :EvidenceType
in boolean
in Security::Opaque

nr_token,
nr_creds,
evidence_direction,
evidence_type,
data_in_token,
evidence_check.

291

Appendix A: IDL for Comprehensive CORBA Security

);

in Security::UtcT
out Security::Opaque
out Security::erromisg
out Security::major_status
out Security::minor_status

nr_store_time,
nrjndex,
error,
niajor_error,
minor error

//An index is supplied to retrieve the appropriate key. This can be the
//result of a query or iterator operation (Query and Collection Service).
//The NR_record_get method returns a value of True/False depending on
//whether the record was successfully retrieved. If False, errormsg will
//contain a systems message, explaining the problem, or the minor_error
//will contain a mechanism specific message (GSS-API compliance).
//Otherwise the error parameters will be null,

boolean NR_record_get (
in Security: :Opaque
out Security: :EvidenceDirection
out Security::EvidenceType
out boolean
out CredentialsList
out Security::Opaque
out Security::Opaque
out Security::UtcT
out Security::errorinsg
out Security::major_status
out Security::niinor_status

nr_index,
evidence_direction,
evidence_type,
data_in_token,
nr_creds,
nr_token,
evidence_check,
nr_store_time,
error,
major_error,
minor error

);

Opaque> nrjndex,
EvidenceDirection>

boolean NR_record_query (
inout sequence<Security
inout sequence<Security

evidence_direction,
inout sequence<Security: :EvidenceType>
inout sequence<booIean>
inout sequence<CredentialsList>
inout sequence<Security::Opaque>
inout sequence<:Security::Opaque>
inout sequence<Security::UtcT>
out Security::errormsg
out Security::major_status
out Security::minor_status

);

evidence_type,
data_in_token,
nr_creds,
nr_token,
evidence_check,
nr_store_time,
error,
major_error,
minor_error

};

//interface NRAdjudicator
interface NRAdjudicator{

boolean NR_settIe_dispute (

292

Appendix A: IDL for Comprehensive CORBA Security

in Object
in Security::Opaque
in Object
in Security::Opaque
out Security::Opaque
out Secunty::DecisionType
out Securityrierrormsg
out Security::maJor_status
out Security::niinor_status

originator,
originator_nr_token,
target,
target_nr_token,
nr_decision_token,
decision,
error,
maJor_error,
minor error

);

};

// The NRPolicy has been removed from this module and placed in the
// SecurityAdmin module.

// * Module: SecurilyReplacable *
// * Function: Allows replacability *

interface SecurityConiexl;

// INTERFACE V A U L T
interface Vault {

Security::AssociationStatus init_security_context (
in CredentialsList credsjisi,
in Security::SecurityName target_security_name,
in Object target,
in Security::OptionsDirectionPairList association_oplions.
in Security::MechanismType
in Securily::Opaque
in Security::Opaque
inout short
out Security::MechanismType
out boolean
out boolean
out boolean
out boolean
out boolean
out boolean
out boolean
out boolean
out boolean
out Security::Opaque
out SecurityContext
out Security: :errormsg

mechanism,
mech_data,
chan_binding,
lifetime_rec,
out_mechanism,
deleg_state,
mutuaLstate,
replay_det_state,
sequence_state,
anon_state,
trans_state,
prot_ready_state,
conf_avail,
integ_avail,
securiiy_token,
security_conlext,
error,

293

Appendix A: IDL for Comprehensive CORBA Security

out Security::inajor_st:itus
out Security: iminor.status

niajor_error,
minor error

Security::AssociationSiatus accept_security_context (
in CredentialsList credsjist,
in Security::Opaque chan_bindings,
in Securiiy::Opaque in_ioken.
out boolean deleg^state,
out boolean mutual.state,
out boolean replay_det_state,
out boolean sequencc_state,
out boolean anon_state,
out boolean trans_state,
out boolean prot_ready_state.
out boolean conf_avail.
out boolean integ_avai!,
out CredentialsList delegated_creds_list,
out Security::Opaque out_token,
out short lifetime_rec,
out SecurityContext security_context,
out Securityxerrormsg error,
out Security::major_status major_error,
out Security::minor_status minor_error

Security ::MechandOptionsList gei_supported_mechs();

// Interface SecurityContext
interface SecurityContext {

readonly attribute CredentialsList received_credentials;

readonly attribute
received_security .features;

Security::SecurityFeatureValueList

Security::AssociationStatus continue_security_contexi (

);

in Security::Opaque
out Security::Opaque
out Security: :erromisg
out Security: :major_status

out Security: :minor_status

in_token,
out_token,
error,
major_error,
minor error

void protect_message (
in Security::Opaque message,

294

Appendix A: IDL for Cojnprehemive CORBA Security

in Security::QOP
inout boolean
out Security::Opaque
out Security: :Opaque
out Security::errormsg
out Security::nKyor_status
out Security: :minor_status

qop,
conf,
text_buffer,
token,
error,
mxyor_error,
minor_error

);

boolean reclaim_message (
in Security::Opaque
in Security: :Opaque
out Security::QOP
out boolean
out Securily::C)paque
out Security: :erronnsg
out Security::major_status
out Security::minor_status

);

boolean is_valid (
out Security::UtcT
out Security: :errormsg
out Security::inajor_status
out Security::minor_status

);

iexi_buffer,
token,
qop,
conf,
message,
error,
major_error,
minor error

expiry_time,
error,
iniyor_error,
minor error

boolean refreshQ;

//Interface AccessDecision
interface AccessDecision {

boolean access_allowed (
in CredentialsList
in Object
in Identifier
in string
in Security::OperatorType
in Security::Opaque
in Identifier

);
};

credjist,
target,
operationName,

parameter.name,
operator,
parameter_value,
targetlnterfaceName

// END OF S E C U R I T Y L E V E L 2 MODULE

295

Appendix A: IDL for Comprehensive CORBA Securiry

II * Module: Security Admin *
// * Function: Administration Interfaces *

module Security Admin {

interface Mappinglterator;

interface UserAgent{
void set_security_nanie (

in string
out Security::erronnsg
out Security::major_status
out Security::minor_status

);

security_name,
error,
ihaJor_error,
minor error

void set_auth_data (
in Security::Opaque
out Security::errormsg
out Security::major_status
out Security: :minor_status

);

auth.data,
error,
major_error,
minor error

void set^privileges (
in Security: :AttributeList
out Security::erronnsg
out Security: :major_status

);

void set_name (
in Security: rOpaque
out Security: :errornisg
out Security::major_status
out Security::minor_status

);

privileges,
error,
minor_error

security_name,
error,
major_error,
minor error

Security: :AuthenticationStatus authenticate (
out Security::Opaque continuation_data,
out Security: :Opaque auth_speciric_data,
out Security: lerrormsg error,
out Security::major_status major_error,
out Security::minor_status minor_error

);

//The above methods are used prior to authenticate. The following method
//is used after the authenticate and with continue_authentication.

Security::AuthenticationStatus reply_to_challenge (
in Security::Opaque response.data,

296

Appendix A: IDL for Comprehensive CORBA Securiry

out Security::errornisg
out Security: :major_status
out Security::niinor_status

);

};

error,
maJor_error,
minor error

//Interface QOPPohcy
interface QOPPoIicy {

readonly attribute Security::PolicyType policy_type;

void set_QOP_policy(
in long
in Security::InterfaceDefInfo
inSecurity::QOP
in long
in Security: :msg_part
in long
in Security::msg_part
in Security: :CommunicationDirection
in Security: :UtcT

policyjd,
object_type,
QOP_type,
integrity _mech,
integrity_msg_part,
confidentiality _mech,

confidential ity_msg_part,
direction,
expiry_time

);

void get_QOP_policy(
inout long
inout Security::InterfaceDennfo
out Security::QOP
out long
out Security::msg_part
out long
out Security::msg_part
out Security::ConununicationDirection
out Security::UtcT

policy_id,
object_type,
QOP.type,
integrity_mech,
integrity_msg_part,
conndentiaUty_mech,

confidentiality_msg_part,
direction,
expiry_time

);

void query_QOP_policy(
inout long
inout sequence<Security:
inout sequence<Security:
inout sequence<]ong>
inout sequence<Security:
inout sequence<long>
inout sequence<Security:
inout sequence<Security:
inout sequence<Security:

);

policyjd,
obJect_type,
QOP_type,
integrity_mech,

integrity_msg_part,
confidentiality^mech,

confidentiality_msg_part,
:CommunicationDirection> direction,
: U tcT> ex pi ry_ti me

:InterfaceDennfo>
:QOP>

:msg_part>

;msg_part>

297

Appendix A: IDL for Comprehensive CORBA Security

void update_QOP_policy(
in long
inout Security::lnterfaceDefInfo
inout Security::QOP
inout long
inout Security::msg_part
inout long
inout Security::msg_part
inout Security::CommunicationDirection
inout Security::UtcT

);

policyjd,
object_type,
QOP.type,
integrity_mech,
integrity _msg_part,
confidentiality.mech,

conridentiality_msg_part,
direction,
expiry_time

void

);

void

);

void

delete_QOP_policy(
in long
inout Security::InterfaceDeflnfo

set_stored_QOP_policy(
in long
in Security::InterfaceDennfo
in Security::QOP
in long
in long
in Security: :UtcT

get_stored_QOP_policy(
inout long
inout Security::InterfaceDennfo
outSecurity::QOP
out long
out long
out Security::UtcT

);

policy_id,
object_type.

policyjd,
objectJype,
QOP_type,
integrity_mech,
conndentiality.mech,
expiry J ime

policyjd,
object_type,
QOP.type,
integrity_mech,
conndentiality^mech,
expiry J i m e

void query_stored_QOP_policy(
inout sequence<long> policyjd,
inout sequence<Security::InterfaceDennfo> object.type,
inout sequence<Security::QOP>
inout sequence<long>
inout sequence<long>
inout sequence<Security::UtcT>

);

void update_stored_QOP_policy(
in long

' inout Security::InterfaceDennfo
inout Security::QOP

QOP_type,
integrity_mech,
confidentiality.mech,
expiry J i m e

policyjd,
objectjype,
QOP.type,

298

//

};

Appendix A: IDL for Comprehensive CORBA Security

inout long
inout long
inout Security: :RequiresSupports
inout Security::UtcT

);

void deIete_stored_QOP_policy(
in long
inout Security: rlnterfaceOeflnfo

);

integrity_mech,
confidentiality.mech,
requires.supports,
expiry_time

policyjd,
object_type

//Interface QOPMechanism
interface QOPMechanism {

readonly attribute Security::PolicyType policy_type;

// Integrity operations
void set_Integrity_mech (

in long
in string
in Security::Opaque
in Security::Opaque
in boolean
in Security::Opaque
inSecurity::UtcT

);

void get_Integrity_mech (
in long
in string
inout Security: :Opaque
inout Security::Opaque
inout boolean
inout Security::Opaque
inout Security::UtcT

);

integrity_mech,
integrity_mech_name,
parameters,
remote_parameters,
Standard_mechanism,
interface.details,
expiry_time

integrity_mech,
integrity_mech_name,
parameters,
remote_parameters,
Standard.mechanism,
interface.details,
expiry_time

void query_Integrity_mech (
inout sequence<long> integrity.mech,
inout sequence<string> integrity_mech_name,
inout sequence<Security::Opaque> parameters,
inout sequence<Security::Opaque> remote_parameters,
inout sequence<boolean> Standard_mechanism,
inout sequence<Security::Opaque> interface.details,
inout sequence<Security::UtcT> expiry_time

);

299

Appendix A: IDL for Comprehensive CORBA Security

void delete_Integrity_mech (
in long

);

// Confidentiality operations
void set_Confidentiality_mech (

in long
in string

confidentiality_mech_name,
in Security: lOpaque
in Security::Opaque
in boolean
in Security::Opaque
inSecurity::UtcT

);

void get_Confidentiality_mech (
in long
in string

confidentiality_mech_name,
inout Security::Opaque
inout Security::Opaque
inout boolean
inout Security::Opaque
inout Security::UtcT

);

void query_ConfidentiaIity_mech (
inout sequence<long>
inout sequence<string>
inout sequence<Security::Opaque>
inout sequence<Security::Opaque>
inout sequence<boolean>
inout sequence<Security::Opaque>
ihout sequence<Security::UtcT>

);

integrity_mech

confidentiality_mech,

parameters,
remote_parameters,
Standard_mechanism,
interface.details,
expiry_time

confidentiality.mech.

parameters,
remote_parameters,
Standard.mechanism,
interface_details,
expiry_time

confidentiality_mech,
conridentiality_mech_name,
parameters,
remote_parameters,
Standard_mechanism,
int€rface_details,
expiry_time

};

void delete_Confidentiality_mech (
in long

);
confidentiality_mech

//Interface AuthPolicy
interface AuthPolicy {

readonly attribute Security::PolicyType policy_type;

300

Appendix A: IDL for Comprehensive CORBA Seciiriry

void set_Auth_policy (
in long
in Security::PolicyType
in Security::PrincipalType
in string
in Security::UtcT
in Security::AuthenticationMethod
in Security::Opaque
in Security::AttributeList

);

void get_Auth_policy (
in long
in Security: :PollcyType
in Security: rPrincipalType
in string
out Security::UtcT
out Security: :AuthenticationMethod
out Security: :Opaque
out Security: :AttributeList

);

policyjd,
type,
principaljype,
security_name,
expiry J ime ,
method,
auth_data,
privileges

policyjd,
type,
principaljype,
security_name,
expiry J ime ,
method,
auth_data,
privileges

void query_Auth_policy (
inout sequence<long>
inout sequence<Security
inout sequence<Security
inout sequence<string>
inout sequence<Security::UtcT>

);

PolicyType>
PrincipalType>

policyjd,
type,
principaLtype,
security_name,
expiry_time.

inout sequence<Security::AuthenticationMethod> method.
inout sequence<Security::Opaque>
inout sequence<Security:: AttributeList>

auth_data,
privileges

void update_Auth_policy (
in long
inout Security: :PolicyType
inout Security::PrincipalType
inout string
inout Security: :UtcT
inout Security: :AuthenticationMethod
inout Security::Opaque
inout Security: :AttributeList

);

policyjd,
type,
principaljype,
security_name,
expiry J ime,
method,
auth_data,
privileges

void delete_Auth_policy (
in long

);
};

policyjd

301

Appendix A: IDL for Comprehensive CORBA Security

//Interface AuthMechanism
interface AuthMechanism {

readonly attribute Security::PolicyType policy_type;

void set_Auth_mech (
in Security: rAuthenticationMethod
in string
in Security::Opaque
in Security::Opaque
in boolean
in Security::Opaque
inSecurity::UtcT

);

method,
mech_name,
parameters,
remote_parameters,
standard.mechanism,
interface_details,
expiry J i m e

void get_Auth_mech (
in Security: :AuthenticationMethod method,
m stnng
inout Security::Opaque
inout Security: :Opaque
inout boolean
inout Security: :Opaque
inout Security: :UtcT

mech_name,
parameters,
remote_parameters,
Standard_mechanism,
interface_details,
expiry J i m e

);

void query_Auth_mech (
inout sequence<Security::AuthenticationMethod> method.
inout sequence<string>
inout sequence<Security::Opaque>
inout sequence<Security::Opaque>
inout sequence<boolean>
inout sequence<Security::Opaque>
inout sequence<Security::UtcT>

mech_name,
parameters,
remote.parameters,
Standard_mechanism,
interface_details,
expiry J i m e

);

void delete_Auth_mech (
inout Security::AuthenticationMethod

);
method

//Interface DelegationPolicy
// The get/sei_delegalion_mode operations are taken from the original
// Delegation Policy. The query and get/set_control operations are
// newly defined,
interface DelegationPolicy {

readonly attribute Security::PolicyType policy_type;

302

Appendix A: IDL for Comprehensive CORBA Security

void set_delegation_mode (
in long policyjd,
in Security::InterfaceDefInfo object_iype,
in Security::De!egationMode mode

);

Security: :DelegationMode gei_delegation_mode (
in long policyjd,
in Security::InterfaceDefInfo object_type,
out Security::DelegationMode mode

);

void query_delegation_mode (
inout sequence<long> policyjd,
inout sequence<Security::InterfaceDennfo> objectjype,
inout sequence<Security::DelegationMode> mode

);

void update_delegation_mode (
in long
inout Security::InterfaceDeflnfo
inout Security: :DelegationMode

);

policyjd,
objectjype,
mode

//set_controls is used to specify restrictions on where and when
//attributes/credentials can be delegated/used, objectjype specifies
//the object delegating. force_commit, if true, means that the
//restrictions should be applied immediately. required_attributes
//identifies the attributes the intemiediale/target object should
//have so that this client can use a delegation_mode before the
//specified expiry_time. privileges_delegated lists the
//privileges that can be delegated (in a composite only some
//might be delegated), while no_ofJnvocations specifies the
//maximum number of delegations allowed. The out parameters
//specify error messages if the method fails,

boolean set_controls (
in long
in Security::InterfaceDennfo
in boolean
in Security::AttributeList
in Security::DelegationMode
in Security: :UtcT
in Security: :AttributeList
in long

);

policyjd,
objectjype,
force_commit,
required.attributes,
delegation_mode,
expiry_time,
privileges_delegated,
no of invocations

303

Appendix A: IDL for Comprehensive CORBA Securiry

//get_controls will return the restriction controls for the
//initiating object "object_type" or for a target object with the
//specified required_attributes.

boolean get_controls (
in long
in Security::lnterfaceDennfo
in Security: :AttributeList
out boolean
out Security::De!egationMode
out Security::UtcT
out Security::AttributeList
out long

);

policyjd,
object_type,
required.attributes,
force_commit,
delegation_mode,
expiry_time,
privileges.delegated,
no of invocations

boolean query_controls (
inout sequence<long>
inout sequence<:Security:;
inout sequence<Security:;
inout sequence<boolean>
inout sequence<Security::
inout sequence<Security::
inout sequence<Security::
inout sequence<long>

);

policyjd,
InterfaceDefInfo> object_type,
AttributeList> required_attributes,

force_commit,
DelegationMode> delegation_mode,
UtcT> expiry_time,
AttributeList> privileges_delegated,

no of invocations

boolean update_controls (
in long
inout Security::InterraceDennfo
inout Security::AttributeList
inout boolean
inout Security: :DelegationMode
inout Security::UtcT
inout Security: :AttributeList
ihout long

);

boolean remove_controls (
in long
inout Security::InterfaceDennfo

);

policyjd,
object_type,
required_attributes,
force_commit,
delegation_mode,
expiryjime,
privileges_delegated,
no of invocations

policyjd,
objectjype,

// The operations used in ACCESSPOLICY below are taken from the
// original AccessPoIicy and DomainAccessPolicy. The operation names
// have been preserved for compatability i.e. they are not using the
// usual get/set/query names.

304

Appendix A: IDL for Comprehensive CORBA Security

//Interface AccessPoHcy
interface AccessPolicy {

readonly attribute Securiiy::PolicyType

Securi ty:: RightsList get_effecii ve_ri gh ts(
in securityIevel2::CredentialsList
in Security::ExtensibleFamily

);

void grant_rights (
in Security: :AccessMethod
in Security::Attribute
in Security: :DelegationState
in Security: :ExtensibleFamily
in Security: :RightsList

);

void revoke_rights (
in Security: :AccessMethod
in Security::Attribute
in Security::DelegationState
in Security::ExtensibleFamily
in Security::RightsList

);

void replace_rights (
in Security: :AccessIVlethod
in Security::Attribute
in Security::DelegationState
in Security::ExtensibleFamily
in Security::RightsList

);

Security::RightsList get_rights (
in Security::AccessIVlethod
in Security::Attribute
in Security::DelegationState
in Security::ExtensibleFamily

);

policy jype;

credjisi,
rights_family

method,
priv_attr,
del_state,
rights_family,
rights

method,
priv_attr,
del_state,
rights_family,
rights

method,
priv_attr,
del_state,
rights_family,
rights

method,
priv_attr,
del_state,
rights_family

void query_rights (
inout sequence<Security::AccessMethod> method,
inout sequence<Security::Attribute> priv_attr,
inout sequence<Security::DelegationState> del_state,
inout sequence<Security::Exten5ibleFamily> rights.family,
inout sequence<Security::RightsList> rights

);

305

Appendix A: IDL for Comprehensive CORBA Security

//Interface AccessMechanism
interface AccessMechanism {

};

readonly attribute Security::PolicyType policy_type:

void set_Access_mech (
in Security::AccessMethod
in string
in Security::Opaque
in Security: :Opaque
in boolean
in Security::Opaque
in Security::UtcT

);

void get_Access_mech (
in Security: :AccessMethod
in string
inout Security: :Opaque
inout Security: :Opaque
inout boolean
inout Security: :Opaque
inout Security: :UtcT

);

method,
mech_name,
parameters,
remote_parameters,
Standard_mechanism,
interface_details,
expiry J i m e

method,
mech_name,
parameters,
remote_parameters,
Standard_mechanism,
interface.details,
expiry J i m e

void query_Access_mech(
inout sequence<Security::AccessMethod> method.
inout sequence<string>
inout sequence<Security::Opaque>
inout sequence<Security::Opaque>
inout sequence<boolean>
inout sequence<Security::Opaque>
inout sequence<Security::UtcT>

mech_name,
parameters,
remote_parameters,
Standard_mechanism,
interface_details,
expiry J i m e

);

void delete_Access_mech(
in Security: :AccessMethod

);
method

//Interface AuditPolicy
interface AuditPolicy {

readonly attribute Security::PolicyType policy_type;

306

Appendix A: IDLfor Comprehensive CORBA Security

void set_audit_selectors (
in long
in unsigned long
in Security::UtcT
in Security::TimeT
in boolean
in Security: :Opaque
in InterfaceDef
in Security: :AuditEventTypeList
in Security::SeIectorValueList
in Object
in Object
in Security::authorityDescriptor

);

void clear_audit_seleclors (
in long
in unsigned long
in Security::UtcT
in Securily::TimeT
in boolean
in Security: :Opaque
in InterfaceDef
in Security::AuditEventTypeList

);

policy_id,
policy_version,
expiry_time,
effective_time,
revoked,
revocation_details,
object_type,
events,
selectors,
audit_analyser,
audit_responder,
accepted_aulhorities

policyjd,
policy_version,
expiry_lime,
effective_lime,
revoked,
revocation_details,
objeci_type,
events.

void replace_audit_selectors (
in InterfaceDef
in Security::AuditEventTypeList
in Security: :SelectorValueList
in Object
in Object
in Security: :authorityDescriptor

);

object_type,
events,
selectors,
audit_analyser,
audit_responder,
accepted_authorities

Security::SelectorValueList get_audit_selectors (
inout long
inout unsigned long
inout Security:;UlcT
inout Security::TimeT
inout boolean
inout Security::Opaque
inout InterfaceDef
inout Security::AuditEventTypeList
out Security::SeIectorValueList
out Object audit,
out Object audit.

policyjd,
policy_version,
expiry_lime,
effeclive_lime,
revoked,
revocation_details,
object_type,
events,
selectors,

.analyser,

.responder.

307

Appendix A: IDL for Comprehensive CORBA Security

out Security::auihorityDescriptor accepted_authoriiies
);

boolean set_audit_channel (
in SecurityLevel2::AuditChannel
in Object

);

audit_channel,
response_event

};

//Interface AuditMechanism
interface AuditMechanism {

readonly attribute Security::PolicyType policy_type;

//Audit_niechanism operations
void set_audit_mech (

in Security::MechanlsmType
in string
in Security: lOpaque
in Security: :Opaque
in boolean
in Security::Opaque
in Security::UtcT

);

void get_audit_niech (
in Secunty::MechanismType
in string
incut Security: :Opaque
incut Security::Opaque
incut boolean
incut Security::Opaque
incut Security::UtcT

);

method,
mechanism_type,
parameters,
remc te_pa ra mete rs,
Standard_mechanism,
interface_details,
expiry_time

method,
mechanism.type,
parameters,
remote_parameters,
Standard_mechanism,
interface_details,
expiry_time

void query_audit_mech(
inout sequence<Security: iMechanismType> method,
inout sequence<string>
inout sequence<:Security::Opaque>
inout sequence<Security::Opaque>
inout sequence<boclean>
incut sequence<Security::Opaque>
incut sequence<Security::UtcT>

mechanism_type,
parameters,
remcte.parameters,
Standard.mechanism,
interface_details,
expiry_time

);

void delete_audit_mech(
inout Security::MechanismType method

308

Appendix A: IDL for Comprehensive CORBA Security

);

void set_audit_authority (
in Security::authorityDescriptor
in Security::Opaque
in boolean
in Security: :Opaque

);

authority,
parameters,
Standard.mechanism,
interface details

void get_audit_authority (
in Security::authorityDescriptor
incut Security::Opaque
inout boolean
inout Security::Opaque

);

authority,
parameters,
Standard_mechanism,
interface details

void query_audit_authonty(
inout sequence<Security::authorityDescriptor> authority.
inout sequence<Security::Opaque>
inout sequence<boolean>
inout sequence<Security::Opaque>

);
void remove_audit_authority(

inout Security::authorityDescriptor
);

parameters,
Standard_mechanism,
interface details

authority

};

//Interface NRPolicy
interface NRPolicy {

readonly attribute Security::PolicyType policy_type;

void set_NR_policyJnfo (
in Security: :ExtensibleFamily
in unsigned long
in Security::InterfaceDennfo
in Security::TimeT
inSecurity::TimeT
in boolean
in Security: :Opaque
inSecurity::evidenceDescriptorList
in Security::mechanjsmDescriptorList
in Security::authorityDescriptorList

);

NR_policy_id,
policy_version,
object_type,
policy_effective_time,
poIicy_expiry_time,
revoked,
revocation_details,

supported_evidence_types,
supported_mechanisms,
accepted_authorities

void get_NR_policyJnfo (
out Securily::ExtensibleFamily NR_poIicyJd,

309

Appendix A: IDL for Comprehensive CORBA Security

out unsigned long poIicy_vers!On,
out Security: ilnterfaceDeflnfo
out Security::TinieT
out Security::TimeT
out boolean
out Security::Opaque
out Security::evidenceDescriptorList
out Security::mechanismDescriptorList
out Security: lauthorityDescriptorList

object_type,
policy_effective_time,
policy_expiry_time,
revoked,
revocation_details,

supported_evidence_types,
supported_mechanisms,
accepted.authorities

void query_NR_policy_info (
inout sequence<Security:
inout sequence<unsigned
inout sequence<Security:
inout sequence<Security:
inout sequence<Security:
inout sequence<boolean>
inout sequence<Security:
inout sequence<Security:

inout sequence<Security:

inout sequence<Security:

);

:ExtensibleFaniily> NR_policyJd,
long> policy_version,
:InterfaceDennfo> object_type,
:TinieT> policy_effective_time,
:TinieT> policy_expiry_time,

revoked,
:Opaque> revocation_details,
:evidenceDescriptorList>

supported_evidence_types,
:mechanisniDescriptorList>

supported_mechanisnis,
:authorityDescriptorList>

accepted_authorities

void update_NR_policy_info (
in Security::ExtensibleFamily
inout unsigned long
inout Security::InterfaceDennfo
inout Security::TimeT
inout Security::TimeT
inout boolean

NR_policy_id,
policy_version,
object_type,
policy_effective_time,
policy_expiry_tinie,
revoked,
revocation.details, inout Security::Opaque

inout Security: :evidenceDescriptorList
supported_evidence_types,

inout Security::mechanismDescriptorList supported_niechanisnis,
inout Security::authorityDescriptorList accepted.authorities

);

void delete_NR_policyJnfo (
in Security: :ExtensibleFamily
in unsigned long

);

NR_policy_id,
policy_version

};

310

Appendix A: IDL for Comprehensive CORBA Security

//Interface NRMechanism
interface NRMechanism {

readonly attribute Security: iPolicyType

//NR_mechanism operations
void set_NR_mech (

in Security: :NRmech
in string
in Security::Opaque
in Secunty::Opaque
in boolean
in Security::Opaque
in Security::UtcT

);

void get_NR_mech (
in Security::NRmech
inout string
inout Security: :Opaque
inout Security::Opaque
inout boolean
inout Security::Opaque
inout Security::UtcT

);

void query_NR_mech(
inout sequence<Security::NRmech>
inout sequence<string>
inout sequence<Security::Opaque>
inout sequence<Security::Opaque>
inout sequence<boolean>
inout sequence<Security::Opaque>
inout sequence<Security::UtcT>

);

void delete_NR_mech(
inout Security: :NRmech

);

policy_type;

method,
mechanism_type,
parameters,
remote_parameters,
Standard_mechanism,
interface.details,
expiry_time

method,
mechanism_type,
parameters,
remote_parameters,
Standard_mechanism,
intcrface_de tails,
expiry_time

method,
mechanism_type,
parameters,
remcte_parameters,
Standard_mechanism,
interface_details,
expiry_time

method

// Authority operations
// authorityDescriptor holds Name, Role and
// Last revocaticn_check_offset

void set_NR_authority (
in Security: tauthcrityDescriptcr
in Security::Opaque
in boolean

authority,
parameters.
Standard mechanism,

311

Appendix A: IDL for Comprehensive CORBA Security

in Security::Opaque
);

interface details

void get_NR_authority (
in Security: lauthorityDescriptor
inout Security::Opaque
inout boolean
inout Security: :Opaque

);

authority,
parameters,
Standard_mechanism,
interface details

void query_NR_authority(
inout sequence<Security::authorityDescriptor> authority,

);

inout sequence<Security::Opaque>
inout sequence<boolean>
inout sequence<Security::Opaque>

parameters,
Standard_mechanism,
interface_details

void delete_NR_authority(
in Security::authorityDescriptor

);
authority

// Evidence operations
void set_NR_evidence (

in string
in Security: :EvidenceType
in Security: :durationJn_minutes
in boolean
in Security::UtcT
in Security::Opaque
in boolean
in Security::Opaque

);

evidence_name,
evidence_type,
evidence_validity_duration,
must_use_trusted_time,
date_on_system,
parameters,
Standard.mechanism,
interface details

void get_NR_evidence (
in string
inout Security::EvidenceType

);

evidence_name,
evidence_type.

inout Security::durationJn_minutes evidence_validity_duration.
inout boolean
inout Security::UtcT
inout Security::Opaque
inout boolean
inout Security: :Opaque

void query_NR_evidence(
inout sequence<string>

must_use_trusted_time5
date_on_system,
parameters,
Standard.mechanism,
interface details

evidence_name.
inout sequence<Security::EvidenceType> evidence_type,
inout sequence<Security::duration_in_minutes>

312

};

Appendix A: IDL for Comprehensive CORBA Security

inout sequence<boolean>
inout sequence<Security::UtcT>
inout sequence<Security::Opaque>
inout sequence<boolean>
inout sequence<Secunty::Opaque>

);

void de!ete_NR_evidence(
in string
in Security::EvidenceType

);

evidence_validity_duration,
must_use_tnisted_tinie,
date_on_system,
parameters,
Standard.mechanism,
interface details

evidence_name,
evidence_type

// Interface SecurelnvocationPolicy
interface SecurelnvocationPolicy {

readonly attribute Security::PolicyType policy_type;

interop_policy_id,
interop_poIicy_type,
object_type,
doniain_id,

auth.mech,

void set_interop_policy (
in long
in Security: :InteropPoIicyType
in Security: ilnterfaceDeflnfo
in Security: :Opaque

// Autheniication segment
in Security::MechRequiresSupports
in Security::AuthPolicyRequiresSupports auth_policy_conrig,

//AuthenticationType
in long auth_mapping,

// Access segment
in Security::MecbRequiresSupports access_mech,
in SecurityiiSecurelnvocationFamily

access_Type_policy_conrig,
//Type=Rights(get,set,nianage;etc), Capability,...

in Security::SecureInvocationFaniily
access_Attribute_policy_conrig,

//Role, Public,...
in long access_Type_niapping,
in long access_Attribute_niapping,

//Delegation segment
in Security: :DelegationPolicyRequiresSupports

delegation_policy_conflg,
in long delegation_niode_niapping,

// QoP segment
in Security::MechRequiresSupports qop.mech,
in Security: :QOPPolicyRequiresSupports qop_poIlcy_config,
in long qop_type_mapping,
in long nisg_part_niapping,

313

Appendix A: IDL for Comprehensive CORBA Security

;MechRequiresSupports
:NRPolicyRequiresSupports

nr_mech,
nr_policy_conrig,
nr_evidence_niapping5

// NR segment
in Security
in Security
in long

// Audit segment
in Security::MechRequiresSupports audit.mech,
in Security::AuditPolicyRequiresSupports audit_policy_conrig,
in long audit_event_mapping,
in long audit_selector_mapping,

// The date the mapping is set is automatically set by the ORB.
// It takes the current date.

in Security:
in Security:

lauthority Descriptor
:UtcT

);

authority,
expiry_time

void getJnterop_policy (
in long
out Security:
out Security;
out Security:
out Security:
out Security:

auth_policy_conrig
out long
out Security:

InteropPolicyType
InterfaceDeflnfo
Opaque
MechRequiresSupports
AuthPolicyRequiresSupports

interop_policy_id,
interop_policy_type,
object_type,
domainjd,
auth mech.

auth_mapping,
MechRequiresSupports access_mech,

out Security: :SecureInvocationFamily
access_Type_policy_conrig,

out Security::SecureInvocationFaniily
access_Attribute_policy_conrig,

out long access_Type_mapping,
out long access_Attribute_mapping,
out Security: :DelegationPolicyRequiresSupports

delegation_policy_conrig,
out long delegation_mode_mapping,
out Security: :MechRequiresSupports qop_mech,
out Security::QOPPolicyRequiresSupports qop.policy.config,
out long qop_type_mapping,
out long msg_part_mapping,
out Security: :MechRequiresSupports nr_mech,
out Security::NRPolicyRequiresSupports nr_policy_config,
out long
out Security::MechRequiresSupports
out Security: :AuditPolicyRequiresSupports audit_policy_config,
out long audit_event_mapping,
out long audit_selector_mapping,
out Security::authorityDescriptor authority,
out Security::UtcT expiry_time

nr_evidence_mapping,
audit mech.

);

314

Appendix A: IDL for Comprehensive CORBA Security

void query_interop_policy (
inout sequence<long> Interop.policyjd,
inout sequence<Security::InteropPolicyType> interop_policy_type,
inout sequence<Security::InterfaceDefInfo> object_type,
inout sequence<Security::Opaque> domainjd,
inout sequence<Security::MechRequiresSupports> auth_mech,
inout sequence<Security:: AuthPolicyRequiresSupports>

auth_policy_conrig,
inout sequence<long> auth_mapping,
inout sequence<Security::MechRequiresSupports>

access_mech,
inout sequence<Security::SecureInvocationFamily>

access_Type_policy_config,
inout sequence<Security::SecurelnvocationFamily>

access_Attribute_policy_config,
inout sequence<long> access_Type_mapping,
inout sequence<long> access_Attribute_mapping,
inout sequence<Security::DelegatlonPolicyRequiresSupport5>

delegation_policy_config,
inout sequence<long> delegation_mode_mapping,
inout sequence<Security::IVlechRequiresSupports> qop.mech,
inout 5equence<Security::QOPPolicyRequiresSupports>

qop_policy_conrig,
inout sequence<long> qop_ty pe_mappi ng,
inout sequence<long> msg_part_mapping,
inout $equence<Security::MechRequiresSupports> nr.mech,
inout sequence<Security::NRPolicyRequiresSupports>

nr_policy_conrig,
inout sequence<long> nr_evidence_mapping,
inout sequence<Security::MechRequiresSupports>

audit_mech,
inout sequence<Security::AuditPolicyRequiresSupports>

audit_policy_conrig,
inout sequence<long> audit_event_mapping,
inout $equence<long> audit_selector_mapping,
inout sequence<Security::authorityDescnptor> authority,
inout sequence<Security::UtcT> expiry_time

);

void updateJnterop_policy (
in long interop_policyJd,
inout Security::InteropPolicyType interop_policy_lype,
inout Security::lnterfaceDefInfo object_type,
inout Security::Opaque domainjd,
inout Security: :MechRequiresSupports auth_mech,
inout Security::AuthPolicyRequiresSupports auth_policy_conrig,
inout long auth.mapping,

315

Appendix A: IDL for Comprehensive CORBA Security

inout Security:

inout Security::MechRequiresSupports access_mech,
inout Security: :SecureInvocationFamily

access_Type_policy_config,
:SecureInvocationFamily

access_Attribute_pclicy_ccnfig,
inout long access_Type_mapping
inout long access_Attribute_mapping,
incut Security::DelegaticnPolicyRequiresSupports

delegation_policy_conrig,
incut long delegaticn_mode_mapping,
inout Security: :MechRequiresSupports qop_mech,
inout Security: :QOPPclicyRequiresSupports qop_policy_ccnfig,
inout long qop_type_mapping,
inout long msg_part_mapping,
inout Security::MechRequiresSupports nr_mech,
incut Security::NRPolicyRequiresSupports nr_policy_conrig,
incut long nr_evidence_mapping,
incut Security::AuditPolicyRequiresSupports audit_policy_conrig,
incut long audit__event_mapping,
inout long audit_selector_mapping,
inout Security::authorityDescriptor authority,
inout Security: :UtcT expiry_time

void delete_interop_policy (
in long
incut Security::InteropPolicyType
incut Security::InterfaceDennfo
incut Security: :Opaque

);

interop_poIicy_id,
intercp_policy_type,
object_type,
domainjd.

interface MappingLookup {

void query (
in Security: :ServiceType
in Security::Constraint
in Security::Preference
in unsigned long
out Security: :MappingSeq
out Mappinglteratcr

);

);

interface DomainMapping {
Security::MappingId add (

type,
constr,
pref,
how_many,
maps,
mapj tr

316

Appendix A: IDLfor Comprehensive CORBA Security

in Security::ServiceType
in string
in unsigned short
in unsigned short
in sequence<octet>
in sequence<octet>
in unsigned short
in unsigned short
in sequence<unsigned >
in sequence<octet>
in sequence<Security::domain
in Security: rOpaque
in Security: :Opaque
out Security: :UtcT

serviceType,
policyClassiflcation,
family.definerl,
fami ly jd l ,
attribute_typel,

derining_authorityl,
family_deriner2,
faniilyjd2,
attribute_type2,

derining_authority2,
values> mapped.values,

remoteDomainld,
remoteDomainAuthority,
timeStamp

void withdraw (
in Security::IVIappingId

);

Security::MappingSeq describe (
in Security::MappingId

);

id

id

void modify (
in Security::MappingId
in Security::MappingIdSeq
in Security::MappingSeq

);

id,
deljist ,
modifyjist

void list(
in unsigned long
out Security::]VlappingSeq
out Mappinglterator

);

how_many,
ids,
id itr

};

interface Mappinglterator {

unsigned long maxjeft 0;

boolean next_n (
in unsigned long
out Security::MappingSeq

);

n,
maps

317

Appendix A: IDL for Comprehensive CORBA Security

void destroy ();

// END OF SECURITYADMIN MODULE
1;

/ / * Module: SEClOP *
// * Function: Secure Inter-ORB protocol *

module SEClOP {

typedef sequence <octet> Opaque;

const IOP::ComponentID T A G _ G E N E R I C _ S E C _ M E C H = 12;

const IOP::ComponentlD TAG_ASSOClATION_OPnONS = 13;

const IOP::ComponentID TAG_SEC_NAME = 14;

const IOP::ComponentlD T A G _ A C C E S S _ C O N T R O L = 15;

const IOP::ComponentID T A G _ A U D I T = 16;

const 10P::ComponentID TAG_N0N_REPUDIAT10N=17;

const 10P::ComponentID TAG_SSL_SEC_TRANS=18;

struct AssociationOptions{
Security: :AssociationOptions
Security: :AssociationOptions
Security: :MsgPartList
Security: :MsgPartList
sequence <TaggedComponent>
sequence <TaggedConiponent>
sequence <TaggedComponent>
sequence <TaggedConiponent>

}

target_supports;
target_requires;
msg_part_su pported;
nisg_pa r t_r eq u i r ed;
integ_mechs_supported;
integ_niechs_required;
conf_mechs_supported;
conf_mechs_required;

struct GenericMechanismlnfo {
sequence <octet>
sequence <octet>

sec u ri ty_m ec h a n i sm_type;
mech_spec i fic_data;

318

Appendix A: IDL for Comprehensive CORBA Security

sequence < IOP::TaggedComponent> components;

struct AccessCcntrol {
sequence< Security::SecureInvocaticnFamily> Operation_supports;
Security::SecureInvocationFamily Operation_requires;
sequence< Security ::SecureInvocationFamily> Attribute_supports;
Security::SecureInvocaticnFamily Attribute_requires;
sequence < Security: :DeiegaticnMode> Delegaticn.supports;
Security::DelegaticnMode De!egaticn_requires;
sequence <TaggedCompcnent> access_mechs_suppcrted;
sequence <TaggedCompcnent> access_mechs_required;

};

struct Audit {
Security::AuditPolicyRequiresSupport5 Audit_policy;
sequence <TaggedCcmponent> Audit_mechs_suppcrted;
sequence <TaggedComponent> Audit_mechs_required;

};

struct NonRepudiation {
Security::NRPolicyRequiresSupports NR_policy;
sequence <TaggedCcmpcnent> NR_mechs_supported;
sequence <TaggedComponent> NR_niechs_required;

};

struct SSL{
Security: :AssociationOptions target_supports;
Security: :AssociationOptions target_requires;
unsigned short port;

// prefix with MT (as in Servjdl.idl) so that it does not conflict with the struct names
enum MsgType {

MTEstablishContext,
MTCompleteEstablishContext,
MTContinueEstablishContext,
MTDiscardContext,
MTMessageError,
MTMessagelnContext

struct ulonglong {
unsigned long low;
unsigned long high;

319

Appendix A: IDLfor Comprehensive CORBA Security

typedef ulonglong ContextId;

enum ContextldDefn {
Client,
Peer,
Sender

};

snaict EstablishConiexi {
ContextId
sequence <octet>

};

struct CompleteEstablishConiext {
Conlexlld
boolean
ContextId
sequence <ociet>

1;

struct ContinueEstabiishContext {
ContextId
sequence <octet>

1;

client_context_id;
initialcontexttoken;

clieni_context_id;
targe t_con te x t_i d_va lid;
tartet_context_id;
final context_loken;

client_context_id;
continuation context_ioken;

struct DiscardContext {
ContextldDefn
Contexlld

};

struct MessageError {
ContextldDefn
ContextId
long
long

1;

message_contexi_id_defn;
message_context_id;

message_context_id_defn;
message_context_id;
major_status;
minor_status;

struct MessagelnContexl {
ContexlldDefn
ContexUd
Sequence<octet>

1;

// END OF SECIOP MODULE
};

message_contextJd_defn;
message_context_id;
message_protection_token;

320

Appendix B: IDL for Securiry-Aware Trader Service

Appendix B - IDL for Security-Aware Trader Service

This appendix will present the IDL for the Security-Aware Trader Service.

Module Structure
The modules used in the IDL are now:

• CosTrading : Security-Aware Trading Module

• CosTradingDynamic: Trading Dynamic Property Module

• CosTradingRepos: Trading Service Type Repository Module

The module structure has been preserved. The CORBA 2.0 object interfaces are still

used, but some of the parameter lists are extended and a new security policy interface

has been added.

Object Interfaces

Comments through out the IDL code will explain the modifications to and addition of

new object interfaces. The new DDL code will be highlighted in bold.

321

Appendix B: IDL for Security-Aware Trader Service

IDL

#include <orb.idI>

// I D L for Security-Aware Trading Function Module

module CosTrading {

// forward references to our interfaces

interface Lookup;
interface Register;
interface Link;
interface Proxy;
interface Admin;
interface Offerlterator;
interface Offerldlterator;

// type definitions used in more than one interface

typedef string Istring;
typedef Object TypeRepository;

typedef Istring PropertyName;
typedef sequence<PropertyName> PropertyNameSeq;
lypedef any PropertyValue;

struct Property {
PropertyName name;
PropertyValue value;

};
typedef sequence<Property> PropertySeq;

struct Offer {
Object reference;
PropertySeq properties;

1;
typedef sequence<Offer> OfferSeq;

lypedef string Offerld;

typedef sequence<0fferld> OfferldSeq;

typedef Istring ServiceTypeName;

typedef Istring Constraint;
enum FollowOption {

local_onIy,

322

Appendix B: IDL for Security-Aware Trader Service

if_noJocal,
always

I ;

typedef Istring LinkName;
typedef sequence<LinkName> LinkNameSeq;
lypedef LinkNameSeq TraderName;

lypedef string PolicyName;
lypedef sequence<PoIicyName> PolicyNameSeq;
lypedef any PolicyValue;

struct Policy {
PolicyName name;

. PolicyValue value;
1;
typedef sequence<Policy> PolicySeq;

// exceptions used in more than one interface

exception lIlegalTraderAccess {}; // Security-Aware Trader exception

exception IIIegalServiceOfrerAccess{};//Security-A\vareTraderexception

exception UnknownMaxLeft { } ;

exception Notlmplemenled { } ;

exception IllegaiServiceType {
ServiceTypeName type;

1;

exception UnknownServiceType {
ServiceTypeName type;

};

exception IllegalPropertyName {
PropertyName name;

1;

exception DuplicalePropertyName {
PropenyName name;

I ;
exception PropertyTypeMismatch {

ServiceTypeName type;
Property prop;

1;

323

Appendix B: IDLfor Securiry-Aware Trader Service

exception MissingMandatoryPropeny {
ServiceTypeName type;
PropertyName name;

};

exception ReadonlyDynamicProperty {
ServiceTypeName type;
PropertyName name;

1;

exception IllegalConstraint {
Constraint constr;

};

exception InvalidLookupRef {
Lookup target;

1;

exception IllegalOfferld {
Offerld id;

);

exception UnknownOfferld {
Offerld id;

1;

exception DupIicatePolicyName {
PolicyName name;

1;

// the interfaces

interface TraderComponents {

readonly attribute Lookup lookup_if;
readonly attribute Register registerjf;
readonly attribute Link l i n k j f ;
readonly attribute Proxy proxy_if;
readonly attribute Admin admin j f ;

1;

// Security-Aware Trader Attributes
interface SecurityAttributes {

readonly attribute boolean Security_Aware;
readonly attribute boolean access_control_trader;
readonly attribute boolean access_control_service_offers;
readonly attribute boolean encrypt_stores;

324

Appendix B: IDL for Security-Aware Trader Service

readonly attribute boolean encrypt_comms;
readonly attribute boolean integrity_check_stores;
readonly attribute boolean integrity_check_comnis;
readonly attribute boolean nr_trade;
readonly attribute boolean audit.trade;

) ;

interface SupportAttributes {
readonly attribute boolean supports_modiriable_properties;
readonly attribute boolean supports_dynamic_properties;
readonly attribute boolean supports_proxy_offers;
readonly attribute TypeRepository type_repos;

);

interface ImportAttributes {
readonly attribute unsigned long def_search_card;
readonly attribute unsigned long max_search_card;
readonly attribute unsigned long def_niatch_card;
readonly atuibute unsigned long max_match_card;
readonly attribute unsigned long def_retum_card;
readonly attribute unsigned long max_retum_card;
readonly attribute unsigned long maxj i s t ;
readonly attribute unsigned long def_hop_count;
readonly attribute unsigned long max_hop_count;
readonly attribute FollowOption def_follow_policy;
readonly attribute FollowOption max_follow_policy;
};

interface LinkAttributes {
readonly attribute FollowOption n[iax_link_follow_policy;

1;

interface Lx)okup:TraderComponents, SecurityAttributes, SupportAttributes{
typedef Istring Preference;

enum HowManyProps { none, some, all };

union SpecifiedProps switch (HowManyProps) {
case some: PropertyNameSeq prop_names;

1;

exception IllegalPreference {
Preference pref;

};

exception lllegalPolicyName {

325

Appendix B: IDL for Securiry-Aware Trader Service

PolicyName name;
1;

exception PolicyTypeMismatch {
Policy the_poIicy;

};

exception InvalidPoiicyValue {
Policy the_policy;

};

void query (
in ServiceTypeName type,
in Constraint constr,
in Preference pref,
in PoIicySeq policies,
in SpecifiedProps desired_props,
in unsigned long how_many,
out OfferSeq offers,
out Offerlterator o f f e r j t r ,
out PolicyNameSeq limils_applied

) raises (
lllegalTraderAccessy/Security-Aware Trader exception
IlIegalServiceOfferAccess^/Security-Aware Trader except.
IllegalServiceType,
UnknownServiceType,
lilegalConstraint,
IllegalPreference,
IllegalPolicyName,
PolicyTypeMismatch,
InvalidPolicy Value,
111 ega I Property Name,
DuplicatePropertyName,
DuplicatePolicyName

);
1;

interface Register: TraderComponents,SecurityAttributes,
SupportAttribuies {

struct Offerlnfo {
Object reference;
ServiceTypeName type;
PropertySeq properties;

1;

exception InvalidObjectRef {
Object ref;

326

Appendix B: IDL for Securiry-Aware Trader Service

exception UnknownPropertyName {
PropertyName name;

I ;

exception InterfaceTypeMismatch {
ServiceTypeName type;
Object reference;

};

exception ProxyOfferld {
Offerld id;

};

exception MandatoryProperty (
ServiceTypeName type;
PropertyName name;

exception ReadonlyProperty {
ServiceTypeName type;
PropertyName name;

1;

exception NoMatchingOffers {
Constraint constr;

1;

exception IllegalTraderName {
TraderName name;

);

exception UnknownTraderName {
TraderName name;

1;

exception RegisterNotSupported {
TraderName name;

};

Offerld export (
in Object reference,
in ServiceTypeName type,
in PropertySeq properties

) raises (
IIIegalTraderAccess, // Security-Aware Trader exception
lllegalServiceOfferAccess//Security-Aware Trader except.

327

Appendix B: IDL for Security-Aware Trader Service

InvalidObjeciRef,
lIlegalServiceType,
UnknownServiceType,
InlerfaceTypeMismatch,
IllegalProperlyName,
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MissingMandatory Property,
DuplicatePropertyName

);

void withdraw (
in Offerld id

) raises (
lIlegalTraderAccess, // Security-Aware Trader exception
IllegalServiceOfferAccess, // Security-Aware Trader except
IllegalOfferld,
UnknownOfferld,
ProxyOfferld

);

Offerlnfo describe (
in Offerld id

) raises (
IllegalTraderAccess, // Security-Aware Trader exception
IllegalServiceOfferAccess, // Security-Aware Trader except
lllegalOfferld.
UnknownOfferld,
ProxyOfferld

);

void modify (
in Offerld id,
in PropertyNameSeq del_list,

in PropertySeq m o d i f y j i s l
) raises (

Noilmplemented,
IllegalTraderAccess, // Security-Aware Trader exception
IllegalServiceOfTerAccess, // Security-Aware Trader except
lllegalOfferld,
UnknownOfferld,
ProxyOfferld,
IllegalPropertyName,
UnknownPropertyName,
PropertyTypeMismalch,
ReadonlyDynamicProperty,
Mandatory Property,
Readonly Property,

328

Appendix B: IDL for Security-Aware Trader Service

DuplicatePropertyName
);

void withdraw_using_constraint (
in ServiceTypeName type,
in Constraint constr

) raises (
IllegalTraderAccess, // Security-Aware Trader exception
IliegalServiceOfferAccess, // Security-Aware Trader except
IllegalServiceType,
UnknownServiceType,
IllegalConstraint,
NoMatchingOffers

);

Register resolve (
in TraderName name

) raises (
IllegalTraderName,
UnknownTraderName,
RegisierNotSupporied,
IllegalTraderAccess, // Security-Aware Trader exception
IllegalServiceOfferAccess // Security-Aware Trader except
RegisterNoiSupported

);

interface Link : TraderComponenis, SupportAttributes,
SecurityAttributes, LinkAitribuies {

struct Linklnfo {
Lookup target;
Register targei_reg;
FollowOplion def_pass_on_fol!ow_rule;
FollowOption limiting_follow_rule;
OctetSeq Link_security;

I ;

exception IllegalLinkName {
LinkName name;

1;
exception UnknownLinkName {

LinkName name;
1;

exception DuplicateLinkName {
LinkName name;

329

Appendix B: IDL for Security-Aware Trader Service

1;

exception DefaultFollowTooPermissive {
FollowOption def_pass_on_follow_rule;
FollowOption limiting_folIow_rule;

1;

exception LimitingFollowTooPermissive {
FollowOption limiting_follow_rule;
FollowOption maxJink_follow_policy;

1;

void add j ink (
in LinkName name,
in Lookup target,
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule

) raises (
IllegalLinkName,
DuplicateLinkName,
InvalidLookupRef, // e.g. nil
DefaultFollowTooPermissive,
LimitingFollowTooPermissive

);

void removejink (
in LinkName name

) raises (
IllegalLinkName,
UnknownLinkName

);

Linklnfo describejink (
in LinkName name

) raises (
IllegalLinkName,
UnknownLinkName

);

LinkNameSeq l i s t j inks () ;

void m o d i f y j i n k (
in LinkName name,
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule

) raises (
lllegalLinkName,
UnknownLinkName,

330

Appendix B: IDL for Security-Aware Trader Service

DefaultFoliowTooPermissive,
LimitingFollowTooPermissive

};

interface Proxy : TraderComponents, SecurityAttributes,
SupportAttributes {

typedef Istring ConstraintRecipe;

struct Proxylnfo {
ServiceTypeName type;
Lookup target;
PropertySeq properties;
boolean if_match_all;
ConstraintRecipe recipe;
PolicySeq policies_to_pass_on;

};

exception IllegalRecipe _
ConstraintRecipe recipe;

1;

exception NotProxyOfferld {
Offerld id;

};

Offerld export_proxy (
in Lookup target,
in ServiceTypeName type,
in PropertySeq properties,
in boolean if_match_all,
in ConstraintRecipe recipe,
in PolicySeq policies_to_pass_on

) raises (
IllegalServiceType,
UnknownServiceType,
InvalidLookupRef, // e.g. nil
lllegalPropertyName,
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MissingMandatory Property,
IllegalRecipe,
DuplicatePropertyName,
DuplicatePolicyName

331

Appendix B: IDL for Security-Aware Trader Service

);

void withdraw_proxy (
in Offerld id

) raises (
IllegalOfferld,
UnknownOfferld,
NotProxyOfferld

);

Proxylnfo describe_proxy (
in Offerld id

) raises (
IllegalOfferld,
UnknownOfferld,
NotProxyOfferld

);

interface Admin : TraderComponents, SupportAltributes,
SecurityAttributes, ImportAttributes, LinkAttributes {

lypedef sequence<octet> OcletSeq;

// exceptions used for the Security Attributes
exception SecurityAttributesRequired {};

readonly attribute OctetSeq requestjd_stem;

unsigned long set_def_search_card (in unsigned long value);
unsigned long set_max_search_card (in unsigned long value);
unsigned long set_def_match_card (in unsigned long value);
unsigned long set_max_match_card (in unsigned long value);
unsigned long set_def_reium_card (in unsigned long value);
unsigned long set_max_relum_card (in unsigned long value);
unsigned long set_max_list (in unsigned long value);
boolean set_supports_modifiable_properties (in boolean value);
boolean set_supports_dynamic_properties (in boolean value);
boolean set_supports_proxy_offers (in boolean value);
unsigned long set_def_hop_count (in unsigned long value);
unsigned long set_max_hop_count (in unsigned long value);
FollowOption set_def_follow_policy (in FollowOpiion policy);
FollowOption set_max_follow_policy (in FollowOption policy);
FollowOption set_maxjink_follow_policy (in FollowOption policy);

332

Appendix B: IDL for Security-Aware Trader Service

II Set operations for Security Attributes
boolean set_Security_Aware (In boolean value);
boolean set_access_control_trader (in boolean value);
boolean set_access_control_service_offers (in boolean value);
boolean set_encrypt_stores (in boolean value);
boolean set_encrypt_conuns (in boolean value);
boolean set_integrity_check_stores (in boolean value);
boolean set_integrity_check_comms (in boolean value);
boolean set_nr_trade (in boolean value);
boolean set_audit_trade (in boolean value);

TypeRepository set_type_repos (in TypeRepository repository);

OctetSeq set_request_id_stem (in OctetSeq stem);

void Iist_offers (
in unsigned long how_many,
out OfferldSeq ids,
out Offerldlterator i d j t r

) raises (
Notlmpiemented

);

void lisi_proxies (
i n unsigned long how_many ,
out OfferldSeq ids,
out Offerldlterator id_itr

) raises (
Notlmplemented

);
1;

interface Offerlterator {
unsigned long m a x j e f l (
) raises (

UnknownMaxLefi
);

boolean nexl_n (
in unsigned long n,
out OfferSeq offers

);

void destroy ();
};

interface Offerldlterator {

333

Appendix B: IDL for Security-Aware Trader Service

unsigned long max J e f t (
) raises (

UnknownMaxLeft
);

boolean next_n (
// in unsigned long n,
// out OfferldSeq ids

);

void destroy ();
1;

1; /* end module CosTrading */

// I D L for Dynamic Property Module

module CosTradingDynamic (

exception DPEvalFailure {
CosTrading::PropertyName name;
coRBA-TypeCode retumed_type;
any extra_info;

1;

interface DynamicPropEval {

any evalDP (
in CosTrading::PropertyName name,
in CORBA::TypeCode retumedjype,
in any ex t ra jnfo

) raises (
DPEvalFailure

);
1;

struct DynamicProp {
DynamicPropEval eval_if;
cORBA::TypeCode retumed_type;
any ext ra jnfo ;

};
}; /* end module CosTradingDynamic */

// I D L for Service Type Repository Module

module CosTradingRepos {

334

Appendix B: IDL for Securiry-Aware Trader Service

interface ServiceTypeRepository {

// local types
typedef sequence<CosTrading: :ServiceTypeName>

ServiceTypeNameSeq;
enum PropertyMode {

PROP_NORMAL, PROP.READONLY,
PROP_MANDATORY, PROP_MANDATORY_READONLY

};
struct PropStrucl {

CosTrading::PropertyName name;
CORBA::TypeCode value_type;
PropertyMode mode;

1;
typedef sequence<PropStruct> PropStructSeq;

typedef CosTrading::Istring Identifier;
struct IncamationNumber {

unsigned long high;
unsigned long low;

1;
struct TypeStruct {

Identifier if_name;
PropStructSeq props;
ServiceTypeNameSeq super_types;
boolean masked;
IncamationNumber incarnation;

1;

enum ListOption { all, since);
union SpecifiedServiceTypes switch (ListOption)
{

case since: IncamationNumber incarnation;
1;

// local exceptions
exception ServiceTypeExists {

CosTrading::ServiceTypeName name;
1;
exception InterfaceTypeMismaich {

CosTrading::ServiceTypeName base_service;
Identifier basejf;
CosTrading::ServiceTypeName derived_service;
Identifier derivedjf ;

};
exception HasSubTypes {

CosTrading::ServiceTypeName the_type;

335

Appendix B: IDL for Security-A ware Trader Service

CosTrading::ServiceTypeName sub_type;
};
exception AlreadyMasked {

CosTrading: :ServiceTypeName name;
);
exception NotMasked {

CosTrading::ServiceTypeName name;
};
exception ValueTypeRedefinition {

CosTrading: :ServiceTypeName iype_ 1;
PropStruct def ini t ion.! ;
CosTrading::ServiceTypeName type_2;
PropStruct definition_2;

};
exception DuplicateServiceTypeName {

CosTrading::ServiceTypeName name;
1;

// attributes
readonly attribute IncamaiionNumber incarnation;

// operation signatures
IncamationNumber add_type (

in CosTrading::ServiceTypeName name,
in Identifier if_name,
in PropStructSeq props,
in ServiceTypeNameSeq super_lypes

) raises (
CosTrading::IllegalServiceType,
ServiceTypeExists,
InterfaceTypeMismatch,

' CosTrading::lllegalPropertyName,
CosTrading::DuplicatePropertyName,
ValueTypeRedefinition,
CosTrading:: UnknownServiceType,
DuplicateServiceTypeName

);

void remove_type (
in CosTrading::ServiceTypeName name

) raises (
CosTrading: :IllegalServiceType,
CosTrading: :UnknownServiceType,
HasSubTypes

);

ServiceTypeNameSeq list_types (
in SpecifiedServiceTypes which_iypes

336

Appendix B: IDL for Securiry-Aware Trader Service

);

TypeStruct describe_type (
in CosTrading::ServiceTypeName name

) raises (
CosTrading::IllegaIServiceType,
CosTrading:: UnknownServiceType

);

TypeStruct fully_describe_type (
in CosTrading: :ServiceTypeName name

) raises (
CosTrading::IllegaIServiceType,
CosTrading: :UnknownServiceType

);

void mask_type (
in CosTrading::ServiceTypeName name

) raises (
CosTrading: iIllegalServiceType,
CosTradi ng:: UnknownServiceType,
AlreadyMasked

);

void unmask_type (
in CosTrading: :ServiceTypeName name

) raises (
CosTrading::lllegaiServiceType,
CosTrading: :UnknownServiceType,
NotMasked

);

);
); /* end module CosTradingRepos */

337

Appendix C: IDL for Generic Security Service API

Appendix C - IDL for Generic Security Service API

This appendix presents the IDL for the GSS-API server. Since GSS-API plays an

integral part in the implementation of the Enhanced Security Service, a GSS-API

server was built using this DDL code. It complies with the GSS-API standard.

I D L

II
/ / N A M E : GSSAPI.idl
//
// DESCRIPTION: IDL for PhD demo - Operates as a GSS-API server
// providing the required GSS-API operations, implemented
// using cryptlib functions
//

// GSSAPI.idl

module GSSAPI {

// IDL defmtion of GSS-API operations,

interface GSSAPI {

// Data types used in this idl file,
typedef unsigned long OM_uint32;
typedef long gss_cu_id_t;
typedef string gss_cred_id_t;
typedef any gss_name_t;
typedef string intemalname;
typedef short o b j j d ;
typedef short obj_id_seq[10];

typedef long contexthandle;

338

Appendix C: IDL for Generic Security Service API

typedef string credentialhandle;
typedef string octeistring;
//lypedef sequence<octet> octetstring;
//typedef unsigned char ostring;
//typedef string Soctetstring;
typedef char byteBuffer[1024];

// DDL operations

// CREDENTIAL MANAGEMENT CALLS

OM_uint32 GSS_Acquire_cred(
in intemalname desired_name,
in short lifetime_req,
in obj Jd_seq desired_mechs,
in short cred_usage,
out short major_status,
out short minor_status,
out credentialhandle output_cred_handIe,
out objJd_seq actual_mechs,
out short Iifetime_rec

);

OM_uint32 GSS_Release_cred(
in credentialhandle cred_handle,
out short major_status,
out short niinor_status

);

OM_uint32 GSSJnquire_cred(
in credentialhandle cred_handle,
out short major_status,
out short minor_status,
out intemalname cred_name,
out short lifetime_rec,
out short cred_usage,
out obj_id_seq mech_set

) ;

OM_uint32 GSS_Add_cred(
in credentialhandle inpul_cred_handle,
in iniemalname desired_name,
in short initiator_lime_req,
in short acceptor_time_req,
in obj J d desired_mech,
inout short cred_usage,
out short major_status,

339

Appendix C: IDL for Generic Security Service API

out short minor_status,
out credentialhandle outpui_cred_handle,
out o b j j d actual_mechs,
out short initiator_time_rec,
out short acceptor_time_rec,
out objJd_seq mech_set

);

OM_uint32 GSS_Inquire_cred_by_mech(
in credentialhandle cred_handle,
in ob j Jd mech_lype,
out short niajor_status,
out short minor_status,
out intemalname cred_name,
out short lifetime_rec_initiate,
out short lifetime_rec_accept,
out short cred_usage

) ;

// CONTEXT LEVEL CALLS

OM_uint32 GSS_Init_sec_context(
in gss_cred_id_t claimant_cred_handle,
in short input_context_handle,
in intemalname target_nanie,
inout obj_!d_seq mech_type,
in boolean deleg_req_flag,
in boolean mutual_req_flag,
in boolean replay_det_req_flag,
in boolean sequence_req_flag,
in boolean anon_req_flag,
in short lifetime_req,
in octetstring chan_bindings,
in byteBuffer input_token,
in short tincount,
out short major_status,
out short minor_status,
out contexthandle output_context_handle,
out byteBuffer output_token,
out short tcount,
out boolean deleg_state,
out boolean mutual_state,
out boolean replay_det_state,
out boolean sequence_state,
out boolean anon_state,
out boolean trans_state,
out boolean prot_ready_state,

340

Appendix C: IDLfor Generic Security Service API

out boolean conf_avai!,
out boolean integ_avail,
out short l i fei imerec

);

OM_uint32 GSS_Accept_sec_context(
in credentialhandle acceptor_cred_handIe,
in short input_context_handle,
in octetstring chan_bindings,
in byteBuffer input_token,
in short tincount,
out short major_slatus,
out short niinor_status,
out intemalname src_name,
inout o b j j d mech_type,
out contexihandle output_context_handle,
out boolean deleg_state,
out boolean mutual_state,

. out boolean replay_det_slate,
out boolean sequence_stale,
out boolean anon_siate,
out boolean trans_state,
out boolean prot_ready_state,
out boolean conf_avail,
out boolean integ_avail,
out short lifetime_rec,
out credeniialhandle delgated_cred_handle,
out byteBuffer output_token,
out short toutcount

);

OM_uint32 GSS_Delete_sec_context(
in contexthandle context_handle,
out short niajor_status,
out short minor_status,
out contexthandle output_context_token

);

OM_uint32 GSS_Process_conlext_token(
in contexthandle context_handle,
out octetstring input_context_token,
out short niajor_status,
out short minor status

);

341

Appendix C: IDL for Generic Seciiriiy Service API

OM_uint32 GSS_Contexl_time(
in contexthandle context_handle,
out short inajor_status,
out short niinor_status,
out short Iifetime_rec

) ;

OM_uint32 GSS_Inquire_context{
in short input_coniexi_handIe,
out short major_status,
out short minor_slatus,
out intemalname src_name,
out intemalname targ_name,
out short Iifetime_rec,
out o b j j d mech_type,
out boolean deleg_state,
out boolean mutual_state,
out boolean replay_det_state,
out boolean sequence_state,
out boolean anon_state,
out boolean trans_state,
out boolean prot_ready_staie,
out boolean conf_avail,
out boolean integ_avail,
out boolean locally_initialed

);

// PER-MESSAGE CALLS
OM_uint32 GSS_GetMIC(

in contexthandle context_handle,
in short qop_req,
in octetstring message,
out short major_status,
out short minor_status,
out byteBuffer per_msg_token,
out short tcount

);

OM_uint32 GSS_VerifyMIC(
in contexthandle coniext_handle,
in octelstring message,
in byteBuffer per_msg_token,
in short tcount,
out short qop_state,
out short major_status,

342

Appendix C: IDL for Generic Security Service API

out short niinor_status
);

OM_uint32 GSS_Wrap(
in contexthandle context_handle,
in boolean conf_req_flag,
in short qop_req,
in octetstring input_message,
out short nnajor_status,
out short minor_status,
out boolean conf_state,
out byieBuffer output_message,
out short tcount

);

OM_uint32 GSS_UnWrap(
in coniexthandle context_handle,
in byteBuffer input_message,
in short tcount,
out boolean conf_state,
out short qop_state,
out short major_status,
out short minor_status,
out octetstring output_message

);

/ /L IBRARY OPTIONS
OM_uint32 GSS_SetOptions(

in short opliontype,
in short optionvalue

);

OM_uint32 GSS_GetOptions(
in short optiontype,
out short optionvatue

);

);

} ; / * end module GSSAPI */

343

Appendix C: IDL for Generic Securiry Service API

Status Codes for GSS-API

This appendix also includes the status codes required for GSS-API. There are two

types of status code:

• Major Status Codes: provide a mechanism-independent indication of call

status;

• Minor Status Codes: provide a mechanism-specific indication of status.

Only Major Status Codes are defined in the specification, because as Minor codes are

dependent on the mechanisms used.

GSS'API Major Status Codes

F A T A L E R R O R C O D E S Code Dennition
GSS_S_BAD_BIND1NGS 901 Channel bindings mismatch
GSS_S_BAD_MECH 902 Unsupported mechanism requested
GSS_S_BAD_NAME 903 Invalid name provided
GSS_S_BAD_NAMETYPE 904 Name of unsupported type provided
GSS_S_BAD_STATUS 905 Invalid input status selector
GSS_S_BAD_SIG 906 Token had invalid integrity check
GSS_S_CONTEXT_EXPIRED 907 Specified security context expired
GSS_S_CREDENTIALS_EXPIRED 908 Expired credentials detected
GSS S DEFECTIVE CREDENTIALS 909 Defective credentials detected
GSS_S_DEFECTIVE_TOKEN 910 Defective token detected
GSS_S_FA1LURE 911 Failure, unspecified at GSS-API

level
GSS_S_NO_CONTEXT 912 No valid security context specified
GSS_S_NO_CRED 913 No valid credentials provided
GSS_S_BAD_QOP 914 Unsupported QOP value
GSS S UNAUTHORIZED 915 Operation unauthorized
GSS S UNAVAILABLE 916 Operation unavailable
GSS_S_DUPLICATE_ELEMENT 917 Duplicate credential element

requested
GSS_S_NAME_NOT_MN 918 Name contains multi-mechanism

elements

344

Appendix C: IDL for Generic Security Service API

I N F O R M A T O R Y S T A T U S C O D E S Codes Dennition
GSS_S_COMPLETE 801 Normal completion
GSS_S_CONTiNUE_NEEDED 802 Continuation call to routine required
GSS_S_DUPLICATED_TOKEN 803 Duplicate per-message token detected
GSS_S_OLD_TOKEN 804 Timed-out per-message token detected
GSS_S_UNSEQ_TOKEN 805 Reordered (early) per-message token

detected
GSS S_GAP_TOKEN 806 Skipped predecessor token(s) detected

345

Appendix D - Cryptlib & Prototype information

This appendix presents an overview of cryptlib, a cryptography library, which was

used in the implementation of the Enhanced Security System. It was used as to

provide the security mechanisms, such as encryption and certificates.

Cryptlib is written by Peter Guttman (pgutOOl@cs.auckland.ac.n7A and in part by

Eric Young, Colin Plumb, and others. The cryptlib manual is available at the cryptlib

web site i f further details are required on the product

(http://www.cs.auckland.ac.nz/-pgutQ01/crvptlib/).

The cryptlib encryption library provides an easy-to-use interface that allows

programmers add strong encryption and authentication services to their software.

cryptlib uses several encryption, hash, MAC, public-key and digital signature

mechanisms (see Table A-1 below), cryptlib is supplied as source code for Unix

(shared or static libraries), DOS, Windows (16- and 32-bit DLL's), and the Amiga.

Algorithms

cryptlib provides a standardised interface to a number of popular encryption

algorithms, as well as providing a high-level interface which hides the implementation

details and provides an operating-system-independant encoding method which makes

it easy to transfer encrypted data from one system to another. Although use of the

346

Appendix D: Cryptlib & Prototype Infonnation

high-level interface is recommended, programmers can directly access the lower-level
encryption routines for implementing custom encryption protocols or methods not
provided by cryptlib.

Algorithm Key size Block size Type
Blownsh 448 64 Cipher-block
CAST-128 128 64 Cipher-block
D E S 56 64 Cipher-block
Triple DES 112/168 64 Cipher-block
I D E A 128 64 Cipher-block
R C 2 1024 64 Cipher-block
R C 4 2048 8 Cipher-stream
RC5 832 64 Cipher-block
Safer 128 64 Cipher-block
Safer-SK 128 64 Cipher-block
MD2 — 128 MD-Hash
MD4 — 128 MD-Hash
MD5 — 128 MD-Hash
MDC-2 — 128 MD-Hash
RIPEMD-160 — 160 MD-Hash
SHA — 160 MD-Hash
HMAC-MD5 128 128 M A C
HMAC-SHA 160 160 M A C
HMAC-RIPEMD-160 160 160 M A C
Diffie-Hellman 4096 — Key Exchange
DSA 4096' — Digital Signature
EIGamal 4096 — Public-key
RSA 4096 — Public-key

Digital Signature

Table A - 1: crypUib mechanisnis

Certificate Management

In relation to certificate management, crypllib implements ful l X.509 certificate

support, including all X.509 version 3 extensions. Since cryptlib is itself capable of

processing certification requests into certificates, it is also possible to use cryptlib to

The DSA standard only defines key sizes from 512 to 1024 bils, crypllib supports longer keys but
there is no extra security to be gained from using these keys.

347

Appendix D: Cryptlib Prototype Infonnation

provide ful l CA services, cryptlib can import and export certification requests,
certificates, and CRL's in straight binary format,. This covers the majority of
certificate and certificate transport formats used by a wide variety of software such as
web browsers and servers.

Key Database Interface

cryptlib provides an interface to both native-format and external key collections. The

cryptlib native format uses commercial-strength RDBMS*s to store keys in the

internationally standardised X.509 format. The cryptlib key database integrates

seamlessly into existing databases, for example an existing database containing user

names and email addresses may be extended to become a public key database with a

single cryptlib function call. Existing applications need not even be aware that their

address list database has become a public-key database.

cryptlib also supports external flat-file key collections such as PGP key rings and

X.509 keys stored in disk files. The key collections may be freely mixed (so for

example a private key could be stored in a disk file, a PGP keyring or on a smart card

with the corresponding X.509 public key certificate being stored in an Oracle or SQL

Server database).

Cryptographic Random Number Management

cryptlib contains an internal secure random data management system which provides

the cryptographically strong random data used to generate session keys and

public/private keys, in public-key encryption operations, and in various other areas

348

Appendix D: Cryptlib & Prototype Infonnation

which require secure random data. The random data pool is updated with
unpredictable process-specific information as well as system-wide data such as
current disk I/O and paging statistics, network, SMB, L A N manager, and NFS traffic,
packet filler statistics, multiprocessor statistics, process information, users, V M
statistics, process statistics, open files, inodes, terminals, vector processors, streams,
and loaded code, objects in the global heap, loaded modules, running threads, process,
and tasks, and an equally large number of system performance-related statistics
covering virtually every aspect of the operation of the system. The exact data
collected depends on the hardware and operating system, but generally includes quite
detailed operating statistics and information. In addition i f a /dev/random-style
randomness driver (which continually accumulates random data from the system) is
available, cryptlib wi l l use this is a source of randomness.

Prototype - Hardware & Software

The hardware platform used for the implementation consists of a PC with utilising

Microsoft NT Server. The details of the hardware specification are as follows:

Personal Computer: Omega - Cyrix PI66
Processor: Cyrix PI66 133MH2
RAM: 972801CB
Hard Drive: 2 GB
Network Card: SMC Ethernet Card
Operating system: Microsoft NT Server 4.1; Service Pack 3

349

Appendix D: Cryptlib & Prototype Infonnation

The platform was selected to accommodate the software packages (see below) that
were required to build the demonstration software. The software packages used to
implement the demonstration application were as follows:

Middleware: lONA's Orbix 2.2c, 2.3c, 3.02
Programming language: Microsoft Visual C-H- version 4.2, 5, 6
Cryptography software: cryptlib version 2. lb
Database Package Microsoft Access

lONA 's Orbix was selected because, when the research began, it provided the most

comprehensive set of tools and functions of any of the available middleware products

available for the Microsoft NT platform [i] . Initially, Orbix version 2.2c, with

Microsoft Visual C-H- Version 4.2 [i i] , was used but this was later upgraded to Orbix

version 2.3c using Microsoft Visual C-H- version 5 and, finally, Orbix version 3.02

and Microsoft Visual C-H- 6. Microsoft Foundation Classes (MFCs) [i i i] were

available in Visual C-H- and were used to in building the user-interface of the

demonstration software. The Microsoft Foundation Class Library (MFC) is an

application framework for programming in Microsoft Windows and provides much of

the code necessary for managing windows, menus, and dialog boxes; performing

basic input/output; storing collections of data objects; and so on.

cryptlib [iv] is a security toolkit which allows programmers to easily add encryption

and authentication security services to their software, cryptlib provides a transparent

and consistent interface to a number of widely-used security services and algorithms

(see Appendix D), which are accessed through a straightforward, standardized

interface with parameters such as the algorithm and key size being selectable by the

user.

350

Appendix D: Cryptlib & Prototype Infonnation

In relation to certificates, cryptlib implements fu l l X,509 support, including all
version 3 extensions. Since cryptlib is itself capable of processing certification
requests into certificates, it is also possible to use crypllib to provide fu l l CA services,
cryptlib can import and export certification requests, certificates in straight binary
format, and therefore covers the majority of certificate and certificate transport
formats used by a wide variety of software, such as web browsers and servers,
crypllib was chosen because it is freely available and provides an extensive set of
encryption and certificate management functions for the Win 32 platform.

Microsoft Access was the selected database package, used to store administrative

data, because it utilises the widely supported Open Database Connectivity (ODBC)

API, which provides the ability to write applications that are independent of any

particular database management system (DBMS). Therefore, it is representative of a

large section of the database worid.

References

[il Standish Group
"CORBA ORBs "
Siandish Group. February 1997.

[ii] I . Horton
"Beginning Visual C++ 4"
Wrox Press Ud.. 1996

[iii] M . Blaszczak
"Professional MFC with Visual C++ 5"
Wrox Press Ud.. 1997.

[iv] P. Gutmann
"Encryption Toolkit Version 2.1b"
P. Guuman, August 1998
hUD:/Av'ww.c'S.u»ckland.ac.n77--pgiit00l/crN'ptlib/

351

Appendix F: Letters

E - Papers

This appendix present the papers based on the research work.

1. ''Addressing security in an Integrated Service Engineering environment.
Proceedings of EUROMEDIA 96, London, UK, December 1996.

2. "CORBA Middleware Services: are they secure?"
Proceedings of EUROMEDIA 2001, London, UK, April 2001.

352

Appendix E: Papers

Addressing security in an Integrated Service Engineering

environment

E.M.Joyce, S.M.Fumell, P.L.Reynolds and P.W.Sanders

Network Research Group, School of Electronic, Communication and Electrical
Engineering,

University of Plymouth, Plymouth, United Kingdom.
Abstract

This paper examines the requirements for security in the emerging area of
Imegraied Service Engineering (ISE). The I S E field is currently characterised by
two altemaiive architectures, TINA and OSA, and the structure for a generic
service machine encompassing both approaches is discussed. A number of ISE-
specific security requirements are then identified and a conceptual solution is
proposed based upon the Comprehensive Integrated Security System (CISS)
architecture. This is shown to successfully map onto the suiicture of the I S E
service machine. The paper is based upon ongoing research In this area which
will lead to a practical implementation.

Introduction

Integrated Service Engineering (ISE) is an environment which handles the
development, deployment and provision of services on a telecommunications
infrastructure. This paper examines the issue from a security perspective, identifying
the requirements involved in realising a secure system.

The current state-of-the-art in the ISE field is characterised by two architectures,
namely TINA (Telecommunications Information Networking Architecture) [1] and
OSA (Open Service Architecture) [2,3]. In order to reap the benefits of both
approaches, this discussion wil l introduce a generic service machine structure that has
been produced by the merging of the two architectures. TTiis provides a platform
upon which security can be implemented.

As can be seen from figure 1, the service machine has a layered structure. The top
layer is the telecommunication applications level, which is divided into different
segments (or separations) - Management, Service and Resource. Management and
Service are taken from the TINA structure. Management deals with all entities
relating to the control of the managing systems and can be divided by the OSI
functional separations for systems management (i.e. FCAPS - fault, configuration,
accounting, performance and security).

Service deals with all aspects of the service environment. It can be divided into
Support and Session. Support is similar to the support services offered in OSA's
service machine (i.e. trading service). Session deals with an actual service instance

353

Appendix E: Papers

and how it is completed. It takes on the TINA structure by sub-dividing into Access,
Service and Communication. The service can then be viewed from the User or
Provider perspective.

The Resource segment is seen as an amalgamation of TINA's Element and Network
Element segments. It handles control of all resources at any level. Its Adaptors handle
the mapping of physical network Resources and logical network Elements, so that
they can be used by a service.

DTK DTK

KCCE

Applications

Management Service

Support
Savices
Broker,
etc.

Session

Resource

Support
Services

Adaptora;

D P E
N C C E

Hardware
Fig 1: Generic Service Machine Structure

Security requirements for ISE

This section identifies a number of security considerations with specific relevance to
the ISE environment. These are based upon issues identified by the OMG (Object
Management Group) in respect of security for distributed objects [4].

Authentication: It is essential that system entities (e.g. users, services and
components) can be identified and authenticated. Within ISE there are two possible
scenarios. Firstly, the entity is identified and authenticated locally and, therefore, the
validation can be trusted within the local domain. Alternatively, the entity may have
been identified and authenticated by another node within the distributed system. In
this case, the local security system still has to be able to validate the entity. A trusted
third party (TTP) may be used here to issue a proof of authenticity that the local
system can trust.

Authorisation and Access Control: Each identifiable entity should have an
associated set of privileges which wil l be used when it is looking to access some other
entity or resource. A large scale system wil l require the use of groups to cut down

354

Appendix E: Papers

administration overheads. However, it is sometimes desirable lo have finer
granularity, where privileges can be assigned to an individual entity to reduce the
amount of damage any one entity can do. Therefore, the security system wi l l have to
be able to cope with different levels of authorisation. Again two levels of operation
may be useful, one within a local system, and one using T I P certification to allow
access across different domains.

Audit: System users must be able to be held accountable for their actions. As such,
an audit trail should be maintained to record (selected) security-relevant events (e.g.
data access, object activation etc.) associated with specific user identities. The log
itself must be protected to prevent unauthorised modification.

Propagation of Attributes: An entity may invoke some other entity enabling the
latter to carry out operations on its behalf. In order to facilitate authorisation and
access control, the initial entity should be able to delegate its privileges. However, it
may wish to restrict these (e.g. to a specific time or a certain access level, such as read
instead of read/update) and different domain security policies may pose some
difficulty. Firstly trust wil l have be established between two domains. Secondly, the
attributes from one domain may need to be mapped to authorised attributes in the
other domain to provide validation for access control and auditing.

Secure Communications: Distributed communications require protection to
preserve confidentiality, as well as to guard against corruption, redirection or other
forms of attack. It is, therefore, necessary to guarantee secure end-to-end
communications encompassing integrity, confidentiality and non-repudiation. A
facility should also be available to specify the quality of protection. This would allow
an entity to specify whether a whole session, or a particular message, should be
protected and to what level.

Administration: Within the security system, identifiable entities need to be
registered. The identities, their related privileges and other information (such as
security groups/roles, access control lists) need to be maintained. Administrative
operations should be restricted to valid entities, e.g. security administrators or parent
entities who may register their child entity with the security system. It should be
possible to split operations so that responsibility can be divided between different
entities. This division could be either by function (where, say, a security auditor
would be different from a security administrator) or by role (where service providers
may have different functions available than do network providers).

Inter-domain Operations: ISE is an open and distributed environment. It must
provide for international country boundaries or, more importantly, interactions
between different administrative domains, as has been highlighted in the previous
sections. This means that security policies and administration within a local domain
need to be preserved, but this has to co-exist with the preservation of inter-domain
security. RM-ODP proposes the use of traders and TTPs for this purpose [5] . This
allows federation to take place between domains, via the trader, while trust is
guaranteed by the TTP.

355

Appendix E: Papers

The Comprehensive Integrated Security System

Members of the research team have previously been involved in work relating to the
design and development of the Comprehensive Integrated Security System (CISS)
architecture - which facilitates a layered approach to security in an open distributed
environments [6]. Given this legacy knowledge, it was deemed appropriate to
consider CISS as an example platform upon which to demonstrate security in ISE.
However, before examining this applicability in any detail, it is first necessary to
provide some background information about CISS itself. The architecture supports
local domain security, inter-domain security and incorporates modularity so that it can
operate as an add-on service. It has five distinct layers, as depicted in figure 2 and
described below.

Uvel 5

Uvel 4

Uvel 3

Uvel 2

Uvel i

Management

/^^Afients & Protocois^^^ ,

• •

Mechanisms

Math Modules

Fig 2 : CISS Layered Architecture

Mathematical Modules are used to implement Security Mechanisms. They are the
lowest level, as they cannot be functionally broken down into lower sub-components.
Several modules can be combined to implement a security mechanism.

Security Mechaaisms are used to implement Security Services. Examples of
mechanisms are simple password or digital signatures for authentication; encryption
for data confidentiality.

Security Services are used by Security Agents. By combining different mechanisms,
security services of varying efficiency and strength can be created to comply with a
security policy.

Security Agents and Protocols provide the necessary interaction between CISS
administration and security services. There are ten in total, as described in table i
below.

356

Appendix E: Papers

Security Management deals with the support and control of secure operations. This
includes:

• management and control of data (e.g. mechanism parameters);

• distribution of data (e.g. keys and security policy information);

• monitoring, logging and recovery (e.g. to ensure a stable security

state);

• inter-domain management (e.g. exchange of security information to

allow inter-domain communications).

CISS Agent Function
User Agent (UA) Interactions between operational/management users and CISS.
Security
Administrator Agent
(SAA)

Interaction with network management personnel and the
security administrator, and agent for security policy controls
by management.

Security Services
Agent (SSA)

Provision, co-ordination and management of security services
-the core of CISS.

Security Mechanisms
Agent (SMA)

Provision, co-ordination and management of security
mechanisms.

SMIB Agent
(SMIBA)

Allows access to the SMIB, and performs all related
operations on behalf of other CISS components.

Agent for Operational
Environment
Interactions (OPENA)

Interactions with the operational environment, primarily in the
local environment.

Association Agent
(AA)

Establishes and maintains security in the overall peer-entity
associations.

Inter-Domain
Communications
Agent (IDCA)

Responsible for secure communications between
heterogeneous security domains.

Monitoring Agent
(MA)

Monitoring of all security relevant events, access to the
security log and management of operations upon it.

Recovery Agent (RA) Responsible for security violation detection and error
recovery.

Table 1 : CISS Agents

Interactions with users and applications occurs via Application I*rogram Interfaces
(APIs).

357

Appendix E: Papers

Mapping CISS to the ISE architecture

It is now necessary to place a security architecture onto the generic service machine.
It is not only the machine, but the security for the ISE environment that must also be
considered. Therefore, the chosen solution for this problem is the apphcation of the
CISS architecture. The reasons for this are outlined in table 2 below.

Reason Detail
Open and
distributed

CISS provides for an open and distributed environment which
is a necessary requirement for ISE. It allows for local and
inter-domain communications.

Not service or
mechanism specific

The architecture allows selection from multiple mechanisms
and services in order to enforce security, enabling it to adapt to
local security policies. These mechanisms allow the important
ISE services of authentication and access control to be
enforced.

Modular The use of APIs and modular structure allows CISS to be
easily "added-on" to any system.

Structure CISS provides separate security service and management
structures. This division is seen as important in ODP
environments.

Meets general
requirements

CISS can provide for general security requirements in
distributed heterogeneous^systems, e.g. scalability,
consistency, interoperability, availability, regulatory
requirements, usability, performance.

Meets ISE security
requirements

CISS can provide the ISE-specific security requirements via
the following agents :

Identification & Authentication: SMIBA, SSA,SMA,UA
Authorisation & Access Control: SMIBA, SSA,SMA,UA
Propagation of Attributes: SMIBA, UA
Secure Communication: OPENA, AA, IDCA
Administration: SAA, SMIBA
Inter-domain Operations: IDCA

Table 2 : CISS in I S E

The CISS functional structure is considered to be compatible with that of the service
machine. This mapping is shown in figure 3 and briefly explained in table 3.

358

Appendix E: Papers

Fig. 3 : Functional Mapping between CISS and service machine

Service
Machine

CISS Detail

Management Layer I : Management There is a direct mapping between the
Management layers in both CISS and the
Service Machine. Both provide the
support and control functionality
necessary.

Service Layer 2: Agents and
Protocols;
Layer 3: Services

The service machine Service segment
wil l map onto layers 2 and 3 in CISS as
both are dealing with services, i.e.
entities which have the ability to
complete operations and are not just
components). These provide the
functionality of the service machine or
security system.

Resource Layer 4: Mechanisms;
Layer 5: Math. Modules

The Resource segment in the service
machine maps onto layers 4 and 5. In
both cases, these are the lower levels of
the architectures. They are the
components which are combined to
produce the services required.

Table 3 : Functional mapping between the service machine and CISS

CISS Agents on a Service Machine

Security agents provide the necessary interaction between CISS administration and
security services. They are the core of the security architecture. It is therefore

359

Appendix E: Papers

necessary to see how they map onto the service machine structure. Figure 4 shows
the suggested placement of each agent, with justification provided in table 4.

Applications

Management
o
o
3

Service

5.

f^B^i Support
Services

Broker,
etc.

Session
1 ^

Resource
Support
Services

DPE
NCCE

Hardware
Fig. 4 : CISS agents in a service machine

Adaptors

C/S5 Agent Service
Machine

Area

Detail

User Agent (UA) Access The TINA model defines the Access area as a
users ability to have flexible access to services
[7]. It also defines a user agent which represents
and acts on behalf of the user. It receives
requests from users to establish or join service
sessions. The CISS UA allows interactions
between users and CISS. Therefore, it should be
placed in the Access area.

Security
Administrator
Agent (SAA)

Security The Security area is responsible for the support
and control of security services. However, this
has not been fully defined in either OSA or
TINA. The SAA provides interaction between
network management personnel or the security
administrator, and agents for security policy
controls by management. Therefore, the SAA
should be placed in the Security areas to allow
the security administrator access.

Security Services
Agent (SSA)

Support
Services
(Service
Segment)

The Support Services area of the service
segment, wi l l provide any non-core services, i.e.
those not required to actually provide the service
session, but which can support it. The SSA deals
with the provision, co-ordination and
management of security services. Therefore, it
wil l be involved in providing security when a
service session is established or joined.

360

Appendix E: Papers

CISS Agent Service
Machine

Area

Detail

Security
Mechanisms
Agent (SMA)

Support
Services
(Resource
Segment)

The Support Services area of the resource
segment wi l l provide any supporting services
required for resources, either software or
hardware. The SMA deals with the provision, co
ordination and management of security
mechanisms. As security mechanisms are viewed
as resources, the SMA should be located in the
Support Services area of the resource segment.

SMIB Agent
(SMIBA)

Security As previously stated, the Security area provides
for the support and control of security functions
and includes all security relevant data. In CISS,
the SMIB is a central repository where all such
security relevant data is maintained. The
SMIBA allows access to the SMIB and performs
all operations on behalf of other CISS
components. Therefore, the SMIBA should be
located in the Security area.

Operational
Environment
Interactions
Agent (OPENA)

Connection The Connections area handles the
communications connections associated with a
service session, as described in TINA. The
OPENA interacts with the operational
environment to allow access to resources in a
secure way. Therefore, the OPENA should be
placed in the Connection area, to allow secure
communications within the local environment.

Association
Agent (AA)

Connection The AA establishes and maintains security in the
overall peer-entity associations, i.e. it provides
communication with other applications in the
same domain. Therefore, it too should be placed
in the Connection area to provide secure
communications within the current security
domain.

Inter-Domain
Communications
Agent (IDCA)

Connection The IDCA is responsible for secure
communications between heterogeneous security
domains, i.e. inter-domain communications. As
the Connection agent deals with all
communications, the IDCA should be placed
there.

Monitoring Agent
(MA)

Performance
or Security

The Performance area is responsible for
monitoring and managing system performance.
The M A monitors all security relevant events,
provides access to the security log and manages

361

Appendix E: Papers

CISS Agent Service
Machine

Area

Detail

all operations on it. Therefore, aspects of the
M A should be placed in the Performance area.
However, the Security area is another possible
location for this agent, as monitoring can also be
considered a function of security (e.g. a service
such as user or session supervision).

Recovery Agent
(RA)

Fault The Fault area is responsible for detecting ertors
and then managing the corresponding recovery
mechanisms. The RA is responsible for all
security violation detection and CISS error
recovery. Therefore, the RA should be placed in
the Fault area.

Table 4 : CISS Agents in a service machine

A Working Model Example

The following example demonstrates how a security model should operate with a
working service. The service is broken up into basic steps that a user would take.
Each step is then subdivided into the activities executed by the service. The security
services required are then listed under each of the appropriate service activities and
related back to the requirements listed in section 2. The service example described is a
user engaging in a document editing session with another party and is based upon a
modified version of a TINA service example that is described in [7].

1. User A selects a terminal to give him access to the network.

2. User A logs on to the network. This can be done using one of several
mechanisms, but for this example an identifier and password are used (a
smartcard would be another possible mechanism),

(a) The ID and password are taken by the security service to authenticate the user.
An information base wil l be referenced to check that the ID exists and that the

password is valid. Trading may be required i f the ID cannot be found
locally, as wil l a TTP i f the ID is in a different security policy domain.

User A's privileges wi l l be returned to a local information base i f they are not
held locally. This wi l l help performance.

Relates to: Identification and Authentication, Administration (to maintain the
information base), Inter-domain (access user information in
another domain, i f necessary)

(b) User A's user agent is now associated with a terminal agent.
User A's privileges wil l be checked to ensure he is permitted to use the

lenninal he is currently logging onto. Once validated the user agent and
terminal agent are associated.

User A*s privilege's are propagated to his user agent.

362

Appendix E: Papers

The log-on is logged by the security service.
Relates to: Administration, Authorisation and Access Control, Propagation of

Attributes, Audit

3, User A is presented with a menu of capabilities at his terminal,
(a) The security service checks User A's privileges to see what capabilities he can

access.
The security service checks User A's privileges. A list of valid options are

created.
Security service may need to validate that the terminal can access these

capabilities also, by validating the terminal agents privileges.
Relates to: Administration, Authorisation and Access Control

(b) The security service sends a list of the valid options to the terminal agent.
(c) Terminal agent presents a menu on the terminal.

4, User A selects an option for document editing.
(a) A request is passed to the user agent to establish a document editing service

session.
(b) The user agent creates, via the factory in the DPE, a service session manager

(SSM).
The factory wil l be checked by the security service to ensure it has the

capabilities to create such a service, and that it can do so for the specified
user. User A. Again an information base, holding the factory capabilities
wil l need to be tested and checked against User A*s privileges.

Relates to: Administration, Authorisation and Access Control
(c) User A is joined to the session by creating a user agent

The event is logged.
Relates to: Audit

5. User A selects a document to be opened.
(a) The user agent sends a request to open a document to the SSM.

The security service checks that User A has access to the specified document
and with the correct access type (e.g. read/write).

The security service locates the document, a trader may be necessary, and
checks that document can be accessed.

The security service notifies the SSM that the request has been validated.
Relates to: Administration, Authorisation and Access Control

(b) The SSM opens the document in the session, by notifying the user agent and
connecting the document resource agent.

The event is logged.
Relates to: Audit

6. User A requests that User B is added to the session,
(a) User agent sends the request to the SSM.
(b) SSM locates User B using the specified ID. A trader and TTP may be required to

locate User B.
The security service locates User B and identifies and authenticates him.

363

Appendix E: Papers

The security service accesses User B's privileges. This may be in a remote
information base via a remote security service.

The security service then checks that User A and User B can join in a session
together.

Once validated, security service notifies the SSM.
Relates to: Identification and Authentication, Administration, Inter-domain,

Authorisation and Access Control.
(c) User B's user agent alerts the appropriate terminal agent of the incoming request.
(d) User B's terminal agent then alters the terminal by presenting a window on the

terminal.
(e) User B accepts the request.
(f) The response is sent to the SSM.

User B is the validated to ensure he has access to the opened document.
Relates to: Authorisation and Access Control.

(g) SSM creates a user session for User B.
User B's privileges are propagated to his user agent.
The event is logged.
Relates to: Propagation of Attributes, Audit

7. User A requests SSM to set-up a video conference connection with User B,
(a) User A's user agent requests SSM to establish video conference connection with

User B.
(b) SSM requests the connection service manager (CSM) to establish a stream

between the end-user applications on the two terminals.
The security services wil l validate that both User A and User B, and their

terminals, have the appropriate capabilities.
The security service wil l validate that the CSM has access to the appropriate

resources to establish the stream.
Relates to: Authorisation and Access Control

(c) CSM establishes a stream between the users and sends a response to the SSM.
The stream needs to be secured.
Relates to: Secure Communications

(d) The SSM sends a response to User A.
The event is logged.
Relates to: Audit

This example shows how a security model would operate i f all validations were
successful. However, i f one failed, then the request would be denied, the appropriate
response sent to the requesting agent and the event then logged. Depending on the
severity of the violation, other measures may have to be taken, such as the security
administrator being alerted. However, the precise actions wil l depend on the domain
security policy.

Conclusion

Integrated Service Engineering is a relatively new term which has only come to
prominence in the last few years. It considers the problem of service development,

364

Appendix E: Papers

deployment and provision in the heterogeneous telecommunications environment
today. Security, on the other hand, is a much older school, with well developed
mechanisms and theories. However these are continuously scrutinised and modified
to deal with the new problems posed in a computerised/technological world. The
paper has considered how they may be applied to the specific issue of ISE.

The CISS architecture is shown to be a complete security solution for distributed
networks. However, it also adheres to the requirements specified for ISE in supporting
local security, inter-domain security and providing a modular service that can be
integrated into any system compatible with the ISE architecture. Further practical
work is ongoing in this area and wi l l lead to the development of a demonstrator
system in due course.

References

[1] Barr, W.J.; Boyd, T. and Inoue, Y. 1993. "The TINA Initiative", IEEE
Communications Magazine, March 1993.

[2] Prevedourou, D.; Stamoulis, G.D.; Tonnby, I . and An, T. 1994. "Providing
Services in a World of the IBC Resources: An Architectural Approach", in
Proceedings of the IS&N '94 conference (Aachen, Germany, September 1994).

[3] Bruno, G.; Lucidi, P.; Insulander, J. and Larsson, U. 1994. "A Service-Driven
Vision of Integgrated Broadband Communications: the OSA Approach", in
Proceedings of the IS&N '94 conference (Aachen, Germany, September 1994).

[4] OMG. 1994. OMG White Paper on Security. Issue 1.0. Object Management
Group Security Working Group. B. Fairthome (Ed.). April 1994.

[5] ISO. 1993. Working document on topic 9.1 - ODP Trader. ISO/IEC JTCl/SC
2IAVG7N807.

[6] S. Muftic, S.; Patel, A.; Sanders, P.; Colon, R.; Heijnsdijk, J. and Pulkkinen,U.
1994. Security Architecture for Open Distributed Systems. J. Wiley & Sons.

[7] TINA-C. 1995. Overall Concepts and Principles of TINA. Version I.O Publicly
Released, http://www.tinac.com, February 1995.

365

Appendix E: Papers

CORBA Middleware services - are they secure?

E.M.Joyce, S.M.Fumell, P.L.Reynolds and P.W.Sanders

Network Research Group, School of Electronic, Communication and Elecu-ical Engineering,
University of Plymouth, Plymouth, United Kingdom.

1. Introduction
Distributed object systems are used everywhere - the Internet, telecommunications,
banking... the list goes on. But securing such systems is not a simple task. For
instance consider one of today's middleware choices, the Object Management
Group's (0N4G) Common Object Request Broker Architecture (CORBA) is such a
technology. Although there is a security solution, this paper wil l show that it has not
addressed all the possible security threats.
In CORBA, a client is an entity that wishes to invoke an operation on a target object
via the Object Request Broker (ORB). The object implementation comprises the code
and data that realise the target object's behaviour. The ORB receives a request and
then locates an appropriate object implementation, and transmits the request data and
results between the client and the target object. There is also a set of supporting
services that are used to extend the ORB functionality, and without which a
standardised distributed solution would not be possible. It is the security of these
services that this paper wil l focus on.
According to the International Standards Organization (ISO), security should be
provided in a modular format [1]. This architecture divides system management into ,
functional units, FCAPS - the 'S' being the security module. A system should be able
to function independent of the security service, and when the security module is
introduced the same system should now operate in a functionally similar but secured
fashion. This type of thinking is practical in a centralized system, such as a
mainframe, where the Trusted Computing Base (TCB) [2] is contained within a single
system. The security service can monitor all requests and provide the required
security functionality. However, distributed systems are more complex. Distributed
objects introduce complications and the TCB is no longer contained in a single system
and may need to operate across multiple systems and security domains. This results in
an extended set of security requirement for a distributed processing environment
(DPE) such as CORBA, and therefore the modular solution may be inadequate.

7,1 Security Issues for Supporting Services in a DPE
CORBA currently consists of an ORB and 15 CORBAservices [3]. Each services is
implemented by a number of object, the interfaces of which are defined in Interface
Definition Language (IDL). Currently security is implemented by applying the
security rules to these service objects. This means that access can be granted to a
client, when requesting use of a CORBAservice object, i f the client possesses the
appropriate privilege attributes. However, even looking at an overview of the services
some security issues become apparent. They are outlined below:

• Persistence State Service (PSS): The PSS stores components persistently on
a variety of storage servers. Although access to the persistent storage objects
are controlled, the store data is not secured - the security service has no

366

Appendix E: Papers

control over this; it would be an implementation level detail, i.e. i f the data
was stored in a database, the implementer would enable database security.

• Naming Service: The Naming Service (NS) locates components by name.
Once an object can access the NS, it can access all names in the service, as
there are no security restrictions. Also NSs can be federated, i.e. two naming
services are linked together to operate like a single service. I f the federation
exists across different security domains the client is unaware that he is
crossing a domain boundary and security controls could be by-passed

• Event Service: This service allows "consumers" to register/unregister interest
in specific events. The "suppliers" then generate information about this event
and send it to the consumers via an event channel. It is a basic
publish/subscribe or notification service. Security has not been defined for the
event channels, i.e. access control is not available for specific events on a
single channel, and there is no indication whether the channel requires
encryption. Also the event service demands a certain amount of Quality of
Service (QoS), i.e. guaranteed delivery, persistence of event data in the event
of an event channel failure and use of logging facility. I f the event channel
was subject to encryption then the supporting QoS mechanisms, would also
need to ensure security, e.g. the persisted data would have to be protected.

• Query Service: This allows a client to use query operations for attributes
associated with objects, in much the same way SQL can be used to query a
database of records by querying the fields in the records. It provides for
asynchronous query, so that the query can be issued and the client does not
have to block while waiting for a response. No security precautions have been
added and so there is no way to identify what attributes a client can perform
queries on, e.g. does the client have the security clearance to query a payroll
attribute on an employee database. Another problem is Denial of Service, e.g.
a rogue client can flood the query service with too many asynchronous or long
running synchronous queries thereby causing the services to halt or crash.

• Trader Service: Similar in function to the NS, the Trader allows an importer
to locate an object, published by an exporter, but this time is does so by
identifying a set of required properties, e.g. like the Yellow Pages. A security
problem could arise i f some of the services offered by the trader require higher
security clearance than others; there is no way of controlling access to
particular offers in a single Trader.

Obviously there are security issues that exist in CORBAservices that are not handled
currently by CORBA Security Service (CORBASec). The above descriptions are just
high-level overviews of such problems, but the problem demands further detailed
investigation. Therefore a single service was selected and examined in detail.

1.2 Selecting a CORBAservice
A Trader facilitates the dynamic offering and discovery of service instances of
particular types within a distributed environment. As such, it allows clients to
advertise their available services and to also match their needs against other
advertised services.

367

Appendix E: Papers

Traders have an important role to play in future Internet and telecommunications
networks. It can perform its basic 'yellow pages' function in the world of e-commerce
by providing access to internet services, e.g. a financial Trader may provide lists of
financial services that a user may wish to buy over the Internet, everything from car
loans to share brokerage services. The user can decide which Trader to advertise its
services in, and which Trader to import services from. The Traders can be structured
to provide a greater degree of choice, e.g. a financial services Trader, may be linked
to a car loans Trader and a stock brokerage Trader (and many other such traders) as
opposed to having the services registered directly in its own registry.
Resnick [4] suggested that the Trader could be used to standardise World Wide Web
(WWW) facilities. There are a dizzying array of choice of search engines, web
crawlers and white pages such as Yahoo, HotBot, and Alta Vista. However, these
facilities, especially the search engines, lack a programmatic interface and differ not
just in implementation but also in how they are accessed, how predicates are formed
and how Uniform Resource Lx)cators (URLs) are registered. Therefore a synergy
between the CORBA Trader and the Internet facilities would offer a solution. Search
engines would benefit from a standardised programmatic API, represented in CORBA
IDL.

It is also important to remember that CORBA is not just for Internet use. It is
designed to work on any heterogeneous distributed object environment. Therefore
some other possible uses of the Trader have been suggested by the Distributed
Systems Technology Centre (DSTC) research group in University of Canberra,
Australia [5]:

• real-time trading, e.g. dynamic configuration of services within
telecommunications switches (combining bandwidth from local and trunk
carriers to provide an end-to-end service);

• large scale trading, e.g. using trading to access network elements from
network management applications for a national telephone system.

2. The need for Security
After the publicity and damage caused by viruses and such as the "Love Bug" [6] and
numerous hacker attacks, business are taking security seriously. Businesses have
suffered huge losses as a result of cybercrime. On 8 December 2000, a hacker stole
55,000 credit card numbers from CreditCard.cbm, and when the company refused to
pay any money for extortion, the hacker posted the numbers on a web-site [7],
According to the 5̂*̂ annual "Computer Crime and Security Survey", conducted by the
Computer Security Institute (CSI) and the US Federal Bureau of Investigation, such
cyber-crimes are widespread, diverse in nature and on the increase [8]. 90% of survey
respondents reported computer security breaches within the last year; 74% suffered
financial loss as a result of security breaches and of the 42% (i.e. 273 respondents)
who were willing to quantify those losses, the financial lose was estimated to be
$265,589,940.
Security for any distributed system uses five basic and partially overiapping services
as specified by the International Standards Organisation (ISO):

• Authentication: The security service should be able to guarantee that the
user/resource is actually who/what it claims to be. One type of threat is known

368

Appendix E: Papers

as a masquerade; that is when an entity successfully pretends to be some
other legal entity and thereby gains illegal access to a resource.
Access control: Protects resources from unauthorised use. It can be used on
various assets, e.g., communications, data. It provides for the various types of
access to a resource, e.g. read, write, update, or execution;
Conndentiality: Confidentiality means being able to guarantee the privacy
and secrecy of a resource such as a data file containing personnel details.
Apart from unauthorised access to a resource, the loss of anonymity or the
misappropriation of messages or data records can be considered breaches o f
security;
Integrity: Integrity of resources ensures that they are always available and
correct, no matter what corruption attempts have been made. Therefore any
integrity services must guard against any threats involving illegal
asset/resource modification;
Non-repudiation: Repudiation is the denial of an action by an entity, e.g. a
user may deny sending or receiving a message. Non-repudiation forces an
entity to own up to its participation in some action. Denial of origin,
transmission, receipt or participation are all repudiation threats.

By applying these concepts, a system can be made secure. However to implement
security, these concepts must be realised. Security mechanisms, or methodologies,
must be used to actually implement these security services, e.g. cryptography, digital
signatures, access control lists. The ISO also defines a security policy as a set of
criteria for provision of security services. It defines what is and what is not permitted
in the area of security during general operation of a secured system. It must be
implemented by taking the appropriate security measures. However, no security
measures, no matter how ingenious they may be, wi l l be effective unless the user
understands what needs to be protected and can determine what mechanisms are used,
i.e. what the policy is. Security needs a complete and usable administration system
that wi l l allow users to maintain and operate security on a day-to-day basis.
It is clear that the intense interest in security in web-based [9] and other distributed
systems security [10,11] means that Traders wi l l have to incorporate security i f they
are to be included in this future. Even though Traders can make use of CORBASec to
counteract threats, there are still some security holes. These Trader-Security issues are
addressed below, after describing how CORBASec and the Trader operate.

2,1 CORBA Security Service
CORBASec provides a framework for distributed object security. There are two levels
of security. Level 1 provides protection for applications that are "unaware" of
security, by transparently calling security functions on object invocation. Level 2
security provides more facilities and allows applications themselves to control the
security provided, i.e. security-aware applications.
CORBASec currently supports certain levels of authentication, access control,
confidentiality, integrity and non-repudiation. Another feature of CORBA security is

369

Appendix E: Papers

the use of credential delegation between objects. It allows credentials to be
propagated along an object request chain.
Security is implemented by a number of objects, as shown in figure I below. Apart
from the specific security interfaces, CORBA makes use of two objects. Current and
Credentials. Current, a pseudo-object initially used by the transaction service to
propagate transaction context, it is now adopted by security to propagate the security
context. It does so by holding a reference to Credentials. Once a user is authenticated,
a Credentials object is created. It holds information such as roles, privileges and an
authenticated ID.

(>b|ect Retctcnce
I .1 r ' j i I

(lifiii

request

OHM S c i i i r H \

^ t t l i t I

l l l \ I M - H t i (
111 t

I l \ M l (I I I . I I

\ ;« l l l l

i i ' i i r i l x I n k c i i s a l a s s u i i : i l loi i M't

Figure 1 : CORBA Security Service

3. Traders
The OMG / CORBA Trader [1 2 | provides the ability to match a service request,
against a list of supported services provided by potential servers, as illustrated in
figure 2. The exporter wi l l advertise its available services, by notifying the Trader.
The Trader keeps a Registry of such advertisements. An importer makes a request on
the Trader for a particular service, specifying any conditions that need to be met. The
Trader checks its RegisOy to find a matching service type, with corresponding
conditions. The Trader then notifies the importer of the exporter and the service.

370

Appendix E: Papers

Import^/ \Export

Importer ^) ^^1^ ^ Exporter
Inlcraction

Figure 2 : Trader Interactions

I f a Trader cannot find a matching service, it wi l l then pass the request onto another
linked (or federated) Trader. The linked Trader can then check its Registry to see i f it
can match the original request. Therefore trading allows an importer access to
multiple Trading domains. The second Trading data store is the Service Type
Repository. It stores, retrieves, manages and names service types" that are used in the
Registry. Importers^ Exporters and the Traders are all part of the Trading Community,
i.e. all objects that interact to import/export services.
Each Trader also has Attributes. These define a Trader's characteristics, e.g. policies
for scoping the extent of a search.

4. Security issues related to Trading & Traders
Traders, in a distributed environment like the Internet, are open to attack, just like any
part of a distributed system. The following outlines the areas most vulnerable to
security breaches and the security services that must be used to counteract them.

4.1 Authentication
Traders receive requests for imports/exports from members of the trading community.
Like any system resource, they are susceptible to masquerade. Authentication is the
service required to deal with this threat. It is a two-way process; traders, as well as
importers and exporters should be identifiable and authenticatable. One possible way
of achieving this is the use of certification by Trusted Third Parties (TTP). The ISO's
X.509 [13], an authentication framework using public-key certificates, could be used.
It is a hierarchy of Certification Authorities (CA) which issue signed certificates^.
Authentication is accomplished through the presentation of a certificate signed by a
trusted CA.

4.2 Access Control

^ Service Types are associated with a traded service and are used lo describe the service. They comprise
an interface type and zero or more named property types 17].
^ A Signed Public-Key Certificate is someone's public key, signed by a trustworthy party. X.509
specifies a structure for pubic-key certificates that includes the users unique name, a version number,
algorithm identifier, issuer's name, validity period, etc.

371

Appendix E: Papers

Access Control needs to be handled at two levels. Firstly, access control of the Trader
itself should be considered, i.e. who has access to the Trader. Secondly, access control
of service offers must be dealt with, i.e. which service offers an importer can see.

Unauthorised Trader Access
Traders should have security attributes. Two trading community objects, e.g. Trader
and exporter, have access to the security domain Access Control Manager - in
CORBA this would be the AccessDecision object. Therefore, AccessDecision can
make decisions relating to who can have access to which Trader, using the domain's
access control mechanisms and working in accordance with the access control
policies.

Unauthorised Service Offer Access
Even i f an importer has access to a Trader it may not have access to all the service
offers the Trader holds. Some of the service offers may be of a higher security
classification. Therefore, a Trader wi l l have to hold an associated security attribute
with each service offer held in the Registry.

Current Access Control Limitations
Although access control of the Trader can currently be handled by CORBA's
AccessDecision object, the access control of the service offers within the Registry
cannot. It would require the storage of a security attribute in the Registry itself. The
reason for this is that such an attribute would be used to sort and make selections
when providing service offer lists to importers. This problem is also linked to
Delegation, as the security attribute would have to be set and would probably be
delegated from the exporter, e.g. use the exporter's security level.

4.2 Integrity and Confidentiality
Integrity and confidentiality of data, stored or in transit, must be guaranteed in a
distributed system; this has to include trading-related data.

Stored Data
Details of service offers, including an object reference, are stored in the Registry.
Therefore it must be protected, as an intruder may try to gain unauthorised access to a
service, by gaining illegal access to the object. Similariy details of the Service Type
held in the Repository, should be protected to ensure that intruders do not have
knowledge of "how'* to use the service type, i.e. interface details, parameters, etc.
It is not wise to assume that the Trader's backend data, i.e. the data stored in the
Registry and Repository, is hidden behind object interfaces and, therefore, is not as
vulnerable to attack as object references that are exported through the interface.
Intruders do not always use legitimate access mechanisms and, therefore, the
'backdoor' entry must be considered. Such data wil l usually be held in persistent
storage, such as a database, or flat file. Therefore the Trader, i f operating as a
security-aware service, should be able to guarantee that the data is secure, even when
it is in storage. Cryptographic mechanisms are used to ensure that the confidentiality
and integrity of the data is preserved.

372

Appendix E: Papers

However, these types of solutions are product dependent and so the only way to
ensure a truly generic solution would be to use the Persistent State Service** (PSS) in a
secure fashion.

Inter-Community Communications
Since a Trader is operating in a distributed environment, this provides an intruder with
ample access to intercept any communications between members of a trading
community. From such interceptions, one may be able to re-constnici
Registry/Repository information. In addition, replay attacks have to be considered.
Al l communications between trading community members should be encrypted to
ensure the confidentiality of any intercepted messages. Another form of
communications security is a digital signature. The Digital Signature Standard (DSS)
[14] uses a public key to verify to a recipient the integrity of data and the identity of
the sender of the data. The DSS can also be used by a third party to ascertain the
authenticity of a signature and its associated data. Finally replay attacks can be dealt
with by using sequencing data.
Use could again be made here of security-aware CORBAservices. In this case it
would also be necessary for the Query service^ to be security-aware. This would allow
the Trader or other trading community members to interrogate the
Registry/Repository, in a secure manner.

Current Integrity and Confidentiality Limitations
Securing trader data, such as that held in the Registry and Repository, needs to be
addressed. Currently these databases are not encrypted. Also trading community
communications should be secured. The level of security would depend on the objects
involved and their security level, as well as the level of the service offers being
exported/imported.

4.3 Non-Repudiation
The trading community is made up of distributed objects, which are less predictable,
due to their flexible and granular nature. There are two problems. Firstly, i f the
intruder is an authorised user, or is successfully masquerading as an authorised user,
how can their actions be discovered? For example, an intruder can masquerade as an
importer, and query Traders to find useful service offers. The processing of a
monitoring database may help, by providing clues to an intruder's activities.
Secondly, i f adhoc interactions are taking place, how can it be proven that a specific
interaction took place, i f one party wishes to deny the event, i.e. accountability?
Irrefutable evidence is required, i.e. a non-repudiation service.

Monitoring
Al l security related events should be monitored. These events are defined by the
security policy. Apart from notifying an administrator, via an alarm, that an illegal
action has be taken, monitoring could also provide clues to a previously unknown

* The Persistent State Service provides a single interface for storing components persistently on a
variety of storage servers - including object databases, relational databases and flat files.
* The Query service provides query operations for objects. It is a superset of SQL.

373

Appetidix E: Papers

intruder, e.g. an importer making multiple unauthorised import requests on several
Traders. However this requires data filtering to find trends that can be used to raise a
system administrator's suspicions, i.e. intrusion detection.

Irrefutable Evidence
Non-repudiation is used to provide irrefutable evidence that certain events took place.
For example, digital signatures can be used with audit logs to record events. Just as
other system resources are subject to a non-repudiation policy, so too are all the
trading community members.

Current Non-Repudiation Limitations
There are two issues relating to non-repudiation. Firstly, the current CORBASec non-
repudiation service is not complete. It deals with evidence generation and verification,
but does not address delivery and evidence storage. Secondly, non-repudiation is
considered to be an optional service. It is available, but only to security-aware
applications. It should be made available to security-unaware applications.

5< Modifications required for Security-Aware Traders
Both the Trader and the Security Service require modification i f they are to provide a
Security-Aware Trader.

5.7 Security-Aware Trader Attributes
Attributes are already used in the Trader specification to provide a framework for
describing the behaviour of any OMG Trader. It is proposed that Security Attributes
be added for use by the Trader. They wil l control the security behaviour of a Trader,
by specifying which security services the Trader uses, i.e. just how security-aware the
Trader is. The suggested security attributes are defined in Table 1 below.

Security Policy-Attributes Flags use of following function
Security-aware Al l other policies are checked as the Trader is using

security (at some level)
Access_controLtrader Includes Trader in ACL and uses authentication with

trading community members, etc.
Access_control
_service_offers

Provides access control on the service offers listed in a
query

Encrypt_siores Encrypts Registry and Repository
Encrypl_comms Encrypts communications
Integrity_check_stores Integrity checks Registry and Repository
Integrity_check_comms Integrity checks conmunications
NR trade Non-repudiation of Trading related events
Audit trade Audit Trading related events

Table 1 : Trader Security Attributes

For example, a Trader could be a Public Trader. This means that everyone would
have access to it and it would have no security applied, i.e. the Security-aware
attribute would be set to off , indicating that all other attributes were also turned off.

374

Appendix E: Papers

Alternatively a Trader may be a Secured Trader. It would be Security-aware and
have all other attributes turned on, i.e. it would use all the available security services.
Another option is to make a Trader a Security-Aware Trader. In this case the
security-aware attribute would be on, and some of the other attributes would be on,
e.g.. Encrypt_stores and lnterity_check_stores, but not NRjrader or Aud\t_trader,
thereby providing a specified level of security.

5.2 Security-Aware Trader Data Structures
The two Trader data structures are the Repository and the Registry. The Repository
should not have to be modified, as it wi l l hold the security attributes in the same
manner as it currently holds any other properties.
The Registry wi l l not have to be modified either. It holds details of the instances of
service offers. This includes the service type, an object reference and a set of
properties held as name-value pairs. A new security property that defines the security
level of a service offer wil l now be held in the Registry so that access controls can be
applied to the offer. The exporter wi l l specify the security level.

5.3 Security-Aware Trader Interfaces
There are eight interfaces defined for a CORBA Trader. However only one of these
interfaces should have to be modified, namely the Admin interface. The Admin
interface allows the administrator to configure the Trader, by using Set methods on
the Trader's Attributes, These methods wil l now have to deal with the additional
security attributes specified in table I above, to control the Trader's security
behaviour. I f Security-aware is set to on, then at least one other security attribute must
be set to on also; otherwise an error wi l l be relumed on the Se/ method. I f Security-
aware is set to off , then all other security attributes must also be set to off; otherwise
an error wi l l be returned on the method.

375

Appendix E: Papers

5.4 An Enhanced CORBA Security Sen/ice \
The CORBA security service is itself incomplete. There are certain facilities missing
or incomplete. Firstly non-repudiation is only supports evidence generation and
verification. It does not deal with delivery, storage or adjudication issues. Secondly,
the audit facility is a simple one and does not address the needs of today's Intrusion
Detection Systems. Thirdly, Secure Interoperability is also limited between security
domains. Both domains must possess the same mechanisms and policies. Such
limitations would mean that i f two federated traders existed in different security
domains, they may not be able to communicated i f they have to do so securely.
Finally, security administration is another problem area. Most ORB security product
vendors promote the fact that they have gone beyond the CORBA Level 2
specification and provide administration services, but sure security administration
should be part of the overall standards to allow integration between products. By
enhancing CORBASec to make these facilities available, it would provide better
security for ORB operations. However, this is a complete topic in itself and outside
the scope of this paper.

5.5 Security-Aware CORBAservice
As was mentioned earlier, i f other CORBAservices were secured then a more generic
security solution could be applied. I f services such as the PSS, Query and Collection
services were security-aware they would able to guarantee security of the data they
were accessing. Then other CORBAservices, such as the Trader, could make use of
them. For example, i f the PSS was secure, the Trader could use it to access its
Registry and Repository.

5.5 Modification Summary
Figure 3 (based on the OMG Trader), summarises the modifications that have to be
made to the CORBA Trader to create a Security-aware Trader. The modifications are
as follows:

1. New Trader Security Attributes;
2. New Registry Security Property;
3. Modified Admin interface;
4. Use of the Enhanced Security Service (including Enhanced Secure

Interoperability Service);
5. Use of security-aware CORBAservices

376

Secufiiy^nwnre Trader
Rccis(r\

' ExiJOrtcr
Sccunt\
Pro|>cri> Prow

Importer Atlrihules

iNew Security
Allribiiicft i<

3.AD.MlN'(Altribmcs,
Set, ljst_Qncni.
Lifil_Propcnics)

Admm

Trader Component

^ Trader Communit)' Object

Inicrface (w.*iih defined
>• opcralions in brackets)

service

enosiior\

Appendix E: Papers

CORBAservices

5. Sccurity-nwnrc
. , w Qum Service

Sccurit>'-n\vnrc
Collection Service

Sec nritv-a ware
POS

tlnhnnccd
Securily
Service

Security-aware CORBAser\'ice

Enhanced Securit)* Service

Trader Modifications

Figure3: Modifications to create a Security-aware Trader

6. Conclusion
In a distributed object system such as the Internet, services could be built using
objects. Therefore finding the objects required, local or remote, is pivotal to the
success of such an environment. A Trader can do this. However, the Trader provides a
very vulnerable.point for attack, providing an intruder with access to a multitude of
services. Therefore it should be made security-aware. It should be able to ensure that
only authorised clients can access it, and that clients can only view the service offers
which they are authorised to see. To provide a Security-Aware Trader, modifications
have to be made to the CORBA Trader and Security services.
However the Trader was only a detailed example given in this paper, to act as a proof
of concept. But other CORBAservices need to be secured, and be part of the TCB, i f
the OMG is to provide a secure environment, where security administration does not
become fragmented and therefore impossible to manage. The bottom line is that
security cannot be completely treated as an "add-on" facility. Within CORBA, each
CORBAservice has to be "aware" of security and able to interact with comprehensive
security service.

References
[\] ITU, "ITUXJOOSeries - System Managemeiu", fFU. hiiD://www.iiu.int

377

Appendix E: Papers

[2] OMG Security Working Croup, "OAfC White Paper on Security'', Issue I.O. OMG FTP site, April
1994.

[3] R. Orfali, D. Harkey, J . Edwards, ''Instant CORBA ". J. Wiley & Sons, 1997.

[41 R. Resnick, "Intergalactic Distributed Objects". Dr.Dobb's SourceBook, Januar)'/February 1997.

(51 M. Bearman, "Tutorial on ODP Trading Function", DSTC, University of Canberra,. Australia,
hlln:/Avww.dstc.edu.au

[6] D.I. Hopper, "Destructive ILOVEYOU virus strikes worldwide", CNN, 4 May, 2000,
http://www.cnn.com

(7] P. Chavez, "55,000 credit card numbers stolen, posted by hacker". Nandotimes, December 14.
2000, httD://www.nandotimes.com

[8] CSl /FBI , "2000 Computer Crime and Security Survey". CSUFBl, December 2000,
hiinV/www.csi.com

|9] D. Rodgers, "Developing Secure. Web-Based Applications", Software Development Joumal, May
1998, httD://ww\v.sdmagazine.com/suDDlement/ss/feature/s985f2c.shtm

(10] The Australian, "Mobile fraud nms riot". The AusU-alian, 22 September, 1998.

[I I] E . Leahy, "Ericsson Fraud Management Solution - FraudOffice". Ericcson, Business Evolution
and Components Seminar, 12 March, 1999.

[121 OMG, "OMG RFP5 Sttbmission: Trading Object Service", OMG Document orbos/96-05-06,
Version 1.0.0. May 19 1996,

[131 C C I T T . Recommendation X.509 "Vie Directory-Authentication Framework". Consultation
Committee, International Telephone and Telegraph, International Telecommunications Union, Geneva,
1989.

[141 National Institute of Standards and Technology (NIST), "Proposed Federal Information
Processing for Digital Signature Statuiard (DSS)". Federal Register, v. 56. n. 169. 30 August 1991.

378

Appendix F: Leners

Appendix F - Letters

This appendix present letters of support for the research. The letters are f rom:

1. Declan O'Sullivan, who acted as an industrial supervisor, f rom l O N A
Technologies.

2. Orange

379

UNIVERSITY OF DUBLIN
Fax: 353 1 6772204 I Department of Computer Science
Tel: 353 1 6081765 f l ^ m ^ School of Engineering
Telex: 93782 TCD EI \ ^ ^ g ^ j Trinity CpIIege

Dublin 2

Declan O'Sullivan
Lecturer

Computer Science Department
Trinity College Dublin

E>ublin2
Ireland

Prof Paul Reynolds
Orange P C S
Bradley Stoke
Bristol
BS32 4 Q J
UK

With Reference to thesis of Elizabeth Joyce

Dear Paul.

Thank you for forwarding on Elizabeth's thesis for review. It was a pleasure to act as
Elizabeth's industrial supervisor in lONA Technologies.

This research is a significant and pragmatic contribution to the area of security and
distributed systems. As Elizabeth has quite rightly highlighted, security has been too
often been an aAer thought in system design, and this deficiency is all too painiully
being increasingly exposed in value added telecom and internet services.

The framewoilc proposed is impressive, especially since it proposes solutions to a
wide set of separate but interlinked problems, namely security components for DPE;
security interoperability components; and security aware DPE serviced. On this later
point, the choice of Trader for analysis is I believe particularly welcomed, especially
given the emergence of Trader-like services in the wider web services community
(e.g. UDDI) which is gathering momentum.

Overall the research has demonstrated in my opinion: a thorough analysis of the
problems faced by the DPE community; design and proposal of an innovative
framework solution; and a pragmatic approach to proof of concept; leading to a step
forward in the state of the art with respect to CORBA. TINA and DPE security.

Yours sincerely,

DecftrfO'Sullivan

orange

OTMI Part Read

Dr Stephen Fumell AimontotMyp«t

University of Plymouth ^
Drake Circus « « . B S 3 2 4 a i

Plymouth Phon .oi454««oQ

F u 01464 618S0t

Wib Sto: www.arano*^uk

Monday 10 December 2001

Dear Stephen,

Reference Security Service for CORBA

Orange has been experimenting with the use of distributed processing environments
for some five years; starting in applications we are currently investigating its use in the
transport layer.

It is clear that before CORBA can be used in eamest two things must happen; one it
needs to more scalable, and two, it needs to be more secure. It is the latter that
caused us to be invoh/ed with Elizabeth Joyce's research.

Whilst Elizabeth has focused upon the development of a generic security service she
spend a significant amount of time to understand our, i.e. the mobile operator
communities, requirements. She has used these requirements to validate the
applicability of her research. Indeed, we are impressed enough with the results she
has achieved that we intend to continue the experimentation work within our
laboratories.

Orange has been pleased to be associated with her research which we believe has
contributed to the State of the Art in security for distributed systems.

Yours sincerely.

Paul Reynolds

