Security in a

Distributed Processing Environment

by -
Elizabeth Mary Joyce
B.Sc. (Hons)

A thesis submitted to the University of Plymouth

In partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

Department of Communication and Electronic Engineering

Flaculty of -Teéh’nology
In collaboration with
IONA Technologies, pic.

& Orange

December 2001

[UNVERSTTY 57 5 YMOUTH F
8

I8 SEP 20027

Security in a Distributed Processing Environment

Elizabeth Joyce
B.Sc (Hons)

Abstract

Distribution plays a key role in telecommunication and computing systems today. It
has become a necessity as a result of deregulation and anti-trust legislation, which has
forced businesses to move from centralised, monolithic systems to distributed systems
with the separation of applications and provisioning technologies, such as the service
and transportation layers in the Internet. The need for reliability and recovery requires
systems to use replication and secondary backup systems such as those used in e-
commerce.

There are consequences to distribution. It results in systems being implemented in
heterogeneous environment; it requires systems to be scalable; it results in some loss
of control and so this contributes to the increased security issues that result from
distribution. Each of these issues has to be dealt with. A distributed processing
environment (DPE) is middleware that allows heterogeneous environments to operate
in a homogeneous manner. Scalability can be addressed by using object-oriented
technology to distribute functionality. Security is more difficult 1o address because it
requires the creation of a distributed trusted environment.

The problem with security in a DPE currently is that it is treated as an adjunct service,
i.e. and after-thought that is the last thing added to the system. As a result, it is not
pervasive and therefore is unable to fully support the other DPE services. DPE
security needs to provide the five basic security services, authentication, access
control, integrity, confidentiality and non-repudiation, in a distributed environment,
while ensuring simple and usable administration.

The research, detailed in this thesis, starts by highlighting the inadequacies of the
existing DPE and its services. It argues that a new management structure was
.introduced that provides greater flexibility and configurability, while promoting
mechanism and service independence. A new secure interoperability framework was
introduced which provides the ability to negotiate common mechanism and service
level configurations. New facilities were added to the non-repudiation and audit
services.

The research has shown that all services should be security-aware, and therefore
would able to interact with the Enhanced Security Service in order to provide a more
secure environment within a DPE. As a proof of concept, the Trader service was
selected. Its security limitations were examined, new security behaviour policies
proposed and it was then implemented as a Security-aware Trader, which could
counteract the existing security limitations.

Acknowledgements

I would like to thank the following:

e Prof. Peter Sanders, my Director of Studies, who provided me with the
opportunity to undertake this research and for all his support and advice
during my time with the Group;

e Prof. Paul Reynolds, Supervisor, for his advice and insights;

o Dr. Steven Fumnell, Supervisor, whose unending help and collaboration 1
deeply appreciate;

e Everyone in the Network Research Group;

¢ Declan O’Sullivan, my mentor, and everyone in IONA Technologies PLC,
for all their help and collaboration;

e Dr. Joseph Morrissey, for his support and patience when listening to
endless hours of rhetorical questions;

* And finally, to my parents and family, who have always been there for me,

and provide a constant source of support and encouragement.

Declaration

At no time during the registration for the degree of Doctor of Philosophy has the

author been registered for any other university award.
Relevant scientific seminars and conferences were regularly attended at which work
was presented; external institutions were visited for consultation purposes, and the

papers prepared for publication.

The work presented in this thesis is solely that of the author.

Glossary of Abbreviations

AA
ACA
ACL
ACM
AKB
API
AR
ASA
as-UAP
AuthA
CA
CC™M
CCs
CISS
CL

CORBA

CSI
CSM
DBMS
DCE
DES

DMA

Audit Agent

Access Control Agent

Access Control List

Access Coqnol Matrix

Audit Knowledge Base

Application Programming Interface
Audit Responder

Audit Sampling Agent

Access session related User Application
Authentication Agent

Certification Authority

CORBA Component Model
Comprehensive CORBASec
Comprehensive [ntegrated Security System
Capability Lists

Common Object Request Broker Architecture
Common Secure Interoperability
Communications Session Manager
DataBase Management System
Distributed Computing Environment
Data Encryption Standard

Domain Mapping Agent

iv

DPE

EMERALD

GIOP
GSS-API
1A

IDL

IDS
1Ho°P

IN

ISE

ISO

KTN
MAC
MD-5
MFC
NCCE
NIDES
NRAdj
NREA
NRS
ODBC
ODL
ODP

OMG

Distributed Processing Environment

Event Monitoring Enabling Responses to Anomalous Live
Detection

General Inter-ORB Protocol

Generic Security Service Application Protocol Interface
Initial Agent

Interface Definition Language

Intrusion Detection System

Internet Inter-ORB Protocol

Intelligent Networks

Integrated Service Engineering

International Standards Organisation

Knowledge Base

Kemel Transport Network

Message Authentication Code

Message Digest 5

Microsoft Foundation Classes

Native Computing and Communications Environment
Next-generation Intrusion Detection Expert System
Non-Repudiation Adjudicator

Non-Repudiation Evidence Agent
Non-Repudiation Store

Open DataBase Connectivity

Object Definition Language

Open Distributed Processing

Object Management Group

00
ORB
0] |
OTS
PA
PAC
PCM
PCM
PoC
PS

QoPA
RACF
RM-ODP
RSA
SecA
SECIOP
SF

SHA
SIA
SOAP
SSC
SSL
SSM
ss-UAP

Object-Oriented

Object Request Broker

Open Systems Interconnection
Object Transaction Service
Provider Agent

Privilege Attribute Certificate
Profile/Context Manager
Policy/Context Manager

Proof of Concept

Persistence Service

Quality of Protection

Quality of Protection Agent
Resource Access Control Facility
Reference Model for Open Distributed Processing
Rivest, Shamir, and Adleman
Security Agent

Secure Inter-Orb Protocol
Service Factory

Secure Hash Algorithm

Secure Interoperability Agent
Simple Object Access control Protocol
Security Services Component
Secure Socket layer

Service Session Manager

Service session related User Application

vi

TCB
TCSM
TINA
TMN
TTP
UA
URL
USC
USM
WAP

Trusted Computing Base

Terminal Communications Session Manager
Telecommunications Information Networking Architecture
Telecommunications Management Networks

Trusted Third Party

User Agent

Uniform Resource Locator

User Sponsor Code

User Session Manager

Wireless Application Protocol

vii

TABLE OF CONTENTS

GLOSSARY OF ABBREVIATIONS.....cciccvsruensrnireesssnssarsrosssnsssanssrassssasssssssenssssosses | AY
1. INTRODUCGTION...iiiiniiessisiossaissssstosssssssssisasmssssasssssssssssssssssssssssssssssnsansssoss 1
1.1 - SERVICE ENGINEERING AND SECURITY ...cooiiniiiiiienecntiens et 1
1.2 AIMS AND OBJECTIVES OF THE RESEARCH ...ouvuiiciieiiieeieitcicee e eeeveeeeee e e 3
1.3 THESIS STRUCTURE ..ccccciiitiietetieienesstsss s rn e s s s e eaes s senesaesres e sananes 4

2. INTEGRATED SERVICE ENGINEERING AND DISTRIBUTED
PROCESSING ENVIRONMENTS.....oiicceeiirsarsarnsraissrnssarssesssarsssrosssssosaosssnssse 7
2.1 INTRODUCTION......ctieiiie et eerioeeeiaete s e seseressnec st e sameesanneserresenretsesbtten e eeseransen 7
2.2 INFLUENTIAL TECHNOLOGIES IN ISE ..ot 8
221 Open Distributed ProCessingcccvcvvvovvncicvrcivnnciiniiiiincesiann 8
2.2.2 Object-Orientalionccooeiiriiiniciiiiiesincecnr et 10
23 TELECOMMUNICATIONS INFORMATION NETWORKING ARCHITECTURE......... 12
2.3.1 The Overall Architectire.ccocueeeeeiieecicieieeeeee e ereeear e e e ee s e sneaens 12
2.3.2 The Service ArchileCtUreoavccceveeeceie e as e 15
233 The Computing Architecture and the DPEcccovoeeoiiicinnins 17
2.34 The Management Architecture..................ccccoovvveeccricnnsiiniieccecine. 19
2.4 CoMMON OBJECT REQUEST BROKER ARCHITECTUREcc.oeeeiicinnninaees 21
2.4.1 CORBA Interface Definition Language (IDL}cccccceviiinanenn. 22
24.2 CORBA Object Request Broker (ORB)..............cccoocvvvvnvicieiiiiiiiniiniins 23
243 CORBASEIVICES ...ttt et s ics s e sas i 24
25 THE TRADING SERVICE ..v1ecaeeiiieee ittt et arese e aes e e e seres e st e e sme e e sene s 26
2.5.1 The Trader Dara SIFUCHUTESoveeevveiiacinaecvee e eeieveeeseseeesaseaeeee s 27
2.5.2 ATITEDUIES <.ttt ee e st sa e a e st e s ete e e snse e nes 28
2.5.3 F T = S 28
2.54 Linked Traders ...ttt e e e 30
2.5.5 Uses of an Unsecured Trader..............cc..ccoocovovevvivoiiviiiiiiiviiieeeenen, 32
2.6 THE SECURITY SERVICE ...cccutirtiitiiiiiientereniteetent e s et setste e et e se e ae s e e 33
2.7 SUMMARY ittt ettt sttt ettt b sae b e a e srnn e 39
3. LOGICAL SECURITY IN DISTRIBUTED SYSTEMS . .- 40
3.1 INTRODUCTION ...coeitieeeenrresertermnetesmrererasensseranseseeesnessamsessaseenaesenesnarsensenesnee 40
3.2 SECURITY PRINCIPLESocevicmriimtiniieiate st v cne s snren s snnecac s s e 4]
3.2.1 ACCess COnIrol ServiCe. ... oo oouvi it 41
3.2.2 Authentication Service.........c.cocooviiviiiiiciiie et 43
323 Confidentiality SErvicecoccoineeiceenicinieie st 45
324 TNEEGIILY SEIVICE ...ttt et e e seees 47
325 Non-Repudiation and Auditing Service................cccoeviiinininninnnnn, 48
3.2.6 Security Management...............c..cccccocovnuiiiiiinicciieei e 51
3.3 OTHER PRINCIPLES RELEVANT TO DPE SECURITYccoviiiniiiiiiinieie 52
3.3.1 Security Domains and Trust Modelscccccovvviiiiiiininnininiiens 52
3.3.2 Distributed Trusted Computing Base..............cccoceeeeveenoevciinviinnicennnns 54
333 Interoperability...........c...ccocciiviiiiiiiniiii 55

viii

334 Mechanism Independence and the Separation of Mechanism & Service

Management ..o i s s 60
3.8 SUMMARY et e rer s et es e sen e e b b e s rs s 60
4. REQUIREMENTS FOR A NEW FRAMEWORK FOR DPE SECURITY 62
4.1 INTRODUCTION .o e teeetere ettt e s s reeren e s rtr b st ssb s s s b s s b s b srne s snen s 62
4.2 REQUIREMENTS FOR DPE SECURITY ..c.oiiiiiiitiienirtr e rrteee et e e e 62
4.2.1 Distributed Object Complic@tions.............c...ccocoeeivviivniiniiiniiicrcnnns 63
4.2.2 Review of Currently defined GDOS Security Requirements................ 64
4.2.3 Analysing the DPE Security Problem Domaincocoeeeenn.e. 71
4.3 FORMULATING A DPE SECURITY FRAMEWORKoocooviviiieieiriieieie e 74
44 A NEW SECURITY FRAMEWORK FORDPES.........coooiiiiiii 80
4.4.1 DPE Security Service Overview.............cuuevcoreverceereceinississnnsnenens 80
4.4.2 Realisation and Deployment ISSUesccocccevcrevniiiriinicncnniiniinen. 84
4.4.3 DPE Security Management Overview...............ccccocoiveiiinnenninciiennien, 88
4.5 DPE SECURED SERVICE EXAMPLE.........ccorouiirmeuetetreseacereesacsenenseseseeneescneeenas 96
4.5.1 Logging in to the Providercooocoooiiiiiiiniiiiiic e, 97
4.5.2 Starting a New Service Session.......................... e s 101
.6 SUMMARY ..o rtet sttt s rn e s s s e n e ae e 107
5. SECURE INTEROPERABILITY IN A DPE..........ccceueune 108
5.1 INTRODUCTION ... ceteeerrertieeetisstessntestsssss s ssessan s sbe s assh e s sben e s snasansssensean 108
5.2 DPE SECURE INTEROPERABILITY REQUIREMENTS.......cccooeivriiirnininisnianiens 109
5.3 DPE SECURE INTEROPERABILITY — THE ISSUESccocniieiinnnnnasiiesiinaens 112
5.3.1 Conflicting Security MeCRanisms............cocovcevciivnviiniciienienene 112
5.3.2 Conflicting Security Policies..............cocovmninciiiiiiininrcccnccneees 114
533 Conflicting Security Protocolscoocoeevviieinicnncnieieinevee 116
534 Different Trust DOmMQINS............ccccooccvmveererioeniinrecccie s e 116
54 A NEW SECURE INTEROPERABILITY FRAMEWORKcooccciiiiiiiiiiinnniies 120
54.1 New Policy Configuration SIructure.cccooovivvceniniinieieneneens 120
5.4.2 New Secure Interoperability Protocol....................ccooovrvevricienirenns 124
5.4.3 New Seciire Interoperability Service Objects..............unueeeeennnnnnnn. 128
5.44 Secure Interoperability Example............c...ccccccvivvivnininininiiininnnnn, 133
5.5 SUMMARY ot crccncere e st et e s r e e b s s e st sa e 140
6. SECURITY-AWARE DPE SERVICES 142
6.1 INTRODUCTION ...ttt et et sre b be s e sssmsese e naee 142
6.2 SECURITY ISSUES FOR SUPPORTING SERVICESINADPE......................... 143
6.3 SECURITY ISSUES RELATED TO TRADING & TRADERSoovvrivemrerrinrnninnes 146
6.3.1 ABLRENLICAIION ...ttt ettt ree st e e e 146
6.3.2 ACCESS CORIIOL ...ttt et e 146
6.3.3 Integrity and Confidentiality..............ccccoovvcenicciininniiiincece 149
6.3.4 Non-Repudi@lionc.cccoeeveecniiiiiinininiiiii i 150
6.4 CURRENT LIMITATIONScooiiiiiiiiicnie et bs sy an s s e s 151
6.5 NEW FACILITIES REQUIRED.......cueutiieiiiiererreeriiiitsninnsnennseenenssenennenennaness 155
6.5.1 Securiry-Aware Trader Attributes.................cocooovvvieeneineicniiniinnne 155
6.5.2 Security-Aware Trader Data Siructurescvvvveeeeceeeenenne 156

6.5.3 Security-Aware Trader Interfaces..............oeveeeveoeeecieieeceeeceeenen 158
6.5.4 Security-Aware Trader and the new Framework for DPE Security .. 164
6.5.5 New Facility SUmMAryccocoooociiiiieeeeeeeeeeeeeee e 166

6.6 OTHER SECURITY-AWARE SERVICESINADPE. ... 167
6.7 SUMMARY oottt st sttt sr st bbb s e 169
7. VERIFICATION OF THE NEW FRAMEWORKeennnnranensoncnane 171
7.1 INTRODUCTIONcviiititic it s st 171
7.2 MAPPINGTOCORBASEC ..ottt 171
7.2.1 CORBASec vs. DPE Requirementsccoveeveevciiriceeereceeeneeennnnennas 172
7.2.2 Mapping to the new Comprehensive CORBASec...............cccooaunen.. 176
7.2.3 Management and Mechanism-Independence.....................cccoveueen.... 177
7.24 Authentication & Authorisation Enhancements..............c..cccoccec.... 180
7.2.5 Integrity & Confidentiality Enhancements...............c.cccoccoovnueicennannnne 187
7.2.6 Non-Repudiation & Audit Enhancementiso.couuevcvcciviivnvivnncnnca 191
7.2.7 Secure Interoperability.............cocoocoiiiciiiiiiiiiiiice e e 201
7.2.8 Security-Aware Trader...........c..ccoocovoveiiiiiiiiiii e 203

7.3 SUMMARY et e s 204
8. PROOF OF CONCEPT..... 206
8.1 INTRODUCTION....c.coitiiiiii it s e e s sa e sana 206
8.2 THE PROOF OF CONCEPT PROTOTYPE......ccoctiiiiiimriniiiesrnee e e 207
821 Implementation of the Protorype...............ccocouevivicviincciviieneinnennicnnins 209
822 A Practical Demonstration SCERAriocccocccovrevcciriccncnnnenenenas 220
8.2.3 Requirements Matrix............c.ccoooiiiiiiiiiicee e e e 225

8.3 VERIFICATION ..ottt ettt e e e s e s s 228
83.1 Performance Modelling..............c...cccooociiciiiciiccniinceeeceec e 228
832 Standards VerificQtion................ccoovoveeiiciiccii it 240

B4 SUMMARY ..o e e e e e s 249

9. CONCLUSIONS.cvertmcrrenrannes rerssssresussssarnsns 251
9.1 ACHIEVEMENTS OF THE RESEARCHcciviiiiremnnruerereemniientnnnrnnnansesseensssesaases 251
9.2 LIMITATIONS OF THE RESEARCHcvvmiiiiiiiiniiiie ettt e 252
9.3 SUGGESTIONS FOR FUTURE WORKcocociiiiiiiiiiiiinieicn et 253
94 SUMMARY OF RESEARCH CONCLUSIONScoceiiririiereseeicniienereeessssamamnens 255
10. REFERENCES ... eeietcsecssssesnssessesssssssssesssssnssnsssrosnsssssiss 257
APPENDIX A - IDL for Comprehensive CORBASeCcccvvvvnrrnerersninienna 27
APPENDIX B - IDL for Security-Aware Trader Service..........cccevueuininnnen 321
APPENDIX C - IDL for Generic Security Service APL........c.cccoviininnnnen J38
APPENDIX D - Cryptlib and Prototype Information.........c..ceveevvnreennnnne. 346
APPENDIX E = PaperS.cusccecicieemiimiiaeiiensiiesieassamsiansionsssassacnsssessaensas 352
APPENDIX F = Letters..c.ccuviurniiiciiiiiiieeiiiiintiininiicssomniceissssmnmmeassasesses 379

TABLE OF FIGURES

FIGURE 2-1 TINA OVERALL ARCHITECTUREcovtvieieeerteirrteneeeeverstnrsnrseeressreesseaessasanas 13
FIGURE 2-2 STRUCTURE OF TIINA SYSTEM ...oouviimiiiieeeeeceicnreteeieseseesasnsesseeessssernsesaesssnn 14
FIGURE 2-3 TIINA SESSIONS ..ot ieiieiieieieeirtertirtieeiesseesessvamreresessssssasssnnsnee s sesnnnsnsesesss 16
FIGURE 2-4 DPE ARCHITECTURE ... eeeeeteeeeeeteetsseeeeseeeereeseesaesses st eeseesesesssesesasenseessesees 18
FIGURE 2-5 TINA MANAGEMENT ARCHITECTUREccouvviiiieeeeeeeerrieererenneeennsesenseseneesnens 20
FIGURE 2-6 OMG CORBA ARCHITECTUREcoiiiiiieeeiiiieieeieeeeeerevrereseeianteesesesescasvensans 22
FIGURE 2-7 CORBA ORB STRUCTUREccccoievieee et teerereeeer e e reeeerserenesesnessonsssnans 24
FIGURE 2-8 TRADER INTERACTIONS ...ccotieiriiiiieieereeeieireerierereeiereesereneereesessasesssssasesononeeson 26
FIGURE 2-9 TRADER......cciiiiiiiiiiiii st s st b 31
FIGURE 2-10 CORBA SECURITY SERVICE. ... ccciitiiaiiiiiiiaceieeieseeteeeeieasaieaeeeasansnsssesannns 34
FIGURE 2-11 CORBA SECURITY OBJIECTS ...uuitieiieeeeeeecitnintrereeeeeeeisivesssesaessinnnsenessenns 36
FIGURE 3-1 X.509 CERTIFICATION AUTHORITY HIERARCHY STRUCTURE..................... 45
FIGURE 3-2 MONITORING AGENT STRUCTURE ...ccomiiiiiieieceieeieeeeeeeemteneesee e sneeneemeenes 49
FIGURE 3-3 INTEROPERABILITY BRIDGING SOLUTIONScccvcttiieiiiiciiiicieeeieeeeeee e e eeanes 57
FIGURE 4-1 TINA SERVICE EXAMPLE ...coiiiviiiii e e et a e s s s s s 76
FIGURE 4-2 A NEW SECURITY FRAMEWORK FOR DPES (OPERATIONAL)ccoeevvneenn. 80
FIGURE 4-3 EXAMPLE OF SECURITY SERVICE OBJECT DEPLOYMENTcccoeoviiiieiieiennne. 85
FIGURE 4-4 ADMINISTRATIVE POLICY CLASS ...ooevvveeveeeeeeee e e et es e ns 89
FIGURE 4-5 SECURITY SERVICE OBJECTS - MANAGEMENT ...uvvvmmiieirvenrremieimineeieeeeeeeeeens 91
FIGURE 4-6 NEW SECURE LOGIN EXAMPLESouvovruimrrieiiirirerarsneierissresssssessssesmesesninens 98
FIGURE 4-7 NEW SECURE SERVICE EXAMPLEc.oooiiiiiiiiiiiiiiinririe e ee e 104
FIGURE 5-1 SECURE INTEROPERABILITY PROTOCOL MESSAGE SEQUENCE.......cc.c..... 128
FIGURE 5-2 NEW SECURE INTEROPERABILITY LOGIN EXAMPLE ... 135
FIGURE G-1 TRADER ACCESS CONTROL ...cuuueueeennenrerannsrssisssmsnnssssnsssnrsssissnssssnssssnnes 147
FIGURE 6-2 TRADER SERVICE OFFER ACCESS CONTROLcevviieieeeececierneeieeeeececnneenens 148
FIGURE 6-3 PROTECTING STORED DATA ..vviviiieieeitrivee et svee e 149
FIGURE 6-4 SERVICE OFFER ACCESS CONTROL WITH REGISTRY SECURITY PROPERTY
.. 153
FIGURE 6-5 SECURITY-AWARE TRADER'S ADMIN INTERFACEcoccovmimiiiiieieeeeeeeene. 160
FIGURE 6-6 SECURITY-AWARE TRADER'S LOOKUP INTERFACEcccovevmernereerereeieneenen, 162
FIGURE 6-7 SECURITY-AWARE TRADERcooiiieeeiieeei i eeve e ceventme e seess s ba e enrennnns 167
FIGURE 7-1 COMPREHENSIVE CORBASEC OBIECTSeecvtvtevivtrrimrrvrvirsrsrriimieressesssaine 177
FIGURE 7-2 CCS DOMAINMANAGERoveiiiieitiiiieieieeesneieceeaetreeseeseesessssnneensseresennees 180
FIGURE 7-3 CCS AUTHENTICATION ...uemtiiiiiiieceraeeeeeee e cmteeensaeseeeeesssameeseeesensmsnnesanens 184
FIGURE 7-4 CCS INTEGRITY AND CONFIDENTIALITY .ecoeivieiieieieeeeeeeeeaenieeeee e smeeees 190
FIGURE 7-5 CCS NON-REPUDIATION.....cututeteeeer e eeireeseeresenteeenessenraenssesenensasassnssens 196
FIGURE 7-6 CCS AUDIT coueueeeieiieeeeneitertmnerteesrreserersessseesssernsesensestnsessmssstatensstesesansesaneens 201
FIGURE 7-7 CSI MESSAGE TYPESeeeeieii ittt stetesee s s asmnnesses e e sannne e saenanane 202
FIGURE 8-1 SUMMARY OF ISSUES IN RESEARCH......ccoiieiiteieeie e e eeesnievee e 209
FIGURE 8-2 OBJECT IMPLEMENTATIONeeevvutererereerereererterseeenrerrnrssssssssmesssseesesessesasenns 212
FIGURE 8-3 CCS OBJECTS IMPLEMENTED.......cuoveieiiiiieiiieiieeeeeeaesveneesesesenssnbareseesssees 213
FIGURE 8-4 SECURITY-AWARE TRADER INTERFACES IMPLEMENTEDccocoveverannnnne 214
FIGURE 8-5 INTERCEPTOR INITIATED CALLSocuviuiieiiieeeeeieeereererersnessrsssssssmrenesasssssnans 216
FIGURE 8-6 DIRECT CALL ON OBJECTS ..vevovvvinmieresieiiisvetineeierecessseessssarsrassessssssnersansasens 217

xi

FIGURE 8-7 AUTHORISED PATHS THROUGH THE DEMO WITH NEW SECURITY SERVICE

.. 223
FIGURE 8-8 ADMINISTRATION SELECTION SCREEN ...cociviiivieiiiiiiniiarieieieseeneieiesaevasenseses 223
FIGURE 8-9 SECURITY SERVICE ADMINISTRATION SCREENScovvviererienenveerinnneenn 224
FIGURE 8- 10 AUTHORISED PATHS THROUGH TRADER DEMO WITH NEW SECURITY

SERVICE ..o ceteteeeeeeeetesettteeeseessiteesemeesensseamnstmseseans sansmsesaneeseanssssssnsesenessansasnres 225
FIGURE 8-11 TRADER SECURITY ADMINISTRATION & QUERY SCREENScceccverunene 225
FIGURE 8-12 AUTHENTICATION EVENT SEQUENCE CHART ... it eeeectmteeeve e 230
FIGURE 8-13 ACCESS CONTROL EVENT SEQUENCE CHARTcovvveeieieeeecrcniereneaeenns 230
FIGURE 8-14 QOP EVENT SEQUENCE CHART......cutttiiiiieaiiteieeinieeeeerereseeese e s sameaens 231
FIGURE 8-15 NON-REPUDIATION EVENT SEQUENCE CHART - .ceei vt 232
FIGURE 8-16 AUDIT EVENT SEQUENCE CHART ..ccvtiieiiiiiiiiei it teeene e reenn e eeeee e een e e aees 233
FIGURE 8-17 SECURE INVOCATION EVENT SEQUENCE CHART.............. R 234
FIGURE 8-18 OPERATIONAL OBJECT INVOCATION COMPARISONoooooeimnirieeeeeeenns 235
FIGURE 8-19 NUMBER OF ADMINISTRATION OBJECT METHODSccccecieiiirriiereerannenn, 238
TABLE OF TABLES
TABLE 2-1 CORBASERVICESoiiiiiieeieieiiee et eeveneeres e vas e eeseaessseaesesseeseasaaasasaanaansnsasens 25
TABLE 4-1 GDOS SECURITY REQUIREMENTS ...cooviiiiiiiiiiiiieeeeieeeieescaneesee s e aeesenensenaaseaans 70
TABLE 4-2 SUMMARY OF TINA vS. DPE SECURITY REQUIREMENTSccccccvmrimnnennnnn. 79
TABLE 5-1 REQUIREMENTS FOR DPE SECURITY .ccooiiiiiieee e 110
TABLE 5-2 ADDRESSING SECURE INTEROPERABILITY SCENARIOS ...ocveveevriirevirieeenen. 119
TABLE 5-3 POLICY CONFIGURATIONScooiiiiiiieieetitiiietieeitieeeeeseieseeeeeesesenaeaaaaeaaesaaaaanann 123
TABLE 5-4 SECUREINTEROPERABILITYPOLICY STRUCTUREcceciiiviiiciceeeeeeee e 129
TABLE 5-5 SECUREINTEROPERABILITYPOLICY STRUCTUREouvemeeeeeecieeeeeee e 132
TABLE 5-6 USER/PROVIDER SECUREINTEROPERABILITYPOLICIESccocciiiiiiiiinierieen. 134
TABLE 5-7 ATTRIBUTE AND ROLE MAPPINGS .oeeuiiiiiiiiieeceeeeeeeresereeevtnneeeeane e sneeeees 134
TABLE G-1 TRADER SECURITY POLICIESucuvutieiieieieecetereee e e eeee e eeeeesennerees e aeeens 155
TABLE 6-2 SECURITY-AWARE TRADER'S SERVICETYPE REPOSITORY EXAMPLE 157
TABLE 6-3 SECURITY-AWARE TRADER'S REGISTRY ENTRY EXAMPLE 158
TABLE 7-1 DPE SECURITY REQUIREMENTS AVAILABLE IN CORBASEC.................... 173
TABLE 7-2 ADMINISTRATION OBIECTS ...ooviciiietee e ieeeetee e e et s s s e se s en e 178
TABLE 7-3 AUTHENTICATION & AUTHORISATION SECURITY SERVICE OBJECT

MAPPINGS TO TS .ottt te e esee et e ea e e e eeee s e s eesnsssare e aeeeeanennn 184
TABLE 7-4 QOP SECURITY SERVICE OBJECT MAPPINGS TOCCScooviriiiiiiiniiinens 189
TABLE 7-5 CCS NON-REPUDIATION MAPPINGS ..cocooovviiiiiieeeecvisiieeeesssennneerenaeeasnas 194
TABLE 7-6 SECURE INTEROPERABILITY SERVICE OBJECT MAPPINGS TOCCS 203
TABLE 8-1 OPERATIONAL OBJECT INVOCATION COMPARISON ...oooriiirrriniiniceeenenennnes 235
TABLE 8-2 ADMINISTRATION OBJECTS ..uvvieuuiuenerumaeseeneeetusssrerssssssreeeeeterssassssessersessmennes 236
TABLE 8-3 COMPARISON OF THE NUMBERS OF ADMINISTRATION OBJECT MODELS ...237
TABLE 8-4 SECURITY-AWARE TRADER'S SECURITY OBJECT INVOCATIONS................ 239

xii

1. Introduction

1.1 Service Engineering and Security

Computers are pervasive throughout the telecommunications industry. They are
utilised by the core infrastructure, e.g. in switches, by the software applications
operating and controlling the infrastructure, e.g. Intelligent Networks combine these
technologies to create a means of separating switching and logic functions in order to
build a more flexible distributed architecture for service provisioning. The Internet
provides another illustration of how distributed computer systems are combined with

an underlying telecommunication network.

Object-Oriented technologies are also playing a key role in integrating heterogeneous
systems across the globe. E-commerce companies use it to wrap legacy applications
and make them available to an Internet audience. Telecommunication companies use
distributed object systems to buiid their Telecommunication Management Networks
(TMN), and so manage their vast telephone networks. Such systems need to be
supported. This is where the concept of Integrated Service Engineering (ISE)
emerges. ISE supports the development, deployment and provisioning of services. It
is accomplished through the use of a Service Machine, a key component of which is
the Distributed Processing Environment (DPE). The DPE provides an object bus and
a set of supporting services, which allow distributed objects to be created, activated,
operated and destroyed in a étable and consistent environment. Future modifications
and technology innovations may make it even more difficult 10 distinguish between

computer and telecommunication technologies. Therefore ISE. which acts as the

Chapter 1: Introduction

standard providing all these services. needs to cope with the new demands of this

environment.

On May 4, 2000, the “ILOVEYOU” worm, also known as the “Love Bug”,
bombarded email systems around the world [1]. Users received an email asking them
to check the attached “Love Letter”. The attachment was a script that contained the
payload. If the attachment was opened the computer was infected. The “Love Bug”
changed registry settings so that it would be run every time the computer was
rebooted and sent copies of itself to everyone listed in the user’s address book. It also
destroyed multimedia files, such as JPEGs and MP3s. It is estimated that over two-
thirds of the Fortune 500 Companies were affected at a cost of $6.7 billion (2, 3].
Although the “Love Bug” was a computer worm, it required the underlying

telecommunication network to allow the worm infect on a global scale.

Security has always been an issue. It has been used by governments and private
individuals to protect resources they deemed valuable and therefore at risk.
Cryptography, the science of hiding information from unwanted eavesdroppers, has a
long history [4]. While it was realised that security was '_required in
telecommunications and computing when they were two distinct technologies,
distributed systems suffer from a new set of security problems. The system itself is
distributed and therefore is not necessarily under the complete control of the users.
For example, if you are sending an email, it may pass over several insecure networks
before reaching its destination. The distribution also results in increased access to the
system, i.e. it provides more points of vulnerability for attack. While security on this
new media was not originally a primary concemn, viruses such as the “Love Bug” have

heightened security awareness. Businesses, governments and individuals are now

Chapter 1: Introduction

realising that they are at risk and must protect themselves and their assets in this

technology arena.

Computer telecommunications are subject to serious threats. These threats can happen
within any part of society — civilian or government, and can have far reaching even
global consequences. ISE is a key component, as it facilitates the provisioning of
services in this distributed environment. By its very nature, this environment is more
vulnerable and security is seen as the single most in;portanl design criteria in many
systems today [5]. Therefore.lSE must deal with security and all the problems it

presents.

1.2 Aims and Objectives of the Research

The aim of this research is to investigate and facilitate the security of DPEs. The
research recognises the importance of security in distributed systems in e-commerce

and telecommunications environments. The study has five objectives.

|. Understand the DPE and its security requirements: The study needs to
understand DPEs, define the security requirements of distributed systems and
identify any requirements that are particular to the ISE environment. Through
analysis of the State of the Art in ISE it should be possible to identify those
areas of the requirements that need to be addressed using current and novel

security techniques.

Define a framework for DPE security: The research needs to define a new

o

security framework for DPEs. This framework needs to address all the of the

reqirements defined in objective 1.

Chapter 1: Introduction

3. Assess how DPE security is maintained across a heterogeneous
environment: The framework needs to ensure that it preserves security in a
fully distributed heterogeneous environment. It must be able to work on and
across multiple hardware platforms. It needs to be able to interoperate across
multiple security domains, where different secunity policies and mechanisms

are in operation.

4. Assess the impact of DPE security across all services: DPEs also provide a
set of distributed services to support distributed objects. The research will
assess how secure these services are and whether the new Security Framework

can adequately protect them.

5. Assess practical implementation and verification of DPE security
framework: The research will be verified by mapping it to a DPE
specification and then implementing the Security Framework. venfication will

be based on this implementation.

1.3 Thesis Structure

The thesis has been structured so that most of the background information (mainly the

state of the art survey work) is confined to the initial chapters.

Chapter 1 - Introduction - This provides an introduction to the research project

objectives and how they were accomplished.

Chapter 2 - Integrated Service Engineering and Distributed Processing
Environments — This chapter discusses the general principles applied in ISE Service

Machines and their key component, the DPE. Current DPE architectures are

Chapter I: Introduction

described, including a detailed description of one service, the Trading service, which

is used in a later chapter to identify service-related issues.

Chapter 3 - Logical Security in Distl.'ibuted Systems — The general principles of
security are discussed, along with security issues that are specific to distributed

systems.

Chapter 4 - Requirements for a new Framework for DPE Security - The
requirements of DPE security are analysed and, as a result, a new set of DPE security
requirements are defined. The current problems in DPE security are then identified,
and this directed the recognition of the need for a new security framework, which is

then presented to address these issues.

Chapter 5 - Secure Interoperability in a DPE — The Secure Interoperability Service
is defined in this chapter. Although it is a key component of the new Security
Framework, the substantial work involved in designing this service requires a separate

chapter to fully consider the new features.
|

Chapter 6 - Security-Aware DPE Services - This chapter investigates how the DPE
security service interacts with other DPE services to see if there are any secunty
issues. The Trading service was selected for a detailed analysis of the topic. On
finding numerous security problems, a new Security-Aware Trader is then proposed

and defined to overcome the existing vulnerabilities.

Chapter 7 — Verification of the New Framework — The research provides a proof of
concept by mapping the new Security Framework to a particular DPE specification,

namely the Object Management Group’s (OMG) Common Object Request Broker

Chapier 1: Introduction

Architecture (CORBA). This chapter describes how this was achieved, the issues that

were discovered and how they were addressed.

Chapter 8 — DPE Security Prototype — This chapter describes the implementation of
a prototype of the proof of concept defined above, in order to prove that it is viable in
practice. Although an implementation proves that the research can be constructed,
other verification work is required to ensure that it is feasible in a real-world scenario.
This chapter provides performance-modelling data and evaluates the future trends of

DPEs, indicating where this research can play a part.

Chapter 9 — Conclusion - The final chapter assesses the research and whether the
objectives were successfully met. It defines future work in the DPE security arena that

should be considered.

A number of appendices are also included, which provide a range of supporting

materials, including published papers.

2. Integrated Service Engineering and Distributed

Processing Environments

2.1 Introquction

Integrated Service Engineering (ISE) considers the problem of service development,
deployment and provision in today’s distributed heterogeneous telecommunications
environment. A service machine is the technology, both hardware and software, used
in provisioning and deploying these services. A key component of the ISE service
machine is the Distributed Processing Environment (DPE), which helps support the
lifecycle of these objects and allows them to inter-operate across heterogeneous
operating systems, networks, languages, applications, tools, and multi-vendor

hardware [6].

ISE initially began in the realms of the telecommunications world, but with the
emergence of computing technologies such as integrated circuits in the 1960’s, the
telecommunication providers began to realise they could hamess the technology to
enhance their own networks and services. The main influences fo this work were
Intelligent Networks (IN) and Open Distributed Processing (ODP). By using both of
these technologies, telecommunication providers could increase their services and
fully utilise the existing infrastructure resources. Another influential computing
technology was object-orientation. This was seen as another very useful technology in

the telecommunications environment. With deregulation impending, the network

Chapter 2: Integrated Service Engineering and Distributed Processing Environments
providers would be forced into interoperability and would have to be able to provide

new services quickly and efficiently if they were to remain competitive.

ISE did not remain solely in the telecommunication sphere. The Internet, which
utilises existing telecommunications networks, is a strong user of ISE standards. It too
is a distributed system that requires flexible implementation independent provisioning
of services, even though the services are of a different nature to the ISE originators
(e.g. e-commerce). Many businesses are interested in ISE because it promotes
heterogeneous interoperability, and so allows them to take advantage of Internet
technologies to access their legacy systems. This chapter will now look an ISE DPE

and its supporting principles.

2.2 Influential Technologies in ISE

The areas that most significantly influenced in ISE were ODP and object-orientation,

the relevant principles of which are examined in the following sub-sections.

2.2.1 Open Distributed Processing

All distributed processing, be it object-oriented or not, is based on the work of the
International Standards Organisation (ISO). The following is a definition of a

distributed processing “ideal”:

“Within a permissible domain of interest, anyone should be able to access and use
any resource at any location and at any time, with only the desired knowledge of
the underlying infrastructure, and with a response time acceptable for the required
purpose” [7].

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

The ISO works on standardisation in Open Distributed Processing (ODP). It has

developed a framework (or reference model) called the Basic Reference Model of

ODP (RM-ODP) [8]). It specifies an architecture that integrates support for

distribution, interoperability and portability. Fundamental to the RM-ODP is the

notion that distributed processing systems can be studied and described from several

viewpoints. Each viewpoint represents a different abstraction of a distributed system

[9]. The viewpoints are as follows [10]:

Enterprise: directed to the needs of system users, it provides a view of how
the information system is placed and used within an enterprise;

Information: directed to the needs of information managers, engineers and
analysts, it provides an information model with a view covering information
sources and sinks, and the flows between them;

Computational: directed to the needs of application designers, it provides a
view on how information processing facilities, functionally or logicaily,
perform the information processing tasks;

Engineering: directed to the needs of system and communication designers, it
provides a view of the distributed mechanisms and the various transparencies
needed to support distribution;

Technology: directed to the needs of programmers, system maintainers and
system managers, it provides a view of the components and links that are used

to build a distributed system.

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

Distributed systems are capable of offering substantial benefits to their users. The key

characteristics have been identified as follows [11]:

Resource sharing, which may relate to items Qf data, software components
(this includes distributed objects) or hardware components.

Openness is the requirement for the availability of well-defined interfaces to
resource managers.

Concurrency brings the benefit of higher performance.

Scalability has been a dominant concern in distributed systems. The
replicartion of data and the distribution of load between servers are the key
techniques that are used to address it.

Fault tolerance can be addressed more efficiently in distributed systems than
in more centralised system architectures, e.g. hardware redundancy and
recovery from hardware and software failures.

Transparency addresses the need of users and application programmers to
perceive a collection of networked computers as an integrated system hiding

the distributed nature of the resources used to perform the user’s task.

2.2.2 Object-Orientation

Another key area for ISE, which has influences in both IN and ODP, is Object-

Orientation (00). OO is the organisation of software as a collection of discrete

objects that incorporate data structure and behaviour. OO supporters believe that it

promotes future reuse and reduces errors and maintenance [12]. The distributed

10

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

processing community has also adopted it because it hides implementation details —

an important issue in a distributed environment.

The key OO principles are as follows [11]:

Object: a piece of code that owns Attributes (data values) and provides
services through Methods (also called functions or operations).

Classes: a collection of like objects make up a class (sometimes called a type).
A class acts as a template that describes the behaviour of a set of objects.
Therefore objects are actually run-time instances of a class.

Encapsulation: hides the internal implementation details of an object from
other objects. An object can publish a public interface that defines how other
objects caﬁ interact with it, while still keeping the implementation private.
Polymorphism: allows the same method to do different things. Depending on
the type of object, the method will produce a different effect/action.
Inheritance: allows a new child class to be created from an existing class. The
subclass or derived class inherits the methods and data structure of its parent
class, and can then add its own methods and data structures, without affecting
the parent. Tﬁis promotes savings in code and simplifies the overall

understanding required within a system.

11

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

2.3 Telecommunications Information Networking

Architecture

The Telecommunications Information Networking Architecture Consortium (TINA-
C) is a consortium of about 40 communications companies, computer and network
equipment vendors. TINA-C defined the de facto standard Telecommunication
Information Networking Architecture (TINA), based on Bellcore’s original INA,
which hoped to guarantee interoperability between information networks designed
using the architecture by defining a set of principles and concepts for the
specification, design, implementation, deployment, execution, and operation of
~ software for telecommunication systems. Telecom systems are complex; TINA breaks
them down into manageable units through logical/functional partitions and

separations [13].

TINA has a business model [t4]), which describes the stakeholders and how they
interact in the TINA environment. Consumers buy services from Retailers. However,
the service is actually provided by Third Party Service Providers, while connectivity .
streams are supplied by Connectivity Providers. Brokers act like a telephone

directory, and allow stakeholders to obtain references to other providers.

The following sub-sections will outline the TINA overall architecture, and its relevant

constituents.

2.3.1 The Overall Architecture

The overall architecture was defined as foltows (and is depicted in figure 2-1 below

[L5]):
12

Chapter 2: Integrated Service Engineering and Distributed Processing Environments
e Service Architecture: design, specification, implementation and management

of services;

o Network Architecture: design, specification, implementation and

management of the transport network;

e Management Architecture: design, specification and implementation of the

software systems to manage services and resources;

’

e Computing Architecture: design, build and distribute software and the

supporting software environment.

Ovenall
Architecture
Service Network Management
Architecture Architecture Architecture
Session Subscription Network Configuration Fauli DPE
Model Model Resource Model Mangement Management Architecture

Figure 2-1 TINA Overall Architecture

Computing
Architecture

The ‘Basic Separation Architecture’ [16] is one of the key principles in TINA-C. It
states that there are computing separations between different layers of software. The
architecture is made up of a collection of interconnected computing nodes (see figure
2-2 below). The lowest level of a node is the hardware. Above this the Native
Computing and Communications Environment (NCCE) is found. This is made up of

the operating systems for the local hardware. The NCCE provides a type of

13

Chapter 2: Integrated Service Engineering and Distributed Processing Environments
uanspar;:ncy, as the Distributed Processing Environment (DPE) is unaware of the
hardware and operating systems used. The DPE is sub-divided into the DPE Botiom
and the DPE surface. The DPE Bottom offers services such as trading which are
available on every node, while the DPE surface offers other services to all nodes but
they will only be resident on certain nodes. The complete DPE handles distributed
processing and provides transparency between the nodes and the telecommunication

applications, which exist on the highest level.

TINA Applications
DPE Surface
DPE Bottom |4 Inter-DPE | DPE Bottom
Intefface '——
NCCE NCCE
Interconnections
I |
Node 1 Node 2

Figure 2-2 Structure of TINA system

TINA was structured in this way to provide true independence (i.e. technology
independence and portability) as it states that non-TINA DPEs can be part of the
system. This also implies that federation with the non-TINA systems should be

possible.

14

Chapter 2: Integrated Service Engineering and Distributed Processing Environments
Within the TINA application layer of this architecture there is further layering, based
on the Telecommunication Management Network (TMN) [17, 18] layers. They are

defined as follows:

e Element Layer: populated by objects that represent atomic units of physical
or logical resources, defined for allocation control, usage and management

purposes;

¢ Resource Layer: populated by objects that maintain, view and manipulate
collections of elements and their relationships (it provides the service layer

with an abstracted view of the elements);

o Service Layer: populated by objects involved in provision of services to

stakeholders; objects can be service-specific or service-independent.

From this Overall Architecture, the Networking Architecture is considered outside the
scope of this research and so will not be presented in any further detail. The Service,
Computing and Management Architectures all have some relevance to the work and

are now considered in more detail.

2.3.2 The Service Architecture

The traditional concept of a call in telecommunications is substituted by the more
flexible concept of a session. A session represents the information used by all
processes involved in the provision of a service [19}. For example, in a
videoconference the information about connections, charging and user profiles may

change during the conference as participants join and leave. The session helps keep
15

Chapter 2: Integrated Service Engineering and Distributed Processing Environments
such information coherent throughout the conference. Sessions are not just for
complex services, and can represent something as simple as a web-search. The session
can be further refined into access, service usage and communications separations, see

figure 2-3 [15] below.

User Service
Session

rovider Service
Session

User Service
Session

Service Session
l i

Communication Session

Figure 2-3 TINA Sessions

Before being able to participate in a session, each user must establish an access
session with the provider; this is comparable to a login session on a multi-user
computer. The access session corresponds to the establishment of the terms and
conditions of the session. It allows the user to start, combine and participate in several
sessions, if authorised to do so. The service session corresponds to the provision of
the service itself and ensures overall coherence of control and management. It is
divided into the User Service Session, which manages the state of each user’s activity
and resource attributes (e.g. charging context), and the Provider Service Session,
which contains the service logic and offers the functions allowing the user to join a

session, or be invited to session. The service session contains only one provider but

16

Chapter 2: Integrated Service Engineering and Distributed Processing Environments
can have multiple users. The communication session provides an abstract view of the

actual transport network connections.

TINA also uses the concept of domains [20]. One type of domain is an administrative
domain where all the objects in the TINA system are under the ownership of a single
stakeholder. A simple example of this is illustrated in figure 2-3 above, where the user

and provider domains are ‘depicted.

2.3.3 The Computing Architecture and the DPE

The Computing Architecture adopted the basic concepts of RM-ODP. It uses
viewpoints to model complex systems (see section 2.2.1). One such viewpoint is
Engineering, which describes the framework for deploying applications and

describing the DPE.

The DPE Architecture consists of the DPE Kernel, the Kernel Transport Network and
the DPE services, as illustrated in figure 2-4 below [14]. The DPE Kernel provides
support to object life-cycle control, i.e. creation/deletion éf objects at run time, and
inter-object communication, which provides mechanisms to support the invocation of
operations provided by operational interfaces of objects. The Kernel provides the
* basic, technology-independent, functions that represent the capability of most
computing systems (i.e. the ability to run programs and the ability of programs to
communicate with each other). The DPE Kemel is assumed to be present on all nodes

that contain a DPE.

The Kernel Transport Network (kTN) facilitates communications between remote

objects, i.e. DPE kemnels on different nodes. The kTN provides a technology

17

Chapter 2: Integrated Service Engineering and Distributed Processing Environments
independent view of the communication facilities provided by the NCCEs of the DPE

nodes. 1t is a virtual network that is logically different from the transport network.

TINA differentiates between the DPE Kernel and DPE Services. The DPE Kemel
provides a basic set of capabilities that are expected on all nodes, while DPE services
are considered more advanced capabilities that may not be present on all nodes. The
DPE services provide operational interfaces to support the runtime execution and

communication of objects.

L DPE 1| licati . OPE2 []
DPE {) Applications .) DPE
Services Services
DPE Kernel p) DPE Kernel]
[—— | =
/

< \ Kerne! Transport Network / I

Transport Network with Distributed

Figure 2-4 DPE Architecture

A subset of the DPE services are listed below [21):

e Trading: provides binding between objects that use a service and objects that
provide the service;
e Notification: enables objects to receive notifications without being aware of

the set of recipient objects;

18

Chapter 2: Integrated Service Engineering and Distributed Processing Environments
o Transaction: consists of three main management functions — transaction,
concurrency control and deadlock management;
e Security: authentication, authorisation and security controlling;

o Object Lifecycle: object creation, deletion, activation, deactivation and move.

The Computing architecture also defines the TINA Object Definition Language
(ODL) [22]. TINA-ODL is used to define objects and their interfaces, and supports

streams or asynchronous messaging.

2.3.4 The Management Architecture

The TINA Management Architecture (depicted in figure 2-5 below [14]) is a set of
concepts and principles used to build and manage systems that will manage TINA
systems. The architecture can be divided into two forms of management, Computing
and Telecommunications. However, before looking at these, some generic
management principles within TINA will be stated. Firstly, management can be
functionally separated using the Open System Interconnection’s (OSI) system
management FCAPS, i.e. Fault, Configuration, Accounting, Performance, and
Security [23]. Secondly, management systems are modelled so that management
operations and relations can be defined. Managed entities are represented as objects

and provide operational interfaces to allow managing objects to manipulate them.

Computing Management involves the management of computers (NCCE), DPE and
of the software that runs on the DPE. Software management (i.e. deployment,

instalation and operation of software computing nodes) and Infrastructure

19

Chapter 2: Integrated Service Engineering and Distributed Processing Environments
management (i.e. how to manage NCCEs, DPEs, and kTN) are the main concems of

this type of management.

Service Resource Element

Applications

iy weasia],
|

Generic
Mgmt.

DPE

NCCE

[w3 Suundwo)]

{
JomidN Hodsuesr]

Kemel Transport Network

Figure 2-5 TINA Management Architecture

Telecommunication Management involves the management of the transport network
and the management of the applications that use and control this network and the
management services. Therefore telecommunication management deals with both the

service and network architectures,

TINA has been adopted by the Object Management Group (OMG) as the basis for its
Common Object Request Broker Architecture, which has many commercial

implementations available.

20

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

2.4 Common Object Request Broker Architecture

The TINA architecture has been adopted, in particular by the OMG. It defines a
middleware standard - Common Object Request Broker Architecture (CORBA),
which adheres to both of the previously mentioned Open Distributed Processing
(ODP) standards (see section 2.2.1) and object-orientation (OO) standards (see section

22.2).

CORBA (see figure 2-6 below [24]) currently consists of an ORB and 15
CORBAservices (see Section 2.4.3 below for CORBAservices overview) [24]. Its
function is to allow objects, which are implemented across a heterogeneous and
distributed platform, to communicate. The ORB is an object bus, which allows objects
to transparently make/receive requests to/from other objects, whether they are local or
remote. The CORBAservices are a collection of system-level services that
compliment the ORB by providing a robust environment and extending a distributed
object’s behaviour, i.e. all the basic services an object will need during its lifecycle
such as security and persistence. CORBA was designed to allow intelligent objects to
discover each other and inter-operate on an object bus. In addition, CORBAfacilities
are specified. They are classed as either horizontal or vertical. Horizontal facilities
apply to all application domains and there are currently only four defined - printing
facility, secure time service, internationalisation service and mobile agents facility.
Vertical or Demain facilities relate to particular application fields; they are defined as
collections of IDL-defined frameworks that provide services, which applications can

use directly. There are currently nine domains working on defining industry

21

Chapter 2: Integrated Service Engineering and Distributed Processing Environments
appropriate IDL, e.g. Healthcare, Financial, Insurance, Telecommunications, Utilities,

Electronic Commerce, Manufacturing, Transportation and Life Science Research. .

Common Fadiliies (CORBAfaciliies)
k Vertical Common Facilities
Application Objects ® ® ®
Horizontal Common Facilities
Distributed Systems

Mgmt.
Documents Info. g

Mgmt,

Task
Mgmt.

< Object Request Broker (ORB) >
|] __
o | o ® ® ® o | o | @
Naming | Parsistence] Life Cyde | Properties | Concurrency | Collections | Security | Trader

° ° ® o vy o
Externdlization Events Transactions Query Relationships Time Licencing

Common Object Services (CORBAsarvices)

Figure 2-6 OMG CORBA Architecture

2.4.1 CORBA Interface Definition Language (IDL)

Distibuted objects are accessed through their interfaces. So, in order to provide
flexibility, interfaces are defined not in code but in an Interface Definition Language
(IDL). This means that the interface is now accessible across different languages,
tools, and operating systems. The IDL defines the operations a distributed object can
perform, the parameters required and any exceptions that may be generated in the

process.

Although IDL appears to be a subset of the C++ language, it is not a programming

language. It is used to specify the contract that exists between the client and server.

22

Chapter 2: Integrated Service Engineering and Distributed Processing Environments
Some additional keywords have been added to deal with distribution issues. It is
currently mapped to several languages, e.g. C, C++ [25], Java [26], Ada, Smallalk
and COBOL. Programmers are able to deal with CORBA objects using their native
language constructs. Since the IDL provides implementation-independent access to
objects in the ORB, client and server objects that are written in different languages are
able to inter-operate. Therefore IDL provides the basis for interoperability and

transparency.

2.4.2 CORBA Object Request Broker (ORB)

The ORB is the middleware that allows clients and servers to communicate. It allows
clients to transparently invoke a server method, while the client is unaware of where
the server is located or how it is implemented. Figure 2-7 [24] below illustrates the

CORBA ORB structure.

On the client side, the ORB intercepts a client call and then finds an object to
implement the request. It passes the parameters, invokes the service and then returns
the results. The client IDL stubs provide sta.tic interfaces to objects, by defining how
clients invoke corresponding services on servers. The stub acts as a local proxy for a
remote server object. The server operations are defined in IDL and the stubs are

generated by an IDL compiler, and include any marshalling' code required.

' Marshalling is the conversion from one data representation type to another in communication

software and is a key component in distributed applications.

23

Chapter 2: Integrated Service Engineering and Distributed Processing Environmenis

S
Interface
Reposito

Skeletons
Client iDL 1 ORB
Stubs Interface [Object Adapter

Obiject Request Broker (1IOP) >
|

Figure 2-7 CORBA ORB Structure

On the server-side, the ORB locates the server object adapter, gives it the parameters,
and then gives control to the object implementation via the server IDL skeleton. The
server IDL skeletons are generated by an IDL-compiler. They provide static interfaces

to each exported server.

The Object Adapter accepts requests for services on behalf of the server’s objectsfll
provides a run-time environment for instantiating server objects, passing requests and

assigning object references to server objects.

The Implementation Repository (also known as the Server Repository) holds
information on the classes that servers support and their coiresponding runtime

objects and object references.

2.4.3 CORBAservices

The CORBAservices are a set of system level services that are used to extend the

ORB functionality. Currently 15 such services are defined, as listed in Table 2-1

24

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

below. Every service can be accessed by every client (if security allows) and basic

- CORBAservices are used by both applications and CORBAfacilities [27].

No. | CORBAservice Function

1. Life Cycle Service | Creates, copies, moves and deletes objects on the ORB.

2. Persistence Stores components persistently on a variety of storage

Service (PS) servers.
3. Naming Service Locates components by name (i.e. provides clients with
an object reference to a server).
4. Event Service Register/Unregister interest in specific events” - basic
publish and subscribe messaging service.
5. Concurrency Lock manager working for threads or transactions.
Control Service

6. Object Transaction | Two-phase commit co-ordination among recoverable
Service (OTS) components using flat or nested transactions.

7. Relationship Creates dynamic links between objects, and mechanisms
Service for traversing the links that group objects together.

8. Externalisation Stream-like mechanism used to get data into and out of |
Service objects.

9. Query Service Query operations for objects (superset of SQL).

10. | Licensing Service | Meters the use of objects for licensing purposes.

11. | Properties Services | Associates properties (named values) with objects.

12. | Time Service Synchronises time in a distributed environment.

13. | Security Service Framework for distributed object security.

14. | Trading Service ° | Advertises object services; similar to the naming
service, it is used by clients to find server object
references.

15. | Collection Service | Manipulates objects in a group as opposed to
manipulating them individually (e.g. queues, stacks,
lists, etc.).

Table 2-1 CORBAServices

2 An Event is an occurrence within an object specified to be of interest to one or more objects, e.g.
when security administrator objects register interest in when the security alarm object is set to
“alarm-raised”.

3 The Trading Service is selected as the example service for the research and will be studied in more

detail.

25

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

2.5 The Trading Service

The Trader is often described as the DPE’s Yellow Pages. If a client is looking for a
service, but does not have a name of the service provider, the client can go the Trader
and ask for the names of all the service providers of the required service. Traders have
an important role to play in future Internet and telecommunication networks. The
interest in security in web-based [28] and other distributed systems [29, 30] means

that Traders will have to incorporate security if they are to be included in this future.

Figure 2-8 Trader interactions

Trading is the process of matching a service request, against a list of supported
services provided by potential servers, as illustrated in figure 2-8 above [31]. The
basic function of the Trading services involves an exporter (i.€. a server) advertising
its available services, by notifying the Trader. The Trader keeps a Registry of such
advertisements. An importer (i.e. a client) makes a request on the Trader for a
particular service, specifying any conditions that need to be met. The Trader checks
its Registry to find a matching service type, with corresponding conditions. The

Trader then notifies the importer of the exporter and the service.

26

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

2.5.1 The Trader Data Structures

The Trader uses two data structures the Repository and the Registry. The Repository
(or Service Type Repository) holds details of service types. This generally consists of
the interfaces to a service and a set of properties that would describe the service. For
example, if the service were a data store, the service description would hold details
such as the type of data store, e.g. file server or database, the location of the store,
amount of space available, whether it supports backup or replication, etc. A property
can also specify its mode. The property mode attributes have the following

connotations:

+ mandatory - an instance of this service type must provide an appropriate
value for this property when exporting its service offer.

¢ readonly - if an instance of this service type provides an appropriate value
for this property when exporting its service offer, the value for this

property may not be changed.

If a property is defined without any mode, it is defined as being “optional™ (i.e., an
offer of that service type is not required to provide a value for that property name, but
if it does, it must be of the type specified in the service type), and the property value
subsequently may be modified. The “mandatory” mode indicates that a value must be
provided, but that subsequently it may be modified. The “readonly” mode indicates
that the property is optional, but that once given a value, subsequently it may not be
modified. Specifying both modes indicates that a value must be provided and that

subsequently it may not be modified.

27

Chapter 2: Integrated Service Engineering and Distributed Processing Environments
These service details are static details, but a Trader can also hold dynamic properties.
Dynamic properties are not held in the Trader and have to be obtained at run-time via
a dynamic property evaluator interface with the specified service. For example a
dynamic property of the datastore could be the “space available”, which the Trader

would obtain at runtime [32].

The second data structure is the Registry. It holds instances of the service types
described in the Repository, i.e. it holds the details of actual datastores, e.g.
“Departmental FileServer”, Floor 2, 3 gigabytes available, supports SQL. So by
specifying a service type and a list of properties, a client can ask a Trader to provide a
list of all the datastores that are support SQL and have over 1 gigabyte of space

available.

2.5.2 Attributes

Each Trader also has Attributes. These define a Trader’s characteristics, i.e. policies
for functionality supported and policies for scoping the extent of a search. Attributes
are initially specified when a Trader is created and can be modified or interrogated via

an administration interface.

2.5.3 Interfaces

Importers, Exporters and the Traders are all part of the Trading Community, i.e. all
objects that interact to import/export services [31]. Interaction between members of
the community is via a set of defined interfaces. Interfaces are also defined to other

Trader components.

28

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

The interfaces described below are the TINA specification. This specification was

originally produced by the OMG for the CORBA Trading Service [33], which was

itself based on the ISO’s ODP Trader specification [31]. The interface names are

defined in uppercase bold, and the operation names are in italics.

The LOOKUP interface is used by importers to discover and import services,

via the Query operation.

The OFFERITERATOR interface is used to return a set of service offers
from the Query operation by enabling the service offers to be extracted by

successive operations on the interface.

The REGISTER interface is used by exporters to advertise their services.
They can advertise the services using the Export operation; the Withdraw
method removes a service offer from the Trader; Describe returns the
information about an offered service that is held by the Trader; Modify is used

to change the description of a service as held within a service offer.

The DYNAMICPROPERTYEVAL interface is provided by an exporter who
wishes to provide the value of dynamic properties at runtime, e.g. when
exporting a datastore interface, a dynamic property could be “space available”
which can only be derived at runtime. The exporter provides a reference to the
interface so that the Trader can invcoke the evalDP operation to obtain a

property value.

The LINK interface allows a Trader to use the services of another Linked

Trader. Links can be added, removed, listed and modified via the interface.

29

Chapter 2: Integraied Service Engineering and Distributed Processing Environments
¢ The PROXY interface allows a Trader to determine at runtime the object
reference of a service offer, because although the Trader has the offer name

and type it does not have an object reference.

e The SERVICETYPEREPOSITORY interface allows service types to be
created and managed in the Repository. It provides operation to allow the user

to add, remove, list and modify service types in the repository.

e The ADMIN interface allows the administrator to configure the system and
set various parameters. There are four methods. The Antributes and Set
operations allow administrator to set and return the values of the current trader
attributes. List_offers allows the administrator to perform housekeeping by
obtaining a handle on each of the offers (excluding proxy offers) within a
Trader. List_proxies returns a set of offer identifiers for proxy offers held by a

Trader.

2.5.4 Linked Traders

Traders from different domains can create links or federations and so pool their
service offers. If a Trader cannot find a matching service, it will then pass the request
onto another Linked (or Federated) Trader. The linked Trader can then check its
Registry to see if it can match the original request. So when a Trader links to other
Traders, it makes the offer spaces of those other traders implicitly available to its own

clients, i.e. linked trading allows an importer access to multiple Trading domains.

30

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

LOOKUP(Query)
A
PROXY{Export_Proxy, .-
P itharaw_Proxy, Describe_Proxy)
roxy
OFFERITERATOR(-
Attributes Naxt_n, Max_Laff.{
REGISTER(Export, Withdraw, Describe| L
ithdraw_Using_Constraint, Resolve) Service Type Linked
Exporter Repository TRADER
DYNAMICPROPERTYEVAL UNK(AdD_Link,
(evalDP) Remove_Link,
SERVICE_TYPE_REPOSITORY(Add_Type, Registry Dascribe_Link,
Remove_Type. List_Type, Describe_Type, List_Links,
Fully_Describa_Type, Mask_Type, Modity_Link)
Unmask_Type) 1

ADMIN({Attributes, Set,
st_Offers, List_Properties)

Administrator

Figure 2-9 Trader

A Trader has to be explicitly linked to another. However, these other Traders may be
linked to yet more Traders, and so the initial Trader can reach a large number of other
Traders. This can also cause a problem by providing too much choice. In order to
narrow the search parameters on service offers, Traders provide Policies, Constraints
and Preferences. Policies are used to provide information that affects a Trader’s
behaviour at runtime, e.g. allow the client to specify the scope of a search, how the
search is to be performed or how many trader links can be traversed. Constraints
allow the client to specify search criteria, by using a well-formed expression
conforming to a constraint language. For example, a client could use SQL as a
constraint language. Preferences allow the client to specify the order in which offers

are returned. Figure 2-9 illustrates an example of a basic Trader structure described.

31

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

2.5.5 Uses of an Unsecured Trader

Apart from the core function of the Trader providing references to server objects, it
has also been suggested by Resnick [34] that the Trader could be used to standardise
World Wide Web (WWW) facilities. There are a number of search engines, web
crawlers and white pages such as Yahoo, HotBot, and Alta Vista. However, these
facilities, especially the search engines, lack a programmatic interface and differ not
just in implementation but also in how they are accessed, how predicates are formed
and how Uniform Resource Locators (URLs) are registered. Therefore a synergy
between the Trader and the Internet facilities would offer a solution. Search engines
woﬁld benefit from a standardised programmatic API, which is important when the
search engines are not just interested in web pages, but also in intelligent objects that
export functional interfaces, and the clients seeking them are not people using GUI'
interfaces but client objects using APIs. The search engines offer highly scalable data
stores, with fast sea.rch algorithms and accumulated stores of server objects that have
already been categorised. This opens up a whole new opportunity for offering
services, of any kind provided by intelligent objects, to both users and client objects in

a distributed environment.

It is also important to remember that ODP and Trading is not just for Internet use. It is
designed to work on any heterogeneous distributed object environment. Therefore
some other possible uses of the Trader have been suggested by the Distributed
Systems Tecﬁnology Centre (DSTC) research group in University of Canberra,

Australia [35):

32

Chapter 2: Integrated Service Engineering and Distributed Processing Environments
e real-time trading, e.g. dynamic configuration of services within
telecommunications switches (combining bandwidth from local and trunk

carriers to provide an end-to-end service); -
e large scale trading, e.g. using trading to access network elements from

network management applications for a national telephone system.

2.6 The Security Service

While the security principles and the current DPE security model will be discussed in
the following chapters, a brief description of the CORBA security service, which will
be used later in the research, will be presented in this section. The CORBA Security
Service (CORBASec) [36]} provides a framework for distributed object security.
There are two levels of security. Levell provides protection for applications that are
“unaware” of security, by transp.arently calling security functions on object
invocation. Level2 security provides more facilities and allows z_npplications

themselves to control the security provided, i.e. security-aware applications.

CORBASec currently supports certain levels of authentication, access control,
confidentiality, integrity and non-repudiation. Another feature of CORBA security is
the use of credential delegation between objects. It allows credentials (o be

propagated along an object request chain.

33

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

Object Reference

Clem §° " chucsl R

Areply
[ORBREcurity Service ORB Sccurity

| T Necure :
Secure ——‘@la ®_
lnvocation Ry Invocation

a0
create
y N ‘etz -

W WVaule)
ontes Ay
Jecurity tokens at association setujp

m@m protect messages]

[ORB Gore]

Figure 2-10 CORBA Security Service

Security is implemented by a number of objects, as shown in figure 2-10 above. Apart
from the specific security interfaces, CORBA makes use of two objects, Current and
Credentials. Current, a pseudo-object initially used by the transaction service to
propagate transactiocn context, has been adopted by security to propagate the security
context. It does so by holding a reference to Credentials. Once a user is authenticated,
a Credentials object is created. It holds information such as roles, privileges and an

authenticated ID.

In order to provide “out-of-the-box” interoperability across multi-vendor ORBs,

CORBA now defines different Common Secure [IOP (CSI) profiles [37]:

34

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

e CSI Level 0 security provides identity-based policies without delegation.

Therefore only the identity (no other attributes) of the initiating principal is
transmitted from the client to the target, and it cannot be delegated.

e C(CSI Level 1 security provides identity-based policies with unrestricted
delegation. As in CSI Level 0 only the identity is transmitted from the client to
the target. However, the identity can be delegated to other objects, using
simple unrestricted delegation.

e CSI Level 2 security provides identity and privilege-based policies with
controlled delegation. Therefore, all attributes can be passed form client to
target, including access, and audit identities and any privilege attributes such
as role or group. These attributes can be delegated, but are subject to any

restrictions placed on the delegation process by the initiating principal.

CSI Level 0 is addressed by SSLIOP, an implementation of [IOP over a Secure
Socket Layer (SSL) [38] connection. The full-scale security version of 110P, SECIOP,
is used by the other mechanisms’. Both protocols lie between the network transport
layer (TCP/IP) and the GIOP protocol layer, and so are considered mutually

exclusive.

Figure 2-11 below summarises the objects that are specified in the CORBA Security
Service specification [36]. These objects are categorised into their security service

functionality.

* CSI version 2 is addressing the use of SSLIOP to cover Level | and 2, by introducing Privilege
Autribute Certificates, so that SSL can provide access control.

35

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

Authentication Secure Invocation Non-Repudiation
& Authorisatlon & QoP & Audit
Current

Credentials

AccessDecision | Vault I] LNHCmdentlals—h | AuditDeclslon ‘]
| 1 L

RequiredRights SecurityContext
==

Principal
Authenticator —‘

Operational Objects

{

DomainAccess

Polic: Secureinvocaiion | nRPoticy]—l | audipolicy I—l
lic
AccessPolicy T Y —l — L

Administration

DefegationPollcy I

Figure 2-11 CORBA Security Objects

The object functionality is defined as follows:
Operational Objects:

e Current: represenis service state specific information associated with the

current execution context and is available to both clients and servers.

e Credentials: represents a particular principal’s credential information. It
includes information such as that principal’s privilege and identity attributes,
such as an audit id. It also includes some security-sensitive data required when
this principal is involved in peer-entity authentication. However, such data is

not visible to applications. It is referenced by the Current object.

e PrincipalAuthenticator: responsible for authenticating principals and

creating Credentials containing their privilege attributes.

36

Chapter 2: Integrated Service Engineering and Distributed Processing Environments
e AccessDecision: responsible for determining whether the specified
Credentials allow an operation to be performed on a target object. It uses
access control attributes for the target object to determine whether the
principal’s privileges, obtained from the SecurityContext (see below) are

sufficient to meet the access criteria for the requested operation.

¢ RequiredRights: specifies which rights are required to use which operations

of an interface, and is generally used by AccessDecision.

e Vault: facilitates creating Credentials objects and establishing security

contexts between clients and targets when they are in different trust domains.

¢ SecurityContext: hold security information about the client-target security
association and are used to protect messages, and is generally created by the

Vault object.

o NRCredentials: hold the identity and attributes of a principal, which are
specifically used for non-repudiation operations. The attributes include
whatever is needed for identifying the user when generating and checking
evidence, e.g., it might include the principal’s key (or provide access to it)
when required to sign evidence. NRCredentials is available via the Current

object.

» AuditDecision: used to obtain information about what needs to be audited for

the specified object/interface in this environment.

¢ AuditChannel: used to write audit records.

37

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

Administrative Objects:

DomainAccessPolicy: implements the access policy, by granting/revoking a
set of named “subjects” (e.g., users) with a specified set of “rights” (e.g., get,

set, manage, use) to perform operations on the “objects” in the domain.

AccessPolicy: defines what subjects are available in a domain, and what rights

they can be granted, for particular operations.

DelegationPolicy: controls which credentials are used when an intermediate

object in a chain invokes another object.

SecurelnvocationPolicy: specifies secure invocation policies for security
associations, including controlling the delegation of client’s credentials, and

message protection.

NRPolicy: holds the non-repudiation policy information, such as the evidence

types required.

AuditPolicy: identifies which operations (if any) on an object will be audited.

The full CORBASec specification [36] contains more comprehensive details on these

objects and the security service.

38

Chapter 2: Integrated Service Engineering and Distributed Processing Environments

2.7 Summary

This chapter has studied the concepts of ISE and Distributed Processing
Environments. All DPEs have a defired set of requirements such as independence,
openness, transparency, scalability and object-orientation in order to provide a
flexible environment that can adequately support distributed objects. These
requirements will have to be taken into consideration when defining any security

framework within this environment.

The main focus of the ISE study was TINA, the telecommunications architecture,
which has widely influenced the telecommunication and distributed research
environment. The TINA DPE architecture consists of the DPE Kernel, kTN and DPE
services. It is the DPE security service and the management security function that is
of interest to this research and they will be examined in more detail in the following

chapter.

TINA is also a practical standard that has been adopted by the OMG for its ORB
technology. CORBA, along with its Trading and Security Services was described, and
will be used later in the research. The next chapter will now look at security in general

and the issues and principles that arise within the context of a DPE.

39

3. Logical Security in Distributed Systems

3.1 Introduction

According to Price Waterhouse Coopers [39], it is estimated that in 2000 hackers will
cost businesses around the world almost 1.6 trillion US dollars and that 40,000 person
year55 of productivity due to computer downtime. However, the survey is believed to
underestimate the total cost because it only refers to companies with over 1000
employees and so does not take small to medium sized enterprises into account. This
highlights the extent of the problem on a global scale, and figures indicate that the
problem is getting worse. The latest CERT/CC statistics show that the number of
security incidents is increasing. In 1988 only 6 incidents were reported, while in 2000
21,756 were reported [40]. With such a high cost, security cannot be ignored; the

situation has to be addressed.

Security refers to pro?edural, logical, and physical measures that are aimed at
preventing, de[ecti.ng or limiting any system misuse, be it accidental or deliberate.
Procedural measures refer to administration and policies such as changing passwords
regularly or selecting trustworthy staff. Physical measures are those taken to ensure
security by tangible means such as locking doors. Logical measures are those such as
authentication and access control. It is the logical measures that are examined in this

chapter.

3 One person year is defined as one person working a 24-hour day, 365 days a year.

40

Chapter 3: Logical Security in Distributed Svstems
General security concepts, which have well accepted, standardised specifications, will
be explained. Other general security principles, relevant to the research will also be
presented; they will prove useful in guiding the definition of a DPE security

framework in the up-coming chapters.

3.2 Security Principles

Security for distributed systems uses a set of overlapping concepts or services, as
specified by the International Standards Organisation (1SO) [41] - authentication,
access control, confidentiality, integrity, and non-repudiation. Security management is
also considered. B)‘r applying these concepts, a system can be made more secure. The
ISO security services relate to distributed environments and to the Open System
Interconnection (OSI) Reference Model [42], and so the concepts also apply to a

DPE. The following sections will look at each of the services and what they provide.

3.2.1 Access Control Service

The ISO states that “security is used to minimise the vulnerabilities of assets and
resources” [41]. An asset is anything of value in a global computing system and a
vulnerability is any weakness that could be exploited to violate a system and its
information. Therefore, one obvious way to minimise threats is to limit the users who
can have access to assets/resources [43]. This means that all data, programs and
services need to be protected, but not just from users but also from illegal access by
other programs and services. It should be noted that threats occur from two basic

areas, external and internal. Generally, external threats can be minimised by denying

41

Chapier 3: Logical Security in Distributed Sysiems
access to the network, e.g. permitting external access only through a firewall [44).
Internal threats are more difficult to handle, or even to recognise. However, internals
threats are a significant problem as numerous studies have shown that they have
typically accounted for about 80-85% of security breaches [45], although the CSI/FBI

2000 survey shows, external incidents are increasing because of the Internet [46].
Threats can be deliberate or accidental. They can occur as the result of:

e destruction of assets;

e corruption or illegal modification of assets/resources;

illegal or unauthorised disclosure of data;

* interruption or denial of services.

Therefore control of access needs te be addressed at several levels:

e access into the network / DPE;
® access LO an asset or resource;

* type of access to an asset or resource.

The Access Control Security Service protects resources from unauthorised use. It can
be used on various assets, e.g., communications packages, stored data, or components.

The service can be broken down into several core components [47]:

e Subjects & Objects: the entities to which access control is applied to or

utilised by.

42

Chapter 3: Logical Security in Distribied Systems
Access Operations: Access operations-specify the type of access that is
permissible. It requires the definition of Access Rights [48] and Access
Attributes [49].
Access Control Structures: The basic access control structure is an Access
Control Matrix (ACM). Two derivatives of the ACM are the Access Control
List (ACL), where access rights are stored with the object, and the Capabilities
List (CL) where access rights are stored, using an un-forgeable token, with the

subject.

Intermediary controls: Administration needs to be as simple and effective as
poésible, therefore intermediary controls are introduced. Privileges collect the
right to execute a certain set of operations under a particular activity, e.g.
system administration. Privileges are often specified in a predefined set of
Roles, where subjects derive their access rights from the role they are

performing.

3.2.2 Authentication Service

One type of threat is known as a masquerade; that is when an entity successfully
pretends to be some other legal entity and thereby gains illegal access to a resource.
Therefore before granting access to a user or resource, the security service should be
able to guarantee that the user/resource is actually who/what it claims to be [50, 51];

this is the responsibility of the authentication service.

In the case of connection-oriented envirecnments (i.e. CORBA), peer entity and peer-

to-peer authentication apply. Peer entity authentication provides corroboration of the

43

Chuprer 3: Logical Security in Disiributed Systems
identity of a principal within the context of a communication relationship (only one
entity 1s identifying itself, either the client or the server), while peer-to-peer
authentication (also known as mutual authentication) involves both client and server
entities authenticating each other. The process involves the exchange of
authentication information. The information exchanged will depend on the

authentication technology used. It is generally based one of the following:

o secret knowledge - e.g., passwords;
* cryptographic techniques - e.g., digital signatures [52, 53];
e characteristic - e.g., biometrics [54, 55];

* possessions - e.g., smaricards [56].

A key authentication concept, which should be mentior;ed at this point, is the Trusted
Third Party (TTP) [57]. In the case of public keys, it is actually impossible to be sure
that a particular user’s public key is not a forgery unless a digital certificate is used
[58]). The certificate contains the user’s public key and an endorsement that the key is
real, made by a TTP’s digital signature. The issue of trust is now shifted to the TTP -
so if an entity trusts the TTP, he can trust that the user’s public key he received is real,
and not a forgery. Such TTP’s are called Certification Authorities (CA). The X.509
Authentication Framework [59] specifies a framework for certificates and a

hierarchical structure for CAs, as illustrated in figure 3-1 below.

Chapier 3: Logical Security in Distributed Svstems

User 2

User 1

Figure 3-1 X.509 Certification Authority Hierarchy Structure

In the above figure, Userl and User2 do not currently trust each other because they
are in different domains, using different CAs, CA, and CA; respectively. However,.
they do have a common CA when the hierarchy structure is used, CA4, and because
CA, has issued CA,, that means that Userl can trust User2’s certificate. Similarly,
User2 will trust Userl’s certificate, because working ihrough the hierarchy, CA, is

issued by CAj, which in tumn is issued by the trusted CAs.

3.2.3 Confidentiality Service

Confidentiality on a network means being able to guarantee the privacy and secrecy
of an asset, such as a data file containing personnel details. Confidentiality can be
applied to data, whether it is in storage or in transit, and may be applied to only
selected fields, instead of a whole message/record, in the interests of enhancing
performance while still providing adequate protection. There are two basic

cryptographic approaches:

45

Chapner 3. Logical Security in Distributed Svstems

o Symmetric: where the encryption and decryption keys are the same, and
therefore keeping the key secret is imperative. An example of this is the Data
Encryption Standard (DES) [60];

o Asymmetric: where the encryption and decryption keys are different. In this
case the encryption key (or public key), is available to everyone so that they
can encrypt plaintext and then send the ciphertext to user A. However, only
user A will know the decryption key (or private key) and, therefore, only he
can decipher data sent to him. An example of this is the Rivest Shamir

Adleman (RSA) algorithm [61, 62].

The existence of certain regulatory requirements, in relation to cryptography,
complicates access to and use of cryptographic mechanisms in certain countries [63].
There are two main issues — key length and cryptography use. The cryptographic
algorithm and key length define the strength of encryption. Some countries have
export laws that limit the key length of a given algorithm, e.g. US, France, Russia.
The other issue relates to the use of cryptography, i.e. whether it is used for
authentication and integrity purposes versus its use for confidentiality. When used for
confidentiality, the export laws are usually more stringent. However, in the case of the
US, new regulations were defined in January 2000 that considerably relaxed the tight

restrictions that were previously in place [64].

46

Chapier 3: Logical Security in Distribwted Svstems
3.2.4 Integrity Service
Integrity of resources ensures that attempts to modify data can be detected no matter
what corruption attempts have been made on them [65]. In a comprehensive security
survey database, maintained by Cohen, the attack section lists 95 possible classes of
attack that can be used in networked systems, it includes everything from computer
viruses to input overflows. Of these 95 classes, 66 are used to corrupt information
[66]. Therefore any integrity sérvices must guard against any threats involv>ing illegal
asset/resource modification. Integrity is applied to both data and system resources.
Data integrity ensures that the data has not been accidentally or maliciously altered or
destroyed [67]. System integrity ensures that ali resources in a network are available
1o users and that the system remains in a state consistent with strictly defined security

rules and regulations [68].

Cryptography can be utilised in the integrity service. An important cryptographic
mechanism is the one-way hash function. It takes a variable-length string (called a
pre-image) and converts it to a fixed-length output string ((called a hash value). It
works in one direction, i.e. it is easy to compute a hash value from pre-image, but it is
difficult to generate a pre-image that hashes to a particular value. Another desirable
attribute of a one-way hash function is to ensure that it is also collision-free, i.e. it is
hard to generate two pre-images with the same hash value. Therefore a one-way hash
function can be used as a fingerprint to a particular pre-image, e.g. Secure Hash
Algorithm (SHA) [69} and Message Digest S (MD-5) [70]. A one-way hash function
with the addition of a secret key is known as a message authentication code (MAC)

[71]. The hash value is a function of both the pre-image and the key. Therefore only

47

Chapier 3: Logical Security in Distributed Svstems
someone with the identical key can verify the hash value. This is useful for providing

authenticity.

3.2.5 Non-Repudiation and Auditing Service

Repudiation is the denial of an action by an entity. For example, a user may deny
sending or receiving a me'ssage. Non-repudiation forces an entity to be accountable
for its participation in some action [72]. The I1SO defines the types of evidence
required in a Non-Repudiation service [73). There are several proofs, some of which

are described below:

e Proof of Origin: provides the recipient with unforgeable proof that the message

originated from the originator.

¢ Proof of Receipt: provides the originator with unforgeable proof that the message

was received by the original recipient.

¢ Proof of Submission: provides the originator with unforgeable proof that the

message was submitted for delivery to the original recipient.

o Proof of Delivery: provides the originator with unforgeable proof that the

message was delivered to the recipient.

Non-repudiation is made up of a set of supporting facilities that are required to
provide a full service; it includes evidence generation and verification, evidence
storage and transmission, and an adjudicator to seitle any disputes using the evidence

produced. A notary is also required.

48

Chepner 3: Logical Security in Distributed Systems
Auditing is an intrinsic part of Non-Repudiation. It records security relevant events®
in an audit trail (log) for later analysis. This analysis can be used to help identify
unauthorised activity within the system. The audit service can also be used to generate
alarms to indicate that a more immediate response is required. ISO defines that the
security audit function needs to provide trail analysis, archiving and examining, and

alarm handling..

A specialisation of auditing is Intrusion Detection. It covers the monitoring of
network activity and the analysis of data for potential vulnerabilities and attacks,
historical or current. It is an important component in system security. There is a lot of
research emphasis on this subject, the most prominent are Next-generation Intrusion
Detection Expert System (NIDES) [74] and more recently Event Monitoring Enabling
Responses to Anomalous Live Disturbances (EMERALD) [75]. There are also many

commercial products available [76).

Deployoed
Sampleri
/:;‘ Sampler
Deployed . L
SamplerN
Analyser I
Knowledge I
Base
L 4 I
Responder
g
MONITORED
SYSTEM
-

Figure 3-2 Monitoring Agent Structure

® A security relevant event is any action within the system, which has been marked as being of interest
to the security service, e.g. user authentication, object creation, or database access.

49

Chaper 3: Logical Security in Distribuied Svsiems

In Intrusion Detection Systems (IDS), there are three basic processes involved
monitoring, analysis and response. These functions are represented in the generic IDS
solution, the Monitoring Agent [77} illustrated in figure 3-2 above. It is comprised of

the following components:
e Sampler: pulls informaticn from the system and produces audit logs;

e Knowledge Base (KB): keeps the sum of all knowledge that the monitoring

system requires to operate. The KB will hold the following types of information:

- security policy to ensure that the monitoring is in accordance with the

overall system poli'cy;
- security log tol record recent events that have taken place in the system;
- profiles of the activities of every user and resource in the system;
- sampling information to generate the security logs;
- analysis information that is required by the analysis techniques;
- response information that is required by the responder.

e Analyser: takes information from the sampler and compares it with the data
stored in the KB and from an analysed conclusion, it determines whether a

security violation has taken place.

e Responder: takes the analyser output and information from the KB, and it decides

and implements the action to be taken.

50

Chapier 3: Logical Security in Distributed Svstems
3.2.6 Security Management
The 1SO [41] defines a security policy as a set of criteria for provision of security
services. It defines what is and what is not permitted in the area of security during
general operation of a secured system. It must be implemented by taking the
appropriate security measures. However, security measures will not be effective
unless the user understands what needs to be protected and can determine what
mechapisms are used, i.e. what the policy is. Secunty needs a complete and usable
administration system that will allow administrators to maintain and operate security

on a day-to-day basis.

'

Administration occurs within a domain. A security domain is defined by the ISO as a
set of resources where a specific security policy should be applied. Secunty
management must contro! and support security within its own domain and possibly
allow for inter-domain security interaction. OSI defines three categories of security
management; security system management, security services management, and

security mechanism management.

e Security System Management is responsible for applying security
management to the whole system. Firstly, it ensures that the security policy is
implemented. Secondly, it must manage interactions with other management
functions and with the other security management systems (described below).

e Security Service Management deals with all events in relation to security
services. It will decide which mechanisms will implement a service. It will

negotiate for these mechanisms and then invoke.them.

51

Chapter 3: Logical Security in Distributed Svstems

¢ Security Mechanism Management ensures that mechanisms can operate by
providing all the necessary resources. For example, in the case of key
management, it will generate suitable keys, determine which entities should

receive a copy of the key and then distribute keys securely.

3.3 Other Principles relevant to DPE Security

While the security principles described above apply to any type of system requiring
protection, the following sub-sections outline some principles that are particularly

pertinent to a DPE.

3.3.1 Security Domains and Trust Models

Within any secunity system, trust is involved somewhere, e.g. the receiver a certificate
has to trust the Certificate Authonty’s process of registration and certification; a
system administrator has to trust that users wi!l not give their userids and passwords
to unscrupulous hackers; users have'to trust system administrators not to abuse their
privileges and access prnivate data; Intemet shoppers have to trust on-lines businesses
to protect their data, especially their credit card numbers. When trust breaks down the
consequences can be devastating. If the trust is misplaced, a system can be
compromised. A hacker can use a password to break into a system and steal, modify
or damage data or available services. If, as happened to several on-line companies,
credit card information is compromised [78] then companies can go out of business

because the consumer has no confidence in the company’s ability to protect their data.

52

Chapter 3: Logical Security in Distributed Svstems

Trust is not only integral to a security model, it is necessary to the successful

operation of the security system.

Three possible trust scenarios can function in an interoperability model:

No trust: The issue of having no trust existing between disparate security
domains means that mutual suspicion exists. No attempt will be made to
establish trust and the domains will continue to treat each other with suspicion.
This type of behaviour can be implemented through the use of ‘guest’
privileges, which allow an untrusted entity very restricted and controlled

access to a system.

Pre-existing trust: This scenario refers to the fact that two disparate security
domains trust each other due to a previously negotiated trust between them.
This type of trust is generally achieved by security administrators from the
domains agreeing the terms and conditions of secure interoperability. This can
include defining recognised userids that would operate in both domains and
defining security mapping between the access control privileges of each
domain, i.e. administrative co-operation between the two domains is
necessary. For example, in domains that use roles and access privileges to a
file system, “UserAB” is defined in domain A and domain B. In domain A,
“UserAB” is a member of the “manager” group and has “read” and “write”
access to all files on the files server. In domain B, “UserAB” is a member of
the “technician” group and has “update” access to files in the technician’s

directory.

53

3.3.2

Chapier 3: Logical Security in Distributed Svstems
Trust needs to be established: In the pre-existing trust scenario above, the
trust was defined between specific domains and required administrative
interaction in both domains. There is one other scenal.'io. This is when trust can
be established between two domains that have no prior knowledge of each
other. An example of this is the use of Secure Socket Layer (SSL) [79] with
certificates and Certificate Authorities. “UserAB” is a member of domain and
has a certificate issued by Certificate Authority 1. “UserAB” tries to access a
server in domain B. Domain B has no knowledge of domain A, but it does
recognise Certificate Authority 1. Therefore it can authenticate UserAB’s
certificate and atlow access to the server. In this case, domain A and B have
no prior knowledge of each other but they do have a common trusted third

party, Certificate Authority 1, which is used to establish trust.

Distributed Trusted Computing Base

Security trustworthiness is the ability of a system to protect resources from exposure
to misuse from malicious or accidental means. However, this is more complex in a
DPE than in a centralised system such as IBM’s Resource Access Control Facility
(RACF) [80]. Trust in a centralised system is usually static because servers are
generally trusted and remain trusted through their entire life. Trust is also confined to
a single security facility, such as RACF in an OS/390 environment. This is not the
case in a DPE. The security model can exist over multiple distributed platforms with
various security mechanisms, such as Sesame [81], Kerberos [82] or SSL, and the

trust model is not static over the lifetime of an object, because an object can be both

54

Chaprer 3: Logical Security in Distributed Svsiems
client and server and so can be both trusted and untrusted depending on the role it is

playing at a given time.

A Trusted Computing Base (TCB) is the totality of protection mechanisms within a
computer system, including hardware, firmware and software, the combination of
which is responsible for enforcing a security policy. The ability of a TCB to enforce
correctly a unified secunity policy depends on the cormrectness of the mechanisms
within the TCB, the protection of those mechanisms to ensure their correctness and
the correct input of parameters related to the security policy [83]. In a DPE the notion
of a distributed TCB has to be adopted, because the mechanisms, data and program
logic used by the TCB could also be distributed. Therefore, a distributed TCB can be
seen collection of objects and mechanisms that must be trusted so that a secure end-
to-end connection can be made between a client and server. This implies that the
distributed TCB may need to include parts of the Native Computing and
Communications Environment (communication network, operating system and any
security mechanisms resident therein), the DPE kemel, DPE services (including the
security service itself) and possibly some related TINA applications (such as

management applications).

3.3.3 Interoperability

Interoperability relates to the problem of allowing an interaction to occur between two .
disparate domains. There are several approaches that can be used to deal with the
issue. The various merits and applicability within a DPE environment of these

approaches will be discussed in the following sections.

55

Chapter 3. Logical Security in Distrilnted Svsiens
3.3.3.1 Bridges

A bridge provides a point of connection between two disparate domains. It can
provide translation between the domains, so that interoperability is possible. The
bridge can exist at any level. One example of a bridge is the Wireless Application
Protocol (WAP) Gateway [84]). WAP is the de-facto standard for the presentation and
delivery of wireless information and telephony services on maobile phones and other
wireless terminals. The WAP specification uses standard Web proxy technolqu to

connect the wireless domain to the Web.

There are two basic types of bridge, immediate and mediated. Immediate bridges are
full bridging solutions between two domains. They map specifically from one domain
to another. Immediate bridges provide a fast and efficient solution but are inflexible
because they only provide a mapping between two specific domains. Therefore, if
there are n domains, which require bridges to interoperate, then the number of bridges

required is:
° (nz-n) /2

In the example below there are 4 terminals, each in its own domain. Therefore the

number of bridges required in the immediate bridging solution is 6.

56

Chapier 3: Logical Security in Distributed Systems

Immediate Bridging Mediated Bridging

| —

E. Tarminal

G Bridge

Figure 3-3 Interoperability Bridging Solutions

Mediated bridges provide the translation to some common domain. In this case, only
n bridges are required between n domains, and therefore the number of domains can
be easily extended without increasing the number of bridges exponentially. In the
example illustrated in figure 3-3 above only 4 bridges are required for the 4 domains.
However, the use of mediate bridges is not as efficient as immediate bridges for small
number of domains, because it requires two bridges between any two domains, i.e.

every message is translated twice.

These bridges deal with bridging technology domains. The issue of bridging security
domains presents other problems. When considering a mechanism levellsecurily
bridge, one obvious problem comes to the forefront — any message that is subject lo
encryption or an integrity check has done so using a specific security mechanism
(algorithm). Therefore, to translate to another mechanism, the bridge is required to
decrypt and then re-encrypt the message. This would add a considerable performance

overhead, to a service that may already be stricken by performance degradation from

57

Chaupier 3: Logical Security in Distributed Svstems
the initial encryption, or integrity checksum. If a mediated bridge is used then this
performance hit will be doubled because two bridges will exist and translate the
message. If a mediated bridge is used then the issue of trust and deployment exist. For
example, the bridgel will need to have access to both types of mechanism and could
possibly reside in one of the two domains. This scenario would imply that the bridge
is not necessary as the dbmﬂin already would have access to the mechanisms.
However, the bridge cpuld also reside outside both domains with a TTP, but then trust
must be established between each of the domains and the TTP, as the TTP will have
access 1o the original message at some point during the translation process. As such it

offers another point of vulnerability over which the two domains have no control.

3.3.3.2 Standard Mechanisms

The use of specific bridging technology is only one solution. Another solution is to

use common {echnologies between the client and server. There are two requirements:

o Common protocol that will undertake the initial negotiation between client and

SETVEr,

o Common set of security mechanisms available in the chient and server

installations.

The common protocol will begin the negotiation between the client and server. It will
allow the client and server to select a common security mechanism(s) that meet the
requirements for the secure association between them. Once the negotiation has been

completed, the agreed mechanism{s) can be used to provide the secure context

58

Chapter 3: Logical Security in Distribuied Svstems
between client and server. The most common example of this is the SSL protocol,
which uses the SSL Handshake protocol to define what mechanisms will be used by
the client and server to provide a secure context. The secure communication is then
provided by the SSL Record protocol. The assumption here is that the client and
server are able o agree a common set of mechanisms that meet the minimum security
requirements of their respective security policies, e.g. both client and server policy
specify that they require encryption, and an appropriate mechanism is available to

secure the communication.

3.3.3.3 Generic Tokens

A generic token is standardised, non-specific data that can be used to provide data
between two entities. Such tokens are commonly used as a means of communicating
data for many different purposes. For example, a generic token is the fomat that
NIDES (see Section 3.2.5) uses to distribute and work with audit data. Another
commonly used example is the Generic Security Service Application Protocol
Interface (GSS-API) [85]. It provides portability between distributed security
architectures by using simple interfaces to security services and generic tokens, which
can then be implemented and utilised by a range of underlying mechanisms and
protocols. The generic tokens are successful because they use opaque data,
mechanism identifiers for a standard set of mechanism, and standardised status codes.
This means that GSS-API is extensible and can easily adopt new mechanisms.
Therefore, any generic token should use these devices to ensure that it remains

portable across multiple mechanisms and environments.

59

Chapner 3: Logical Security in Distributed Svstems
3.3.4 Mechanism Independence and the Separation of Mechanism & Service

Management

Mechanism independence is the notion that a service’s functionality is not dependent
upon the mechanisms that implement it, in other words different mechanisms can be
used by the service to provide the same service functionality. This results in two
benefits. Firstly, since the user is not concemed with what mechanism is used to
implement a service (e.g. a service object), it means that the service should be
portable across different implementation platforms and also assists with the OO
objective of encapsulation. Secondly, a result of mechanism independence is the
separation of mechanism from service management. This facilitates flexibility and
allows the introduction of new mechanisms without compromising the service
functionality. This feature also assumes that the protocol is designed to accommodate
generic tokens/data types that the appropriate mechanism can Lhén utilise, i.e. the
protocol or any object interfaces are not mechanism dependent. Architectures such as
the Comprehensive Integrated Security System (CISS) [86] actively promotes
independence by utilising a layered architecture. GSS-API also promotes
independence by utilising generic interface definitions that are not dependent on any

underlying mechanism.

3.4 Summary

This chapter has looked at logical security for distributed systems. Firstly, it examined
general security principles, which apply to all systems requiring protection. They

include all the security services - authentication, access control, integrity,

60

Chaprer 3: Logical Security in Distributed Svstems
confidentiality and non-repudiation - which need to be applied in a DPE security

solution.

The discussion proceeded to cover other principles that will prove important in
defining DPE security by addressing issues encountered when operating in a
distributed, heterogeneous, multi-domain environment. The discussion proposes some
methodologies for addressing these problems and they should also be considered in a

DPE security solution.

The next chapter will provide an analysis of the security requirements for DPEs, and
how they can be achieved, which will then assist in the definition of a new DPE

security framework.

61

4. Requirements for a new Framework for DPE

Security

4.1 Introduction

This chapter reviews the currently defined security requirements for DPEs and
identifies that they do not fully cover the problem space to support the design of an
appropriate secunity framework. The problem domain is then analysed with an
industrial partner 7 and goes on to provide a complete set of the DPE security

requirements.

These requirements are then applied to the TINA security model, which is found to be
wanting by comparison with the requirements. The chapter concludes with a new
security framework that address the requirements identified in the new DPE problem

domain.

4.2 Requirements for DPE Security

Chapter 3 outlined the general security services (see section 3.2) and also identified
some principles such as trust models and distributed TCB (see section 3.3) that would
prove useful in defining a DPE security model. However, they do not provide a -

complete set of DPE security requirements, necessary to define a framework.

7 Research was done in collaboration with Orange (Prof. Paul Reynolds), and reviewed by an industry
expert.

62

Chapter 4: Requirements for a new Framework jor DPE Security
This section considers the particular requirements of a generic distributed object
system (GDOS), which have been collated from current literature. Such systems are
the genesis of a distributed processing environment. By their nature GDOS are less
secure than client/server because the act of distribution transparency means that the
traditional operating system cannot be trusted to protect the server resources and data
in transit. Therefore servers in a distributed system have to find new ways to protect
themselves without adding an unacceptable overhead effecting performance and

availability.

4.2.1 Distributed Object Complications

A distributed object system is considered less secure than traditional client/server

systems [24, 36] for the following reasons:

o A distributed object can have the roles of both client and server: In
traditional client/server systems, servers can always be trusted. However this
is not true for distributed systems, as roles are not clearly defined, e.g. a single
entity can act as both a client and a server and so the trust model is more

complex.

o Distributed object interactions are not transparent: Because of
encapsulation8 [11], a client is not fully aware of the interactions that take

place when it invokes an object and so they are more difficult to control.

! Encapsulation consists of separating the external aspecis of an object, which are accessible 10 other
objects, from the intemal implementation details of the object, which are hidden from other objects.

63

Chapter 4: Requirements jor a new Framework for DPE Securiry
¢ Distributed objects are polymorphic: Objects can be replaced without any
interruption to the system, as long as the interface remains the same. This

provides a perfect opportunity for Trojan Horses® to infiltrate a system.

o Distributed objects can scale without limit: There are no theoretical limits
on the number of servers or clients in a system, therefore a security system
will have to scale and be able to cope with the large number of resources and

users that could possibly be involved.

¢ Distributed objects are dynamic: Objects are created, operate and can then
be destroyed. Such dynamics have to be performed securely. The system is not
static and the security system needs to be flexible enough to securely

accommodate this.

4.2.2 Review of Currently defined GDOS Security Requirements

The following is a summary of an analysis into the security requirements as currently
stated by TINA [87] and the OMG [88]. Each requirement, and its implications upon
the functionality of the security model, is described and then summarised in Table 4-

REQUIREMENT #1: The security system must support Identification and
Authentication: Within a secure object system, it is imperative to identify and
authenticate an entity. This process should support any authentication mechanism and

should result in a unique set of certified credentials for the entity.

® A Trojan Horse impersonates a legitimate entity to illegally obtain data or perform some other
malicious activity.

64

Chapter 4: Requirements for a new Framework for DPE Securiiy
There are two possible scenarios, intra and inter-DPE authentication. In the first, the
entity seeks authentication within the local system, and is identified and authenticated
locally. Therefore, the validation can be trusted locally. In the latter, the entity may
have been identified and authenticated in another system within the distributed
environment. Thus the security service has to support the validation of such an entity.
This is achieved by either a Trusted Third Party (TTP) (see sections 3.2.2 and 3.3.1)
from which the local security system can obtain a proof of identity or a proof that the
identification and authentication is trustworthy, i.e. was executed within a trusted
system or, by the use of a single sign-on facility, which would lower the number of
user logons required (a facility which cryptographically can have a high overhead due

to.the authentication process).

Many different types of entities need to be authenticated, not just users. Services and
objects will also request access to other services, data and system resources. All such
requests have to be validated. Therefore, authentication will apply to entities at all

levels of the system - users, services, and objects.

REQUIREMENT #2: The security system must support Access Control and
Authorisation. Once an entity has been authenticated, it also requires privilege
information that will define what objects (operations) it can access. This requires a set

of privilege attributes be assigned to the entity.

There are multiple schemas that can be used for access control and the security model
should be able to use them, including the use of roles/groups to reduce the

administrative overhead (see section 3.2.1). Again two forms of operation are

65

Chapter 4: Requiremenis for a new Framework jor DPE Securiny
envisaged, one within a local system, and another via a TTP to allow access across

different domains.

REQUIREMENT #3: The security system must support Propagation of
Attributes. Due to the nature of distributed object systems, objects need to be able to
delegate their privileges/attributes to other objects. However, they also need to be able
to apply constraints specifying when and where these delegated privileges can be
used, otherwise the privileges could be used at anytime and in any domain by a rogue

entity.

With different domains, different security policies may present some difficulty and
require a trust relationship to be established between two domains. The attributes
from one domain should be mapped to authorised attributes in the other domain to

provide validation for access control and auditing.

REQUIREMENT #4: The security system must support Secure
Communications. Communication, both for operational and system data, needs to be

secured (see sections 3.2.3 and 3.2.4), but flexible.

The user should be able to select the Quality of Protection (QoP) required (e.g.
cryptographic strength) and should also be able to select how much of the message
needs to be protected. Again, the sysiem should have the ability to support different

encryption and integrity mechanisms.

REQUIREMENT #5: The security system must support Secure Stored Data.
Objects are the definition of both behaviour and data, thus any data within an object

or utilised by an object needs to be protected.

66

Chapter 4: Requirements for a new Framework for DPE Security
While the security service may not be able to secure the data, it should have the
ability to indicate that the data is considered sensitive and so should be stored
securely, thereby allowing external mechanisms to secure it, i.e. the Quality of

Protection required.

REQUIREMENT #6: The security system must support Security Audit. Auditing
of security relevant events is essential. The system should be able to identify events
based on their classification and assign the audit information to an audit trail and/or an

alarm process.

The audit records also need to be protected from any modification, both in transit or
when stored in the audit trail. Tools are required to analyse trails, and access to a
generic toolset (i.e. sampler, knowledge base, analyser and responder refer to section

3.2.5) and the audit trail records should be available to facilitate intrusion detection.

REQUIREMENT #7: The security system must support Non-Repudiation. To
ensure accountability, non-repudiation facilities are required (see section 3.2.5). Non-
repudiation will include the gencrati_on, verification, transmission and storage of

evidence. Such a service also requires access to an adjudicator for dispute settlements.

REQUIREMENT #8: The security system must support Security Management.
Security management needs to support the distribution system, service and
mechanisms (see section 3.2.6). An administrative interface to handle each function is
required; these interfaces should be comprehensive and easy to use, as usability will

ensure that security is properly applied.

67

Chapter 4: Requirements for a new Framework jor DPE Security
REQUIREMENT #9: The security system must support Interoperability. DPEs
provide for an open and distributed environment, and allow interactions between

different administrative domains.

Thus security policies and administration within a local domain need to be preserved,
but this has to co-exist with the preservation of inter-domain security. Interoperability
is required at both the invocation and security service level. Thus a secure invocation
initiated in one domain to be completed in another requires the security services to
inter-operate in order to facilitate this, and may require security attributes, i.e.
credentials and privileges, to be mapped from one domain to another because they
support different schemas. It will also require some negotiation to allow common
security mechanisms and protocols to be agreed between different domains. Another
option is the use of a gateway to translate between attributes/mechanisms/protocols

(see section 3.3.3).

REQUIREMENT #10: The security system must support system Scalability. The
architecture should accommodate and allow the evolution of networks, services and
management capabilities from small to large (global) scale in terms of its ability to

handle the number of users, nodes, and administrative domains required.

The security service itself must be scalable in order to cope with an "carrier class”
large-scale systems, and so should support the use of roles/groups to reduce
administrative costs and also allow the use of multiple inter-working security

domains.

REQUIREMENT #11: The security system must support Integration with

existing environments. There is already a huge investment in technology by the

68

Chapter 4: Requirements Jor ¢ new Framework for DPE Security
telecommunication and data processing industry. Therefore, if- this model is to be
successful it must integrate with the existing technologies. This requires a flexible
structure that will allow the security model to -deal with multiple options for service
and mechanism implementations and allow the flexibility to manage each of these
different types and their data formats (see section 3.3.4 on mechanism independence
and separation of mechanism and security management). This requirement also covers
the need to meet the differing regulatory requirements that exist in different countries

(e.g. rules regarding the use of cryptography).

REQUIREMENT #12: The security system must support system recovery. The
recovery system should establish consistent security states after security failures by
taking various actions. This involves the maintenance of the rules used to react to real
or suspecled security violations, the remote reporting of apparent violations of system
security, and security administrator interactions [41]. Within the system a Knowledge
Base (KB) could hold the maintenance rules, while the "Sampler” would be used to
collect system data that is then processed by the analyser. The "Responder” defines
the system response that should be taken in accordance with the rules stored in the KB

(see section 3.2.5. for IDS).

The following table summarises the identified requirements, and lists the functionality

that is required by a DPE security framework to facilitate the requirements.

69

Chapier 4: Requirements Jor a new Framework for DPE Securiny

No. | Security Functionality required
Regquirement
1. Identification and Identify entities and generate identity attributes
Authentication Use multiple authentication mechanisms
2. Authorization & Generate privilege attributes
Access control Use multiple authorization mechanisms
Use role/groups
3. Propagation of Specify when propagation is required
security attributes Specify constraints on propagation
4. Secure Ability to select Quality of Protection
communications Ability to select amount of message to be protected
5. Secure stored data | Ability to specify that data needs to be secured
Ability to specify the Quality of Protection
6. Secure Auditing Audit security relevant events
Produce audit records
Issue alarm
Protect audit information in transit or in trail
Should be extended to facilitate intrusion detection
7. Non-repudiation Generation/Verification of evidence
Storage of evidence
Secure transport of evidence
Adjudication facility
8. Management: Administrative interfaces required to handle
- System management of each of these management functions
- Service
- Mechanism
9. Interoperability Interoperability at all levels-
- Invocation
- Security Service, Mechanism and Protocol
Mapping of attributes between domains
10. | Scalability Security service must be scalable itself as well as
working in scalable environment
Use of domains
Use of groups etc in administration
I1. | Integration with Flexible structure to allow the model to integrate with
existing other technology environments/security models
environments Facilitates regulatory requirements
12. | System Recovery Knowledge base system

Table 4-1 GDOS Security Requirements

Whilst the twelve requirements identified above originated from a DPE environment

(i.e. TINA and OMG), they do not specifically address the complete DPE problem
70

Chapter 4: Requirements for a new Framework for DPE Security
domain, and can be applied to any distributed object system. It is necessary to
consider a new definition of the problem domain for DPEs, and focus on requirements

in the secure DPE space.

4.2.3 Analysing the DPE Security Problem Domain

Figure 2-3 (see section 2.3.1) illustrates the framework of TINA system, of which the
unifying component is the DPE. In order to have a comprehensive set of requirements
it is necessary to view the DPE as part of the overall architecture and the layers
around the DPE need to be included in the analysis to ensure that any relevant

security functionality that extends beyond the DPE layer boundary is included.

The procedure for identifying the requirements for DPE security was to define the
domains of security within the TINA system structure and secondly to identify what
domains are relevant to the DPE security model, i.e. identify the scope of DPE
security. The results of this analysis are grouped around the definition of three sub-

domains of the TINA framework.

4.2.3.1 Transport Sub-Domain

The transport sub-domain covers both the NCCE and Hardware layers and relates to
the security of the hardware and operating systems utilised by a TINA

implementation.

REQUIREMENT #T1: The security system must support the procedures, both
physical and logical, for preventing any intrusion or modification of networking or

computing resources, i.e. it must support intrusicn detection.

71

Chapier 4: Requirements for « new Framework for DPE Secnriry
REQUIREMENT #T2: The security system must support such actions as ensuring
correct installation and adequate protection of hardware and software, addition of
software patches, and control of communications ports through firewall technology.
[N.B. this requirement 1s considered outside the scope of the DPE security model,
with the exception of the management of mechanisms, in particular security
mechanisms, both hardware and software based, that may be utilised by the DPE
security. The reason that this management function is considered an exception is
because of the importance of mechanism-independence to DPEs and the fact that the
kTN (providing a logical transport network for the DPE, using the NCCE resource)

will be part of the NCCE.]

4.2.3.2 The Middleware Sub-Domain

The middleware sub-domain covers both the DPE Kernel and DPE Security Service
concerned with the protection of TINA service objects, i.e. the computational objects
used to create services. This security will need to operate at three separate levels:

operational, control and administrative.

REQUIREMENT #M1: The security system" must support functions such as
ensuring only authorised access to objects, based on authenticated identities, and also

the protection of any inter-object communications.

REQUIREMENT #M2: The security system must support the operational concemns
of a TINA service, e.g. the video conferencing session, is secured. This includes the
maintenance of integrity and confidentiality of any data streams and ensuring only

authorised subscribers use the service.

72

Chapter 4: Requirements for a new Framework for DPE Securiny
REQUIREMENT #M3: The security system must support the control concems of
the TINA service by ensuring that information controlling the service configuration,
e.g. the Quality of Service of a video stream, is protected. This involves securing the

control data and ensuring audit services are available to track any control changes.

REQUIREMENT #M4: The security system must support the administrative
concerns of the DPE, which includes the assurance that the security data relative to
the service and subscriber (e.g. user and service profiles) is available and, that it can

be administered securely.

REQUIREMENT #MS5: The security system must support the DPE kernel. The DPE
kernel is resident on every node. Although its internal security needs to be provided
by local implementation means, inter-DPE security will have to be supported, as

individual objects of logical DPEs may physically reside in different domains.

4.2.3.3 Application Sub-Domain

This sub-domain entails the protection of the applications built in the top layer of the

system structure.

REQUIREMENT #A1: The security system must support adequate security by
authenticating participants, only allowing authorised access to services, securing any
inter-participant communications and providing adequate audit and non-repudiation

facilities as required.

REQUIREMENT #A2: The security system must be provided in accordance with a
security policy. It should be simple to administer and hide distribution issues, such as

location, from the user.

73

Chapier 4: Requirements for a new Framework for DPE Security
REQUIREMENT #A3: The security system must operate at two levels because there

is no guarantee that security is available in every domain.

Firstly, security-inactive applications (i.e. those that do not employ any security
facilities themselves, but they are still subject to any DPE security that is specified by
the active security policy within that domain) require that although a security provider
operating in 2 DPE may not have any security policy, the DPE will automatically
provide security. It may be assumed that this type of security is always available in a

secure DPE.

Secondly, securiry-active applications i.e. those applications that are consciously
implementing security themselves, are required to be able to access the DPE se-curity
service. Security-active applications are still subject to the DPE security policy, a-s
with security-inactive applications, but they are also managing and implementing

their own application security by utilising the DPE security service directly.

4.3 Formulating a DPE Security Framework

Prior to the proposal of a new security framework for a DPE it is necessary to visit the
existing secunity framework and juxtapose this with the previously developed ;ecurity
requirements. This analysis will highlight differences and opportunities that will form
the basis of the new framework proposals. (N.B. This is supplemented by using a

service example of a videoconference).

The current TINA security model is focussed on the access session (see section 2.3.2),

which defines the terms and conditions for its operation. Sessions and other

74

Chapier 4: Requirements for a new Framework Jor DPE Security
information objects are mapped onto service objects'®, which present an interface to
the client, through which they operate; the client is not concerned with the internals of
the object (i.e. its implementation is of no consequence to the client). Figure 4-1 [15]
and the example below illustrate a simple case of two users using a service in a

provider domain.

Access session related objects provide a fra‘mework for offering secure and
personalised access to services and for supporting mobility. The Initial Agent (IA) is
the initial contact point for the Provider Agent (PA) wishing to interact with the
provider, and is used to gain an access session with the User Agent (UA_). The
Provider Agent and User Agent objects interact within a secure and trusted
relationship between the user and the provider (an access session). They support
authorisation, authentication and customisation of the user’s service access and
provide a secure mechanism for starting and joining sessions. In terms of the access
session, the user domains take access user roles; the provider domain takes an access
provider role. The access session related User Application (as-UAP) provides the
user inter-face for the user to interact with the provider. It interacts with the Provider

Agent to perform user requests, e.g. to establish an access session, and use services.

' Precisely these are known in TINA syntax as Components. Components reside in a computational
space and are not deployable yet maintain the characteristics of objects. For ease of understanding the
term object has been used throughout to mean both computational components and technology objects.

75

Chaprer 4: Requiremens for a new Framework for DPE Security

{ UserDomain : _i _User Domain_
= T - : F |

| ermee e st s e | i
us-UAP [Provider Domain ¥ us-UAP 5_? |
| el a1
[b % |
: PA I] PA P
| i VA P
| H ;o
| : o
i E
Mctessrrelated 1 | 1l
P
i | USM fo
: . [ssuar [ss-UAP L
I Session-relatgd i E
Fr=——=-F-r—————- Attt sk sttt e
: TCSM |- CSM i} Tesm P
\Communications-related _ _ _ _ _ _ _ _ _ _ _ eeeeeed |

Figure 4-1 TINA Service Example

Service session related objects provide a framework for defining services, which can
be accessed and managed across multiple domains. In the provider domain, Service
Session Managers (SSMs) and User Service Session Managers (USMs) are
instantiated by Service Factories (SFs) based on requests from User Agents. A
Service Session Manager and User Service Session Manager provide session control
capabilities — a Service Session Manager supports those shared among the users, and
a User Service Session Manager supports those dedicated to a user. The service
session related User Application (ss-UAP) in the user domain allows a user to

interact with a service session and acts as an end point for session control.

76

Chapter 4: Requirements for a new Frrmmrm'k_l.'ur DPE Security
The communication session related objects provide end-to-end connectivity. Figure 4-
1 (based on session example from 18) shows a Communications Session Manager
(CSM), using a Terminal CSM (TCSM) to establish a stream binding between two

stream interfaces on the users’ User Applications.

Although recognising the need for security, the TINA architecture does not provide a
security framework. It provides some notion of authentication and authorisation
functionality in the access session, but there is no detailed or formal specification on
the topics. For example, although a user profile is a recognised information object in
the TINA information model, there is no specification of what data needs to be held to
represent an authenticated user in the system, e.g. the user’s security attributes, so that
they can be propagated throughv(he distributed system.-The issue of inter-domain
authentication and authorisation is not addressed, e.g. the use of TTPs and attribute
propagation. The other security facilities of integrity, confidentiality, audit and non-
repudiation are not addressed by any of the service objects. Indeed, there are no
service objects specified for security, the security function is just listed as part of the
existing service objects such as the Initial Agent, Provider Agent and User Agent, and
there are no interface definitions to assist system developers when building these
objects. Indeed, it is this type of ambiguity that has led to confusion and proprietary
solutions, which has hampered interoperability between product vendors, and service

providers [89].

Security management is mentioned in the management architecture as part of the
FCAPS framework. In relation to security, it requires that FCAPS functions be

considered in the service architecture [15] under the description of management

77

Chapier 4: Requirements for a new Framewaork for DPE Security
contexts. FCAPS defines the rules that govern particular management functional areas
during a session, for example the accounting management context might contain
information such as the tariff structure, which would calculate charge/charging-rate
for a service. TINA also mentions management policies, i.e. a set of rules governing a
particular management function in the domain that is associated with the policy.
However, its specifications do not address what security contexts or policy

configurations are required.

Security is also limited to the access session. It is not mentioned within the service
session. This is an unrealistic expectation, because it assumes that security is only
considered when the service is initially accessed by a user, and does not account for
the times when security requirements many change during the life of the service, e.g.
if a video conference session has several participants, and during the session the
conference leader, and therefore controller, leaves and hands his responsibility over to
another participant. In this case the security service would need to verify that the new

leader is authorised to take this responsibility and update his profile.

Scalability is not seen as a problem because the TINA system is designed to be
scalable through its use of service objects. It is accepted that this has not been proven

and the scalability issue has only been addressed by means of modelling techniques.

Secure interoperability has not been approached. The TINA architecture states that it
should be able to inter-operate with non-TINA systems. However, since it does not
address a full TINA security model, it is impossible to evaluate how it can integrate

with other existing security models.

78

Chapter 4: Requirements for a new Framework Jor DPE Security
Security within the DPE itself has not been addressed. There is no mention of how the
DPE will be secured or how interaction with DPE services will be acco-mplished
securely. The issue of a distributed TCB is not mentioned, and there is no

specification of how applications will interact with DPE security.

The DPE’s failure to meet the specified security requirements is summarised in table

4-2 below. Simply stated, TINA does not provide a security framework to protect ISE

services.

No. | Security Requirement Addressed in TINA
| Identification and Authentication Yes — but limited
2 Authorization & Access control Yes — but limited
3 Propagation of security attributes No

4 Secure communications No

5 Secure stored data No

6 Secure Auditing No

7 Non-repudiation No

8 Security Management No

9 Interoperability No

10 Scalability Yes — use of objects
11 Integration with existing environments No

12 System Recovery No

Tl Intrusion Detection No

T2 | Management of hardware/software protection No

M1 | Secure, authenticated inter-object communications | Yes — but limited
M?2 | Secure operation of TINA services Yes — but limited
M3 | Secure control of TINA services Yes — but limited
M4 | Secure administration of TINA services No

M5 | Inter-DPE security No

Al Secure participant interaction with applications No

A2 | Secure, usable administration of applications No

A3 | DPE security for security in-active and security No

active applications

Table 4-2 Summary of TINA vs. DPE security requirements

79

Chaprter 4: Requirements for a new Framework for DPE Security
4.4 A New Security Framework for DPEs

The following defines a new security framework for DPEs using syntax and semantics
in line with TINA specifications. The operational service objects and their interactions
within the service architecture are described first. Issues relating to implementation
and deployment are also addressed. The management framework is then defined,

along with the information structures required by the framework.

4.4.1 DPE Security Service Overview

Twelve new operational-level security service objects, illustrated in figure 4-2 below

and functionally described thereafter, have been identified.

Pollicy/Context .
General Manager SecurityAgent
Authentication & Authorisation |} AccessContro
Authorisation Agent Agent
Secure QoP
Communications Agent
Audit & AudiiSampler . Audn .
Non-repudiation Agent AuditAnalyser Responder AuditkB
NREvidence Lo
Agent NRStore NRAdjudicator

Figure 4-2 A New Security Framework for DPEs (Operational)
4.4.1.1 General Layer
The general layer has two security objects

e Profile/Context Manager (PCM): The PCM retrieves any security

management data required by the operational level security objects. It will

80

Chapter 4: Requirements for a new Framework for DPE Security
access security policy information, facilitating security service object actions.
For example, the Profile/Context Manager can retrieve authentication data to
validate a user logging into the system. It is used to control user interaction

with the security management data and objects.

Security Agent (SecA): The Security Agent acts as an initial point of contact
with the security system, and therefore plays a role in the access session. It is
not required in the service session because the objects used here are
considered part of the TCB and the user will not have direct interaction with
these service objects. Security Agent controls the user interaction by

preventing a user directly interacting with security service objects.

4.4.1.2 Authentication and Authorisation Layer

The Authentication and Authorisation Layer has two security objects:

Authorisation Agent (AuthA): Encapsulates the authentication process for
the TINA system. Authorisation Agent authenticates the user with the
authentication data presented by the user, via the Provider Agent and Initial
Agent, and validates it against the policy data retrieved by the Profile/Context
Manager. Authorisation Agent is TINA service independent and security
mechanism independent. It is also responsible for initiating the creation of the
user’s security context, and instantiating it with the appropriate identity and

privilege security attributes.

Access Control Agent (ACA): When a user makes a separate request, the

security access control is handled by the Access Control Agent. It is based in

81

Chapier 4: Requirements for «'new Framework Jor DPE Secnrity
the provider domain, because access is a server-side issue in ISE. It takes the
user’s security context information and uses it to compare to the access control
policy (via the Profile/Context Manager), to decide whether the user is
authorised to make the service request. If authorised, the user is allowed to
proceed with the access session. The Access Control Agent can also be used
by the service-session objects, when they are requesting a new service that

may be restricted.

4.4.1.3 Secure Communications Layer

The Secure Communications Layer has one security object:

o Quality of Protection Agent (QoPA): The Quality of Protection Agent is
responsible for providing secured communications between s;ervice objects. It
is able to compare the QoP policies, via the Profile/Context Manager, of the
communicating parties and then decide what QoP will be implemented. The

Quality of Protection Agent is also utilised by the audit and non-repudiation

facilities.

4.4.1.4 Audit and Non-Repudiation Layer
The Audit and Non-Repudiation Layer has seven objects:
° Audit Sampling Agent (ASA): The Audit Sampling Agent is deployed
throughout the TINA system and is responsible for collecting any audit data. It

is responsible for deciding whether an event is security relevant. If it is, then

the appropriate data is retrieved and forwarded to the Audit Analyser.

82

Chapter 4: Requirements for a new Framework for DPE Security
Audit Analyser (AA): The Audit Analyser analyses the information sent by
the Audit Sampling Agent to decide if the event is anomalous. It indicates the
analysis result (i.e. whether a system violation has occurred or whether
suspicion levels shouid be raised) and produces an analysis token; the latter is

used to provide a full justification of the analysis results, if required.

Audit Knowledge Base (AKB): The Audit Knowledge Base stores all data
related to the auditing process, which includes audit sampling records (i.e. the
audit trail), audit analyser tokens, audit responder actions, and any profiling

and analysis data used to identify any anomalous behaviour.

Audit Responder (AR): The analysis result and token are then sent to the
Audit Responder, which decides what to do. The responder has two basic
types of response — saving the data to a specific audit log or producing some
alarm. The alarm may be sending an email or screen message to an
administrator, or it may involve a partial or complete system

shuidown/lockout. These responses can be constructed using service objects.

Non-Repudiation Evidence Agent (NREA): Whenever the NR security
policy defines that evidence is required, e.g. proof of receipt, the Non-
Repudiation Evidence Agent will be able to generate/verify evidence token for

the appropriate service object.

Non-Repudiation Store (NRS): The Non-Repudiation Evidence Agent
interacts with the Non-Repudiation Store also, to store evidence tokens when

required.

83

Chapter 4: Requirements for a new Framework for DPE Security

¢ Non-Repudiation Adjudicator (NRAdj): The Non-Repudidtion Adjudicator
represents a notary that can make judgements on any disputes. A TTP will be
used to verify evidence and then prove/disprove claims made by clients or

servers. It provides the following capabilities:
o specify the tokens and identities of the disputing objects;

o return a decision and the supporting token (i.e. the token that validates

the decision).

The adjudication process has two phases - the first is an on-line adjudication.
The on-line adjudication allows the adjudicator (without any human
intervention) to validate the evidence tokens, i.e. make sure they have valid
signatures and that the times are correct. If one-evidence token is found to be
invalid, then the process will be able to settle the dispute by deciding ‘in favour
of the valid token holder. However, if both tokens are valid, then one of three
options is possible. If the Non-Repudiation Adjudicator is implemented as an
expert system, then it may still be able to settle the dispute based on some
existing rules it contains. If not, it can either signal for human intervention and
request assistance in the adjudication process or it can return a judgement of

“undecided” .

4.4.2 Realisation and Deployment Issues

There are several issues within the Computational model of the new DPE security

framework that should be addressed before proceeding to the service example, as they

84

Chapier 4: Requirements for a new Framework for DPE Securily
will help clanfy the service example presented in the following section. Figure 4-3

below is used to help illustrate these issues (based on service example in 18).

Uses Domain

|
:@ us-UAP
|

he e -

$5-UAP

Sgssion-rela ted

— — — e— e —

TCSM

Figure 4-3 Example of Security Service Objéct Deployment

4.4.2.1 Absence of data storage objects

The TINA service example (see section 4.3) has a notable absence of any data storage

objects. Such specification is often left to the information model. However, in the

85

Chagpnter 4: Requirements for a new Framework for DPE Security

security framework it was deemed necessary to identify the Audit Knowledge Base

and Non-Repudiation Store within the model for the following reasons:

The data stored in the Audit Knowledge Base and Non-Repudiation Store is
very important to the overall framework and its security. The audit
information will help identify intrusions and the non-repudiation evidence

tokens are required for adjudication.

The Audit Knowledge Base stores a variety of information, and therefore will
present a variety of interfaces to the Audit Analyser, Audit Responder, and

Audit Sampling Agent.

The data in both repositories needs to secure data, both in transit and in
storage. Therefore as service objects both the Audit Knowledge Base and
Non-Repudiation Store will be able to utilise security rﬁechanisms to secure
the data internally, and they will also have security policies that will allow
them to negotiate security contexts with any clients, e.g. the Audit Analyser
and Audit Knowledge Base will use the Quality of Protection Agent to create
a secure communication channel between them so that audit records can be

transported securely over the network.

4.4.2.2 DPE service object placement in relation to the DPE Node

It was previously stated that DPE services, such as security, are not necessarily

present on all DPE nodes. However, it is recommended that any DPE node involved

in security would have most of the security service objects available locally, to reduce

the overhead of accessing remote service objects. The exceptions to this rule are the

86

Chapter 4: Requirements jor o new Framework Jor DPE Security
Audit Knowledge Base, Audit Responder, Audit Analyser, Non-Repudiation Store
and Non-Repudiation Adjudicator. The reason for this is that all the other agents are
involved in almost every service — authorisation, access control and secure
communications are usually requirements in a protected System. The audit and non-
repudiation functions are not always required, because they generally incur a high
overhead. However, if required the Audit Sampling Agent and Non-Repudiation
Evidence Agent will be frequently utilised by the service objects and so should

available locally.

4.4.2.3 Availability of security service objects in session model

The security service objects are not restricted to any single session type; their
availability will be dependent on the security service requirement within each session.
The access session is generally concerned with authentication and access control,
therefore the Security Apgent, Authorisation Agent, Access Control Agent, and
Profile/Context Manager are available. Secure communications can be required in
both the access session (to secure the authentication process) and service session (to
secure the TINA service), and, therefore, the Quality of Protection Agent is available
to both. The CSM is considered outside the scope of the DPE security model.
However, the Service Session Manager in the service session can utilise the Quality of
Protection Agent when requesting the CSM to provide a secured communications
stream. The audit and non-repudiation service objects are available in the access or

service session depending on the security policy requirements.

87

Chapter 4: Requirements for a new Framework jor DPE Security
4.4.3 DPE Security Management Qverview
The new security framework separates the management of services and mechanisms

and thereby provides the required mechanism-independence. It involves the following

steps:

e definition of new policy classes to separate management function;
¢ use of opaque data types to assist abstraction;

¢ definition of policies for all security functions for consistency;

e ability to locate the new policies;

¢ ability to handle security active/inactive policies.

4.4.3.1 New Policy Classes

A new Policy superclass is defined, see figure 4-4 below, It will have two derived
classes, ServicePolicy and MechanismPolicy, to administer security services and

security mechanisms respectively.

88

Chapter 4: Requirements jor a new Framework for DPE Security
fi . . .

Pdlicy

type {abstract}

get {abstract}

set {abstract)

query (abstract)

ServicePglicy MechanismPalicy

type type
mech_used {abstract} Mech_specilic_data {ebstract)
expiry_time . get
version set
get query
set update {abstract}
query delete {abstract)

Figure 4-4 Administrative Policy Class

The Policy superclass has a single data attribute type, which identifies the objeci(s) or
service objects to which the policy applies. Policy defines three abstract operations,
get, set and guery, used to maintain poligy data. ger retrieves a single administration
record, based on a known identifier, while set updates a single administration record
based on the identifier. guery is able to retrieve a complete set of records (a ‘bulk’
implementation of the ger operation — a standard ‘multiple record ger’ optimisation
used in QOO programming). The query method also allows the user (o use any data to
select the records. For example, if the get method used on a video conferencing
object, retrieved the identifier and reference to the videoconference, the user could
then use the query method find out the details of the conference, e.g. bandwidth
required, etc, to see if he could request access to the conference. ServicePolicy has
three data attributes. mech_used specifies the mechanisms to be used imélementing

the policy. This is an identifier that refers to an instance of the MechanismPolicy

89

Chapter 4: Requirements for a new Framework for DPE Security
class. The expiry_time and version specify the expiration time of the policy and its
version. Operations to update/delete entries are not listed, as some policies will not
want this to occur, e.g. non-repudiation policies. Policies that do require such
operations will add them to the their own class definition, which inherits ‘the
ServicePolicy class. The MechanismPolicy object has one data attribute,
Mech_specific_data. This holds mechanism specific information, and thereby
provides the means for mechanism (technology) independence. The MechanismPolicy

also has remove and updare operations.

4.4.3.2 Abstraction through generic data types

To preserve mechanism independence data items that are considered 6paque data
types should be used, because their internal structure has no significance to the
interface or the caller, but has meaning to the und-crlying mechanism, e.g. GSS-API
and CORBA use such data types. Another useful method of abstraction is the use of
codes to indicate generic and mechanism specific errors (the use of exceptions can be
implementation specific, e.g. C++ use of native exception handling). If required, the
codes can be divided in to major (generic) and minor (mechanism-specific) structure
to preserve the mechanism independent nature of the service, while still passing
useful mechanism-specliﬁc failure information. Also another reason that exceptions
are not used is because, by standard OO programming practice, they should indicate
an exceptional circumstance that only occurs between 5-10% of the time. In this case
the errors can be a valid response that occurs on a regular basis, e.g. security

credentials expiring or corrupt signature.

90

Chapter 4: Requirements for a new Framework Jor DPE Security
4.4.3.3 Consistent Management Structure
Providing a structured management system that operates across all the security
facilities ensures consistent management. Currently, there is no standardised
administration for each of the DPE security facilities. No management contexts or
policies are defined. Therefore the policy and mechanism administration service
objects should be applied across all of the security facilities to provide a

comprehensive and coherent administration structure.

{ Available in security domain

Authentication Authentication
Policy | Mech

AccessControl AccessControl
Policy | Mech

QoP QoP
Policy] Mech

Audit Audit
Policy 1 Mech
NR NR
Policy | Mech

L T L L P P L

Figure 4-5 Security Service Objects - Management

¢ AuthenticationPolicy (AuthPolicy) & AuthenticationMech (AuthMech): Two
objects now administer the authentication process. Authentication Policy is -

responsible for holding the following:

91

Chapier 4: Requirements for a new Framework for DPE Security
o identifying an access session User Application and the authentication
mechanism associated with it, e.g. the video conferencing service may require

smartcard authentication;

o authentication policy for a user, i.e. it identifies the authentication mechanism
allowed for a user and the associated authentication data - for password

identification it identifies the user’s ID and password;

o security identity, which is used to create a user’s security identity context that

can be propagated throughout the TINA system.

Authentication Mechanism administers the authentication mechanisms. It holds
data relating to the mechanism name and its object identifier within the system.
The 1SO/IEC specifications for Abstract Syntax Notation One (ASN.1) [90] and
Basic Encoding Rules (BER) [91] are used to define what mechanism is used. For
example, the Object Identifier 1.2.840.113554.1.2.2 identifies the Kerberos V5
mechanism. It may also identify the authentication data types required, e.g.

character string is required for password authentication.

AccessControlPolicy (ACPolicy) & AccessControlMech (ACMech): The
access control service-level administration, AccessControlPolicy, includes the

following data:
o identification of the access control mechanism used for the service;

o user privilege attributes that will be used to create the user’s privilege atiribute

context to be propagated through the system (this will be linked with the

92

Chapter 4: Requirements for a new Framework for DPE Security
user’s identity context), and will be used to evaluate whether a user is
authorised to access a particular service. This will also include the delegation
status of the credentials, i.e. which, if any, of the auributes that can.be

delegated through the TINA system;
provider-required privilege attributes, which identify what privileges are
required for a user to access the provider’s service (the user’s privilege

attribute context will be evaluated against this).

The ACMech holds the data relation to the administration of the access control

mechanisms. It identifies the mechanisms used, along with other implementation

information such as version and expiry date.

QualityofProtectionPolicy (QoPPolicy) & QualityofProtectionMech

(QoPMech): Integrity and confidentiality management are handled by QOPPolicy

and QOPMech. The QOPPolicy is responsible for the following data:

[s)

the QoP to be used, i.e. whether integrity, confidentiality or both are required

to secure data;

identifying what mechanisms are required by a particular service object. This
should identify the required mechanisms and other supported mechanisms that

may be used instead, to provide flexibility;

for transit data, how much of a message will be encrypied, e.g. the whole

message or just selected portions.

93

Chapter 4: Requirements for a new Framework jor DPE Securily
The QoPMech lists the mechanism and its object identifier. It will hold any
other mechanism specific information, such as the location of keys, version

number etc.

e AuditPolicy & AuditMech: The system audit information is administered by

these objects. AuditPolicy manages the following data:

c event selectors identify what event is considered security-relevant and what
details of the event need to be recorded, e.g. an service access request should
be audited and the selectors include the time, the user making the request, the

service requested and whether the request failed or succeeded,

o Audit Analyser and Audit Responder used. There may be several analysers
and responders available, each possibly using different mechanisms or used

for different sub-domains;

AuditMech 1s used to administer the entire audit mechanisms, Audit Analyser,
Audit Responder, and Audit Sampling Agent. It will hold mechanism specific

details, such as location, object identifier etc.

¢ NRPolicy & NRMech: NRPolicy, responsible for non-repudiation administration,

specifies the following:
o the type of evidence required by a service object for a particular request;
o the QoP for the delivery of non-repudiation evidence;

o the storage object where evidence will be held;
94

Chapter 4: Requirements [or a new Framework for DPE Security

o the accepted authorities (includes adjudicators and delivery authority);
o the NR mechanism to be used to generate the evidence.

NRMech specifies the mechanism-specific details for the non-repudiation

mechanisms.

Policy/Context Manager (PCM): One further service object that can be included
in this model is the Profile/Context Manager (already specified as an operational
service object), which is used as the point of contact between the operational and
management models. It is responsible for finding the appropriate administration
.object within a domain, retrieving security management information from policies
and building security contexts with this data: The Profile/Context Manager
abstracts the DPE-defined contexts from the actual security -service

implementations.

4.4.3.4 Facilitating Security Active/Inactive Applications

The security requirements analysis (see section 4.2.3) outlined the need for security-

active and security-inactive applications. This implies that two security policies could

exist for a single application, one as a domain default to handle all applications (both

active and in-active) and then the particular security-active policy for an application.

Therefore the management system needs to be able to administer the separate policies

and define the rule of operation when two conflicting policies exist. The issue of

allowing two policies to exist is addressed by identify the policy type, e.g. the policy

95

Chapter 4: Requirements for a new Framework for DPE Security
type can be defined as active or inactive. The second issue is more complex and will

be addressed in more detail when interoperability is discussed in Chapter 5.

4.5 DPE Secured Service Exainple

The example presented in this section illustrates a service session that is secured using

the new security framework. The following assumptions are made:
¢ only one user and one provider are involved,

* only one security domain is involved (even though the figure shows
User/Provider domains which would normally be different security domains —
the issue of interoperability between security domains will be addressed in the

following chapter);

e not all service object interactions are shown, in order to simplify the
illustration, e.g. Profile/Context Manager interactions to build contexts are not

shown.

The video conferencing service example, which is based on the standard TINA
service architecture example [15], presents two security relevant scenarios. The initial
TINA scenarios assume that all the operations are successfully completed (no error,
no fault, and no rejection) for simplicity. Some of the alternate outcomes will be
outlined in each section. The example also does not address the issue of secure

interoperability between disparate domains; it assumes that the security technology

96

Chaprer 4: Requirements for a new Framework for DPE Security
and policies are compatible. Inter-domain secure interoperability will be dealt with in

chapter 5.

4.5.1 Logging in to the Provider

This example shows userA establishing an access session with their named user agent
of the provider. The user wishes to make use of the provider’s services, which the

user has previously subscribed to.
Preconditions:

The user has contacted the provider, and the Provider Agent has an interface reference

to an Initial Agent of the provider.
The new security preconditions required:
e security is available in both the user and provider domains;
e user A is defined as an authorised user in the provider domain;
e a QoPPolicy is available for the Provider Agent and User Agent;
e there are no audit or non-repudiation policies related to the ldgin process

¢ the user and provider domains are in a single security administration domain

and therefore secure interoperability is not an issue.

Scenario:

(The new security interactions are steps 3,4, 5,6, 7,8, 10, 12 and 13.)

97

Chapter 4: Requirements for a new Framework for DPE Security

1. User A uses an access session related User Application to login to the
provider, as a known user. The access session related User Application
requests the user authentication information such as the UserlD and
password. The user then requests the Provider Agent to login to the
provider, as a known user. The access session related User Application

supplies the security information to the Provider Agent.

2. Provider Agent requests that an access session is set up with the named
User Agent of the user. Provider Agent provides the username of the user

to the Initial Agent.

3. The Provider Agent sends the security information to the Security Agent in

the user domain, Security AgentV.

H User Demain Provider Domain

. , AuthPolicy :
@ as-UAP | :
’ 5 (ctd
"ha. f 4 ACPolicy
{ pa =3 ua AuthA {7,

/0. i 8.]
3. .II H \.‘ [/5
- 513, i
SecAF 4. - SecAP - i
44, QoPPolicy |
12./410. (ctd) 1257 —
i [aora i N qora o Tt
i i 12. (ctd)

oy U B et e e e err s e rrre At ero e foensessemraen e mnreersessaren 2

Figure 4-6 New Secure Login Examples

4. Security Agent” sends the information to Security Agent in the provider

domain (Security Agentp), to authenticate the user.

98

10.

11,

12.

Chaprer 4: Requirements for a new Framework for DPE Security
Security Agent” contacts Authorisation Agent, which retrieves the

authentication policy from AuthPolicy to authenticate the user.

Once authenticated, Authorisation Agent also retrieves UserA’s privilege

autributes from ACPolicy, to create the user’s security context.

Security Agent’ contacts the Quality of Protection Agent, to see if secure
communication is required with the user domain; Quality of Protection
Agent, finds the appropriate QoPPolicy, and returns the information to the

user’s security context.
The completed security context is associated with the User Agent.

An access session has been established. It returns the interface reference of

the user’s User Agent.

Provider Agent retrieves its security policy information, via the Security

AgentU to see if secure communication is required.

Provider Agent sends information about the user domain to the User
Agent. This information is termed the Provider Agent context, and will
include the security context information such as the QoP required by the

Provider Agent.

In this example, both domains require secure communications, i.e.
integrity and confidentiality. The Provider Agent and User Agent request
the Quality of Protection Agents in both domains, to negotiate what

mechanisms are to be used, via the security context information, i.e. they

99

Chapter 4: Requirements for a new Framework for DPE Security
find a common set of mechanisms to use for both integrity and

confidentiality, such as MD4 and 3DES.

13. A secure communication channel is established between Provider Agent

and Initial Agent.
14. Provider Agent returns success to access session related User Application.
Post-conditions:

User has setup an access session between the Provider Agent and named User Agent.
The named User Agent is personalised to the user, and has knowledge of interfaces of

the Provider Agent.

Any interface references of the Initial Agent held by the Provider Agent will be

invalid.
The new security post-conditions required are:
o a Provider Agent context containing security information has been created;

e a secunty context containing UserA’s security information is associated with

the User Agent;

° a secure communication channel exists between Provider Agent and User

Agent.

Alternatives within scenario:

There are several alternatives available within this scenario, of which two key issues

are listed:

100

Chaprer 4: Requirements for a new Framework jor DPE Securiry

e The user may have been unknown. The authentication could have failed at
step 6 or the user could have been logged in with guest privileges. The
outcome would be dependent on the domain policy in relation an un-

recognised user.

¢ The known user may have supplied incorrect authentication information, e.g.
an invalid password. In this case the login would have failed at step 6 and the
session would have been terminated. A similar situation would arise for an

expired/revoked user ID.

Other alternatives relate to the security policies defined with in the domains, e.g. audit
of the authentication process may have been required etc. For simplicity, it was not

included in this scenario.

4.5.2 Starting a New Service Session

This example shows a user starting a new service session. The user is assumed to be
in an access session with the provider and to have a valid subscription to the service
(the service type is web-cast). The service session related User Application is
assumed to be present on the user’s terminal. Steps 2, 3,4, 9, 10, 11, 12, 13 and 14 are

new security related interactions.
Preconditions:

An access session exists between the Provider Agent (user A) and User Agent (in
provider domain). An access session related User Application shows the user the

services that can be started.
101

Chapter 4: Requirements jor « new Framework for DPE Scecnriry

The new security preconditions are:

a security service exists in both the user and provider domains;

the user’s has already been authenticated, a security context for the user is

available to the provider and is associated with the User Agent;
a secure communication exists between the Provider Agent and User Agent;

the provider domain specifies an audit policy that records when a new web-

cast session is started;

the provider non-repudiation policy requires a proof of origin for a new web-

cast request;

Scenario:

1.

The access session related User Application requests a list of services from the
Provider Agent, which the user has subscribed to. The Provider Agent makes

the same request to the User Agent.

The User Agent contacts the Security Agen[P to see what services the user is
authorised to see. Security Agent’ already has the user’s security context and

needs to compare it to the required attributes for services.

Security Agent” contacts the AccessPolicy, via the Access Control Agent, to

see what attributes are required for the list of available services.

102

Chapier 4: Requirements for a new Framework for DPE Security
Once Security AgentP defines the list of authorised service, i.e. those services
which the user has the required privilege attributes for, it returns the list to the

User Agent.

The User Agent returns the list to the access session related User Application,
which displays the list to the user. The user selects a service to start, a
recorded web-cast. The access session related User Application requests

Provider Agent to start the service.

The Provider Agent starts the service session related User Application,
associated with this service session, and informs it of the service type that it

should start (web-cast).

The service session related User Application requests a new service session of
service type web-cast, from the Provider Agent. (The service session related
User Application may pass information about itself to the Provider Agent,
including session models and feature sets supported, and references to its

operational and stream interfaces.)

Provider Agent requests to start a new service session of the service type
(web-cast), to (user A’s) User Agent. (It may also pass the information about

the User Application.)

Before User Agent starts a service, it will contact the Security Agent” to

request that it checks the security policy for that particular service.

103

Chapter 4: Requirements for a new Framework for DPE Securily
10. The Security Agent” will contact the Quality of Protection Agent, which will
use QoPPolicy, to see if there are any secure communication requirements for

the web-cast session. In this case there is no QoP requirement.

: User Domain ' Provider Domain :
AccessPolicy :
@ as-UAP | ;
g] 3f(erd
1/ 5.qctdy flerd) QoPPolicy
: PA Hlcd) UA L2 ACA 10@a)
5.: 8.1 15 . 9 J’ - i
i l18. 4 A 3.4 QoPA
. ! = i
6 P 16. Seo H __4'“ H
'7 SF SecAP [--"10. i
17. ©O\aT. .

¥ \ | asa PZ{ axs
20. |: 13\ 1ﬁ?)_ : :
: -‘i‘ 1. {ctd) ™ . T i
ss-UAP E29[usm | ssm \ AudtPolicy |
¥ NREA |14] NRs
X 13%ctd)
NRPolicy

Figure 4-7 New Secure Service Example

11. The Security Agent® will contact the Audit Sampling Agent, which will use
AuditPolicy, to see if there are auditing requirements for a web-cast session.

The policy specifies that new web-cast session requests will be audited.

12. In response to this, the Audit Sampling Agent generates an audit record, which
is forwarded to the Audit Knowledge Base. No analysis is required, as the

policy only requires the event to be logged. (For simplicity, the negotiation of

104

13.

14.

15.

16.

17.

18.

Chapter 4: Requircments Jor a new Framework jor DPE Security
the secure connection, by the Quality of Protection Agents, between the Audit

Sampling Agent and Audit Knowledge Base is not illustrated).

The Security Agent® will contact the Non-Repudiation Evidence Agent, which
will use NRPolicy, to see if there are non-repudiation requirements for a web-
cast session. Their policy specifies that a proof of origin is required for the

request.

In response to this, the Non-Repudiation Evidence Agent generates a proof of
origin token using the user’s security information associated with the. User
Agent. This token is forwarded the Non-Repudiation Store. (For simplicity,
the negotiation of the secure connection, by the Quality of Protection Agents,
between the Non-Repudiation Evidence Agent and Non-Repudiation Store is

not illustrated).

User Agent gets a reference to a service factory, which can create service

session objects for the service type (web-cast).

User Agent requests that a new session of the service type (web-cast) be

created by the Service Factory.

Service Factory creates an Service Session Manager and a User Service
Session Manager and initialises them. In this case a security context is
associated with the Service Session Manager, which describes the services

security requirements, e.g. if it has audit and non-repudiation requirements.

Service factory returns interface references of the User Service Session

Manager and the Service Session Manager to the User Agent.

105

Chapter 4: Requirements for a new Framework for DPE Security
19. User Agent retumns references of the User Service Session Manager and

Service Sesston Manager to the Provider Agent.

20. Provider Agent returns references of the User Service Session Manager and

Service Session Manager to the service session-User Application.

2]1. The service session related User Application and User Service Session
Manager (and Service Session Manager) can interact using service specific
interfaces or interfaces defined by session models, including the TINA session
model. Some interactions between these objects may be necessary before the

user can use the service.

22. At this point User A is the only user involved in the web-cast session. Some

services may be single user services.
Post-conditions:
A web-cast session is established between the user and provider.
The new security post-conditions are:
¢ An audit record for the request exists in the provider’s Audit Knowledge Base.

¢ Anevidence token for the proof of origin (i.e. the user) exists in the provider’s

Non-Repudiation Store.
Alternatives within scenario:

e If the User Agent were unable to start the service, it would have raised an
exception in step 15 or one of the later steps (e.g. when the Service Factory

was creating the Service Session Manager, or User Service Session Manager).

106

Chapier 4: Requirements for a new Framework for DPE Security
e If the web-cast service were already running, then the audit and non-
repudiation policy information would already have been available, via the

Service Session Manager’s security context.

4.6 Summary

This chapter has specified the DPE security requirements through analysis of the
current literature and providing a new definition of the DPE security problem domain.
As a result, a new DPE secunity framework has been defined. It provides a two-tier
model that addresses the operational and administrative needs of a DPE environment.
The operational service objects provides all of the ISO defined security services, and
the management objects provides the flexibility and consistency required by using
mechanism-independence, abstraction and a complete set of management objects to
administer all of these services. As the framework has been defined using service

objects, it is scalable and can be easily distributed across the DPE.

However, there are still two major issues that have to be considered, namely
interoperability, and the interaction between the security framework and the existing
DPE services, such as the trader. Both of these topics are covered in detail in the

following chapters.

107

5. Secure Interoperability in a DPE

5.1 Introduction

A fundamental characteristic of a distributed system is that physical nodes and
distributed objects require interoperability. It facilitates interaction between entities
resident across heterogeneous platforms, where such entities may be implemented
using different technologies or different paradigms. Although computers can be
networked, this does not imply interoperability has been achieved. Interoperability has
to solve the challenge of differences in protocols, data formats, programming
languages and, paradigms. For example, although it may seem a simple task to
provide a graphical front-end interface to a legacy mainframe system, interoperability.
obstacles have to be addressed including: the front and back-ends operating in two
different paradigms, (object-oriented and procedural) and data conversion and
manipulation so that it can be understood by each system. Even within the Internet,
where currently millions of nodes are connected and are able to interoperate, new and
more optimal soluticns are still being sought to support distributed transparency, for
example the Simple Object Access Protocol (SOAP) [92]. SOAP defines an Remote
Procedure Call mechanism, using HTTP as the transport and XML documents for
encoding requests and responses, in order to provide an object invocation mechanism

built on standardised Internet solutions.

108

- Chapter 5: Secure Interoperability in a DPE
For DPEs, CORBA provides one interoperability solution using a combination of
brokers (ORB) and language independent IDL interfaces (see Section 2.4) ''. CORBA
also supports interoperability to other non-CORBA distributed systems, such as COM
[93]. Other organisations, are now explicitly addressing interoperability with their
frameworks, e.g. Microsoft committed one quarter of its budget in 1999 to
interoperability [94, 95]. However, these solutions currently only address insecure
communications. When security requirements are added a significant increase the
difficulty of the task is noted. Although secure interoperability is not a new topic in
DPEs, this chapter deals specifically with the issues currently encountered and
present§ proposals on how they can be alleviated with the New Framework

previously described (see chapter 4).

5.2 DPE Secure Interoperability Requirements

Secure Interoperability within and between DPEs can be described as the ability to
provide a secure association between a client and target even when they exist in

different security domains.

In addressing secure interoperability, the requirements need to be established. Table
5-1 below summarises the DPE security requirements specified in the previous
chapter. These requirements will be evaluated to see how they apply to secure DPE

interoperability.

"' The OMG has even sponsored CORBAnet, a research project at the Distributed System Technology
Centre in Australia, whose specific function is to demonstrate interoperability between different ORB

vendors [11].

109

Chapter 5: Secure Interoperability in a DPE

Z
e

Security Requirement

Identification and Authentication
Authorization & Access control

Propagation of security attributes

Secure communications

Secure stored data

Secure Auditing

Non-repudiation

Security Management

Interoperability

10 Scalability

11 Integration with existing environments

12. | System Recovery

TI Intrusion Detection

T2 Management of hardware/software protection
M1 Secure, authenticated inter-object communications
M2 | Secure operation of TINA services

M3 | Secure control of TINA services

M4 | Secure administration of TINA services

M5 | Inter-DPE security

Al Secure participant interaction with applications
A2 Secure, usable administration of applications
A3 | DPE security for security in-active and security active
applications

QI~J| NN L] =—

o

Table 5-1 Requirements for DPE Security

Interoperability is listed as a requirement for secure DPEs. As DPEs are distributed, it
would be unreasonable to assume that all objects would be distributed within a single
security domain. Therefore all inter-domain communications still have the same
secunty requirements as intra-domain communications, and many of the issues have
already been addressed in chapter 4. Authentication and Authorisation (Requirements
#1 & #2) stated the need for inter-DPE authentication, i.e. the ability to authenticate

through a TTP and the need to allow access to remote clients (see section 4.2.2).

110

Chapter 5: Secure Interoperability in a DPE
Auditing, non-repudiation, secure communications and storage of data are still
required (Requirements #4-#7). However, interoperability of these services now

highlights new requirements.

REQUIREMENT #11: The trust relationship between two disparate security
domains has to be established. Authentication and authorisation already require
some form of trust to exist between two entities or services. However, in the case of
interoperability, the trust model (see section 3.3.1) needs to be defined between the

domains.

REQUIREMENT #I12: Astribute mappings need to exist between disparate
domains. Propagation of attributes constitutes a more complex problem in an inter-
domain scenario; this is because the attributes in two domains may differ, and
therefore a mapping needs to exists between the atiributes so they can be converted

when necessary.

REQUIREMENT #I3: Middleware sub-domain interoperability requires secure
operational-level interaction. As the middleware sub-domain is responsible for
operational services, it needs to ensure that compatible mechanisms can be used for

secure inter-domain DPE interactions.

REQUIREMENT #14: Middleware sub-domain interoperability requires secure
control and administrative interaction. As the middleware sub-domain is
responsible for control and administration of services, it needs to ensure that the
policy configurations of services are compatible for secure inter-domain DPE

interactions.

111

Chapter 5: Secure Interoperability in a DPE
REQUIREMENT #15: Application sub-domain interoperability requires the
negotiation of a secure inter-domain context. As the application sub-domain is
responsible for establishing a secure context between a target and client, it needs to
begin the negotiation process to allow all domains create the appropriate agreed

environment.

53 DPE Secure Interoperability — the issues

The interoperability requirements highlight the fact that there are four possible

inconsistencies that need to be resolved:
¢ conflicting security mechanisms (requirement #13),
e conflicting security policies (requirement #12, #14),
e conflicting security protocols (requirement #15),
¢ different trust domains (requirement #11).

These issues and their possible solutions are discussed in the following sub-sections

and then summarised in table 5-2 '2.

5.3.1 Conflicting Security Mechanisms

If two domains are using different security mechanisms, interoperability is a serious

issue. For example, if they have differing encryption algorithms (e.g. DES and IDEA)

2 The issue of different paradigms is nol considered because it is assumed that all DPEs will be using
object-oriented technology.

112

Chapter 5: Secure Interoperability in a DPE

it will not be possible for these two domains to provide a secure association between

their members because they cannot interact cryptographically.

Solutions to this problem include:

the provision of a bridge (see section 3.3.3.1) that will perform the appropriate
conversion between encryption mechanisms. However, when using this with
cryplographic mechanisms, it complicates the situation by adding overheads (due
to.the decryption and re-encryption of messages) and providing another point of

vulnerability between the two domains.

the use of a standard set of mech.anisms and the provision of a protocol to
negotiate a common mechanism to be used (see section 3.3.3.2). For example,
SSL provides such a facility for secure Internet communication. The drawback for
DPEs is that they require access to a common set of mechanisms and a common

protocol.

the use of generic tokens (see section 3.3.3.3). For example, GSS-API provides
such a facility, but it does require the definition of the token structure and the use
of appropriate interfaces/protocol to utilise the tokens. Definition of a generic
tokens can prove difficult as it needs to ensure that the token is truly generic and
caters for all protocol requirements; also if opaque data types are used a

performance overhead can be incurred due to the data marshalling required.

113

Chapter 5: Secure Interoperability in a DPE

5.3.2 Conflicting Security Policies

A security policy is defined as a set of criteria for the provision of security services. It
defines what is and what is not permitted in the area of security during general
operation of a secured system. These criteria can and do differ between domains. For
example, a client in domain A has an authentication policy specifying that server-side
(peer-entity) authentication is required. A server in domain B has an authentication
policy specifying that mutual (peer-to-peer) authentication is required; i.e. the client
has to authenticate itself to the server as well. Howevef, the client in domain A has no
way of authenticating itself to the server, e.g. if digital certificates were used for
authentication, the client in domain A may not possess a certificate. Therefore, in this
example, a secure association, that satisfies both security policies, can never be
established between domain A and B because the client will never be able to

authenticate itself to the server.

A solution to this problem is to allow negotiations between the security policies of the
two domains. It requires each domain to define what is supported and what is required
by a policy. A policy requirement is a security service function that must be complied
with; otherwise a secure association cannot be established, such as mutual
authentication in domain B in the above example. A supported policy is one that is
available but not necessary for a secure context. The requirements for a DPE in the

provision of this solution are two-fold:

e the definition of security policy configurations for the security services

between two domains;

114

Chapter 5: Secure Interoperability in a DPE

¢ the definition of a protocol to negotiate the policy configuration.

This solution will also have an impact on the mechanisms used. Mechanism-
independence (see section 3.3.4) facilitates the negotiation process. It will abstract the
policy (security service) required from the mechanism. However, a successful policy
negotiation does not necessarily guarantee a secure context can be established
between two disparate domains-. For exalﬁple, if domain A requires non-repudiation,
but domain B does not support any compatible mechanism with domain A, then
secure interoperability will not be possible. The security policy defines the rules of

secure engagement between two domains, and therefore it should be negotiated first.

A policy issue that is not dealt with by this solution is the existence of different
attributes in disparate domains. For example, domains A and B both support access
control using Access Control Lists. However, domain A defines different user roles

and access rights to domain B. There are three possible courses of action.

e users can be logged in with restricted privileges, as their attributes are not
recognised in the foreign domain; this solution will restrict the interactions that

can occur.

¢ the administrators of both domains can add the appropriate foreign domain users
to their own domains; this adds an administrative overhead, and requires the

administrators to have agreed on the appropriate user access rules.

¢ the attributes could be mapped to appropriate corresponding attributes in the

foreign domain; this approach also requires a certain amount of upfront

115

Chaprer 5: Secure Interoperability in a DPE
agreement/trust between the domains, but it considerably reduces the

administrators’ subsequent overhead while still providing interoperability.

5.3.3 Conflicting Security Protocols

A security protocol is used to establish a security context between the client and
server and facilitate the secure association once it has been created. If a client and
server are using different security protocols, they will never be able to agree on the

security context that needs to be used because they will not understand each other.

The problem for DPEs is that there is currently no adequate security protocol defined.
For example, the OMG solution is the Internet Inter-Orb Protocol (IIOP) and its
secure version Secure Inter-Orb Protocol (SECIOP) [96], however it does not address
all of the DPE requirements. Some protocols are functionally restricted, e.g. SSL does
not provide any access control mech;misms. Others are environmentally restricted, i.e.
they are designed for a particular environment such as Open Software Foundation’s
Distributed Computing Environment (DCE) [97, 98]. None of the available protocols
address all the features mentioned in the sections above — negotiation of mechanisms

and policy configurations, and the use of generic tokens.

5.3.4 Different Trust Domains

Interoperability between different security domains within a DPE brings to the
forefront issues concerning the use of a distributed TCB (see section 3.3.2) and use of
different trust models (see section 3.3.1). If a client and server exist in two separate

domains, A and B, and they wish to communicate, although they are considered to be

116

Chapter 5: Secure Interoperability in a DPE
using a single TCB, it is distributed across twé domains and so will have different
levels of trust in different objects. For example, while the DPE will trust the security
service in its own security domain, it may not trust the security service in the other
security domain. Therefore trust has to be established between these objects. The
secunity service in Domain A needs to trust the security service in Domain B is
operating in a secure fashion, e.g. if single sign-on is operating between the domains,

.

Domain A needs to trust the following:

¢ the authentication information that Domain B is holding, in order to login to

domain A, is adequately protected;

¢ the secunty service in Domain B properly authenticated and authorised the

administrator or user that entered the login information;

e the mechanisms used for the security service are trustworthy.

In a DPE, using a distributed TCB, the trust model will affect the amount of
interaction required between two separate security domains. The three basic models

define the amount of overhead required:

e No trust: Mutual suspicion exist and so all services are required, e.g.
authentication, authorisation (providing restricted ‘guest’ privilege) and any

user interactions should be carefully monitored and/or restricted;

e Pre-existing trust: The number of services may be reduced, e.g.
authentication may not be required (user attributes may just be mapped to the

local domain attributes), and monitoring may be reduced;
117

Chapter 5: Secure Interoperability in a DPE

e Established trust: The interaction initially requires the authentication process
to validate a user via a TTP. Once authenticated, the can be authorised to

operate as a trusted user.

Therefore a DPE needs to be able to adapt to each of these scenarios, and judge when

each is required. This places three requirements on secure interoperability in DPEs:
e the interaction needs to be recognised as an inter-domain operation;

» the security services needs to be able to configure the security policy

accordingly to the requirements;

e the security service needs to be able to adopt the required mechanisms to

enforce the security policy.

The possible inconsistencies that may arise, along with their possible solutions are

summarised in table 5-2 below.

118

Chapter 5: Secure Interoperability in a DPE

Scenario

Addressing Secure Interoperability

Inconsistent
policy

Standard Policy Configurations

Both domains need to use a common policy to interoperate. The
use of standard policy configurations and any mappings to such
configurations will overcome the inconsistent policy problem.
Another possible requirement is the existence of an attribute
mapping facility, between the domains.

Mechanism-Independence

Mechanism-Independence implies that security mechanisms and
security services (and their goverming policies) are managed
independently of each other. Therefore it is possible to allow
negotiations so that appropriate mechanisms or appropriate
services (policies) can be selected to allow interoperation.

Inconsistent
mechanism

Standard Mechanisms

The provision of a standard set of mechanisms should ensure that
the problem of inconsistent mechanisms does not arise, as both
domains should always have at least one mechanism that they
both support for the service.

Generic Tokens

The use of generic tokens, will allow help abstract security
service implementations from the mechanisms used.

Both of these facilities help provide mechanism-independence.

Inconsistent
protocols

Standard Handshake Protocol

A common protocol that can negotiate the security policy and
mechanisms that will be used to provide a secure communication
between a client and server.

Inter-domain
Trust

Trusted Third Parties

Trust is essential for secure interoperability. The domain
administrator needs to know whether he can trust the foreign
domain. The use of TTPs will be essential in any inter-domain
service, e.g. X.509 Certification Authorities.

Table 5-2 Addressing Secure Interoperability Scenarios

119

Chaprer 5: Secure Interoperability in a DPE

54 A New Secure Interoperability Framework

Based upon the previous analysis, a new secure interoperability framework has been

defined for DPEs. The framework comprises three new elements:
¢ the policy configuration structure,
e asecurity interoperability protocol, and

¢ a set of security service objects together with their interactions.

5.4.1 New Policy Configuration Structure

The issue of ensuring compatible policy configurations can be used to facilitate secure
interoperable control and administration of services, requires a standard policy
configuration to exist between both domains (Requirement #14). While certain
security policy features have been negotiated in existing protocols, e.g. the negotiation
of mutual authentication in SSL, there is no definition of a complete DPE security
policy negotiation. The objective is to specify all the services that need to be agreed
and the possible options that\will be used for these services. The configuration is

summarised in table 5-3.

The services should include the full set of ISO 7498/2 facilities: i.e. authentication,

access control, integrity, confidentiality and non-repudiation.

® Authentication has one attribute, ‘Type’, which defines the type of
authentication required — ‘client’, ‘server’ or ‘mutual’. ‘client’ and ‘server’
represent peer-entity options where only the client or the server needs to be

authenticated.

120

Chapter 5: Secure Interoperability in a DPE
Access control also has only one attribute, ‘Mapping’. Although the
mechanism revolves around the comparison of attributes, there are still
innumerable vanations on the possible values of the attributes, e.g. ‘read,
write, execute’, ‘get, set, mange’. Another problem is the use of administrative
aids such as roles, and groups, which increases the number of options
exponentially. Although the research initially hoped to define common sets of
attributes and possible their groupings (e.g. ‘read, write, execute’ defined as
the ‘Unix’ attribute set) it was deemed to be an unrealistic solution. There
were too many variables, and the set definitions could easily become outdated,
and the resulting synchronisation of the sets among different domains would
prove difficult. Therefore, a solution was to provide the option to reference a
domain mapping object. This object would record the delails4 of the mapping
between two specified domains. If the object reference for a particular instance
of the domain mapper is provided, the interacting domains will use the
mappings specified. If the object reference is ‘Nil’, then no domain mapping
exists and one of the following will occur, either they will authenticate the
client and then assign rights, or restricted attributes such as guest-privileges, or
the client will already be defined because of previous administrator

interaction.

Integrity and confidentiality services have been aggregated into a single
service Quality of Protection (QoP). There are two options. The ‘Type’ option
lists whether no protection or a selection from integrity, confidentiality,

DetectMisordering and DetectReplay are applied. The last two options are

121

Chapter 5: Secure Interoperability in a DPE
included because they can be addressed through time-stamping and
sequencing when combined with the integrity and confidentiality algorithms.
The second option is ‘Message Part’, this is defined under the assumption that
a DPE protocol will be defined that will allow the QoP mechanisms to be
applied in this fashion. If a non-DPE protocol is used, then the message part
segment may not be applicable. In an effort to reduce the performance
overhead, the policy tries to configure the amount of message sent between the
two domains that should be protected. The protocol message is broken up into
its constituent parts and the policy defines the portion to be protected, the
operation called, the parameter passed, target destination and any other

information that might be included, such as transaction related details.

Non-repudiation is specified by identifying the types of evidence to that are
required (see section 3.2.5). Each domain needs to know that the foreign
domain can produce the requested evidence; otherwise one of the participants

may be vulnerable to repudiation.

TTP is specified by identifying the role the TTP will play in a service, e.g. a
TTP for authentication, or a TTP for non-repudiation delivery authority. A

object reference is then associated with the specified role.

122

Chapter 5: Secure Interoperability in a DPE

Service Policy Options Policy Configuration Values
Authentication Type Client, Server, Mutual
Access Control Mapping Nil, <Reference>
QoP Type NoProtection, Integrity, Confidentiality,
DetectMisordering, DetectReplay
Message Part parameters, operations, destination, info
Non-Repudiation Evidence Type Proof of Origin, Proof of Receipt,
Proof of Submission, Proof of Delivery
TTP <Role> <Reference>

Table 5-3 Policy Configurations

No audit section has been specified because the audit information is considered to
remain local to each démain. Each security service will create audit records for any
security-relevant event that occur within their own domain, and this infbnnation does
not need to be propagated across the domain boundaries. There are only two instances
when such inter-domain audit would occur. Firstly, if a single audit service is running
over both domains. In this case, the audit records could be directed to a single central
répository that both domains could access, as a single audit policy would actually be
in operation. Secondly, if a security incident, such as an attack occurred, then the
administrators from both domains may wish to share audit information to help track
the culpnt. However, this administrative interaction would generally occur off-line
and with the direct assistance of the administrators. It is not required for the inter-

domain interaction described here.

123

Chapter 5: Secure Interoperability in a DPE
54.2 New Secure Interoperability Protocol

Based on requirements defined in the previous chapier, the secure interoperability

protocol needs to have the ability to:

e provide the appropriate translation ability between domains, e.g. the ability to

map security attributes (Requirement #12);
e utilise compatible security mechanisms (Requirement #13);
e utilise compatible security policies (Requirement #14);

e define a secure context through the negotiation of an agreed policy
configuration and through the use of compatible security mechanisms

(Requirement #15);

e establish a trust relationship (Requirement #11).

A protocol has been defined to meet the needs of secure inter-domain DPE

interactions. The messages utilised are listed in table 5-4 below.

124

Chapter 5: Secure Interoperability in a DPE

MessageName Function
CreateContext Passed by the client to the target when a secure context needs

to be created.

NegotiateContext Used by the client or target during context establishment to
pass further messages to its peer as part of creating the context.

AcceptContext Returned by the target to indicate that the association has been
established.
DeleteContext Used to indicate to the receiver that the sender of the message

has discarded the identified context. Once the message has
been sent the sender will not send further messages within the

context.

ProcessContext When a secure context is established, messages are sent within
the context using this message.

ErrorContext . Used to indicate an error detected in attempting to establish an

association either due to a message protocol error or a context
creation error.

Table 5-4 Secure DPE Interoperability Protocol Message Types

All messages will contain a header with an object reference. An object reference
identifies the target. It can contain information such as the host (a DNS name or IP
address), port number (identifies the port the server is running on), server name where

the object resides.

CreateContext will use four parameters, Contextldentifier, ContextldentifierType,
PolicyConfiguration and Token. Contextldentifier is a unique identifier created by the
client an associated with the context. ContextldentifierType is used to define describe
the state of the identifier; it can be Client, Server, or Peer. A Client identifier is one
that is used by the client before a context is agreed; similarly a Server identifier is
used by the server; a Peer identifier is one that is used by both client and server once a
context is agreed by both. PolicyConfiguration describes the client’s policy settings. It

defines the mechanisms, policies and mappings configurations, and lists those items

125

Chapter 5: Secure Interoperability in a DPE
that are required (have to be provided to ensure a context can be created) and
supported (other possible configurations available that meet or exceed the context
requirements). It is the information held in the SecurelnvocationPolicy described in
section 5.4.3.1 below (see tables 5-5 and 5-6). Token is used to provide the client with
the opportunity to send authentication information to the server, if client
authentication is required. The server will use the configuration information specified
in PolicyConfiguration to identify the mechanism and policy requirements of the
t;nken, i.e. what mechanism is used (e.g. X.509) and what type of policy is used (e.g.

mutual authentication).

Once the client has established its parameters with the server, the server responds with
the NegotiateContext message. NegotiateContext uses the same four parameters as
CreateContext — Contextldentifier, ContextldentifierType, PolicyConfiguration and
Token. It provides the sever with a means of specifying 1;olicy requirements, and also
providing authentication information to the client. The NegotiateContext message can
be used by both client and server until a policy configuration is found and one or both
parties are authenticated, if required. Once negotiation is complete, the server will
issue the AcceptContext message with two parameters, Contextldentifier (an agreed
Peer identifier) and PolicyConﬁguration (the final and agreed security context

configuration).

ProcessContext can contain any message internally and to accommodates this by
providing two parameters, Contextldentifier and MessageBuffer. The message buffer
is an opaque datatype that can contain any datatypes thereby allowing the message to

hold encrypted, or integrity checked messages; the context is providing the secure

126

Chapter 5: Secure Interoperability in a DPE
channel between client and server and is not concerned with the content of the
message that is secured (this includes any errors returned by the application or server

that are not related to a context error); the message will be processed by the DPE.

The DeleteContext message has one parameter, Contextldentifier and is used by either
the client or server to indicate that the context will not be utilised and will be

destroyed.

The ErrorContext indicate that an error has occurred in the context, either in the
protocol or dunng context creation, therefore ErrorContext requires 3 parameters,
Contextldentifier, ContextldentifierType(as the Peer identifier may not be available

yet), and Error. Error contains the error data.

The message sequence chart, figure 5-1 below, is used to illustrated how the protocol
operates. The interaction takes place between a client and a target that exist in

different security domains, and therefore a secure context needs to be established.

The process begins with the client issuing a CreateContext message to the target. It
provides the client’s requirements for a secure context, i.e. the policy configuration
(see section 5.4.1 above) the client requires. The server responds with the
NegotiateContext message, which defines the servers’ policy configuration. The
NegotiateContext message can be used a number of times while the client and target
establish the secure context. The server will eventually send an AcceptContext
message if it agrees to the context; otherwise it will send a DeleteContext to stop any

further interaction and remove the context.

127

Chapter 5: Secure Interoperability in a DPE
Once a secure context has been established, both client and server use the
ProcessContext message to send data. A ErrorContext message (not shown on chart)

is used to show that a protocol or context error has been detected.

When interaction is completed, a DeleteContext message can be sent by either client

or server. It is acknowledged by a corresponding DeleteContext from the other party.

@ @

| _ _ CreateContext _ __ _ _ |
¢ — — _ NegotiateContext _ __ _ __ |
_____ NegotiateGontext _ _ _ |
¢ — — _ _NAcceptContext |
P

rocessContext >
- ProcessContext

Delet
______ eleteContext __ _ _ _

t

¢ — — _ _DeleteContext

Figure 5-1 Secure Interoperability Protocol Message Sequence

5.4.3 New Secure Interoperability Service Objects

Three new service objects are required to provide the secure interoperability

functionality for DPEs: the Security Interoperability Policy (SIPolicy), the Domain

128

Chapter 5: Secure Interoperability in a DPE

Mapping Agent (DMA), and the Secure Interoperability Agent (SIA). They are

described in detail in the following sub-sections.

5.4.3.1 Secure Interoperability Policy

The SecurelnteroperabilityPolicy object caters for the negotiation of all security

services to establish a security context between a client and target. As such, it holds

the configuration information for each of the services specified in table 5-3 above.

Therefore, a basic structure is applied to each of these security services to facilitate

negotiation, as shown in table 5-4 below. Each component of the structure is then

discussed.

Section Structure

Mechanisms Required: identifies the mechanisms required for the
specified service. This will be the minimum security
required by the object for this service.
Supported: identifies mechanisms that the object can
support, other those that specified in Required. Again, this
can be specified for each of the security services.

Policy Configuration Identifier: identifies the policy
configuration being used, be it standard or customised.
Date: the date the policy was set.

Mapping Mapping ldentifier: identifies the domain mapping being

used on the policy configuration

Date: the date the mapping was set.

Table 5-4 SecurelnteroperabilityPolicy Structure

o Mechanism has a Required/Supported structure for the security services. This

will list the required (i.e. minimum) security mechanism to be used and then any

other possible supported mechanisms. Both required and supported mechanisms

will supply references to the MechanismPolicy objects, so that any mechanism-

129

Chapter 5: Secure Interoperability in a DPE
specific data required can be accessed from there. The reason that the
SecurelnteroperabilityPolicy does not access the security services policies, such as
Authentication Mechanism (see Section 4.4.3), directly, is because the
administrator may wish to enforce only certain mechanisms for interoperability,
e.g. he may wish to make inter-domain operations use a higher level of security
than that available in the local domain. Using the authentication service as an
example, the Required mechanism may be ‘Password’, while the supported
mechanisms could be ‘SmartCard’, ‘Fingerprint’, and ‘Retinal Scan’. ‘Password’
is the minimum requirement, as it requires the user to possess certain kndwledge,
i.e. the password. However, the other mechanisms rely on users possessing
another form of authentication, such as a card, or some biometric measurement.
To enhance performance and reduce negotiation, at least some of the mechanisms

used should be based on a standard common set of mechanisms.

Policy defines the identifier of the policy configuration used. Use of standardised
policies configurations (see sections 5.3.1) facilitates the negotiation of a common
policy. As in the Mechanisms section, a Required/Supported structure will specify
the required policy configuration, and alternate policy configurations that can be

supported.

Mapping includes an identifier to the mapping that is held by the Domain
Mapping Agent object. This is used to locate the mapping that is applied to
translate the policy configuration specified in the policy section to the policy
configuration required for interoperation with a foreign domain. The section also

contains a date field to identify when the mapping was set. The use of dates in the

130

Chapter 5: Secure Interoperability in a DPE

Policy and Mapping sections allow the DPE to check that the mapping remains in-
synch with the policy configuration. If the policy configuration is updated, then
the mapping should possess a date equal to or greater than the date specified for
the policy; otherwise the Mapping may be from an old configuration and may no

longer be sufficient to translate the new configuration.

The whole SecurelnteroperabilityPolicy structure is summarised in table 5-5 below.
The identifier section allows the administrator to set different policies for different
object types with different domains and, thereby, optimise performance and tailor

security requirements.

131

Chapter 5: Secure Interoperability in a DPE

Service Basic Structure Function
General Identifier Uniquely identifies the policy - and the object
and domain it applies to.

Object type Identifies the object type (i.e. class) the policy
applies to. If set to default, then the policy
applies to all Object Types (without a specified
policy).

Domain id Identifies the foreign domain the policy applies
to. If set to default, then the policy applies to
invocations on all foreign domains (without a
specified policy).

Authentication Mechanisms List the authentication mechanisms required and
supported by the domain

Policy List the authentication policy configurations
required and supported

Access Control Mechanisms List the access control mechanisms required and
supported by the domain

Policy Identifies the mappings that can be applied to the

— Attribute Attributes

QoP

Mechanisms

List the QoP mechanisms required and
supported

Policy Lists the QoP policy configurations for Type and
— Type, Msg_part | Msg_part
Non-Repudiation Mechanisms Lists the non-repudiation mechanisms required
and supported
Policy Lists the non-repudiation policy configurations
- Evidence required and supported
Trust Authority Id of a TTP that can be used to validate domain
administration (a public key certificate)
Expiry time Expiry time of SecurelnteroperabilityPolicy

5.4.3.2 Domain Mapping Agent

Table 5-5 SecurelnteroperabilityPolicy Structure

The Domain Mapping Agent can be considered a registry/repository for mappings

between policy configurations. The policy can be accessed through a unique

identifier, which identifies the domains involved in the mappings, and uniquely

identifies the instance of the Domain Mapping Agent, e.g. A_B_1.0 identifies the

version | mapping between domains A and B. The Domain Mapping Agent maps

values between two sets of attributes, as agreed by the domain administrators.

132

Chapter 5: Secure Interoperability in a DPE

5.4.3.3 Secure Interoperability Agent

The Secure Interoperability Agent is responsible for taking control of an inter-object
communication, once it has been identified as an inter-domain interaction. Before
contacting another service object, the client will need a reference to it. Within [IOP,
this involves an object identifier that immediately identifies that object as originating
in a foreign domain. Any DPE interop.erability protocol will include such a facility,
because even though location transparency is provided to the client, the DPE needs to
possess this type of knowledge to locate the object. Once the QoP Agent has
identified the target object as being in a remote domain, the SIA will be called. It will
then retrieve the secure Interoperability policy and possibly any necessary domain
mapping information, in order to begin negotiations for a secure context with the QoP

Agent and Secure Interoperability Agent of the remote domain.

5.4.4 Secure Interoperability Example

The following example illustrates how the secure interoperability components would
work together to help create a secure association between different domains. Table 5-
6 below lists the relevant SecurelnteroperabilityPolicy values for the client and server.
As non-repudiation is not included in the example, it is not included in the table. The
policy was specifically created to allow interaction between the specified domains.
Both use ACLs for access control, but have agreed a domain mapping for their
attributes and roles (see table 5-7). The use of RoleB2 and RoleB2_! is deliberate, to
illustrate the fact that Domain B only had two roles (RoleB1, RoleB2) while Domain

A had three roles defined. Therefore, when agreeing the mapping, Domain B’s

133

Chapter 5: Secure Interoperability in a DPE

administrator created another role (sub-group), RoleB2_l. Both client and server

require integrity checks.

Service & Level | Config. User Policy (A) Provider (B)

Identifier Default_1.0 A_B_1.0

Object Type Default Default

DomainIDs Default A

Authentication Required: - Required: -

Mechanism Supported: -

Authentication Type Required: - Required: Client

Policy Supported: Supported: -

Access Control Required: ACL Required: ACL

Mechanism

Access Control Mapping Mapping: A®B Mapping: A®B

QoP Mechanisms | Integrity/ Required: - Required: RSA, DES
Confidentiality | Supported:DES, RSA (Supported. -

QoP Policy Type Confidentiality
Msg_part

TTP <TTP_A cert> . <TTP_B cert>

Table 5-6 User/Provider Securelnteroperal;ilityPolicies

A & B
Attributesin A & Attributesin B
read and/or execute < get
write and/or execute < set
read, write, execute < manage
RolesinA < RolesinB
RoleAl (write, execute) < RoleB1l (set)
RoleA2 (read) < RoleB2 (get)
RoleA3 (read, write,execute) < RoleB2_l (manage)

Table 5-7 Attribute and Role Mappings

In the example, a user A (client), whose role is defined as ‘RoleA2’ and has access

right ‘read’ in Domain A is requesting an existing service (server) in Domain B (see

figure 5-2 below). The example is a sub-set of the ‘logging into a provider’ scenario

(see section 4.5.1). Therefore the user in Domain A wishes to log into the provider in

134

Chapter 5: Secure Interoperability in a DPE

Domain B, and both are in different administrative security domains. Once the
Security Agent realises that the provider is in a remote domain, it will use the Secure
Interoperability Agent and QoP Agent to create a secure context. The example is

detailed below.

Secure Interoperability subset of Logging in to a Provider in a Foreign Security

Domain: -

This example shows the user A establishing an access session with their named user
agent of the provider. The user wishes to make use of the provider’s services, which

the user has previously subscribed to.

rrmrranen [S emmmmmrimmmasiErorr—ao—orresesassssmimaeeasseees

User Domain Provides Domain

= (A 7 & | | StPolicy |
5 m 3,. 7/(ctd)
; \.{,‘ -~ _ ‘ Qj;qcld) 7. m

SecA®

23

i 6. Cleatqfcgonlexi {->)
l {<-) B.Negotidtk Context
I

9.Negotlate Context {->}
{<) 10.AcceptEqntext

Figure 5-2 New Secure Interoperability Login Example

Preconditions:

The user has contacted the provider, and the Provider Agent (PA) has an interface

reference to an Initial Agent (I1A) of the provider.

The new security preconditions required:
135

Chapter 5: Secure Interoperability in a DPE

security is available in both the user and provider domains;

user A is defined as an authorised user in the provider domain;

a QoP Policy is available for the Provider Agent and User Agent;

there are no audit or non-repudiation policies related to the login process;

to facilitate secure interoperability, the administrators have defined a mapping

between the security attributes and roles of the domains.

Scenario:

(The new secure interoperability interactions are steps 4 to 11.)

1.

User A uses an access session related User Application to login to the
provider, as a known user. The access session related User Application
requests the user authentication information such as the UserlD and password.
The user then requests the Provider Agent to login to the provider, as a known
user. The access session related User Application supplies the security

information to the Provider Agent.

Provider Agent requests that an access session is set up with the named User
Agent of the user. Provider Agent provides the username of the user to the

Initial Agent.

The Provider Agent also sends the security information to the Security Agent

in the user domain, Security Agent.

Security AgentU now has the Initial Agent reference and is aware that it is in a

foreign domain. Therefore, in order to send the information to the Security

136

Chapter 5: Secure Interoperability in a DPE
Agent in the provider domain (Security Agc:ntP) to authenticate the user, a
secure association must be established. Security Agent now contacts the
Secure Interoperability Agent in the user domain (Secure Interoperability

A gemU).

Secure Interoperability Agent’ retrieves user A’s secure interoperabilit
p g P y

policy information for Secure Interoperability Policy”.

In conjunction with the QoP Agentu, Secure Interoperability AgemU contacts
the Secure Interoperability Agent® in the provider domain to establish a secure
association, using the CreateContext, which contains the client’s security
context information, which is comprised of the association options and a
security token. The security token is a generic token that is hiding the security
mechanism-dependent information (in this instance the security token consists
of user A’s request for the TTP_B's RSA public key certificate, along with

TTP_A’s public key certificate).

Secure Interoperability Agent” receives the request, via Security Agent”. It
extracts the security context information (the certificate request), along with
the other interoperability options defined from Secure Interoperability PolicyV.
Secure Interoperability Agent” then contacts the Secure Interoperability
Policy® to obtain the provider’s policy. In comparing the options, the provider
decides to use RSA and DES to provide QoP, and utilise the domain mapping.

It also extracts TTP_A’s certificate.

137

8.

10.

1l

12.

Chapter 5: Secure Interoperabiliry in a DPE
Secure Interoperability Agent’ then sends a NegotiateContext, in conjunction
with QoP Agent, to Secure Interoperability Agent'. It defines the accepted
association options, and the security token contains the TTP_B’s certificate,

and is encrypted using TTP_A’s public key.

Secure Interoperability AgentU receives the message, decrypts it with the
private key, extracts TTP_B’s certificate, and is ready to accept the association
options. Therefore it now responds with NegotiateContext, to Secure
Interoperability Agent® where the security token now contains a DES secret
session key and user A’s security id and privileges, which is encrypied usi;ng

I'TP_B’s public key.) D
G

Secure Interoperability AgentP receives the message and decrypts it LlSi:I'lg
TTP_B’s private key. It can extract the secret session key and also extract u%’er
A’s security privileges. The user and provider have now established a tn%st
relationship between the domains, using the TTPs. It then access the
appropriate Domain Mapping Agent, and can translate user A’s privileges

using the mapping. Secure Interoperability Agent” sends a AcceptContext,

using the DES session key.

A secure communication channel has now been established between the
domains, and the user’s original request to the Initial Agent can be transmitted

in a ProcessConlext message, via the Secure Interoperability Agent.

Session will continue using the Secure Interoperability Agents and QoP

Agents for secure interoperability.

138

Chapier 5: Secure Interoperability in a DPE

Post-conditions:

The new security post-conditions required are:

secure context exists between the domains;

user A’s privileges have been mapped to the provider domain, even though

user A is not identified as an authenticable user by the provider.

Alternatives within scenario:

There are several alternatives available within this scenario:

if both domains did not support compatible mechanisms for any of the

services, the interaction would fail;

if the user did not exist in the provider’s domain, and there was no TTP to
authenticate the domain, or domain mapping, available then the

interoperability would fail;

Secure Interoperability Agent/Secure Interoperability Policy can be used to
ensure that domains are compatible, even if a domain mapping is not required
(i.e. the user profile exists in the provider domain, and so the user can be
authenticated and have id and privilege attributes assigned in the usual

manner).

Although the introduction of the new Secure Interoperability Service constitutes

additional overheads, it should be noted that the service allows two domains to

139

Chapter 5: Secure Interoperability in a DPE
interoperate with the minimum administrative interaction, e.g. domain A and B in the
example above can interoperate if they provide TTP certificates and a secure
Interoperability mapping (assuming that the domains have common mechanisms and
certificates are available to the appropriate clients/servers) — this is instead of domain
A having to add all of domain B’s users to its security policies and domain B having

to complete similar actions for domain A’s users.

5.5 Summary

Although secure interoperability is not a new concept, its application to DPEs is new
in this research. In existing DPEs, secure interoperability is a real problem. It exists
because disparate domains can have different mechanisms, policies, protocols, and
trust models. All of these differences have to be overcome in order to provide
interoperability. There are several mechanisms that can be used to help overcome this
issue. Bridges provide a quick and easy solution, but they do have limitations.
Immediate bridges are not flexible for large numbers of interoperating domains,
whereas mediated bridges can increase the performance overhead because they
increase the number of times a single messages has to be encrypted and decrypted.
Standardisation of mechanisms and policy configurations provides two benefits, it
allows clients and servers to negotiate their secure context, and it also facilitates
mechanisms and service (policy) independence. The use of generic tokens also
facilitates these characteristics. All of these methodologies can be applied to any DPE

to help solve the secure interoperability problem.

140

Chapter 5: Secure Interoperability in a DPE
Although the standardisation of mechanisms used, policy configuration and
mappings, may seem unrealistic, it is not. In the selection of standard mechanisms for
use, there already are obvious leaders in each of the security services. For example,
access control is generally done by ACL or Capability lists; QoP would find 3DES,
RSA, and MDS5 as some of the most frequently used mechanisms. Policy
configurations are limited to the key issues, which are completely mechanism
independent, and the mappings apply to these policies. The fact of using such
standards can be seen as a limitation to any system. However, as always there is a
trade-off, limitation of mechanisms used versus the ability for interoperability to
occur without any user or administrator intervention. In large-scale distributed
systems, which may cross many boundaries, the administrative overhead would be
prohibitive if interoperability required specification of mechanisms, policies and

agreements for each domain-boundary crossing.

Up to this point in the research, consideration has been given to security in the DPE,
with respect to the security services itself and how it can interoperate between
disparate domains. However, the research needs to extend this scope and look at
secure interaction with other DPE services. The following chapter will now look at

how DPE supporting services can improve security by becoming ‘security-aware’.

141

6. Security-Aware DPE Services

6.1 Introduction

The research has, until now, concentrated on end-to-end security between a client and
server. However, this is making the assumption that only the core ORB and its
security service are necessary to complete a secure client-server invocat.ion. But a
DPE is more complex than this. According to TINA-C (see Section 2.3.3), the main
function of DPE [99] is to provide uniform execution environment and basic
capabilities for interaction between objects in heterogeneous network, and this is
supported by a range of DPE services to provide extra functionality to application

objects.

According to the ISO architecture, security should be provided in a modular format
[41]. This architecture divides system management into functional units, FCAPS - the
‘S’ being the security module. A system should be able to function independently of
the security service, and when the security module is introduced the same system
should now operate in a functionally similar but secured fashion. In other words, the
service should be a self-contained module that can provide security without having to
change any other services. This type of thinking is practical in a centralized system
such as IBM’s Resource Access Control Facility (RACF) [80]. Here the TCB is
contained within a single system. The security service can monitor all requests and
provide the required security functionality. However, distributed systems are more
complex. As previously discussed in section 4.2.1 distributed objects introduce

complications and the TCB is no longer contained in a single system and may need to

142

Chapier 6 Securirv-Aware DPE Services

operate across multiple systems, i.e. security domains (see Section 3.3.1 and 3.3.2).
This results in an extended set of security requirements for a DPE (see Section 4.2).

Therefore the modular solution may be inadequate.

While it is recognized that security should be pervasive [41], the issue in a DPE is
what the term pervasive means. If pervasive security in a DPE should be part of the
whole environment, which implies that the supporting services should also be

secured, then the modular solution may not be sufficient.

The objective of this chapter is to look at these services with particular reference to a
Trader Service (see section 2.5) and see if in the current modular security architecture
is adequate to secure them. This topic has not been investigated in previous literature.

It concludes with recommendations for supporting secure operation of the Trader.

6.2 Security Issues for Supporting Services in a DPE

As described in Chapter 2, the DPE is reliant on a set of services to provide support
for distributed objects, i.e. to handle distributed processing and provide transparency
between clients and servers. Some of the TINA DPE services previously identified

(see section 2.3.3) are listed below:

e Trading: provides a binding between objects that use a service (importer) and

objects that provide the service (exporter);

¢ Notification: enables objects to receive notifications without being aware of

the set of recipient objects;

143

Chaprer 6: Scenritv-Aware DPE Services

¢ Transaction: consists of three main management functions: transaction,

concurrency control and deadlock management;

¢ Security: authentication, authorisation and security controlling.

Each service is implemented by a number of objects. Currently security is
implemented by applying the security rules to these service objects. This means that
access can be granted to a client, when requesting use of a service object, if the client
possesses the appropriate privilege attributes. However, even looking at an overview

of the services some security issues become apparent. They are outlined below:

e Persistence Service: The Persistence Service stores components persistently
on a variety of storage servers. Although access to the persistent storage
objects afe controlled, the stored data is not secured — the security service has
no control over this; it would be an implementation level detail, i.e. if the data

was stored in a database, the implementer would enable database security.

¢ Naming Service: The Naming Service locates components by name. Once an
object can access the naming service, it can access all names in the service, as
lhefe are no security restrictions. Also Naming services can be federated, i.e.
two naming services are linked together to operate like a single service. If the
federation exists across different security domains the client is unaware that he

is crossing a domain boundary and security controls could be by-passed

e Event Service: This service allows ‘consumers’ to register/unregister interest
in specific events. The ‘suppliers’ then generate information about this event

and send it to the consumers via an event channel. It is a basic

144

Chaprer 0: Securitv-Aware DPE Services

publish/subscribe or notification service. Security has not been defined for the
event channels, i.e. access control is not available for specific events on a
single channel, and there is no indication whether the channel requires
encryption. Also the event service demands a certain amount of Quality of
Service (QoS), i.e. guaranteed delivery, persistence of event data in the event
of an event channel failure and use of logging facility. If the event channel
was subject to encryption then the supporting QoS mechanisms, would also

need to ensure security, e.g. the persisted data would have to be protected.

Query Service: This allows a client to use query operations for.attributes
associated with objects, in much the same way SQL can be used to query a
database of records by querying the fields in the records. It provides for
asynchronous query, so that the query can be issued and the client does not
have to block while waiting for a response. No security precautions have been
added and so there is no way to tdentify what attributes a client can perform
queries on, e.g. does the client have the security clearance to query a payroll
attribute on an employee database. Another problem is Denial of Service, e.g.
a rogue client can flood the query service with too many asynchronous or long

running synchronous queries thereby causing the services to halt or crash.

Trader Service: Similar in function to the Naming Service, the Trader allows
an importer to locate an object, published by an exporter, but it does so by
identifying a set of required properties. A security problem could arise if some
of the services offered by the trader require higher security clearance than
others; there is no way of controlling access to particular offers in a single

Trader.

145

Chaprer 6: Securirv-Aware DPE Services

There are security issues that exist in DPE services that are not currently addressed.
The above descriptions are just high-level overviews of such problems, but the
problem demands further detailed investigation. Therefore a single service, the
Trader, was selected and examined in detail (see section 2.5 for a detailed description

of the Trader).

6.3 Security issues related to Trading & Traders

Traders in a distributed environment are open to attack, as is any part of a system. The
research has defined the areas where Traders are most vulnerable to security breaches,

and categon’sed them below within the five ISO security concepts.

6.3.1 Authentication

Traders receive requests for imports/exports from members of the trading community.
Like any system resource, they are susceptible to masquerade (see Section 3.2.2).
Authentication is the service required to counteract this threat. It is a two-way
process, Traders, as well as importers and exporters should be identifiable and

authenticatable.

6.3.2 Access Control

Access Control needs to be handled at two different levels. Firstly, access control of
the Trader itself should be considered, i.e. who has access to the Trader. Secondly,

access control of service offers must be handled, i.e. which service offers an importer

146

Chapter 6: Securire-Aware DPE Services

can see within a Trader. The access control rules need to be preserved across linked

Traders.

6.3.2.1 Unauthorised Trader Access

Traders should have access control information, just like other objects in a -distn'buted
system. It should be listed in the access control mechanism, e.g. an ACL (see section
3.2.1). If trading community objects, e.g. Trader and exporter, are listed in the ACL,
then the access control manager, i.e. Authorisation Agent (see section 4.4.1.2), would
be able to make decisions relating to access, e.g. who can make requests on a
specified Trader. For example, a Trader operating in a domain where access is
controlled on the basis of roles, may use the roles of ‘Role2’ and ‘Rolel’, where
‘Rolel’ has a higher security classification than ‘Role2’, i.e., ‘Role2’ < ‘Rolel’. In
figure 6-1 below, the Traderl can only be accessed by ‘Rolel’, where as the Trader2

can be accessed by both ‘Role2’ and ‘Rolel’.”

(]

access granted Trader1
‘Rolel’ access only

User1 with role:

'Rolet’

Trader2
. 'Role1’ & 'Role2’
> access

access granted

User2 with role:
‘Role2'

Figure 6-1 Trader Access Control

147

Chaprer 6: Securirv-Aware DPE Services

6.3.2.2 Unauthorised Service Offer Access

Even if an importer has access to a Trader it may not have access to all the service
offers that the Trader holds. Some of the service offers may be of a higher security
classification, for example, the security classification of the exporter could, by,
default, be assigned to the service offer. Alternatively the exporter could specify a

security classification equal to or lower than its own classification.

Taking the scenario in the previous section 6.3.2.1, where Trader2 allows both
‘Rolel’ and ‘Role2’ to access the Trader, if service offer access is enforced then some
of the service offers will only allow ‘Rolel’ to view them and some service offers will

allow both ‘Rolel’ and ‘Role2’ to view them, as illustrated in figure 6-2 below.

@I fRoletdview]
2 Query Trader2 Ll polet - service 1

Role1 - service 2
Role1 - service 3
Role2 - service 1 Rolel - service 1
Role2 - service 2 Role1 - service 2
Role1 - service 3
Role2 - service 1

LROle2gview] Role2 -service 2

Query Trader2 > Role2 - service 1
Role2 - service 2

User1 with role:
'Role1’

User2 with role: L
‘Role2'

Figure 6-2 Trader Service Offer Access Control

148

Chapicr 6 Securire-Aware DPE Services

6.3.3 Integrity and Confidentiality

Integrity and confidentiality of data, stored [100] or in transit [101], must be

guaranteed in a distributed system; this has to include trading-related data.

6.3.3.1 Stored Data

Details of service offers, including an object reference, are stored in the Registry. It
must be protected, as an intruder may try to gain access to a service by gaining illegal
access to the object. Similarly details of the Service Type held in the Repository,
should be protected to ensure thz-u intruders do not have knowledge of ‘how’ to use

the service type, i.e. interface delails, parameters, etc.

intruder

Integrity & Confiedentiality
Protected Trader
Trader Unprotected [
Persistant
Storage

Registiy)

—
/—'-“ﬂ\ FlatFile
*"‘\ﬁ_—’_‘_’/
Unprotected
Persistant Storage

L-----------------

- &b =R . .-II------J

Database

N~

Figure 6-3 Protecting Stored Data

[t cannot be assumed that the Trader’s backend data, i.e. the data stored in the

Registry and Repository, is hidden behind object interfaces and, therefore, is not as

149

Chapter 0: Security-Aware DPE Services

vulnerable to attack as object references that are exported through the interface.
Intruders do not always use legitimate access mechanisms and, therefore, the
‘backdoor’ entry must be considered - see figure 6-3 above. Such data will usually be
held in persistent storage, such as a database, or flat file. Therefore the Trader, if
operating as a security-aware service, should be able to guarantee that the data is
secure, even when it is in storage. Cryptographic mechanisms (see section 3.2.3 and

3.2.4) are used to ensure that the confidentiality and integrity of the data is preserved.

6.3.3.2 Inter-Community Communications

Since a Trader is operating in a distributed environment, this provides an intruder with
ample access to intercept any communications between members of a trading
community. Object references and service type details are transmitted to exporters,
importers and other Traders. From such interceptions, one may be able to re-construct
Registry/Repository information. Therefore transmitted data has to be protected. All
communications between trading community members should be secured to ensure

the confidentiality and integrity of all messages.

6.3.3.3 Secure Interoperability

The issue of secure interoperability was covered extensively in the previous chapter,
and is particularly pertinent to the issue of federated trading, when the Traders exist in

disparate security domains.

6.3.4 Non-Repudiation

The trading community is made up of distributed objects, which are less predictable

due to their flexible and granular nature [24]. There are two problems. Firstly, if the

150

Chapter 60: Sccuritv-Aware DPE Services

intruder is an authorised user, or is successfully masquerading as an authorised user,
how can their actions be discovered? For example, an intruder can masquerade as an
importer, and query Traders to find useful service offers. The process of monitoring a
database may help, by providing clues to an intruder’s activities. Secondly, if
interactions are taking place, how can it be proven that a specific interaction or event
took place, if one party wishes to deny the event, i.e. accountability? Irrefutable

evidence is required from a non-repudiation service.

1. Monitoring: All security related events should be monitored. These events are
defined by the security policy. Apart from notifying an administrator, via an
alarm, that an illegal action has be taken, monitoring could also provide clues
to a previously unknown intruder, e.g. an importer making multiple
unauthorised import requests on several Traders. However, this requires data
fikering to find trends, which can be used to raise a system administrator’s

suspicions.

2. Irrefutable Evidence: Non-repudiation is used to provide irrefutable evidence
that certain events took place. For example, digital signatures can be used with
audit logs to record events. Just as other system resources are subject to a non-

repudiation policy, so too are all the trading community members.

6.4 Current Limitations

Within the current DPE specification of TINA, security of a DPE service is not
defined. Although the access session does provide a limited notion of authentication

and authorisation (see section 4.3), there is no specification of how this is applied to a

151

Chapter 6: Securirv-Aware DPE Services

service. As the location of Trader objects, within the service environment has not
been specified, it is initially assumed that they are available only within service
sessions. The current model suggests that there is no security available and so the
trading actions are not secure. If, however, the assumption is made that a Trader can
be available in both service and access sessions, then access-session objects can be
secured through authentication and authorisation, but the sérvice session Trader is still
insecure. Additionally, in both of these scenarios, there is no Quality of Protection
(QoP), audit or non-repudiation security available. Similarly the lack of a secure
interoperability protocol provides a problem, especially in the case of federated

trading across security domain boundaries.

The current DPE specification is insecure for DPE services. If, however, the new
Security Framework is applied it still does not address all the issues specified in the
previous section. Although access control of the Trader can be handled by the security
framework, via the Authorisation Agent (see section 4.4), the access control of the
service offers within the Registry cannot. The new security service has no way of
associating security data with a particular service type instance stored iﬁ the Registry;
it only associates security policies with objects or methods on an object. It would
require the storage of a security property in the Registry itself. The reason for this is
that such a property would be used to sort and make selections when providing
service offer lists to importers. This problem is also linked to delegation as the
security property would be set in the Registry and would probably be delegated from

the exporter, e.g. use the exporter’s security level.

152

Chapter 6: Securirv-Aware DPE Services

IMPORTERS EXPORTERS
Rolel vie M
service 1 Trader2 ~
servico 2 olel” & Role2’ access Exporter
User1 with role: service 3 role:
‘Role1’ Serwice e P ‘Role2’
servico 1 Rote2
service 2 ‘Role2” |™M™ Exporter
Role2" view . role:
: service 3 Rolet e ‘Rote1’
{ servico 1
servico 2
Exporter
Usei2 with role: T role:
‘Role2’ ‘Rolet”

Figure 6-4 Service Offer Access Control with Registry Security Property

In figure 6-4 above, three exporters are exporting services to a Trader. The first
exporter has the ‘Role2’. When it exports a service offer, the Trader takes ‘Role2’ as
the required security role for access to the services, i.e. as the security property values
in the Registry. The second exporter has ‘Rolel’. When exporting its service offer, it
specifies ‘Role2’ as the required security role. This is possible because ‘Role2’ has a
lower security classification, i.e. ‘Role2’<’Rolel’. Finally, the third exporter has a
‘Rolel’. It exports its service offer to the Trader and accepts the default security
property of ‘Rolel’. In the example, when an importer invokes the lookup operation
on the Trader, only the appropriate services offers are returned, i.e. the importer can
only view service offers with security properties (Role) less than or equal to their own

security property (Role).

Securing trader data, such as that held in the Registry and Repository, needs to be
addressed. Currently these databases are not encrypted. In addition, trading
community communications should be secured. The level of security would depend
on the objects involved and their security level, as well as the level of the service

offers being exported/imported.

153

Chapter 6: Securirv-Aware DPE Services

Securing transmitted data requires the use of cryptographic mechanisms to preserve
the integnty and confidentiality of the messages. The use of secure contexts, as

specified in section 4.4 via the QoP Agent, would provide protection.

As for stored data, there are a several possible solutions. The data could be encrypted
before it is written to storage and then decrypted after it is read. This is a solution
most suited to flat file systems. It could also be applied to database systems. However,
most databases today employ a security service of their own, i.e. they will secure the '
data [102]. These systems are designed to maximise efficiency while still ensuring the

security of the data and, as such, it would be preferable o utilise these facilities.

There is one further option that would offer a generic DPE solution as opposed to the
product-dependent solutions above. This option involves the use of a DPE Persistence
Service. This service would have to be aware that security was in operation and that
the stored data needed protection, i.e. it needs to be security-aware. The data for the
Registry is stored in some persistent storage facility such as a database or file. The
data is stored using the Persistence Service [103]. If the Persistence Service is
security-aware it will ensure that when the data is held in the data stores (e.g. a
database or file) it will be protected. However, DPEs are unable to deal with securing
stored data because they do not provide security-aware services, and there are no
other facilities to handle the encryption of stored data or utilise product-encryption

facilities.

154

Chapter 0: Securitv-Avware DPE Services

6.5 New Facilities Required

The previous section illustrates that the new Security Framework and Trader
specifications are inadequate to provide sepurity. Both the Trader modifications,
described in this chapter, and the Security Framework (including secure
interoperability), described in chapters 4 and 5, are required for a Security-Aware

Trader. The new Trader facilities will now be discussed.

6.5.1 Security-Aware Trader Attributes

Attributes are already used in the Trader specification to provide a f;amework for
describing the behaviour of any Trader (see Section 6.3.2). Security Attributes are
now introduced into the Trader. They will control the security behaviour of a Trader,
by specifying which security services it uses, i.e. just how security-aware the Trader

is. Security Attributes are defined in Table 6 -1 below.

Security Attributes Function Indicated

Security-aware Indicates that some attributes are checked as the
Trader is using security (at some level)

Access_control_trader Include Trader in ACL and uses authentication with
trading community members, etc.

Access_control_service_offers Provide access control on the service offers listed

in a query

Encrypt_stores Encrypts Registry and Repository according to
policy

Encrypt_comms Encrypts communications according to policy

Integriry_check_stores Integrity checks Registry and Repository according
to policy :

Integrity_check_comms Integrity checks commaunications according to
policy

NR_trade Non-repudiation of Trading related events

Audit_trade Audit Trading related events

Table 6-1 Trader Security Policies

155

Chapter 6: Securitv-Aware DPE Services

It is now possible to have several types of secured Trader. For example, a Trader
could be a ‘Public Trader’. This means that everyone would have access to it and it
would have no security applied, i.e. the Security-aware attribute would be set to off,
.ndicating that all other security attributes were also turned off. Alternatively a Trader
may be a ‘Secured Trader’. It would be security-aware and have ail other attributes
turned on, i.e. it would use all the available security services. Another option is to
make a Trader a *Security-Aware Trader’. In this case the security-aware attribute
would be on, and some of the other attributes would be on, e.g., Encrypt_stores and
Interity_check_stores, but not NR_trader or- Audit_trader, thereby providing a

specified level of security according o the policy within the domain.

6.5.2 Security-Aware Trader Data Structures

The two Trader data structures are the Repository and the Registry. The Repository
should not have to be modified significantly, as it will hold the security properties in
the same manner as it currently holds any other properties. The only change that is
required is operational, i.e. if the Trader is security-aware or secure, then there must
be a security property available in the data structures. The security property will be
‘mandatory’ and ‘readonly’, to ensure that it is available and cannot be modified.
Table 6-2 below shows an example entry in the Repository. The security property is

highlighted in bold italic.

156

Chapter 6: Securirv-Aware DPE Services

Service Property Name Property TypeCode | Property Mode
DataStore Supports SQL Boolean
Available Space (M) | Long Readonty
Location String Mandatory
Security String Mandatory,
Readonly

Table 6-2 Security-Aware Trader's ServiceType Repository Example

Table 6-3 below shows an example of two entries in the Registry that are based on the
Repository service type example in Table 6-2 above. The example assumes that Roles
are used as the security property and that ‘Role2’<‘Rolel’. Each entry holds the
service type that is being specified; in this case it is a DataStore service. It specifies
the service instance name and the list of appropriate properties and their values. The
‘Supports SQL’ property has no mode specified, and therefore is an optional
parameter; as a result there is no entry for it in the ‘DB Store’. Since the Security
property is ‘mandatory’ and ‘readonly’, it always has a value, which cannot be
subsequently modified. For the ‘DB Store’, the service exporter was a Rolel, and so
his ‘Rolel’ role was delegated to the service offer. In the case of the ‘File Server
Store’, the service exporter was a ‘Rolel’, however the exporter specified the Security

property as ‘Role2’ so that all staff members could access the data store.

157

Chapter 6: Necuritv-Aware DPE Services

ServiceType | Service Property Name Property Value
DataStore ‘File Server Store’ Supports SQL No

Space Available 600

Location ‘Server room 2’

Security ‘Role2’
DataStore ‘DB Store’ Supports SQL Yes

Space Available 800

Location ‘Server room 1’

Security ‘Rolel’

Table 6-3 Security-Aware Trader's Registry Entry Example

6.5.3 Security-Aware Trader Interfaces

There are eight interfaces defined. However, only five of these interfaces should have

to be modified, namely the Admin, Lookup, Register, Proxy and Link interfaces.

6.5.3.1 Admin Interface

The Antributes and Set methods will now have to deal with the additional security
actributes specified in table 6-1 above. The Antribute methods allow the administrator
to query the security attributes to find their current values. Ser allows the
administrator to modify the security attribute values, thereby allowing the

administrator to specify the ‘security-awareness’ of a Trader.

If Security-aware is set to ‘on’, then at least one other security attribute must be set to
‘on’; otherwise an error will be returned on the Ser method. If Securiry-aware is set to
‘off”, then all other security attributes must also be set to ‘off’; otherwise an error will
be returned on the method. These attributes control interaction with the Security

Framework. When as security attribute is set to on, it implies that a security service is

158

Chaprer 6: Securire-Aware DPE Services

available and that a security policy for the Trader must exist. The following example
in figure 6-5 will illustrate this. A Public Trader has been created by Userl, i.e. it is
security-unaware and all the security attributes are set to ‘off’. Userl then calls the Set
method to make the Trader security-aware and sets the Access_control_trader
attribute to ‘on’, i.e. access to the Trader is subject to the Security Framework’§
Access Control Agent. Userl has a security role of ‘Rolel’. The Default AccessPolicy
in the system assigns the security role ‘Role2’ to the object because ‘Role2’ is the
lowest security role available in this system. Therefore when the Trader becomes
security aware and requires an AccessPolicy, the Security Service checks the system
to see firstly'if an AccessPolicy already exists for the Trader; if it existed it would be
used by the service to control access to the Trader. However, in this case, no such
policy exists. Therefore the security service finds the Default AccessPolicy and also
Userl’s AccessPolicy. It finds that Userl’s policy is of a higher security classification
and, therefore, creates a new AccessPolicy for the Trader and assigns the higher
classification ‘Rolel’ to it. This will be achieved through the AccessPolicy

component, via the Policy/Context Manager.

159

Chapter O Securitv-Aware DPE Services

Security Framewoirk

Trader N

AccessPolicy
Trader = ‘Rola?;

ADMIN

Sacurity Anributes
Securlty_aoware =1
Access_control_tiader =1
Access_contiol_service_ofler
Set Encrypi_stores
Encrypt_comms
Integrity_check_stores
Integrity_check_comms

Trader Owner NR_trade

{Role1?) Audit_trader 3

Updating the \%

Security Attiibutes

dddddsd

AccomPolicy

Owner = ‘Role1"

AccessPolicy

Default = 'Rolez"

Figure 6-5 Security-Aware Trader's Admin lhterface

The same procedure would apply to all security attributes:
1. Set the attribute to on;
2. Check if the appropriate policy object exists for the attribute;

3. If it exists, the policy will be used; if it does not exist then find the Default

and Owner policies;

4. Create a new policy for the Trader based on the most secure option available

between the Default and Qwner policies.

6.5.3.2 Lookup, Register and Proxy

The Lookup, Register and Proxy interfaces now inherit the security attributes, i.e. an
object with a reference to one of these interfaces will be able to query the security

attributes to see how ‘security-aware’ a Trader is. This will allow trading community

160

Chaprer 0: Securirv-Aware DPE Services

members to make decisions relating to how- they will behave in response to a
Security-Aware Trader. The following example, depicted in figure 6-6 below, will

illustrate this.

In this scenario, Userl again has a security classification of ‘Rolel’ and is acting as an
Importer. She wants to query a Trader to look for a DataStore service, but also wants
to ensure that the Trader is secﬁrity-aware and controls access to its data. Userl has
the object reference for the Trader’s Lookup interface, and so reads the Securiry-
Aware Attribute for the Trader to see if it is secured. She can also read the other
security attributes to check what security facilities are used — in the example both
access control attributes are set. Now that Userl knows she is dealing with a secure
Trader, she invokes the Lookup::Query() method to find service offers for DataStores.
On the Trader side of the invocation, the attributes indicate that the Trader firstly
needs to check if Userl is authorised to Query the service offers. The Security Service
uses Access Control Agent (ACA) to find whether a client needs to have security
classification of ‘Role2’ or ‘Rolel’ to access the Trader. Userl’s credpntials, ‘Rolel’,
can be delegated through the DPE. The Access Control Agent then decides that she
can access the Trader interfaces. Secondly, the attributes show that the service offers
themselves are access controlled. Since both service offers are less than or equal to

the ‘Rolel’ classification, the Trader returns both DataStore service offers to Userl.

161

Chaprer 6: Securirv-Aware DPE Services

6.5.3.3 Link Interface and a New Link Policies

The Link interface also inherits the Security Attributes as the Lookup, Registry and
Proxy interfaces did above. It will affect Trader behaviour when two Traders are
creating a link. However, there is one other change — the introduction of a new policy.
This link policy will define how Security-Aware Traders can be linked. The new
policy is Link_security and it defines the lowest security classified Trader that can be
linked with, e.g. if Link_security is set to ‘Rolel” in Trader T1, then Trader T2 must
have a security classification of ‘Rolel’ or higher if it wants to invoke
Link::Add_Link() on ’i‘l. This preserves the security of the immediately linked traders.
However, in order for this to operate effectively the security interoperability service is
necessary. If the two linked &aders are in disparate security domains, then the
credentials may have to be mapped so that the Link_security policy can be preserved.
For example, Trader T1 is in domain A, is classed as a ‘Rolel’, and the Link_security
is specified as ‘Rolel’. Trader T2 is in domain B, is classed as an ‘administrator’ and
the Link_security is specified as ‘administrator’. A mapping exists between A and B
so that ‘Rolel’ maps to ‘administrator’. Without secure interoperability, T1 and T2
could not be linked; however, with the mapping available, they can be linked and

allowed to communicate securely.

6.5.3.4 Other Interfaces

For all other interfaces and methods:
o Security attributes will be treated like the other attributes;

o Security properties in the Repository will be handled like any other

‘mandatory, readonly’ property;

163

Chapter 6: Securirv-Avwure DPE Services

e Security properties will be handled like all other properties in the Registry;
e Security properties will be able to be used in Constraints and Preferences;

® Security properties will raise property errors as all other properties do, e.g.

Property TypeMismatch in Exporr method on the Register interface.

6.5.4 Security-Aware Trader and the new Framework for DPE Security

The security attributes now allow the Trader to make use of the Security Service. The
following sub-section looks at the problem areas identified in section 6.2 and
describes how the problems, that would have been experienced by the DPE, have

been overcome using the new Security Framework.

The Access_control_trader and Access_control_service_offers attributes allow the
Trader to make use of the access control facilities. Access_control_trader ensures that
a Trader’s access control information, e.g. a security level, is available in the system,
i.e. it has an AccessPolicy. A principal will own the Trader object, and the principal’s
credentials will be delegated to the Trader. Alternatively, the principal may specify a
security level lower than its own for the Trader, e.g. the Trader may be specified as a
‘Public Trade’ (see Section 6.6.1). The Acceés Control Agent now supervises all
access requests to the Trader (in accordance with the AccessPolicy), and all requests
made by the Trader, e.g. a ‘Role2’ importer will not be allowed access a ‘Rolel’
Trader, as it is considered less secure. Access_control_service_offers enables a
security property value in the Registry and places an exporter’s access control
information in the Registry as the security property whenever Export is invoked, e.g.
if an exporter has security role ‘Rolel’, then the service offer exported will

automatically take a default value of ‘Rolel’ as its security property value. The

164

Chapter 0: Securirv-Avare DPE Services

exporter may also specify a security level lower than his own, e.g. he may specify a
security role ‘Role2’ which is lower than his own, ‘Rolel’ role. The Security-Aware
Trader now make§ selections based on the security property when creating service
offer lists, e.g. if a ‘Role2’ importer is looking for a service, it will only be shown
‘Role2’ service offers — it will not see any offers with a security level higher than its

own.

The Encrypt_store, Encrypt_comms, Inregrity_check_stores, and
Integrity_check_comms control integrity and confidentiality in a Trader. All four
security attributes enable the encryption and integrity facilities that are specified in the
QoPPolicy object. This facilitates the separation of both stored and transit data
policies and therefore the level of protection can vary if required. For example, stored
data is held for a longer period of time than transmitted data and, therefore, it is more

vulnerable to attack and so it may require a higher level of security.

Transmitted data will utilise the secure service objects, QoP Agent, and
SecurelnvocationPolicy. For stored data, the most generic solution was described in
section 6.5, and involves the use of a security-aware Persistence Service. In this case
the Persistence Service has two options, it can apply mechanisms to the data before it

is written to storage or it can utilise the security facilities of the storage product.

The NR_trade flag enables/disables non-repudiation for a Trader, i.e. non-repudiation
is available but can be disabled if not required, e.g. a Public Trader may not require it
or it may be a trade-off in an effort to improve performance. A Security-Aware
Trader, with enabled NR_trade flag, will utilise the non-repudiation service objects,
1.e. Non-Repudiation Agent, Non-Repudiation Store, Non-Repudiation Adjudicator

and QoP Agent in accordance with the specified Non-Repudiation Policy.

165

Chapter O: Securire-Avware DPE Services

The Audit_trade flag controls the Trader’s access to the audit service. When set to on,

Audir_trade allow the Audit Sampler Agent to decide whether events are to be

audited, in accordance with the Audit Policy. If an event is audited the Audit Analyser

and Audit Responder will decide what to do, by referencing the Audit Knowledge

Base.

6.5.5 New Facility Summary

The following figure 6-7 (based on figure 2-9 of the Trader, see section 2.5.4),

summarises the modifications that are required to create a Security-aware Trader:

10.

New Trader security attributes;

Use of *mandatory, readonly’ security property in Repository;
New Registry security property;

Modified Admin interface, inherits Security Attributes;
Modified Lookup interface inheril.s Security Attributes;
Modified Registry interface inherits Security Attributes;
Modified Proxy interface inherits Security Attributes;
Modified Link interface, inherits Security Attributes, and new link
policy Link_securi-ry;

Use of the new Security Framework, including secure interoperability;

Use of security-aware DPE services.

166

Chapier 6: Sceurity-Aware DPE Services

Security-Aware Trader and Trading Community Members DPE services

Security-Awate Trades B
QS' Lookup , Ati |
tiibutes 9. Enhanced
-JELB-L!-E‘-}PED- Sacurity
7. New Seccurity Attiibutes Service

6.
g New Security Property

- mandatory, readonly

7. 10. :
m Pio Rogistry .J.'!'.E“.&.‘L‘“L‘. S:’cel::gfr::l °

3.New Security Property Service

4.

(Administurator };

Figure 6-7 Security-Aware Trader

Admirk

6.6 Other Security-Aware Services in a DPE

The previous sections have concentrated on the issues surrounding security and the
trading services. The problems were addressed by the security behaviour of the trader

using attributes and the new security framework.

Section 6.2 highlighted that security problems are apparent in other DPE services and
not just the Trader. They can also be addressed using the same mechanisms as the
Trader. The Naming service could also utilise attributes to decide whether a client has
access rights to view a particular object name or reference. The Persistence Service is

rather more complex. It could use attributes to decide whether data needs 1o be

167

Chaprer 0: Securirv-Aware DPE Serices

encrypted, but then it would need to provide generic interfaces that allowed it to issue
encryption commands. This would require integration with the security service's
encryption mechanisms or with the encryption facilities of the data storage
mechanisms, e.g. a database. These issues can be dealt with by providing separation

between policy (service) and the mechanisms used to implement them.

In all of these cases it could be argued that the ‘security-awareness’ charac.teristic 18
not necessary. Instead the system administrators could, for instance, set up multiple
Traders, each of which would have different access rights and therefore the service
would not have to concern itself with the security attached to the individual offers
available within the system. However, this increases the administrative ovérhead and
therefore the _Iikely;'-hood of human errors, which could result in a security
vuinerability. In the case of large scale distributed systems it is not always possible to
set up multiple Traders each with different access rights. This also relies on the fact
that each exporter will know the Trader it is supposed to advertise its services in, i.e.
know the Trader with appropriate security clearance and also assumes that enough
resources will be available to allow multiple traders to exist concurrently. A security-
aware Trader provides a simpler solution — it is less costly on resources and simpler to
administer because the trader can handle security, and therefore provides a more

secure solution. The same arguments apply to the other DPE services.

It can be surmised that at a DPE level, supporting services are required to be security-
aware in order to fully secure the environment. This can be accomplished by using the

following devices:

e Use of security attributes to indicate that security is required within a

supporting service;

168

Chapter 0: Securire-Aware DPE Services

e Separation of mechanism and policy (service), so that when a security
attributes indicates the security service is required, the ability to provide the

service is not mechanism dependent;

¢ Secure interoperability to allow this functionality to operate across disparate

domains.

6.7 Summary

Security is an issue for supporting DPE services. Although many of the services
appear to have security issues, the only way to investigate fully was to select a
specific service such as the Trader. Traders are an important DPE service because
they allow clients to finding objects that are required, whether they are local or
remote, which is pivotal to the success of a DPE. However, the Trader provides a very
vulnerable point for attack, providing an intruder with access to a multitude of
services. Therefore, it should be made security-aware. It should be able to ensure that
only authorised clients can access it, and that clients can only view the service offers
that they are authorised to see. To provide a Security-Aware Trader, new facilities are
required in the Trader. This entails providing the Trader with security attributes that
will govemn its security behaviour. The Trader’s Registry will also hold security
properties that are associated with each service offer held. The security attributes will
decide which security services the Trader will have access to, and the security
properties will be used in access control. Therefore, the administrator can decide just

how secure a Trader should be.

169

Chapter 0: Securirv-Aware DPE Services

Security cannot be completely treated as an add-on facility. Within DPEs, each
service has to be aware of security. This does not just apply to the Trader. It has
already been suggested that other services such as the Persistence Service need to be
security-aware if a distributed system is to provide a truly generic and secure

environment.

The lessons learned from the Trader study can be applied to all DPE services.
Security attributes, a complete security service that is mechanism-independent, and
the use of secure interoperability, allow services to become security-aware and work
together to provide a more secure environment. Having covered the theory of how a
new Security Framework and security-aWare service, such as the Trader, would
operate to provide a more secure environment, the discussion now moves on to look

at mapping this work to an implementable DPE specification.

170

7. Verification of the New Framework

7.1 Introduction

A new framework to provide security in DPEs has been defined in the previous

chapters. It comprises three main components:

® security service objects — operational and management providing the main

security service functionality;

* secure interoperability service objects to provide secure interaction between

disparate security domains;
e security-aware DPE services, such as the Trader.

The entire framework has been defined in accordance with the TINA specification,
which describes at a high-level, how DPEs operate. To verify the work, this chapter

will map the framework to a current, OMG DPE specification CORBA.

7.2 Mapping to CORBASec

Before performing the mapping, it is necessary to first understand what aspects of the
new secunty framework are missing from CORBASec. This is accomplished by
evaluating CORBASec against the DPE security requirements previously specified in

section 4.2.

171

Chapter 7: Verification of the New Security Framework

7.2.1 CORBASec vs. DPE Requirements

Table 7-1 below summarises CORBASec against the list of security requirements

defined by this research (see section 4.2). The “v” indicates that the required

functionality is present. The “-“ indicates that while some of the functionality may be

present, the full requirement is not met by CORBASec.

Security Requirement

Functionality required

Identification and
Authentication

Identify entities & generate identity attributes
Use multiple authentication mechanisms

Authorization & Access
control

Generate privilege attributes
Use multiple authorization mechanisms
Use role/groups

Propagation of security
attributes

Specify when propagation is required
Specify constraints on propagation

Secure communications

Ability to select Quality of Protect
Ability to select amount of message to be
protected

Secure stored data

Ability to specify that data needs to be secured
Ability to specify the Quality of Protection

Secure Auditing

Audit security relevant events

Produce audit records

Issue alarm

Protect audit information in transit or in trail
Should be extended to facilitate intrusion detection

Non-repudiation

“Generation/Verification of evidence

Storage of Evidence
Secure transport of evidence
Adjudicator facility

Administrative interfaces

System Management
Service Management
Mechanism Management

Interoperability

Interoperability at all levels-

Invocation

Security Service, Mechanism and Protocol
Mapping of attributes between domains

10.

Scalability

Object system that can be distributed
Use of domains
Use of groups etc in administration

Sy

11.

Integration with existing
environments

Flexible structure to allow the model to integrate
with other technology environments/security
models .

Facilitates regulatory requirements

172

Chapter 7: Verification of the New Security Framework

Security Requirement Functionality required
12. | System Recovery ' - -
T1 | Intrusion Detection Physical/logical procedures to prevent -
intrusion/modification
T2 | Hardware/software Mechanism management -
protection
M1 | Inter-object Authenticated & authorised object access v
communications Secure object communications v
M2 | TINA services Authorised service subscribers v
Secured service operation -
M3 | TINA services Secure control data -
Audit service available -
M4 | TINA services Secure administration data -
Secured access to administration data v
M5 | Inter-DPE security Authentication & access control v
Al | Secure participant Authentication & Access control v
interaction Secured participant communications v
Audit -
Non-repudiation -
A2 | Application Admin Usability -
Secured
A3 | DPE applications security Security active -
Security in-active -
11 Establish Trust Authentication & TTP v
12 Attribute Mappings Domain mapper -
13 Operational interoperability | Mechanism-compatibility -
14 Control/Administration Policy configuration compatibility -
interoperability
IS Application Security Secure interoperability protocol v
Context

Table 7-1 DPE Security Requirements available in CORBASec

It is clear from the above table that the main areas of concern can be addressed by
applying the proposed new framework, as it addresses the following issues, which are

missing or inadequate in CORBASec:

¢ Management: requires consistent, comprehensive management framework

that separates mechanism and service administration;

173

Chapter 7: Verification of the New Security Framework

e Securing Stored Data: requires management of relevant policies and the

ability to integrate with a security-aware DPE service;
¢ Audit: requires full auditing facility that can address IDS requirements;

* Non-repudiation: requires the full compliment of non-repudiation facilities

(storage, delivery and adjudication);

¢ Interoperability: requires secure interoperability with entities in a disparate

security domain;

Some of the DPE specific requirements are not fully addressed in this \.feriﬁcation.
Firstly, the segment of the Native Computing and Communications Environment
(NCCE) security domain, i.e. mechanism management, is not addressed because the
CORBA services are not mechanism-independent. Secondly, the differences in the
DPE Services and Kernel security are not addressed. Security of DPE services is not
considered. However, the issue of a distributed TCB (of which the kernel is the main
component) is discussed. It is reliant on two elements — the use of interceptors and the
trusted installation of security mechanisms. Interceptors are resident in the ORB and
are able to catch all invocations at particular points in the invocation path, e.g. when
leaving the client or when arriving at the server process. Security interceptors catch
evéry invocation and call the appropriate security services to ensure that a request is
in-line with the current security policy. Finally, application security is addressed. The
notion of active and in-active security applications is addressed by CORBA's
security-aware and security-unaware applications. Security unaware applications do

not have any knowledge of security and rely on the security interceptors to provide

174

Chapler'7.' Verification of the New Security Framework

security. Security aware applications can use the defined security objects specified by

CORBASec.

The shortcomings found with CORBASec can be further illustrated by looking at the
products that are based on the specification [104, 105, 106]. All of the products have
certain features in common because they all need to extend past the CORBASec

specification because it is too restrictive:
e Extending the administration features through defining new interfaces;

o Using additional features to integrate with existing technologies, i.e. unitary

logon, bridge technology;

o Extending the audit facilities to help secure audit records or make- them

available to monitoring tools.
However, there are still a number of resitrictions:

e Replaceability is difficult and so they are all limited to specific sets of security

technologies/mechanism;
* Data storage is proprietary, e.g. use of LDAP;
e There is no monitoring/IDS integration available;
e Non-repudiation is not available;

e Interoperability is still limited to compatible domains and technologies

(althcugh most have consulting divisions that provide customised solutions).

175

Chapter 7: Verification of the New Security Framework

Another important point to note is that, while it has not been tested by any of the
vendors, it would appear that none of these products will interoperalte, out of the box,

because they all suﬁpon different technologies.

7.2.2 Mapping to the new Comprehensive CORBASec

Applying the new security framework enhances the CORBASec specification, and
therefore it will be referred to as the Comprehensive CORBASec (CCS). The
complete [DL for CCS is available in Appendix A. The mapping preserves the overall
CORBA structure of an ORB using security interceptors. Therefore a direct mapping
from the TINA structure is not appropriate or possible, i.e. a one-to-one mapping
between TINA service objects and CORBASec objects is not possible. Defining new
objects and modifying existing object within CORBASec provides the required
functionality. Figure 7-1 below, summarises all of the objects involved in CCS. It

highlights three object types:

¢ Objects that were defined in CORBASec and remain functionally unchanged
from that specification;

. Objects that were defined in CORBASec, but are now significantly changed in
order to facilitate modified or new objects;

e QObjects that are completely new to the DPE and are used to facilitate the

CCS’s new functionality.

The figure has been divided into sections that represent the main service facilities
available within the CCS. This can be compared with figure 2-11 in section 2.6,

which shows the objects defined within the CORBASec.

176

Chapter 7: Verification of the New Security Framework

Authentication Secure Invocation Non-Repudiation

& Authorisation & QoP & Audit

UserAgent _LNRCredenllals |-| L AuditDecision |:|

[L
%: Current NRDeliver AuditChannel
@
g Credentials :I NRStore AuditTrail
= NRAdjudicator AuditActions
c Principat
-_-9 Authenticator
[[_ AuditAnalyser
)
Vault
8. RequiredRights u AuditKB .
SecurityContext
AccessDeclsion AuditResponder I

AuthPolicy
I
8 AuthMech QOPPolicy
)
o QOPMech
[
I NRPolicy AuditPolicy
E
@ Securelnvocation
E Pollcy 1 n
E DelegationPolicy L
‘q’ DomainMapping

DelegationMech :l
CORBASec Objects CORBASec Objects - NEW Objects -
- Unchanged Significantly Changed for Enhanced Service

Figure 7-1 Comprehensive CORBASec objects

The following sections will examine the new and modified objects and how they

provide the new functionality, to ensure the new DPE security requirements are meet.

7.2.3 Management and Mechanism-Independence

The CCS separates the management of services and mechanisms and thereby provides
the required mechanism-independence. In uses the four methods identified in section

4.4.3:

1. definition of new policy classes to separate management function;

177

Chapter 7: Verification of the New Security Framework

2. use of opaque data types to assist abstraction;
3. definition of policies for all security functions for consistency;
4, ability to locate the new policies.

The CCS proposes the introduction of several administration objects, which are listed

in table 7-2 below:

Security Service Administration Qbjects
Authorization/Access control | AuthPolicy, AuthMech,
AccessPolicy, AccessMech,
DelegationPolicy

Integrity/Confidentiality QOPPolicy, QOPMech

Non-Repudiation/Audit NRPolicy, NRMech,
AuditPolicy, AuditMech

Interoperability SecurelnvocationPolicy

Table 7-2 Administration Objects

To facilitate mechanism-independence, a new set of mechanism policy objects is
introduced for each of the security services — AuthMech, AccessMech, QoPMech,
AuditMech and NRMech. Each of these will describe the mechanisms used for the
service. There is no mechanism policy for delegation, e.g. DelegationMech, as
delegation is not handled by a separate mechanism; it will use those employed by the
authentication and access control mechanisms, e.g. X.509 ceniﬁcates, rights from an

ACL.

Two new policy objects are introduced, AuthPolicy and QoPPolicy. AuthPolicy is
responsible for the authentication security policy, i.e. the mechanism to be applied by
an application, the valid authentication mechanisms available to a user and the

relevant authentication data, such as ID and password. QoPPolicy holds the policy

178

Chapter 7: Verification of the New Security Framework

information in relation to establishing a secure context between a client and server,

i.e. the level of secure communication required.

The functionality of the remaining policy objects, which previously existed in
CORBASec, is significantly changed in CCS. In CORBASec, non-repudiation policy
was only supported at ;'npplication level and only defined the rules for generation and
verification, while the audit policy simply listed the types of application events
audited and specified an associaged AuditChannel, i.e. where the record was written.
NRPolicy is now available at application and invocation level, and manages
authorities, event types and mechanisms (via NRMech). AuditPolicy .now manages
the event selectors, the new audit objects responsible for monitoring, filtéring and
delivery, and the multiple AuditChannel options now available'_‘ (see section 7.2.6.1
below). SecurelnvocationPolicy is stifl used to manage secure invocations, however
its functionality has been significantly extended. It now provides more configuration
options, and is an inherent part of a new CCS interoperability service (see section
7.2.5.1 below), which manages negotiations between security domains at both service
and mechanism levels. Therefore, there is no separate mechanism policy because this

object is primarily used for negotiation, and it is more efficient to do so at one level

rather than involving another object in the communication protocol.

One further issues is the ability to find the new policies as accomplished through the
PCM in TINA. This is addressed by extending the DomainManager functionality
(previously in CORBASec). Getting access to a policy via the domain manager needs
to be updated to handle the new MechansimPolicy objects, as illustrated in figure 7-2

below. The DomainManager can now be queried to find the mechanism policies using

179

Chapter 7: Verification of the New Security Framework

a newly defined method called get_domain_mechanism, e.g.

DomainManager::get_domain_mechanism(access).

AccessPollcy

DomainMangger::get_domain_palicy{access)

Object::get_domain_manager

Object DomainManager '

DomainManager::g,_domain_mechanism(access}.

AccessMech '

Figure 7-2 CCS DomainManager

Therefore the functionality of all the management service objects in the new security

framework has been mapped to the new and modified management objects in CCS.

7.2.4 Authentication & Authorisation Enhancements

CORBA groups authorisation and authentication together, because they are so closely

linked. Therefore they will both be stedied under this section.

7.2.4.1 CCS Authentication & Authorisation Overview

The Authentication & Authorisation services provide three new facilities:
e mechanism-independent alternative to the User Sponsor Code;
e delegation controls;

o parameterised access control.

180

Chapter 7: Verification of the New Security Framework

CORBASec refers to User Sponsor Code (USC), which is not part of the object
system because it is mechanism specific (it represents a logon module). Therefore the
CCS defines a UserAgent as a new object to provide a mechanism-independent means
of communication with users. It is representative of some of the access session related
User Application and User Agent functionality, which relates to security (see section
4.4). Although both of these objects already existed in the TINA model, they are
responsible for interfacing with (access session related User Application) and
representing (User Agent) the user in the system. Therefore it would be beneficial to
include them in the CCS model as it would allow the system to interact with users
irrespective of the logon mechanisms used, i.e. smartcard, biometrics, or password. In
this way the UserAgent will provide the parameters to CORBA’s
Principal Authenticator. The parameters are initially provided to the UserAgent using
the oper;ltions; set_security_name, set_auth_data, sei_privileges, set_name. This
provides a mechanism independent way of getting authentication information because

any product/mechanism can use these operations.

The UserAgent can then invoke the Principal Authenticator with the user information.
If the UserAgent is required to store any data it will fmve to consider the issues of
securing authentication information. It could do this by defining the QoP required for
the stored data (see section 7.2.5 below). A factory is a standard OO design pattern
that allows the creation of a particular object type [107]. The logon module will have
an associated UserAgent factory because it will need to generate a UserAgent for each
user logging into the system. It is evident therefore that the logon module does not
have a specific entity or principal, on whose behalf it is acting, as all other objects in

the system would. It would be beneficial to allow the logon module to be mechanism

181

Chapter 7: Verification of the New Security Framework

independent and therefore able to easily adapt to multiple authentication mechanisms,
e.g. a single console that can deal with password, certificate or token authentication
depending on the application being accessed. This is achieved by modifying how the
authentication policy works. AuthPolicy usually requests all the infonnaiion that a
single principal requires to authenticate itself, e.g. a user’s ID and password. The
AuthPolicy needs to differentiate between a logon module and normal system object.
This is accomplished by defining a PrincipalType - ‘Principal’ indicates a usual
system object that .has a principal and therefore authentication data is required, while
‘UserAgf;nt’ (UserAgent system entry point) indicates that authentication data is not
required because no single principal is involved, instead it associates the type of

authentication with a particular service/logon module.

With regard to authentication, the Authentication Policy and Authentication
Mechanism objects map directly onto the new and corresponding objects in CCS. The
PrincipalAuthenticator is representative of the AuthenticationAgent. When the user
has been authenticated it is the responsibility of the Principal Authenticator to generate
identity attributes for the user, the Credentials object. There is no service object that
directly represents the Credentialé, or indeed the Current objects. However, the data in

these objects will be available through management contexts and the UserAgent.

CORBASec previously defined two access related policies — DomainAccessPolicy -
and AccessPolicy. The mapping now just provides for AccessPolicy because the
distinction between the previous two objects was that DomainAccessPolicy managed
the privilege attributes while AccessPolicy was used to query the access policy for a
particular set of Credentials. To preserve a consistent management framework,

DomainAccessPolicy functionality is provided in AccessPolicy. The

182

Chapter 7: Verification of the New Security Framework

AccessControlAgent is mapped directly onto AccessDecision as both are responsible

for deciding if the presented credentials allow a user to perform a particular operation.

Another issue that is intrinsically part of authentication and authorisation, in DPEs, is
delegation. The main issue noted in [36], regarding delegation, is the inability to
restrict where and when credentials can be delegated. This also includes what
delegation modes (composite, simple) can be delegated. The issue is addressed by
modifying several object interfaces. Firstly, the new administration object,
DelegationPolicy will now also handle restrictions on where and when attributes can
be delegated. Two new operations are introduced - set_controls and get_controls.
These operations specify what privileges can be delegated, the delegation mode to be
used, the number of invocations permitted and an expiration time for when these
privileges can be delegated. This handles delegation from an administrative
perspective. However, CORBA_ already allows privileges held in the Credentials
object to be updated ‘on-the-fly’ using the set _privile:ges operation. Therefore the
set_control and get_control operations need to be added to Credentials, so that

delegated privileges within it can be controlled.

The mapping can be summarised in the following table.

183

Chapter 7: Verification of the New Security Framework

Figure 7-3 above illustrates the new method of authentication within the CCS. The

process is described below.

A standardised logon screen for an application exists, it is a generic front end that can

be modified to suit multiple authentication mechanisms.

1.

Find the current authentication mechanism for the application. The logon
module will query the AuthPolicy to find out what authentication policy is
implemented for the current system. In this example a password mechanism

identifier is specified in the application’s AuthPolicy.

Obtain the authentication mechanism details. AuthPolicy will query
AuthMech to find the details of the identified mechanism, e.g. what
authentication parameters are required. The logon module screen is populated
and in this example the system now waits for the user to enter a user ID and

password.

Principal completes login to system. ‘Userl’ now enters her user ID and
password. The interaction is now taking place with the UserAgent object. This
object will process the user authentication data, in this case a password and
ID. However, if a smartcard logon were u-sed, the UserAgent would process

the vuser ID, user PIN and smartcard data.

Authenticate the Principal. The UserAgent, having all of the required
authentication data, now calls the Princiapal Authenticator to authenticate the

user.

185

10.

11.

Chapter 7: Verification of the New Security Framework

Verify the authentication data. The PrincipalAuthenticatbr will now query
the AuthPolicy object to see if the user can be authenticated. AuthPolicy will

confirm that Userl with password “Secret” is a valid user of the system.

Get the user’s access privileges. The Principal Authenticator now queries the
AccessPolicy object to see what the user’s access privileges are. In the
example, an ACL with a Role attribute is used. Userl is defined as a-‘Rolel’

role with access rights ‘s’,

Get the delegation policy. The PrincipalAuthenticator will query the
DelegationPolicy object to see what the delegation mode is to be used. In the

example, SimpleDelegation is used.

Create the credentials object. PrincipalAuthenticator returns the
authenticated Credentials object to serve as the user’s security ticket. It
contains attributes such as ID and privileges. This instance will hold the

‘Rolel’ role with right ‘s’ and SimpleDelegation mode for Userl.

Set the credentials of the execution environment. The Credentials object

reference is passed to the Current object.

Client invokes a secure method on a server. The security service mediates
the client/server interaction, by accessing the Current object to ensure that the

interaction is in accordance with the security policy.

Server executes the secure method. The server can access the Current object
to get information on the incoming client request, such as the client’s rights
and privileges. The RequiredRights object can then be accessed to find what

rights are required to access the server method. This information will allow the

186

Chapter 7: Verification of the New Security Framework

server-side security service, i.e. the AccessDecision object, to make an
informed access decision. If the client is allowed access, the server will
execute the method. Userl’s privileges can now be delegated to the server
object if further invocations are required for the server to complete its

operation.

The authentication and authorisation of a user to the system is complete.

7.2.5 Integrity & Confidentiality Enhancements

CORBASec deals with integrity and confidentiality together under the title of Quality

of Protection (QoP). The new features that are added to QoP are:
o flexibility in configuring QoP by defining new policy objects;

o QoP for stored data.

7.2.5.1 CCS Integrity & Confidentiality Overview

Previously in CORBASec, there were no objects to independently handle integrity
and confidentiality. The SecurelnvocationPolicy had a set_association_options
operation, which allowed the administrator to specify whether confidentiality and
integrity were to be applied to secure invocations. The CCS, however, now has two
new objects specifically dedicated to Quality of Protection (QoP), QOPPolicy and
QOPMech. These objects are used to define a secure context between a client and
server. The SecurelnvocationPolicy, is now specifically devoted to secure

associations between disparate security domains (see section 7.2.7).

187

Chapter 7: Verification of the New Security Framework

Section 4.2.2 noted that there is an issue regarding the security of stored data. Security
of stored data in this instance is defined as the implementation of a specified level of
QoP on the data held in a persistent data store. It could be assumed that database
integrity and security system would be able to handle these secure storage issues’
without DPE intervention. However, database integrity is not the same as security
integrity. Database integrity refers to the accuracy, correctness and validity of data
(referential integrity) [108], and does not specifically deal with the issue of
unauthorised modification. With regard to database security, the mechanisms used are
very much product specific and, in many cases, database security revolves around
authentication, access control and the use of specific file formats that prevent file
modification. However, this does not protect data that is illegally viewed, and some
encryption mechanism has to be employed to ensure confidentiality and integrity. In
addition, there are other methods of storage that can be employed (e.g. a flat file) and
a DPE also has to be able to administer security for stored data in these

implementations.

The CCS proposes the use of the QOPPolicy and QOPMechanism to also administer
stored data security. QOPPolicy will use ger_stored_QOP_policy,
set_stored_QOP_policy, and query_stored_QOP_policy operations (as opposed to the
get_QOP_policy, set_QOP_policy and query_QOP_policy). The reason that separate
methods are required is that the administrator needs to distinguish between a secure
communications context with an object, such as a database, and securing-the data
stored within a database. Therefore two policies can exist for the same object, but they
will mean very different things. The parameters are almost identical to those used for

secure contexts, except that the administrator does not need to specify a direction or a

188

Chapter 7: Verification of the New Security Framework

message part that requires protection, because it is not dealing with a transmitted
message, it is protecting stored data. The QOP mechanisms can apply the policy-
specified encryption to a data structure before it is written to a database or file. The

process will be reversed when the structure is then read.

The following table summarises the QoP mappings.

New Security CORBASec Functionality

Framework

.QoPAgent Vault, SecurityContext | Negotiate and build a secure
association

QoPPolicy, QoPPolicy, Management of secure

QoPMech- QoPMech association options

Table 7-4 QoP Security Service Object Mappings to CCS .

7.2.5.2 Example of CCS Integrity & Confidentiality
Figure 7-4 below illustrates the new method of QoP within the CCS. The process is

described below.

1. Client invokes a secure method on a server. The security service intercepts
the client/server interaction. The Vault object is used to establish a secure

context. It recognises the object as belonging within the trusted domain.

2. Client checks the QoP policy. The client queries the QoPPolicy to see what is

required for a secure context between the client and server.

3. QoPPolicy references QoPMech: It also returns the mechanism to be used,

via the QoPMech.

4. Secure context negotiation begins. A secure context will be initiated using

the client’s QoP.

189

Chapter 7: Verification of the New Security Framework

5. Server Vault finds its secure invocation requirements. The server Vault

intercepts the new request, and queries its QoPPolicy and QoPMech.

6. Server returns its QoP. It can use this information to finalise the negotiation
with the client and so complete a secure context. Both client and server are
now utilising SecurityContext objects and can communicate in accordance
with the security policy. Server queries a data storage object. The server
needs to query a data storage object DBStore, in order to complete the method
invoked by the client. The DBStore queries the QOPPolicy to see if the data is
securely stored and, if so, what QOP is applied. In this example, the data is
stored with a QOP of Confidentiality, using DES to encrypt the data structures
(in this scenario no secure communication with the DBStore was required, i.e.

the data is transmitted in the plaintext but stored in an encrypted format).

Client

QOPPolicy '
QOPMech '

Figure 7-4 CCS Integrity and Confidentiality

190

Chapter 7: Verification of the New Securiry Framework

7. Server method can be completed. When the record is read from the data
structure it is decrypted using the appropriate mechanism, DES (Note: in this
instance, any required key exchange is part of the read mechanism for the data
structure). The data is returned to the server. The server can now complete the

method invoked by the client. The response is returned via the secure context.

This completes the QoP events for transit and stored data.

7.2.6 Non-Repudiation & Audit Enhancements

Non-repudiation and audit have changed significantly in the CCS. Both employ new

objects and provide more facilities.

7.2.6.1 CCS Non-Repudiation Overview

The first change is that Non-Repudiation is no longer considered an optional service
as it w'as previously specified in CORBASec (Optional in CORBASec means that it
was not available to security-unaware application — the non-repudiation interfaces had
to be invoked by a security-aware application). It is available on every object
invocation. However, the service is also configurable so that it does not provide an
unacceptable overhead on ORB operations. Non-repudiation will be enforced on
every object invocation, in accordance with the specified policy. This policy will be
dictated by the new administration objects, NRPolicy and NRMech, which correspond
to the TINA service objects of the same name. NRPolicy is used to configure the
general non-repudiation policy — this means that it covers all of the non-repudiation
facilities, mechanisms, evidence types and adjudicators. The NRMech object holds

details of the non-repudation mechanisms including authorities used and evidence

191

Chapter 7: Verification of the New Securiry Framework

types. The NRCredentials object, as defined in CORBASec, is still used for evidence
generation and verification. The NRCredentials information is held in contexts and

User Agent.

Three other new objects are defined to provide the missing non-repudiation facilities
as defined by the ISO - deli.very, evidence storage and retrieval, and adjudication. The
delivery service is made up of two key elements — a delivery authority and the
NRDeliver object. The delivery authority (DA) is a TTP (see Section 3.3.2) that is
identified in the NRPolicy authorities list. The authority list provides the name of the
authority and its role, in this instance the role is “Delivery Authority”. NRDeliver
uses the Delivery Authority, to provide a trusted delivery service. It makes use of the
SecurityContext objects already defined.in CORBASec, but creates new contexts to
deliver its own tokens and data as opposed to using the client/server context that
would already exist for an object invocation. For optimisation purposes, NRDeliver
could use the existing context if it had the appropriate QoP, i.e. greater than or equal
to the non-repudiation QoP specified in NRPolicy. NRDeliver will be able to send
both generated and verified security tokens using the NR_deliver_token method.
Another issue with the non-repudiation delivery authority is how it can prove that it
performed its function. This is achieved by adding two more proofs to the process
(see Section 3.2.5). This will include the client producing a Proof of Submission to
provide irrefutable evidence that the client submitted the non-repudiation request to
the Delivery Authority and secondly Proof of Delivery to create irrefutable evidence
that the server received the original invocation and token from the Delivery Authority.

These are created by the Delivery Authority for every delivery request and the

192

Chapter 7: Verification of the New Security Framework

evidence tokens are stored in the client’s evidence store. The NRDeliver functionality

is mapped from the QoPAgent.

NRStore is the second of the new facility objects for non-repudiation, and
corresponds directly to NRStore in the new TINA framework. It provides the
interface to a storage facility for the tokens and certificates. It can add, get and query
stored records relating to non-repudiation evidence, and does so using the

NR_record_set, NR_record_get and NR_record_query operations.

The NRAdjudicator is mapped to its namesake in CCS. It is an interface to a notary
that can make judgements on any disputes. A TTP will be used to verify evidence and
then prove/disprove claims made by clients or servers. The adjudication process has
two phases —the first is an on-line adjudication. The on-line adjudication allows the
adjudicator process (without any human intervention) to validate the evidence tokens,
i.e. make sure they have valid signatures and that the times are correct. If one
evidence token is found to be invalid, then the process will be able to settle the
dispute by deciding in favour of the valid token holder. However, if both tokens are
valid, then one of three options is possible. If the adjudicator is implemented as an
expert system, then it may still be able to settle the dispute based on some existing
rules it contains. If the adjudicator still cannot settle the dispute, it can either signal
for human intervention and request assistance in the adjudication process or it can
return a judgement of “undecided”. This process is implementation independent and is

not of any concern to the CORBA objects involved in the dispute.

The following table summarises the mappings between the framework and CCS.

193

Chapter 7: Verification of the New Security Framework

New Security CORBASec Functionality

Framework

NRCredentials Contexts, UA User credentials used for
evidence generation etc

NRDeliver QoPAgent Creates a secure context to
deliver non-repudiation
tokens

NRStore | NRStore Holds non-repudiation tokens
securely

NRAdjudicator NRAdjudicator Makes judgements in the case

. of disputes
NRPolicy, NRPolicy, Management of secure
NRMech NRMech association options

Table 7-5 CCS Non-Repudiation Mappings

7.2.6.2 CCS Non-Repudiation Example

The following section describes how the objects of the new Non-repudiation Service

interact in the CORBA environment (see figure 7-5 below):

1. Client invokes a secure method on a server. The security service

mediates the client/server interaction.

2. Client checks the Non-repudiation policy. The client knows it is about to
invoke the server and so in preparation it queries the NRPolicy to see what
non-repudiation actions need to be taken, if any. In this-example, Proof of

Origin is required.

3. Non-repudiation mechanisms used are identified. NRPolicy queries
NRMech to find the non-repudiation mechanisms used, e.g. X.509

certificates, and the accepted TTP acting as Notary.

4. The client requests the generation of irrefutable evidence. The client
requests the NRCredentials object to generate a token, using the

appropriate mechanisms.

194

Chapter 7: Verification of the New Security Framework

The Client’s token is securely delivered to the Server. NRDeliver is
used to deliver the token. The Delivery Authority used by NRDeliver was
identified in NRPolicy. NRDeliver will query NRPolicy of both the client
and server objects to find the non-repudiation QoP (NRQoP) defined for
each. If they are different, they are then merged to find a QoP that will
meet both of their requirements. The NRQoP will then be compared to the
QoP of the invocation SecurityContext. If the NRQoP provides an equal or
lower level of security, then NRDeliver uses the existing SecurityContext;
otherwise it will create a new Security Context using the higher NRQoP
level. Another function that has_ to be completed at this stage is the
generation of evidence to ensure that NRDeliver has completed its task.
This involves creating two proofs, firstly Proof of Submission to provide
irrefutable evidence that the client submitted the non-repudiation request
to the Delivery Authority and secondly Proof of Delivery to create
irrefutable evidence that the server received the original invocation and

token (not illustrated in the diagram for simplicity).

The Client’s token is stored for possible future adjudication. During
step 5, NRDeliver will have retrieved the name/identifier of the data store
to be used by the client and server to hold evidence. In this example both
are using a single data store for the domain. NRDeliver will have to create
another SecurityContext to deliver the token to NRStore; if that store is not
available in server object, e.g. as in the example a separate data store is

used by all the objects. The token is stored using the add_record method

195

Chapter 7: Verification of the New Security Framework

on the NRStore object. In addition, the Proof of Creation and Proof of

Submission described in step 5 are also stored in the client’s data store.

Cllent
Client Server

NRPolicy @K NRPolicy

S—

NRCredentials '

NRStore i

Figure 7-5 CCS Non-Repudiation

7. The Server may dispute the invocation call origin at some later time.

The server can call on the NRAdjucator to settle the dispute.

8. The dispute is deliberated and settled. The NRAdjudicator can query the
NRStore to validate the client and server claims, i.e. validate their
supporting tokens. This would be done via a secure context through
NRDeliver (not shown in the diagram for simplicity). The NRAdjucicator

will return a decision and the supporting token.

The non-repudiation action is completed.

196

Chapter 7: Verification of the New Security Framework

7.2.6.3 CCS Auditing Overview

Within the auditing service, there were several facilities, which were not catered for in
the original CORBASec specification. New objects have been introduced 1o
accommodate administration, filtering, routing, reporting and analysis. Firstly, the
administration objects, AuditPolicy and AuditMech. Although CORBASec specified
an AuditPolicy, this has been significantly modified. The original operations
set_audit_selectors, clear_audit_selectors, replace_audit_selectors and
get_audit_selectors remain in place to manage the event types to be audited. They are
now extended to include the selection of which AuditAnalyser and AuditResponder
(see below) are to be used with these selectors. The AuditMech allows the
administrator to manage all the different mechanisms employed in the auditing

facility (this includes analyser, responder, and knowledge-base mechanisms).

AuditDecision was specified in CORBASec, but its function has been modified.
Previously it was used to decide if an audit record should be written to an
AuditChannel. It now just decides if the event needs to be audited, using the
audit_needed operation, because the AuditChannel has a new purpose (described

below).

New objects for the sampler, AuditSamplerAgent, and knowledge base, AuditKB, are
not required. The sampler is an object that is deployed in the system, but is not
accessed by any other object and therefore does not need an interfac;: definition in
CORBA. Sampling will be achieved through the security interceptor. The knowledge
base does not need any interface because some of its data is already handled in other
CORBA objects, e.g. the security policy information is available through

administration objects and the security log information is available in the AuditTrail

197

Chapter 7: Verification of the New Security Framework

(see below). Therefore the only information required will be the profile, analysis and
response information and it will be utilised by the analyser and responder. This will

be mechanism dependent and so will not require an object definition to be available.

After the AuditDecision has decided that an event needs to be audited, the new
AuditAnalyser analyses the information using the chosen analysis mechanism (e.g.
rule-based, profiling, etc.) to decide if the event is anomalous. The analyser employs
two operations — analyse_data and justify. The former is used to request
AuditAnalyser to analyse the event data, indicate the analysis result (i.e. whether a
system violation has occurred or whether suspicion levels should be raised) and
produce an analysis token; the latter is used to provide a full justification of the

analysis results, if required.

The analysis result and token are then sent 1o the AuditResponder, which decides
what to do using the define_response operation: This operation decides what
AuditChannel will be used to implement the appropriate response and it will generate

the corresponding data to be processed by that channel’s log or action.

The previously specified AuditChannel object in CORBASec was linked to a specific
AuditDecision cbject and used a single operation audir_write to write an audit record.
However, AuditChannels are now linked to two new objects, either an AuditTrail or
an AuditAction, e.g. alarms. This is accomplished in the AuditPolicy objecl using the
set_audit_channel method. This means that several channels can now exist
simultaneously for a single AuditDecision, providing greater flexibility and efficiency
from the single object. The AuditChannel can, if required, establish a secure context

to the log or event action. This will be specified by QoPPolicy or

198

Chapter 7: Verification of the New Security Framework

SecurelnvocationPolicy objects and is implemented by using the secure invocation
objects. This was not the case in the original CORBASec specification. The
AuditChannel now writes the audit_dara specified by AuditResponder to its linked

object, i.e. trail or action.

The AuditTrail is a new object that represents an ‘audit log. As the log now has a
standard interface, it can be easily accessed and queried. This will facilitate the
generation of user-friendly interfaces to it. AuditTrail employs read_record,
write_record and query_record operations. The AuditActions object will allow the
administrator to define other generic responses to an audit event, e.g. sounding an
alarm or.emailing a security supervisor. AuditActions uses the gel_action_info
operation to return details of what the required action is and execute_action to

perform it.

7.2.6.4 CCS Audit Example

The following section describes how the objects of the new Audit Service interact in

the CORBA environment.

l. Client invokes a secure method on a server. The security service mediates

the client/server interaction.

2. Client checks if the event should be audited. The client will query

AuditDecision to see if the event should be audited. .

3. AuditDecision checks the Audit policy. The client queries the AuditPolicy to
see if the action should be audited. In this example the server invocation is an

auditable event. AuditPolicy can query AuditMech to identify the specifics of

199

Chapter 7: Verification of the New Security Framework

the auditing mechanisms. AuditDecision returms a response to the user,
indicating that the event should be audited and 1dentifying the AuditAnalyser

to be used.

Client initiates the audit. The client invokes the AuditAnalyser identified by
AuditDecision. The possibility of multiple instances of AuditAnalyser exists

because of the multiple types of analysis mechanism that may be employed.

Information is accessed to help analysis. The AuditAnalyser can ‘query the
data in the knowledge base to help it complete its analysis. This occurs at the

mechanism level.

Appropriaté response is formulated. The AuditAnalyser then passes on its
analysis to the AuditResponder, where the appropriate response to the audited
event will be taken. The response can vary from writing a record to the audit
log, sounding an alarm, sending an alert message to the administrator’s screen,
or even shutting down a specific application. (Note the AuditResponder can
also access the knowledge base in order to formulate the appropriate response;

this is not shown in the example).

-Alert sent to administrator screen. In this example,' the AuditResponder
decided that two actions were to be taken. The first action is to send an alert to
the administrator’s screen. This is accomplished by invoking the AuditActions
object where the alert function is defined, via the AuditChanneAl. AuditChannel
will provide a suitable context if required. If the data is considered security

sensitive, an appropriate secure context will be established to deliver the data

200

Chapter 7: Verification of the New Security Framework
to the AuditAction, thereby preventing any unauthorised access to the data

during transit.

8. Audit record written to log. The second response that AuditResponder
required was to write the audit record to a log. The AuditTrail object is the
interface to the audit log, and again if required, AuditChannel will provide a

secure context to deliver the data.

Cllent ’
AuditDecision . AuditChanne) ' AuditActions l

Audh
AuditChanne! ; AuditT rall '

Responder A

Figure 7-6 CCS Audit

The auditing of the event is completed.

7.2.7 Secure Interoperability
The mapping of security interoperability has two parts, firstly the mapping of the

protocol and secondly the mapping of objects.

The protocol defined in chapter 5 (see section 5.4.2) is mapped to the OMG’s

Common Secure Interoperability (CSI) [37] protocol. The table below lists the CSI

201

Chapter 7: Verification of the New Security Framework

message types, their function and the Interoperability Protocol Messages to which

they can be mapped.

CSI Message

Function

DPE Message

EstablishContext

Passed by the client to the target
when a secure context needs to be
established.

CreateContext

ContinueEstablishContext

Used by the client or target during
context establishment to pass
further messages to its peer as part
of establishing the context.

NegotiateContext

CompleteEstablishContext

Returned by the target to indicate
that the association has been-
established.

AcceptContext

DiscardEstablishContext

Used to indicate to the receiver that
the sender of the message has
discarded the identified context.
Once the message has been sent the
sender will not send further
messages within the context.

DeleteContext

MessageError

Used to indicate an error detected
1N attempting to establish an
association either due to a message
protocol error or a context creation
erTor.

ErrorContext

MessageInContext

When a secure context is
established, messages are sent
within the context using the
MessagelnContext message.

ProcessContext

Figure 7-7 CSI Message Types

The object mapping involves adding a new object, the DomainMapping, and

significantly altering the functionality of the SecurelnvocationPolicy object. Both of

these objects provide the functionality of the DMA and SecurelnvocationPolicy in the

TINA model (see section 5.4.3). However the SecurelnvocationAgent function is

added to the CORBASec Vault and SecurityContext objects. As these objects are

already providing the negotiation process of the QoPAgent, the functionality only

202

Chapter 7: Verification of the New Security Framework

needs to be extended to address the issues of interoperability across disparate

domains.

The following table summarises the secure interoperability mappings.

New Security CORBASec Functionality

Framework

DMA DomainMapping | Define mappings between two trust
domains

Securelnvocation | Vaulit, Negotiate and build a secure

Agent SecurityContext | association between different trust

QoPAgent domains

SIPolicy Securelnvocation | Management of secure association

Policy options between different trust

domains

Table 7-6 Secure Interoperability Service Object Mappings to CCS

7.2.8 Security-Aware Trader

The CORBA Trader [109] is an implementation of the ODP Trader, as describe in
chapter 6. Therefore the mapping to CORBA of the new security-aware trader is
simplified as it can be accomplished by following the modification summary stated in

section 6.5.5 (the modifications are again listed below):

[e—

New Trader security attributes;

2. Use of ‘mandatory, readonly’ security property in Repository;
3. New Registry security property;

4. Modified Admin interface, inherits Security Attributes;

S. Modified Lookup interface inherits Security Attributes;

6. Modified Registry interface inherits Security Attributes;

7. Modified Proxy interface inherits Security Attributes;

203

Chapter 7: Verification of the New Security Framework

8. Modified Link interface, inherits Security Auributes, and new link policy
Link_securiry;
9. Use of the new Security Framework, including secure interoperability;

10. Use of security-aware DPE services.

The new security-aware trader IDL for CORBA is available in Appendix B. It covers
the modifications 1 to 8. However, the modifications for 9 and 10 do not produce any
IDL changes, but rather functional changes in how the Traders interact securely with
each other when they reside in disparate domains, and how they interact with' the

security service.

7.3 Summary

The DPE specifications provided by TINA are high level and do not address many
implementation issues. To ensure that the new Security Framework is applicable, it
was considered necessary to map it to a DPE implementation specification. CORBA
is the leading specification and therefore was used for the mapping exercise. The
existing CORBA Security Service has been significantly re-designed to provide a new
more comprehensive and configurable service, in order to meet the needs of a DPE.
Firstly, the new administration structure, which facilitates service and mechanism
independence, is provided through the introduction of a new Policy sﬁper-c]ass and
the use of this class to build service and mechanism management objects for each of
the service facilities. Secondly, each facility within the security service is also

enhanced. Audit is extended to include new monitoring (IDS) and data filtering

204

Chapter 7: Verification of the New Security Framework

facilities. Non-Repudiation provides new delivery and storage facilities. An interface
to an adjudicator is also provided to help settle disputes. Integrity and Confidentiality
are extended to provide greater configurability and deal with the issue of stored data
QoP. Thirdly, secure interoperability has extended its negotiation capabilities to
handle all of the new Security Service facilities, and is now capable of negotiating a
secure context between security domains with conflicting policies. Finally, the
CORBA Trader is now security-aware and can interact with the security service to

eliminate the trading security threats identified in section 6.4.

All of these mappings go beyond any enhancements planned by the OMG in the
future [110, 111] and far exceed the current realisation of security within current
implementations of CORBA. The next chapter will now investigate the prototype

implementation of the new mappings to CORBA and verify their feasibility.

205

8. Proof of Concept

8.1 Introduction

The previous chapters have covered the core concepts of the new security framework
— the new security service, new secure interoperability and the security-aware DPE
service (Trader). All of these features address security vulnerabilities in DPEs and
offer improved secure functionality within the distributed environment. However, a
theoretical specification alone is not adequate if the research is to prove useful in the
world of distributed object systems. Therefore, the purpose of the implementation is
to build demonstration software that will act as a Proof of Concept for the theoretical

research defined. The prototype can then be used in the verification work.

This chapter will look at both implementation and verification. With regard to
implementation, it will define the different aspects of the work - hardware, software,
the IDL defined and how the object implementations were achieved. Issues relating to
the implemented IDL, which were identified during the process, will also be

examined. The verification will be performed in two ways.
o Performance Modelling;
o Standardisation (including implementation issues);

Firstly, performance modelling of the work is required to determine the implications
of implementing the new security services in real-world environments, and not just
the research environment described in this chapter. Secondly, the work needs to be

acceptable within the current standards for ISE and DPEs. These standards have also

206

Chapter 8: Proof of Concept

progressed since the initiation of the research and the work will be evaluated to ensure
that it is still new and novel. Finally, the verification will entail looking at current

real-world problems that the new security framework will solve.

8.2 The Proof of Concept Prototype

With regard to the scope of the implementation, it was decided that it should it will

include all three aspects of the work:
1. Comprehensive CORBASec (CCSY;
2. Comprehensive CORBA Secure Interoperability Service;
3. CORBA Security-aware Trader.

Each one needs to be a workable part, in order for the whole security solution to be
implementable. Within the CCS, the major security facilities implemented are as

follows:

e Authentication;

* Access Control;

¢ Integrity/Confidentiality (QOP);

e Non-Repudiation.
These enhanced facilities include all the new objects as defined in chapter 7, both at
administration and operational levels. The only facilities not implemented for the
service were the Audit and Recovery. Although Audit was theoretically defined in
section 7.2.6.3 (based on the components in Chapter 4), neither Audit nor Recovery

was implementable within the timeframe of the research. The implementation was

207

Chapter 8: Proof of Concept

restricted to a selection of facilities that were considered sufficient to provide a

prototype for the CCS.

The Comprehensive Secure Interoperability Service has also been implemented. It
operates at both the mechanism and policy levels defined in section 7.2.7 (based on
the components from chapter 5). It includes the extension of the secure context
objects so that they can handle the new policy configuration negotiations within the
new administrative structure of the CCS, as well as the introduction of a new object to

provide mappings between these configurations.

The final part of this implementation is the construction of a security-aware service,
" which is the Security-aware Trader as described in chapter 6. The Trader
implemented is a ‘Stand-alone Trader’, as defined in [59], implements the Lookup,
Register and Admin interfaces. Currently available trader implementations are
generally only Query or Simple Traders, i.e. they implement the Lookup or Lookup

and Register interfaces.

The justification for this research has already been covered in previous chapters and
has shown that DPE specifications for Security, Interoperability and the Trading
service, while providing a basis for secure operations, are still incomplete (CORBA
was used as an illustrative example). The inadequate management and operational
facilities leave DPEs open to many security vulnerabilities, which are listed in
sections 4.3, 5.2, and 6.3. This prototype verifies the work by defining a new DPE
specification framework (CORBA) comprised of new objects, administrative
structures, policy configuration structures and modes of operation between services to

ensure greater security. These issues can be summarised as follows:

208

Chapter 8: Proof of Concept

Topic Problem Research Solution
Security Missing facilities Provision of facilities with the
addition of new objects
Inadequate administration Design and Implementation of
new administration system
No Mechanism Independence | Separation of mechanism and
service management
Interoperability | Insufficient negotiation New negotiation abilities of
abilities interoperability objects
Unable to handle disparate New structures introduced to
domains, e.g. different handle conflicting policy
policies negotiations and inter-domain
mappings
DPE Service Not security aware Creation of security-aware
service that utilises the CCS
Figure 8-1 Summary of Issues in Research
8.2.1 Implementation of the Prototype

The following subsections describe how the prototype was implemented. It details the
hardware platform, software configuration, structures used and how the Interface
Definition Language (IDL - see section 2.4.1) was used to ensure implementation-
independence at several levels within the demonstration software. Further prototype

hardware and software information is provided in Appendix D.

82.1.1IDL

CORBA IDL allows the specification of object interfaces in an implementation-
independent manner (see section 2.4.1). It is used by the middleware implementation,
i.e. Orbix, to generate C++ code for the implementation. The IDL interface code
generates the client stub and server skeleton (see figure 2-8 in section 2.4.2). In the

implementation, three features were implemented using IDL-defined interfaces:

209

Chapter 8: Proof of Concept

¢ Comprehensive CORBASec;
e Security-aware Trader,

e GSS-APL

The CCS and Security-aware Trader were defined in IDL as they are new services and
had to be proven to be implementable and operational within the distributed
environment. The GSS-API server was defined in IDL because it was necessary to
ensure that the other services could utilise GSS-API in order -to preserve

standardisatipn.
The CCS IDL has several modules:

e Security: defines the data types used in the service;

e SecurityLevell: defines Level 1 security;

e SecurityLevel2: defines Level 2 security and basically includes all the
operational level objects required by the service;

¢ SecurityAdmin: defines the new security administration features;

e SECIOP: defines the enhanced Secure 1IOP required for the new service.

In CORBA there were two other modules, the NRService and SecurityReplaceable
modules; both have been integrated in to the SecurityLevel2 and SecurityAdmin
modules. There are two reasons for this. Firstly, non-repudiation is no longer an
optional service and, therefore, is now included in the main modules so that it is
accessible with all the other facilities. Secondly, security replaceability is no longer

required as mechanism and service independence is now built into the CORBA

210

Chaptrer 8: Proof of Concept

security structure and can transparently handle any replacement of mechanism and

policy abjects that is required.

The Security-Aware Trader IDL module structure has not changed from the original

CORBA structure. It is still as listed below:

o CosTrading: defines the Security-Aware Trader that contains attributes,
including the new secunity attributes, and core interfaces, i.e. Admin, Lookup,
Register, Proxy, Link, and Offerlterator;

e CosTradingDynamic: defines the Trader’s Dynamic Property interface, i.e.
DynamicPropEval;

° CosTradiﬁgRepos: defines the Trader’s Service Type Repository interface,
i.e. ServiceTypeRepository.

While the CORBA object interfaces are still used, some of the parameter lists are
extended and a new security attribute interface has been added along with the new

link policy, Link_security.

The GSS-API IDL was created from the version 2 specification [85]. It contains a

single module:

e GSSAPI: defines all the data types and operations required by the version 2
specification.
The full IDL descriptions for these services and GSS-API are available in Appendices

A, B and C respectively.

211

Chapter 8: Proof of Concept

8.2.1.2 Object Implementation

This section will look at the structure of the Prototype software, what objects were

implemented and how they were utilised.

8.2.1.2.1 Implementation structure
The object implementation was accomplished in using Visual C++, cryptlib and
Microsoft Access in the Orbix environment. It was structured as depicted in figure 8-2

below:

Comprehensive Security-Aware
CORBASec Trader

GSS-API I

cryptlib Access

Figure 8-2 Object Implementation

The GSS-API server used the cryptlib software to provide the mechanisms required to
accomplish the security context, credential and protection operations defined in the
service. The CCS was then able to utilise these generic operations Vto complete its
defined methods on the security objects. It also used Microsoft Access as a method of

persistent storage for administrative data held in the security administration objects.

The Security-Aware Trader utilised Microsoft Access as a mechanism for persistent

storage of trading data, this includes attribute values and Repository and Registry

212

Chapter 8: Proaof of Concept

information. The Trader will use the CCS to accomplish any security-related
functions that are required — such functionality or behaviour is indicated by the

security attributes.

8.21.22 Objects Implemented '
As previously stated the prototype implementation does not implement all of the
newly defined security facilities. Figure 8-3 below clearly illustrates which objects

have been implemented (it is based upon figure 2-11 in section 2.6).

Authentication Secure Invocation Non-Repudiation

& Authorisation & QoP & Audit

UserAgent NRCredentials | Augﬂb_cfjsion h

d [
2 Curromt | nmDoliver AugnSeaiel
@
"g Credentials NRStore A
= NRAd]judicator
c Principal 1 d
_‘__’ Authenticator -
e Au ser
§. RequiredRights] Vault
SecurityContext
AccessDecision Audi nder

P AuthPalicy
k-4 AuthMech QOPPolicy
a
o QOPMech
c AccessPolicy S
9 NRPolicy AU Ty
[‘AccessMoch
I Securelnvocation NRMech :I A
E Policy L = ~
E DelegationPolicy i
) DomainMapping
< DelegationMech l i

Figure 8-3 CCS Objects Implemented

In the Security-Aware Trader, the Lookup, Register and Admin interfaces (see section

6.5) are implemented. It was not necessary to implement the Link or Proxy interfaces

213

Chapter 8: Proof of Concept

to prove the concept of security-aware services. Figure 8-4 illustrates the interfaces

implemented in the Security-Aware Trader.

Core Trader

Interfaces Other Interfaces

Lookup

.

Reglster
I | ServiceTypeRepltory
[]

Sy | [R
L

| Admin |-|

Figure 8-4 Security-Aware Trader Interfaces Implemented

Operational
Objects

Administrative
Interface

Within the GSS-API IDL, the core operations relating to credential management,
context-level (establishment and management), and message-level (integrity and
confidentiality) were implemented. The support calls were not implemented for the
demonstration software, as the purpose of utilising GSS-API operations was to use a

standardised API within the CCS.

8.21.23 How objects were utilised in the implementation

There are two basic methods of utilising the security objects:
o Interceptor initiated calls;

o Direct call from security-aware applications.

214

Chapter 8: Proof of Concept

Both of the methods are utilised in the implementation, and are necessary as they can
correspond to the security-inactive and security-active invocations (see section 4.2.3).
This section will illustrate how this is accomplished by showing some examples of

where these methods are applied in the demonstration software.

Interceptor initated calls are utilised by the Security-Aware Trader. A security
interceptor has been created in the Security-Aware Trader. When a call is invoked on
the Trader, the interceptor intercepts it. It can then interrogate the Trader’s security
attributes and apply the appropriate security facilities to the inbound call. For
example, as show in figure 8-5 below, if a Security-aware Trader is using the
access_control_trader and nr_trade attributes, the inte-rccptor will firstly run an
access control on the call, using AccessDecision, to ensure lha; the client is authorised
tc.) access the Trader. If the client has authorisation, the interceptor will then check the
Trader’s non-repudiation policy (NRPolicy) and find the evidence types required and
comply with the policy. If ‘proof of origin’ is required, then the interceptor will ask
the client for such evidence. When it is received and verified, it will be stored in case

of future disputes. The interceptor will then forward the call to the Trader.

215

Chapter 8: Proof of Concept

\Tradery

Client

Security
Attributes

A

initiate

complete Trader
Trader ' invocation

invocation

R B CORBASec Securlty
Y. e TEEEEPS cermm— Interceptor
' use for B TS
[Access) security Securlty-
[Decision) L unctions Aware

Trader

I . [

ORB

L

Figure 8-5 Interceptor initiated calls

Security interceptors can process all call invocations when security is to be applied
across a distributed system. This will ensure that the domain security policy will be
applied to all application calls whether they are security-aware or not. This is how
Level 1 secunty is applied. However, as in the example above, security-aware
applications or services can also utilise interceptors to process all incoming

invocations.

The second method of utilising objects is that of a direct call from security-aware
applications. In this case, applications can make calls on security objects directly as
opposed 1o relying on.interceptors. An example of such an application in the
implementation software is during the logon process. The logon facility initially
queries the AuthMech, via the AuthPolicy object, to find the authentication
mechanism used, e.g. password or smartcard. In this instance, the password logon is
defined as the required mechanism for the system and so a password logon screen is

presented. After the user has entered his 1D and password, the logon facility generates

216

Chapter 8: Proof of Concept

a UserAgent to act on the user’s behalf. The UserAgent will then initiate a call to the
PrincipalAuthenticator in an attempt to authenticate the user. If successful, a
Credentials object will be generated for the user and he will be allowed access to the

remote system.

Administration Application
for
Access Control |

AccessPolicy

AccessMech '

dministrator

Security-Aware
Trader

Security-Aware
Administration Application Trader

Security § for Owner
Attributes Security-Aware Trader

Figure 8-6 Direct call on objects

Another scenario in which an application can call security objects directly is
administrative applications as illustrated in figure 8-6 above. The demonstration
provides administration applications for each of the security services and does so by
accessing the administration objects, both service and mechalllism level, to populate,
verify and update the security policies. An administrative application has also been
written to allow the Trader owner update the features used in a Security-aware Trader,

i.e. set the appropriate security attributes.

217

Chapter 8: Proof of Concept

8.2.1.3 Implementation Issues

The first issue relates to the number of parameters that were used in the IDL
operations, e.g. the Vault object’s init_security_context method clearly shows how the
number of parameters can become very long. The bold highlight shows the new

parameters added to the IDL.

Security::AssociationStatus init_security_contexi (

in CredentialsList creds_list,

in Security::SecurityName target_security_name,
in Qbject target,

in Security::OptionsDirectionPairList association_options,
in Security::MechanismType mechanism,

in Security::Opaque mech_data,

in Security::Opaque chan_binding,
inout short lifetime_rec,

out Security::MechanismType out_mechanism,
out boolean deleg_state,

out boolean mutual_state,
out boolean replay_det_state,
out boolean sequence_slale,
out boolean anon_state,

ot boolean trans_state,

out boolean prot_ready_state,
out boolean conf_avail,

out boolean integ_avail,

out Security::Opaque security_token,
out SecurityContext security_context,
out Security::errormsg error,

out Security::major_status major_error,

out Security::minor_status minor_error

218

Chapter 8: Proof of Concept

The above method was constructed in this manner so that it was easily map to the

GSS-API method, GSS_Init_sec_context (see below) [85].

OM_uint32 GSS_Init_sec_contexi(
in gss_cred_id_t claimant_cred_handle,
in short input_context_handle,
in internalname target_name,
inout objﬂid;seq mech_type,
in boolean deleg_req_flag,
in boolean mutual_req_flag,
in boolean replay_det_req_flag,
in boolean sequence_req_flag,
in boolean anon_req_flag,
in short lifetime_req,
in octetstring chan_bindings,
in byteBuffer input_token,
in short tincount,
out short major_status,
out short minor_status,
out contexthandle output_context_handle,
out byteBuffer output_token,
out short tcount,
out boolean deleg_state,
out boolean mutual_state,
out boolean replay_det_state,
out boolean sequence_state,
out boolean anon_state,
out boolean trans_state,
out boolean prot_ready_state,
out boolean conf_avail,
out boolean integ_avail,

out short lifetime_rec

219

Chapter 8: Proof of Concept

There are many other similar examples in the new IDL. GSS-API provides a generic
and standardised method to create a secure context and so is used by many security
implementers. Therefore it was used as the basis for the security implementation in
the demonstrator. However, the number of parameters in IDL is generally smaller, as
this helps reduce programmer error. Therefore it may be more conducive to place the

large number of parameters in a structure instead of listing them sequentially.

The second issues relates to the number of invocations required. While the
demonstrator was able to implement and operate all of the interfaces, it was realised
that the number of invocations required had substantially increased. This issue is

analysed in detail in the section 8.3.1 later in the chapter.

8.2.2 A Practical Demonstration Scenario

The prototype incorporates the use of a demonstration scenario, which itself involves
two applications, ‘Local Application’ and ‘Remote Application’, both of which have a
set of facilities within an new CORBA environment, i.e. they both utilise the CCS,
new Secure Interoperability Service, and ‘Local Application’ also utilises the
Security-Aware Trader. The scenario involves ‘Local Application’ users completing a
service authorisation request. In order to do so they need to access user profile

information in ‘Remote Application’, for the user making the service request.
‘Local Application’ has the following applications:

* Logon Application;
e Service Authorisation Application;

e Security-Aware Trader to find datastore services,

220

Security Administration Application;

Chapter 8: Proof of Conceprt

Security Aware Trader Administration Application.

‘Remote Application’ has the following Application:

User Information Application, which can be remotely accessed by other

applications with the proper security authorisation.

For the purposes of the demonstration, a domain mapping has been agreed between

the administrators of the two security domains where ‘Local Application’ and

‘Remote Application’ reside.

The following table 8-1, illustrates the users in ‘Local Application’ and their roles and

the applications that they are authorised to use:

Users Local Remote
Application Application

Name Role Service Trader Trader Security | User
Request Service Admin. Admin. Information

Userl ‘Rolel’ X X X X

User2 ‘Role2’ X X

Admin ‘administrator’ X

The main features of the demonstration are show as follows:

Table 8 - 1User Roles and Authorised Access

CCS with new and enhanced facilities: the ‘Local Application’ will be able

to operate in two modes, with security switched on or off. When security is on,

221

Chapter 8: Proof of Concept

the CCS will authenticate users and only allow them to access authorised
applications. It will also employ the appropriate QoP and non-repudiation
functions;

e New Secure Interoperability Service: When users try to access the ‘Remote
Application’ User Information Facility, the new Secure Interoperability will
come into operation. If authorised, the user will be allowed access to the
application;

e New Administration Structure: Only Admin is-authorised to access the
Administration applications for the CCS. Admin will be able to make changes
to certain policies, and the updates will be reflected the next time a user tries
to access the ‘Local Application’;

e Security-aware Trader: The Security-Aware Trader offers datastore services,
e.g. a user can query the Trader to find the most appropriate datastore to store
‘Local Application’ details. The Security-Aware Trader is administered by its
owner, i.e. Userl can update the security attributes. The Trader will initially
operate as a Public Trader, i.e. with no security, and then after an
administration update it will operate as a Security-Aware Trader. The
differences can be illustrated by observing who can access the Trader and

what service offers are returned.

Figure 8-7 below illustrates the authorised paths through the Prototype, when the new
CCS is in operation. A security service is active is active in both domains. User2 is
not authorised by the security service to access the remote application or to authorise

a service request.

222

Chapier 8: Proof of Concept

Domain A : Domain B
User2 |
se
Rolezr)~ — — — — —— > %—»

Local | Remote
Useri | Application ————p{ Application
‘Role1’ —> |

IR S
I
-Security M Security Dis"j’“‘_ed -Security
: : Procdssing -
Admin Service - : Service
Envirgnment

Figure 8-7 Authorised paths through the demo with New Security Service

Only an administrator is allowed to access the security service through the

administration console, see figure 8-8 below.

& .

PM) Demonstiation ,

Sefect one and press OK
(& Demonshation Apphcation

=, Securly Service Administiation

(7 Tiader Security Adminiztration

|'Sdedtosdu'e5e:uiysmun0n

Figure 8-8 Administration Selection screen

Any access request, other than those displayed, should be denied. Without the new
Security Service, User2 would be able to access all functions — there would be no

protection.

223

e 5 T S)
7 DRI RTINS Do DAY fomtign | [Te]
1 Selecl e requied admney Aon pstem ——— — - - Prkcy v _ Cavel I
1 C Sushertsshon Agwasisen o Nt E] - -'i’
fj‘:‘h::znl‘nwdmm; - MehawrwmDetals - - - - R R oL _ _
acrarme - i
G QP Admaaion b i R
[SRT—— Cwwpmed figrta P\.d N |
G NorrR epudation Admiriianon -
FAevocabon Duse
S Intesopa sty Amarizh stan fonpbe [N | Rk mt ["_v]
_ o) L Sychamy | [I _ o j
|

Figure 8-9 Security Service Administration Screens

The administrator will be able to select the service he wants to manage by selecting it
from the security menu as shown in figure 8-9 above. The details of how the services
are administered can be entered using the individual security service screens, such as

the access control administration screen also illustrated in figure 8-9.

Figure 8-10 below, illustrates the authorised paths through the Security-aware Trader
demonstrator. Userl, as the trader owner, is the only authorised user allowed to access
the Trader administration console, i.e. she is the only one allowed to set the Trader
attributes. Both Userl and User2 are allowed to accéss the Trader; however, when the
new security service is in operation, User2 will only see the trader offers that he is
authorised to see. Userl, acting with ‘Rolel’, is allowed to view all the offers in the
Security-aware trader. Without the new security, User2 would either be denied any
access to the trader, or he would have full access and therefore the service offers

would be unprotected.

224

Chapter 8: Proof of Concept

User1 : Trader

Trader 2> Admin
owner’ :

[Security Security
‘admin’ . Admin Seryice

oy p—— T T 1oder - Quesy Dickop Txj
r Sedct one and press QK — ——————————] Constrant van:e = DalaSauce’ j
. Securiy-Awar Tiader Pred o Sone e —
1{ , | esence InmSpmAvgijua J[
F Actess Control the Tiadet | HowMery [5 i
7 Actess Cortrol the Servica Offers
‘ D Encrypt Tradng Data Stres : = Desred P 3
l I
| FZ, Enaypt the Tradng Communications i cA) Some © Nore
i
| I 1 s } Supports SQL ¢ Location
! [T Integrdy Check. Trading Data Stores ; , P Space Avalabla
' 1 [tresgrtp Check. Teading Commuricasions \ fﬁ <Selert
:], NonAcpudiation of Tradng Activier }
i -
T | | oo
? T — | L

)

Cancel

Figure 8-11 Trader Security Administration & Query Screens

8.2.3 Requirements Matrix

To further illustrate the ability of the New Security Framework and the ﬁrototype to

meet the security requirements, the table below lists all of the DPE security

225

Chapter 8: Proof of Concept

requirements, and identifies which ones are meet by the original TINA security
medel, the New DPE Security Framework, the criginal CORBA Security Service and

the Prototype (implemented as an extension to CORBA) (see section 4.3 and 7.2.1).

The matrix illustrates how the DPE Security Framework (and the resulting
implemented Prototype) is able to provide the necessary requirements for a secure
DPE. This has been achieved by several means, such as extending facilities such as
auditing and non-repudiation, which were previously not present or incomplete;
management has been re-structured and administration interfaces have been added or
extended to provide the flexibility required; and interoperability has been introduced

to deal with disparate security domains.

226

Chapter 8: Proof of Concept

Security Requirement

TINA

New DPE
Security

CORBA
Security
v

Profotype

Identification and
Authentication

v

(CCS)
v

Authorization & Access

-control

v

v

v

Propagation of security
attributes

AN

v

AN

Secure communications

Secure stored data

Secure Auditing

Non-repudiation

Administrative interfaces

\ [l

Interoperability

Scalability

\ 1

IR R AR AR AR

o] b= et] bl EY Ll B

—|<

Integration with existing
environments

AVRNRNENENENAN RN

System Recovery

Intrusion Detection

325

Hardware/software

| protection (Mech.Mgmt.)

MI

Inter-object
communications

M2

TINA services -
operational

M3

TINA services - control

M4

TINA services -
administration

AN

AN

AN

M35

Inter-DPE security

Al

Secure participant
interaction

ENAAN

AN

AN N

A2

Application Admin

A3

DPE applications security

11

Altribute Mappings

I2

Operational
interoperability

AN RN AN

SN NS

I3

Control/Administration
interoperability

<

<

1

Application Security
Context

Table 8 - 2: DPE Security Requirements Matrix

227

Chapter 8: Proof of Concept

8.3 Verification

In order to verify the prototype, two approaches were used. Firstly, the practical
verification by performance modelling was used to analyse the system. Secondly, a

more theoretical verification by analysing current standards was also used.

8.3.1 Performance Modelling

When assessing performance in a distributed object system, the cost of object
invocation is measured in milliseconds and so the number of invocations should be
carefully considered when analysing a system |[1 1-2]. Therefore when considering the
performance of the CCS, it will be measured in object invocation calls. This will be
compared with the CORBA Security Service to see if significant overheads have been
added. The actual time of the invocation is not measured because it ts subject to too
many other variables, e.g. platform, network load, bandwidth. Therefore the number

of invocations is deemed to be a more realistic measurement.

The modelling will consider three areas, operational level security, administration of

security and the security-aware CORBAservice.

8.3.1.1 Operational level

For each of the six main security facilities in the security service, i.e. authentication,
access control, QoP, audit, non-repudiation and secure invocation, an event sequence
chart is presented. It will map the number of calls used and provide a comparison
between the new Comprehensive CORBASec (CCS) and the current CORBA
Security Service by highlighting the new enhanced operations with a broken line.

Operations, which previously existed in CORBA, are illustrated by a solid line.

228

Chapter 8: Proof of Concept

When considering the number of invocgtions, the chart may illustrate the actual
method invocation on a server that initiates the security service, however this
invocation (identified as ‘invoke’ on the chart) will not be included in the object
invocation count — the count is restricted to security object invocations. Also in some
instances a ‘create object’ invocation is counted, because although it is not a specific
operation specified in the IDL it is considered an invocation on the constructor of a

security abject.

Each chart will reference previous examples that have been presented in the thesis
descriptions of CORBASec and CCS, which will provide a basic explanation of the

objects utilised in that service. o
Firstly, the authentication event sequence chart. In this scenanio, a principal is logging
on to a system and wishes to be authenticated and presented with valid credentials

(see section 7.2.4.2 for the CCS example). CORBASec utilises 3 object invocations,

while the Comprehensive CORBASec (CCS) makes 8 object invocations.

229

Chapter 8: Proof of Concept

User Access Deleg
Agent Policy Policy
>

_ set_name
| set_authdatg
amhenllcati
 query_Auth_palicy |-
| _ get_effective_rights_ |

_____ get_controls _

— — — >

(creato Credentlals)

set_credentials

Figure 8-12 Authentication Event Sequence Chart

Access Control is considered in the next event sequence chart. It considers the
scenario when a client invokes a server, and the server decides whether the client is
authorized to do so (see section 7.2.4fs.2 for CCS example). Here, both CORBASec

and the CCS utilize 4 object invocations.

Access
Required
Client Server @ Detl:_:sio Rights

invoke >
get_aﬂributea
access fallowed >
get_rgulred_righg

Figure 8-13 Access Control Event Sequence Chart

230

Chapter 8: Proof of Concept

The next chart looks at QoP in both services. It considers the case of a client changing
the QoP it requires when invoking a server (see 7.2.5.2 for CCS example).

CORBASec makes 2 object invocation, while CCS makes 3 invocations.

Qor

|_get QOP_policy,

overrlde_default_QOP-_

nvoke

Figure 8-14 QoP Event Sequence Chart

Non-repudiation considers a scenario where the client generates evidence, e.g. proof
of origin, which has to be verified by the server. The server then generates evidence to
support this verification. A single call to the adjudicator to settle a dispute is also
shown above (see section 7.2.6.2). CORBASec utilises only 6 invocations while CCS

makes 11.

231

Chapter 8: Proof of Concepr

query_NR_policy

Client NR NR NR ’ NR
Creds Deliver Store Adjudicator
]
>

enerate_token

—
form_complete_evidence >
Inm:xluaI
| _ _ _|_ NR_send generated token | _ _ |
| NR_add_recor
verify _token >
generate_token >
form_complete}evidence >
| NR_send_generated token __ _

— i —— —

Figure 8-15 Non-repudiation Event Sequence Chart

The Audit scenario involves a client invoking a server method. The server considers
whether the event sh'buld be audited and what the response should be when the event
is to be audited. A record is written to the log to record the event and an alarm is
raised to notify the administrator (see section 7.2.6.4 for example). CORBASec

invokes 3 objects while CCS invokes 9 objects.

232

Chapter 8: Proof of Concept

Audit Audit Audil Audit Audit F Audit Audit Audlt
- = Ponc,

I _invoke

audit

necde?
|_ query |

| guery_kp,

| _ _ _1__ _doneresponse _ 1 _ _ -

auditiwrite

-
write
™~ record™]
_auditlwrite >
execute
- T Tacion ™

Figure 8-16 Audit Event Sequence Chart

The final chart maps a Secure Invocation between a client and server. The server
requires a mapping between policy configurations, i.e. a domain mapping record. The
original invocation is then sent to the client, protected by the secure association and a
protected reply is returned by the server (see section 5.4.4 for example). CORBASec

requires 7 invocations and CCS requires 11 invocations.

233

Chapter 8: Proof of Concept

Server slﬁs:': Domain -‘Secure
Policy Mapping Context

invoke
—

| _get_interop_policy__|

init_security_context

-

create client

[SecureContex!

| get_Intero,
pollcy

| _query _ |

accept_security_context >

create server,

i SecureContex!

continue_security_context

protect_message

reclalm_message

Figure 8-17 Secure Invocation Event Sequence Chart

Now that each of the security operations has been mapped on charts, the resulting

number of invocations for each facility can be compared.

As can be seen from both table 8-1 and the figure 8-18 below, the CCS makes more
invocations than CORBASec. However, this is to be expected as the CCS offers
significantly more facilities than CORBASec. For example, the increase in both non-
repudiation and audit in CCS can be accounted for because of the delivery, storage,
adjudication and monitoring facilities they now have. Similarly secure invocation now
offers policy level mappings and authentication is able to use the UserAgent and

utilise a comprehensive administration structure to build the credential. There is no

234

Chapter 8: Proof of Concepi

increase in access control, but for QoP the number of invocations is increased by 1
(however this is a 100% increase). Even though there are increases, they average
about 3.3 object invocations per facility, i.e. a 90% increase in the number of

invocations required.

Service CORBASec CCS Difference % Diff.
Authentication 3 8 5 166%
Access Control 3 3 0 0%
QoP 2 3 1 50%
Non-Repudiation 6 11 5 83%
Audit 3 9 6 200%
Secure Invocation |7 10 3 42%

Ave.=33 Ave. 90%

Table 8-1 Operational Object Invocation Comparison

£ 2

L

Authenticatlon QoP Audit

O CORBASec
Enhanced Security Service

Figure 8-18 Operational Object Invocation Comparison

Therefore this overhead in object invocation is seen as minimal and bearable by the

system, when one considers the new and enhanced facilities that are now available in

235

-

Chapter 8: Proof of Concep:

CCS. Also these examples are assuming that all services are used all the time, but in
any large distributed object system, the administrator would tailor the policies to

provide the maximum protection while minimizing the overhead.

8.3.1.2 Administration Level

Some of the administration objects, and how they are used at an operational level,
have already been considered in the previous section. However, this is only a small
number of the possible administrative methods available. This section will look at all
of the administration objects and their methods. It will not employ sequence charts,

but will simply compare object method numbers in both CCS and CORBASec.

Table 8-2 below, lists the administration objects and the number of methods available

on each in CCS and CORBASec.

Service CORBASec objects CCS objects
Authentication - AuthPolicy, AuthMech
Access Control AccessPolicy AccessPolicy, AccessMech
DomainAccessPolicy
RequiredRights
Delegation DelegationPolicy DelegationPolicy, DelegationMech
QoP - QOPPolicy, QOPMech
Non-repudiation NRPolicy NRPolicy, NRMech
Audit AuditPolicy AuditPolicy, AuditMech
Secure Invocation | SecurelnvocationPolicy | SecurelnvocationPolicy,
DomainMapping

Table 8-2 Administration Objects

This highlights the fact that CCS provides a comprehensive administration structure

and so will provide more methods. However it should be noted that CCS provides

policy and mechanism level administration, while CORBASec only dealt with policy

236

Chapter 8: Proof of Concept

level administration. This fact is considered in table 8-3 below which compares the

number of object methods.
CORBASec CCS
Service Policy Policy Mechanism | Total
Authentication - 6 5 i1
Access Control 6 7 5 12
Delegation 2 10 - 10
QoP - 11 9 20
Non-Repudiation 2 13 19
Audit 5 9 15
Secure Invocation | 2 15 - 15

Table 8-3 Comparison of the Numbers of Administration Object Models

As shown in figure 8-19 below, if one was to compare the total number of methods
available in administrative CCS objects with the number in CORBASec, then there
would be a significant overhead, approximately 12.1 object invocations per facility.
However, if the comparison is made based on comparing policy administration, then

the overhead becomes only 6.3 object invocations.

237

Chapter 8: Proof of Concept

/\ —
15- ,
‘ ﬁ— O CORBASec
10- {] O ESS Policy Admin
54 1 Il O ESS Policy & Mech Admin

Delegation
Audit

°
Authentication \
QoP
L =
[

Access Control
Non-Repudiation

Secure Invocation

Figure 8-19 Number of Administration Object Methods

This overall increase, although significantly less than the original comparison (almost
50%), still reflects the additional facilities provided by the new administration
structure. It provides a new flexibility and enables mechanism and service
independence. Therefore it is again an issue of weighing up the tradeoffs between
performance and security. Although the increase at administration level is double the
operation level (3.1 object invocations), it can be seen as a tolerable overhead because
these administration methods are generally only required at system set-up and for

maintenance purposes.

8.3.1.3 Security-Aware CORBAservices

The Security-Aware CORBAservice that was designed by this research was the
Trader. By using the figures already calculated for security invocations at an

operational level, the impact by security on the Trader service can be studied.

238

Chapter 8: Proof of Concept

Security Attributes Attribute Security Total
Invocations | Invocations

Security-aware 1 - 1
Access_control_trader 1 3 9
Access_control _service_offers 1 - 1
Encrypt_stores, Integrity_check_stores 2 2 4
Encrypt_comms, Integrity_check_comms | 2 10 12
NR_trade 1 i1 12
Audit_trade 1 9 10

Table 8-4 Security-Aware Trader's Security Object Invocations

Table 8-4 above, lists the security attributes defined for the Trader (see section 6.5). It
details the number ‘of invocations required to get the attribute value and then defines
the number of operational level object invocations required to execute the appropriate
security facility. However, when calculating the average increase in the number of

object invocations for each attribute that is set on, two assumptions are made:

e Although two atiributes are tested, Encrypt_stores and Integrity_check_stores,
the number of object invocations is kept to a single execution of a QoP

facility. This is because the implementation will be executed as one function.

o Similarly for Encrypt_comms and Integrity_check_comms the number of
object invocations is kept to a single execution of a Secure Invocation facility,

as the implementation will execute both as a single function.

The average number of object invocations for each attribute set is then calculated as
4.9 invocations. Again trade-off is an issue, this Security-aware Trader can provide

security that previously did not exist within the system and so this overhead has to be

239

Chapter 8: Proof of Concept

weighed against the added protection. Also the Trader will be tailored to suit the
system, with only the appropriate attributes set, so that performance and security will

be considered when deciding just how ‘security-aware’ the Trader should be.

8.3.2 Standards Verification

Having considered verification from the practical perspective, i.e. performance
modelling, it is relevant to now consider how the research relates on a more
theoretical level, i.e. the DPE implementation standards. Standards in a research area
do not remain static, they are constantly being revised and updated. The technologies
used can become outdate and replaced by new ones. This section will look at how the
standards and technologies used in the research, have been revised, and explain how

the new framework is still valid even with the recent changes.

8.3.2.1 ISE and DPE standards

TINA has influenced groups such as the OMG, and it was not a surprise in September
2000, when the OMG announced that after TINA-C's decision to discontinue
operation, the OMG would continue TINA-C’s work under their Telecommunications
Domain Task Force [113]). Therefore TINA will still remain the central ISE DPE
standard even though it has now transferred to the OMG. This obviously also
strengthens CORBA’s position as an important standards-based DPE solution.
Another such recognition is the fact that CORBA is now recognised as an
intemmational interoperability ;landard [114]. The International Stan;iard’s
Organisation (1SO) recently adopted CORBA’s Interoperability platform as ISO/IEC
19500-2. The ISO have already adopted several other specifications such as IDL

(ISO/IEC 14750|ITU-T Rec. X.920), Trader (ISO/IEC 13235|ITU-T Rec. X.950) and

240

Chapter 8: Proof of Concept

ODP Type Repository (ISO/IEC DIS 14769|ITU-T Rec. X.960). The OMG has also

submitted CORBA’s ORB specification for adoption.

8.3.2.2 CORBA Security Service Revision 1.5 and 1.7

The OMG follows a Technology Adoption Process [115], which will be outlined
before discussing the version issues of CORBASec. Initially a Task Force may issues
a Request for Information, which will eventually result in a Request for a Proposal
(RFP). Submitters can then reply to the RFP by a submission deadline with an Initial
Submission, which can later be updated as a Revised Submission. Once the OMG
Architecture Board (AB) has certified a submission, i.e. that it is compliant with
CORBA technology; the Task Force can then recommend to the Board of Directors
(BOD) that the submission become an Adopted Specification. A Revision Task Force
(RTF) can then carry out revisions on the Adopted Specification. The RTF only exists
for a specified length of time and is responsible for maintenance of an adopted OMG
specification, i.e. they clarify ambiguities and correct errors; they cannot extend a
specification with new functionality. Once certified by the AB and implemented by
one submitter, a BOD can vote to make the technology a formal Available

Specification.

When the research began, the CORBA 2 security service was act.ually at revision 1.2.
Since then, revision 1.5 was made the formal specification by the OMG in June 2000
[116] and, at the time of writing, revision 1.7 [117] is now being adopted by OMG
vote but it has not been accepted as a formal available specification. Revision 1.8 is
just at the RTF stage [118]. This section will examine the changes in revision 1.5 and
1.7 (it is too early to evaluate 1.8) and see whéther the research is still valid with these

later versions.

241

Chapter 8: Proof of Concept

Two major changes occurred in version 1.5 as described below (other minor data type

changes occurred, but they are of no consequence to the research).
1. New Administrative Objects: Five new policy objects are introduced:

e MechanismPolicy: used to request the use of one specific set of

mechanisms when invoking a particular object reference;

¢ EstablishTrustPolicy: used to specify a particular policy between a client

and the target object;

e QOPPolicy: used to specify a particular Quality of Protect for messages

sent to a particular object reference;

¢ DelegationDirectivePolicy: used to specify the delegation policy used for

invocations on the target object;

® CredentiallnvocationPolicy: used to specify a particular set of Credentials

to be used when invoking a target object.

There had been some previous confusion with regard to how a client would
override default policies details — they were generally retrieved from and set in
objects such as Current and Credentials. Therefore to alleviate confusion and
provide a clear methodology for clients to specify this information when
attempting to invoke a server, the above policy objects were specified. They
all have a very simple structure — a single readonly attribute specifying the
detail policy value, e.g. the EstablishTrustPolicy contains a single attribute
structure that can be set to specify if trust is to be established in the client, the

target or both.

242

Chapter 8: Proof of Concepr

2. SSL and SECIOP: The SSLIOP specification was previously a separate

document. It is now introduced as part of the specification.

A worked example of security, using revision 1.5, is provided in a paper by Chizmadia

[119].

In revision 1.7 only one major change has occurred.

1. New security object SecurityManager. SecurityManager does not introduce
any new functionality, it merely takes the security functionality that previously

existed in the Current object and places it in a separate security object.

These changes are superficial. They do not extend or add new functionality — they
merely clarify procedures or move functionality to new objects. Within the
specifications, the list of main objects remains unchanged, and so it none of these new
objects have a substantial impact on the security service provided. Therefore all the
issues and problems identified in CORBASec remain unchanged, and the new
recommendations from the research still apply even to these later versions of the

service.

8.3.2.3 CORBA 3.0

In December 1999, the OMG voted to adopt the complete CORBA 3.0 specification.
CORBA 3 is actually a suite of specifications, which when taken together, adds a new
dimension of capability and ease-of-use to CORBA [120, 121]. Although much

discussed, the CORBA 3 is not yet adopted as the formal available specification, i.e.

243

Chapter 8: Proof of Concept

version 2.4.1 is still the latest official version for vendors to reference. The new

specification can be divided into three categories, which are described below:

1. Internet Integration:

a. New Java-to-IDL Mapping specifications will allow developers to

C.

build distributed applications completely in Java and then generates the
CORBA IDL from the Java class files [122]. CORBA 2 already

provided a IDL-to-Java mapping.

The CORBA 3.0 Firewall specification defines interfaces for passing
IIOP through a firewall. It includes options for allowing the firewall to

perform filtering and proxying on either side [123].

The Interoperable Name Service [124] defines a URL-format object
reference that can be typed into a program to reach defined services at

a remote location, including the Naming Service.

2. Quality of Service Control

a.

The specification identifies a minimum compliance supporting
CORBA ORBs. This Minimum CORBA specification is designed to

Jjumpstart the use of CORBA embedded devices [125].

Real-time CORBA extends the CORBA specification for a new type of

ORB called the Real-time ORB [126].

Fault-tolerance for CORBA is also addressed, and defines a standard

based on entity redundancy and fault management control [127].

The Asynchronous Messaging specification has two components:

levels of quality of service (QoS) agreements and Interface Definition

Chapter 8: Proof of Concept

Language changes necessary to support asynchronous invocations

[128].
3. The CORBA Component Model (CCM)

The CCM will specify a framework for the development of ‘plug-and-play’
CORBA objects. It encapsulates the creation, lifecycle, and events for a single
object and allows clients to dynamically explore an object's capabilities,
methods, and events. The specification has three major parts, which cover, a
container environment to provide services, integration with Enterprise
JavaBeans [129] and a software distribution format that enables a CORBA

component software marketplace [130].

Only one change specifically references the security aspect of CORBA, i.e. the
firewall specification. However, this is addressing a specific issue and not the overall
security limitations within the Security Service and CORBAservices. Therefore the
research is still valid and can sull be applied in a CORBA 3.0 environment.
Component technology may be the driving force for CORBA 3.0, but components
still require Security, and CORBASec still requires the new objects and functionality

defined by this research.

The OMG has realised limitations of CORBASec. It has provided some suggested
future features within the specification, but has given no detail as to how they might
be accomplished. One example is the notion of an attribute mapper. It is identified in
the CORBASec specification [36). There is also no indication of when any further

amendments would be introduced. The OMG recently drafted a roadmap [131], which

245

Chapter 8: Proof of Concept

lists several areas and features, but there is no timeliné for their introduction or
whether they will even be completed, e.g. under policy management the OMG
SECurity Special Interest Group (SECsig) has identified that negotiation of federated
domains is required, while under interoperability they have Iistec! interoperability
across products. Many of the features listed in this new wish-list have already been
addressed by this research, which identified the problems some time before they were

acknowledged by the OMG.

8.3.2.4 Issues when implementing the standards

The previous sections have provided verification of the work by evaluation of a
performance model of the research and also by viewing the research against the latest
standards and technologies changes. This section looks at real-world problems that

have been encountered by vendors using the current version of the DPE security

The first example revolves around the current implementations of CORBASec
products that are currently available. These problems were covered in section 7.2.1.
Vendors such as Concept5, Dascom and Entegrity, all have a common set of problems
that they address with proprietary solutions. Firstly, they have a common set of
features they all need to extend past the CORBASec specification because it is too

restrictive:
¢ Exitending the administration features through defining new interfaces;

¢ Using additional features to integrate with existing technologies, i.e. unitary

logon, bridge technology;

o Extending the audit facilities to help secure audit records or make them

available to monitoring tools.

246

Chapter 8: Proof of Concept
However, there are still a number of restrictions:

e Replaceability is difficult and so they are all limited to specific sets of security

technologies/mechanisms;
e Data storage is proprietary, e.g. use of LDAP;
e There is no proper monitoring/IDS integration available;
¢ Non-repudiation is not available;

e Interoperability is still limited to compatible domains and technologies

(although most have consulting divisions that provide customised solutions);

e Multi-vendor interoperability is also not available.

All of the above issues are addressed by the research. The separation of mechanism
and policy administration provides for mechanism independence and therefore
releases implementers from the constraints of using the same rﬁechanisms and
technologies; it also obsoletes the notion of replaceability, because all objects should
be automatically replaceable because they have been abstracted fl.'0m mechanism
dependencies. The new security service addresses issues such securing stored data and
extends it to persistent storage by introducing the concept of security aware services
(e.g. a security aware persistent storage service could operate in conjunction with the
security service). Other facilities such as non-repudiation and audit have been

extended.

While the above examples illustrate the issues that CORBASec implementers

encounter, the problem of inadequate DPE security is experienced in other areas.

247

Chapter 8: Proof of Concept

Take, for example, Ericcson’s Research and Development team who have a new
product called FraudOffice [132], for Fraud Detection & Management in a
telecommunications network. The FraudOffice product family offers a complete end-
to-end package to network operators and service providers to combat fraud within
telecommunications networks. Ericsson provides the relevant software applications,
hardware platforms, systems support, fraud management services and fraud
competence training so that the telecommunications operator organisation is correctly
equipped to minimise the substantial financial losses and inconvenience caused by

fraudsters in a network, which can be up to as much as 5% of annual billed revenue.

One of FraudOffice’s main selling points is its integration flexibility [133], which is
achieved through an open scalable CORBA-based platform. Because of this
integration ability, FraudOffice can maximise the potential use of the operators’
existing support systems (e.g. billing, data warechouse, MIS system, SS7 monitoring,
Customer Care). This will become an important consideration in the next generation
where the number of potential data sources for fraud detection is likely to increase
dramatically (e.g. credit card transactions, log examinations, balance reconciliation, 1P
transactions, customer service applications, payment history, etc.) and become more

diverse.

However, Ericcson encountered some obstacles when developing this system. The
main problem was related to the fact that the CORBA security service was not
flexible or extensive enough for their requirements. As a result, they had to build their
own Security Manager and Audit and Alarm facilities [134], because they were

unable to use the CORBA security technology. If the Comprehensive CORBASec had

248

Chapter 8: Proof of Concept

been available, it would have saved the developers time and also provide for

interoperability with other products using the same standards.

8.4 Summary

The purpose of the implementation was to prove that the new Comprehensive
CORBASec, the new Secure Interoperability Service and the Security-Aware Trader
are not just theoretical ideals, and that they are implementable. This chapter described
the implementation of the research and how it was achieved. The research
implemented all objects necessary within each of these services. It is important to note
that the method of implementation is not really important to proving the concept,
because the key issue is that the IDL-defined interfaces are workable. The
implementation proves this even when they are implemented in the rather limited
environment. Therefore details of the actual C++ implementation on a Microsoft NT
are not necessary, as the same objectives should be achievable using Java on a Sun
Workstation; after all this was the driving force behind CORBA distributed systems -

implementation and platform independence.

The service implementations have also been applied within an application scenario, in
order to illustrate clearly how the services would function together. Therefore the
implementation has accomplished its objective by realising the services and using
them within an operational environment. Facilities that were missing and, therefore,
had to be built in-house are proposed as part of the CCS within the CORBA

environment, thereby saving time and reducing the risk of error.

249

Chapter 8: Proof of Concept

The chapter also evaluated the research system performance. Benchmark testing
against current CORBA security products is not appropriate in the case of the research
because the products could not act as an equivalent comparison to the research
implementation described. However, object invocation is the advised method of
performance modelling for object distributed systems, and was therefore used in the

research model.

Although there is an overhead for any security operation, it was kept to a minimum
and is, therefore, considered an acceptable trade-off against the extra security that is
provided. As in all systems, it is the job of the administrator to tailor policies and
system options to find the optimal solution, where performance and security can co-
exists harmoniously. The CCS provides a comprehensive and flexible administration

system to provide the administrator with this ability.

Verification of the security issues in the CORBA DPE serves to verify the methods
used as generic DPE solutions. The principles used to provide new security features to
the security services, secure other DPE services and enable secure interoperability
between disparate domains have been proven effective and implementable in a

practical DPE environment.

250

9. Conclusions

9.1 Achievements of the Research

This chapier presents concluding thoughts on the research. The following summarises
the achievements of the research, which have met all of the objectives, defined in

chapter 1.

1. A comprehensive analysis of the general requirements for distributed
system security was conducted exceeding any previous investigation of
this topic. As a result, a new set of DPE security requirements was defined
and a new definition of the DPE security domain was provided. When
evaluated against these requirements, the current DPE security model was

~ shown to be inadequate on all levels.

2. A new security framework for DPEs was defined. The service components
were defined at both an operational and management level. They provide
all of the necessary security functions: authentication, access control,

integrity, confidentiality and non-repudiation.

3. A new secure interoperability framework for DPEs was defined. A
distributed system, which operates across disparate security domains, can
use the new interoperability protocol to facilitate secure DPE inter-domain

interactions.

251

Chapter 9: Conclusions

4. The new and novel concept of security-aware DPE services was

introduced and found to be necessary to address security vulnerabilities
within the DPE services themselves. The Trader was selected as the proof-

of-concept, and a new security-aware Trader architecture was defined.

The theoretical DPE security framework was implemented and verified by
providing a mapping of it to an implementable DPE specification, the
OMG’s CORBA, and then building a working proof-of-concept. The work
was further verified by providing object invocation analysis of the services

and also through analysis of standards and existing real-world issues.

It is therefore, considered that the research has made a substantial contribution to

knowledge within the domain of DPE security.

9.2 Limitations of the Research

The following sub-sections present the author’s thoughts regarding the limitations of

the research.

1.

Although the new audit objects were defined, they were not implemented.
This was decided as the audit implementation was a substantial
undertaking and would not have been achievable within the research
timeframe. Other areas were considered to be of greater significance to the

proof of concept.

252

Chapter 9: Conclusions

2. The issue of recovery, i.e. the system returning to a secure state, was not

considered within the research. It would take several years of research to
fully address this issue and, therefore, it was decided that it could not be

addressed within the scope of this work.

Although it was never the intention of the work to examine the security-
awareness of all DPE services, it was observed within the thesis that other
services, such as persistence, could prévide generic solutions to security
problems if they were also security-aware. How this could be achieved,

was not addressed within the research.

9.3 Suggestions for Future Work

There are six key areas where continuation of the research should be focused. This

work was considered outside the scope of this research or was considered too

complex to complete within the research timeframe.

1.

Within the Audit service, there are several areas that could be further
investigated in order to complete the service definition. This would include
the specification of an Audit Record Format to enhance interoperability
between audit services working in different security domains. A common
audit record format would allow separate, and independently implemented,
audit systems to easily exchange information. Similarly the specification
of the Audit analysis token that is returned by the DPE AuditAnalyser
needs to be defined. The definition of more Audit Event and Selector types

could help provide a more flexible and configurable audit policy. Events

253

Chaprer 9: Conclusions

and Selectors could be defined within specific vertical domains such as
financial or healthcare. The IDS domain is currently in the process of
-being standardised by the Common Intrusion Detection Framework
(CIDF) [135] and the IETF [136}. This is expected to provide greater
interoperability among different analysis and response systems. However,
these standardisations are not complete. Therefore research in the area

would significantly help the security of DPEs.

A standard non-repudiation token, that could be writien to the NRStore

object and would facilitate interoperability, needs to be defined.

There are many DPE supporting services, such as persistence, events and
time. This research has only considered two of those services, Trader and
Security, and how they can be enhanced to provide a more secure DPE.
The other services also need to be studied in order to define their security
vulnerabilities and solutions to these problems. In doing so it would

provide a complete analysis of security for DPE services.

It was proposed in the research that DPE services, such as the Persistence
and Query Services, could be made security-aware and then used to
provide secure generic solutions to problems such as secure persistent data
storage and retrieval — as would be required by the non-repudiation

service’s NRStore and many other objects. Another scenario could involve

the use of secure Event and Transaction services in order to provide secure

254

Chapmter Q: Conclusions

recovery within a DPE. Although this would provide the ultimate generic
solution for a DPE, it is recognised that there are problems. With regard to
persistence, the definition has been recognised as not implementable in its
current state [137]. As some DPE services are, to-date, not available in
detailed specifications, work is needed to ensure that when complete, they
will able to inter-work to provide secure generic solutions to several

problems.

9.4 Summary of Research Conclusions

According to the TINA consortium [138], the future of communications depends not
only on individual technical or standards-based solutions but also on one universal
generic software architecture solution. It also states that this approach has to be global.
and it needs to involve all areas of the industry; the ultimate aim is to produce a
complete set of specifications for building and managing services of any degree of
complexity. However, with the rise in security breaches found by recent surveys such
as that from the FBI/CSI [46], it is important to ensure security in this new open,
global environment, as such an environment will only provide more opportunities to
compromise a system. The current DPE security solution has been proven to be

inadequate and this research has addressed the problem.

The research achieved its objectives by assessing security in a DPE, defining the
current limitations and then proposing solutions to overcome these limitations. A new
security framework was defined, which provides a complete set of security facilities
and a comprehensive management structure. A secure interoperability service was

defined which facilitated mechanism and policy level negotiations, and a security-

255

Chapier 9 Conclusions

aware Trader was designed to prove the concept that security-aware DPE services

offer a greater level of security within a DPE.

This work provides a standardised solution to increase security. DPE security vendors
currently experience problems of interoperability between their produc£s and also
have to create proprietary extensions to overcome other limitations of the security
service. These problems will be dissolved if vendors adopt the new security solution
proposed in this research. It will provide users with greater options and, therefore,

allow them to create a more secure distributed environment.

Further work can be pursued to ensure improved interoperability of the enhanced
security facilities, i.e. audit and non-repudiation token definition. Also improved
security for other DPE services can be achieved through the study of their security

limitations and the application of security-aware interfaces.

ISE is no longer limited to just the telecommunications arena, it is supported by the
data communications and processing industries. E-commerce is readily adopting the
technology because of its ability to quickly provide new services and facilities in a
heterogeneous, distributed environment. All of this research work will provide a more
secure distributed processing environment in which a multitude of applications can be
built. Whether it is finance or healthcare, education or just surfing the information

highways, the data will be available, but it will be protected.

256

10. References

[1] D.I. Hopper
“Destructive ILOVEYOU virus strikes worldwide”
CNN, 4 May, 2000, http://www.cnn.com

[2] M. Masterson
“Love bug costs billions”
CNN Financial News, May 5, 2000, http://www.cnnfn.com

[3] D. Dufty

“Cyberinsurance: Prepare for the Worst”

Darwin Magazine, December 2000
hitp://www.darwinmag.com/read/120100/worst_content.html

[4] D. Kahn
“The Codebreakers: The Story of Secret Writing”
Macmillan Publishing Co., 1967.

[5]S. Foo, P, Chor Leong, S. Cheung Hui, S. Liu
“Security considerations in the delivery of Web-based applications — a case study
. Information Management & Computer Security, Vol 7, 1999, pg. 40-49.

[6] R. Orfali, D. Harkey, J. Edwards
“The Essential Distributed Objects Survival Guide”
John Wiley & Sons, Inc., 1996.

[7] P.F. Linington
“Introduction to the Open Distributed Processing Basic Reference Model”
Open Distributed Processing, Elsevier Science Publishers, 1992.

(8]11ISO
“Basic Reference Model of Open Distributed Processing"”
ISO/IEC JTC1/ SC21/WG7 N838.

[9] N. Natarajan
“Principles of a software architecture for information nenvorks”
Bell Communications Research

[10] JJ. van Griethuysen

“Enterprise modelling, a necessary basis for modern information systems”
Open Distributed Processing, Elsevier Science Publishers, [FIP, 1992.

257

References

[11] G.F. Coulouris, J. Dollimore, T. Kindberg
“Distributed Systems Concepts and Design”
Addision-Wesley Publishing Company, 2" Edition, 1994.

[12] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen
“Object-Oriented Modelling and Design”™
Prentice Hall International Editions, 1991.

[13] WJ. Barr, T. Boyd, Y. Inoue
"The TINA Initiative”
IEEE Communications Magazine, March 1993,

[14] TINA-C
“Business Model and Reference Points for TINA”
TINA-C, 2000, hup://www.tinac.com

[15)TINA-C
“Overall Concepts and Principles of TINA”
TINA-C, Deliverable TB-MDC.018_1.0_94, Version 1.0, 17 Feb 1995.

[16] TINA-C
“Service Architecture”
TINA-C, Version 5, 31 March 1997.

[17] R.H. Glitho, S. Hayes
"Telecommunications Management Network: Vision Vs. Reality"
[EEE Communications Magazine, p47-52, March 1995.

[18] M. Knckelmans, E. de Jong
"Overview of IN and TMN Harmonisation"
IEEE Communications Magazine, p62-66, March 1995

[19] TINA-C
“Principles of TINA"
TINA-C website, 2000, http://ww.tinac.com

[20] TINA
“Domain Types and Basic Reference Points in TINA™
TINA-C, May 1995, http://www.tinac.com

[21] N.D.Hoa
“Distributed Object Computing with TINA and CORBA"
N.D.Hoa, June 1997, hup://www.nenya.ms.mff.cuni.cz/~hoa/tina/tina.html

258

References

[22] TINA
“TINA Object Definition Language (TINA-ODL) Manual”
TINA, Version 1.3, 20 June 1994, hup://www.tinac.com

[23] ITU
“ITU X.700 Series — System Management”
ITU, hup://www.itu.int

[24] R. Orfali, D. Harkey, J. Edwards
“Instant CORBA"”
J. Wiley & Sons, 1997.

[25] OMG
“C++ Language Mapping Specification”
OMG Document 99-07-36, July, 1999.

[26]OMG
“IDL to Java Language Mapping Specification’
OMG Document 99-07-53, July, 1999.

[27] J. Siegel
“CORBA Fundamentals and Programming”
John Wiley & Sons, Inc., 1996.

[28] D. Rodgers

“Developing Secure, Web-Based Applications”

Software Development Journal, May 1998,
http://www.sdmagazine.com/supplement/ss/feature/s985f2¢.shim

[29] The Australian
“Mobile fraud runs riot”
The Australian, 22 September, 1998.

[30] E. Leahy
“Ericsson Fraud Management Solution — FraudOffice”
Ericcson, Business Evolution and Components Seminar, 12 March, 1999.

{31] 1SO
“ODP Trading Function”
ISO/IEC JTC1/SC21, 20 June 1995.

[32] IONA Technologies PL.C
“OrbixTrader — White Paper”
IONA web'site, (htp://www.iona.com)

259

Keferences

(331 OMG
“Trading Object Service”
OMG Document 96-05-06, May 1996.

[34] R. Resnick
“Intergalactic Distributed Objects"”
Dr.Dobb’s Sou;ceBook, January/February 1997.

[35] M. Bearman
“Tutorial on ODP Trading Function”

DSTC, University of Canberra, Australia, hup://www.dstc.edu.au

[36] OMG
“CORBA Security Service Version 1.2”
OMG, June 2000, http://www.omg.org

[37] OMG
“Common Secure Interoperability”
OMG Document, orbos/96-06-20, June 1996.

[38] Netscape
“SSL3.0 Specification”
hup://home.netscape.com/eng/ssI3/3-SPEC.HTM#2

[39] NUA
“Viruses, Hackers to Cost Businesses USD1.6 bn”

NUA Intermet Survey, September 1999, hitp://www.nua.ie/surveys/

[40] CERT/CC
“CERT/CC Statistics 1988-2000"

CERT, December 2000, http://www cert.org/stats/cert _stats.htm]
[41] ISO

"Information Processing Systems OSI RM, Pari 2: Security Architecture”

ISO/TC 97 7498-2, 1988.

[42] ISO
“Information Processing Systems OSI RM”
ISO/TC 97 7498, 1998.

[43]11SO CD 10181-3

"Access Control Framework"
[SO, Geneva, Switzerland, 1991.

260

References

[44] F.M. Avolio
"Network Security Building Internenwork Firewalls"
Business Communications Review, January 1994,

[45] R Kay
“Top Security Threats”
BYTE, April 1995.

[46] CSI/FBI
“Issues & Trends: 2000 CSI/FBl Computer Crime and Security Survey”
CSI/FBI, 2000, hup://www.gosci.org

[47] D. Gollmann
“Computer Security”
Wiley & Sons, 1999.

(48] D. Bell, L. La Padula
“Mitre Technical Report 2547 (Secure Computer System): Volume 11
Joumnal of Computer Security, 1996.

[49] E.L Organick
“The Multics System: An Examination of Its Structure”
MIT Press, Cambridge, MA, 1972.

[50] C. Laferriere, R. Charland
"Authentication and Authorization Techniques in Distributed Systems"
[EEE Journal, 1993.

[51]1 ISO DIS 10181-2
"Authentication Framework"
ISO, Geneva, Swiltzerland, 1991.

[52] National Institute of Standards and Technology
“Digital Signature Standard”
NIST FIPS PUB 186, U.S. Department of Commerce, Feb 1994.

[53] M. Ganley
“Digital Signatures and their uses”
"Compulers & Security, 13, 1994,

[54] J.R. Vacca

“Stop Impersonators from Entering Your Network”
Internet Security Advisor, pg. 8-18, February 2000.

261

References

[55]A.P. Conn, J.H. Parodi, M. Taylor
“The Place of Biometrics in a User Authentication Taxonomy”
Digital Equipment Corporation, June 1990.

[56] R. Bright
“Smart Cards: Principles, Practice, Applications™
Ellis Horwood, 1988.

[57] D. Bicknell
"“The key question”
Computer Weekly, 13 February, 1997.

(58] P. Wayner
“Who goes there?”
BYTE, volume 22, no. 6, June 1997.

[59] CCITT

Recommendation X.509 "The Direcrory-Authentication Framework"”
Consultation Committee, International Telephone and Telegraph, International
Telecommunications Union, Geneva, 1989.

[60] National Bureau of Standards
“Data Encryption Standard”
NBS FIPS PUB 46-1, U.S. Department of Commerce, Jan 1988.

{61] R.L. Rivest, A. Shamir, L.M. AdleMan
“A Method for Obtaining Digital Signatures and Public-Key Cryptosystems”
Communications of the ACM, v. 21, n. 2 Feb 1978.

[62] R.L. Rivest, A. Shamir, L.M. AdleMan

“On Digital Signatures and Public Key Cryptosystems”

MIT Laboratory for Computer Science, Technical Report, MIT/LCS/TR-212, January
1979.

[63] Electronic Privacy Information Centre
“Cryptography and Liberty 1999: An Intermnational Survey of Encryption Policy”

EPIC, Washington DC, hup://wwwz epic.org/reponts/crypto1999.huml, 1999.

[64] Bureau of Export Administration
“Revisions to Encryption Items; Interim Final Rule”
Department of Commerce, 15 CFR parts 734, 740, et al. , January 14, 2000.

262

References

[65] D.D. Chamberlin, J.N. Gray, L.L. Traiger
"Views, Authorisation and locking in Relational DataBase Systems"”
Proceedings from the AFIPS NCC, USA, Vol. 44, 1975.

[66] F. Cohen
“Eliminating Common Software Security Faults”
Software Development, May 1998 (http://www.sdmagazine.com).

[67] Department of Defense

“Deparmment of Defense Trusted Computer System Evaluation and Criteria” -The
Orange Book;

DOD 5200.28-STD, Dec 1985.

[68] S. Muftic
“Security Mechanisms for Computer Networks”
Ellis Horwood, Ltd., Chichester, England, Dec 1988.

[69] National Institute of Standards and Technology
“Secure Hash Standard”
NIST FIPS PUB 180, U.S. Department of Commerce, May 1993.

{70] R.L. Rivest
“The MD5 Message Digest Algorithm”
RFC 1321, April 1992.

[71] G. Tsudik
“Message Authentication with One-Way Hash Functions”
ACM Computer Communications Review, Volume 22, Number 4, pp. 29-38, 1992.

[72] S. Herda
“Non-repudiation: Constituting evidence and proof in digital cooperation”
Computer Standards & Interfaces, Volume 17, 1995.

(73] ISO
“Non-Repudiation Framework"”
SC21 N6167, July 1991.

[74] D. Anderson, T. Frivold, A. Valdes

“Next-generation Intrusion Detection System — A Summary”
Computer Science Laboratory, SRI-CSL-95-07, May 1995.

263

References

(75] P.G. Neumann, P.A. Porras,

“Experience with EMERALD to DATE”

Proceeding s of the 1 USENIX Workshop on Intrusion Detection and Network
Monitoring, CA, pg. 73-80, April 1999.

[{76] ISSO/NSA

“ID-Secure Intrusion Detection Tools Database™

Information System Security Organisation (ISSO)/NSA,
hup:/www.nswe.navy.mil/ISSEC/CID, 1999,

[77]1). Morrissey, P.W. Sanders, C.T. Stockel
“Increased domain security through application of local security and monitoring”
Expert Systems Journal,Vol. 13, No. 4, November 1996, pp. 296-305.

[78] H Hamashige :
“Cybercrime can kill venture: Small business es can be destroyed by hackers, but
security measure can help”

CNNfn, 10 March 2000, http://www.cnnfn.com

[79]Internet Enginecring Task Force (1IETF)
“Secure Sockets Layer Version 3,0 (SSL V3.0)
IETF, hitp://home.netscape.conm/eng/ssl3/ssl-toc.html

[80] IBM

“RACF Version 2 Release 2 Technical Presentation Guide”
IBM ITSO Redbooks Publications, 2000,
http://www.redbooks.ibm.com/abstracts/gg242539.html

{81] D. Pinkas, T. Parker, P. Kaijser
"SESAME: An Introduction”
Issue 1.2, Bull, ICL, and SNI, September 1993.

[82] MIT
“RFC1510 - The Kerberos Nenwork Authentication Service V5"
RFC index, http://dsm-.ds.intemic.net/ds/rfc-index.html

[83] National Information System Security (INFOSEC)
“National Information System Security Glossary”
INFOSEC, NSTISSI No. 4009, June 5 1992.

[84] WAP Forum

“Wireless Application Protocol White Paper”
WAP Forum, hup://www.wapforum.org, June 2000.

264

References

[85] Network Working Group
“Generic Security Service Application Program Interface, Version 2”
RFC 2078, January 1997.

[86] S. Muftic, A. Patel, P. Sanders, R. Colon, J. Heijnsdijk, U. Pulkkinen
“Security Architecture for Open Distributed Systems”
J. Wiley & Sons, 1994.

[87] D. Brown, S. Montesi
“Requirements upon TINA-C architecture”
TINAC, TB_MH.002_2.0_94, 17, February 1995.

[88] OMG
“OMG White Paper on Security”
OMG, Issue: 1.0, April 1994.

[89] C. Cavanagh
“CORBA Security White Paper”
Advanced Software, May 2001.

[90] ISO/IEC
“Specification of Abstract Syntax Notation One (ASN.1)”
ISO/IEC 8824, 1990.

[91] ISO/IEC

“Specification of the Basic Encoding Rules for Abstract Syntax Notation One
{ASN.1}"

ISO/IEC 8825, 1990.

[92] MSDN Magazine _

“A Young Person’s Guide to the Simple Object Access Protocol: SOAP Increases
Interoperability Across Platforms and Languages”

MSDN, http://msdn.microsoft.com/masdmag/issues/0300/soap/soap.asp, March 2000.

[93] OMG
“COM / CORBA Mappings”
OMG, Document orbos/97-09-07, September 1997.

[94] M J. Foley
“MS middleware: An untapped goldmine”
Zdnet, hitp://www . zdnet.com, 22 April 1999.

265

References

[95] Microsoft

“Windows 2000 Interoperability Solutions for Business*

Microsoft, http://www.microsoft.com/windows2000/auide/server/solutions,
September 2000.

[96] OMG
“Common Secure Interoperability”
OMG Document, orbos/96-06-20, June 1998.

{97] W. Rosenberry, D. Kenney, G. Fisher
“Understanding DCE”
O’Reilly & Associates, May 1993.

(98] W..-Hu
“DCE Security Programming”
O’Reilly & Associates, July 1995.

[99] P. Graubmann, W. Hwang, M. Kudela, K. MacKinnon, N. Mercouroff, N.
Watanabe

“Engineering Modelling Concept (DPE Architeciure), version 2.0”

TINA-C, December 1994

[100] P. Kaijser
“Security Protection for parts of a data structure”
Computer Communications, volume 17, number 7, July 1994.

[101] L. Bruno
“Internet Security: How much is enough?”
Data Communications, April 1996.

[102] S. Castano, M. Fugini, G. Martella, P. Samarati
“Database Security”
Addison Wesley, 1994.

[103] OMG
“Persistence Object Service Specification”
OMG Document: orbos /97-12-12, December 1997

[104] IONA
“OrbixSecuriry Whitepaper”.
IONA, http://www.iona.com, August 1999.

266

References

[105] D. Sullivan
“Beyond CORBA Security: Providing Network Authorisation Services”
Internet Security Advisor, Volume 2, Number 2, 1999,

[106] Entegrity Solutions
“NerCrusader/CORBA Securiry Services for CORBA Applications”
Entegrity Solutions Whitepaper v. 1.1, http://www.entegrity.com, January 2000.

[107] E. Gamma, R. Helm, R. Johnson, J. Vlissides
“Design Patterns — Elements of Reusable Object-Oriented Software”
Addison Wesley, 1995.

[108] C.J. Date
“An Introduction to Database Systems — Volume I’
Addison Wesley, ISBN 0-201-14474-3, 1985.

[109] OMG
“"OMG RFP5 Submission: Trading Object Service”
OMG Document orbos/96-05-06, Version 1.0.0, May 19 1996

[110] OMG
“Issues for CORBA Security 1.8 Revision Task Force”
OMG, huip://cgi.omg.org/issues/sec-rev.html, September 2000.

[111] OMG
“Security Special Interest Group Roadmap”

OMG, http://www.omg/org/homepage/sCCSig/security-sig-roadmap.htm, September
2000.

[112] R. Sessions
“Ten Rules for Distributed Object Systems”
0S/2 Magazine, Miller Freeman Inc. 1996.

[113] OMG
“TINA Standardization to Continue at the OMG™
OMG, September 2000, http://www.omg.org

[114] OMG
“CORBA Interoperability approved as I1SO Standard”
OMG, October 2000, htip://www.omg.org

(115] OMG
“Object Management Group Terms and Acronyms:
OMG, 2000, hup:#/www.omeg.org/gettingstarted/sroupterms_adn acronyms.him

267

Keferences

[116] OMG
“CORBA Security Service Version 1.5"
OMG, June 2000, http://www.ome.org/cei-bin/doc ?orbos/2000-06-25

[117]0MG
“Security Service Revision 1.7"
OMG, 2000, http://www.omg.org/cgi-binfdoc?security/99-12-02

[118] OMG
“Security 1.8 RTF”
OMG, 2000, hap://www.omg org/technology/documents/formal/security-service.htm

[119] D. Chizmadia

“ CORBASec: Securing Distributed Systems"”

Software Development, June 1999.

http://www sdmagazine.com/supplement/ss/features/s996f1 .shtm

[120] OMG

“OBJECT MANAGEMENT GROUP OUTLINES CORBA 3.0® FEATURES”
Comdex Enterprise '98/0Object World Conference, September 9, 1998
hitp://www.omg.com/

[121] J. Siegel
“What’s Coming in CORBA 3"
OMG 1999-2000, http://www omg.org

[122] OMG
“Java-to-IDL Mapping Specification”
OMG, 1999, hitp://www.omg.org/cgi-bin/doc?orbos/99-03-09

(123] OMG
“CORBA 3 Firewall Specification”

OMG, 1998, hup://www.omg.org/cgi-bin/doc?orbos/98-05-04

[124) OMG
“The Interoperable Name Service”
OMG, 1998, htip://www.omg.org/cgi-bin/doc?orbos/98-10-11

[125] OMG
“Minimum CORBA Specification”
OMG, 1998, http://www.omg.org/cgi-bin/doc?orbos/98-08-04

268

References

[126] OMG
“Real-time CORBA Specification”
OMG, 1999, http://www.omg.ora/cai-bin/doc?orbos/99-02-012

[127]0MG

“Fault Tolerance RFP”

OMG, 1999,

hitp://cgi.omg.orgftechprocess/meetings/schedule/Fault Tolerance RFP.himl

[128] OMG
“Messaging Specification”
OMG, 1998, hup://www.omg.org/cei-bin/doc?orbos/98-05-05

[129] Sun Microsystems
“Enterprise JavaBeans Specification”
Sun Microsystems, 1998, http://java.sun.com

[130] OMG

“The CORBA Component Model”

OMG, 1999,
http://www.omg.ore/cgi-bin/doc?orbos/99-07-01
http://www.omg.org/cei-bin/doc?orbos/99-07-02
hup://www.omg. org/cgi-bin/doc ?orbos/99-07-03

[131] OMG SECGsig
“OMG Security SIG (SECsig) Roadmap”
OMG, 2000, hup://www.omg/orgfhomepages/secsig/security _sig roadmap.him

[132] Ericcson
“FraudOffice Overview”
Ericcson, 2000, hitp://www _ericcson.com/fraudoffice/overview

[133] Ericcson
“FraudOffice Benefits”
Ericcson, 2000, http://www.ericcson.com/fraudoffice/benefits

[134] Ericsson
“Ericcson Fraud Management Solution FraudOffice "
Proceedings of Business Evolution & Components Seminar, Dublm March 12 1999.

[135] CIDF

“Common Intrusion Detection Framework”
CIDF, 2000, http://www.gidos.org

269

References

[136] IETF
“Intrusion Detection Work Group”
[ETF, 2000, hup://www.ietf.org

[137] OMG
“Persistence service problems”
OMG web site (http://www.omg.org).

[138] TINA-C
“TINA FAQ"
TINA-C, 2000, hup://www.tinac.com/fag/fag.himi##5

270

Appendix A: IDL for Comprehensive CORBA Security

 Appendix A - IDL for Comprehensive CORBASec

This appendix will present the IDL for the Comprehensive CORBA Security Service
(CORBASec). It has several structural changes from the original CORBA 2.0

Security Service, along with the modification and addition of new object interfaces.

Module Structure
The modules used in the [DL are now:

e Security

e SecurityLevell
e SecurityLevel2
¢ SecurityAdmin

o SECIOP

The NRService and SecurityReplaceable modules have had their interfaces now
included in the SecurityLevel2 and SecurityAdmin modules. There are two reasons
for this. Non-repudiation is no longer an optional service and therefore is now
included in the main modules. Also security replaceability is no longer required as

mechanism and service independence is now built into the CORBA security structure.
Object Interfaces

Comments through out the IDL code will explain the modifications to and addition of

new object interfaces. The new IDL code will be highlighted in bold.

271

Appendix A: IDL for Comprehensive CORBA Security

IDL

/I ddckdokkkokckck Rk kR kR ke ko Rk ke kokkkck ok R kR ok

i/ * Module: Security *
n* Function: Defines data types etc. *
,I Fkkkokkkckkokdkkkdeokdkckkkkkckdekkk ks kckkokk kb kb ok kb k%

#include <orb.idl>
module Security {

typedef string SecurityName;
typedef sequence <octet> Opaque;

// Used to define the Policy type

enum PolicyType {
ClientInvocationAccess,
TargetlnvocationAccess,
ApplicationAccess,
ClientInvocationAuthentication,
TargetlnvocationAuthentication,
ApplicationAuthentication,
ClientInvocationQoP,
TargetInvocationQoP,
ApplicationQoP,
StoredDataQoP,
ClientInvocationAudit,
TargetInvocationAudit,
ApplicationAudit,
ClientInvocationNonRepudiation,
TargetinvocationNonRepudiation,
ApplicationNonRepudiation,
ClientInvocationDelegation,
TargetInvocationDelegation,
ApplicationDelegation,
ClientSecurelnvocation,
TargetSecurelnvocation,
ApplicationSecurelnvocation,
Construction

b

// Used to define the Principal type for the Policy
// NOTE: UA represents the entry point for a user to the system.

1 User has not yet obtained any id,attributes etc.
enum PrincipalType {

Principal,

UA
b

272

Appendix A: IDL for Coniprehensive CORBA Security

/I extensible families for standard data types
struct ExtensibleFamily {
unsigned short family_definer;
unsigned short family;

b

/f security association mechanism type
typedef string MechanismType;
typedef sequence <MechanismType> MechanismTypeList;

struct SecunityMechandName {
MechanismType mech_type;
SecurityName security_name;
b
typedef sequence <SecurityMechandName> SecurityMechandNameList;

/I security attributes
typedef unsigned long SecurityAttribute Type;

/! identity attributes; family=0

const SecurityAttributeType Auditld = 1;

const SecurityAttributeType AccountinglD = 2;
const SecurityAttributeType NonRepudiationld = 3;

/! privilege attributes; family = |

const SecurityAttributeType Public = 1;

const SecurityAttributeType AccessID = 2;

const SecurityAttributeType PrimaryGroupID = 3;
const SecurityAttributeType Groupld =4,

const SecurityAttributeType Role = 5;

const SecurityAttributeType AttributeSet = 6;
const SecurityAttributeType Clearance = 7,

const SecurityAttributeType Capability = 8;

struct AttributeType {
ExtensibleFamily attribute_family;

Security Attribute Typeattribute_type;
ki

typedef sequence<AttributeType> AttributeTypeList;

struct Attribute §

AttributeType attribute_type;
sequence <octet> defining_authority;
Opaque value;

273

Appendix A: IDL for Comprehensive CORBA Security

typedef sequence<Attribute> AttributeList;
typedef sequence<octet> def_authority;

// Authentication return status
enum AuthenticationStatus {
Success, -
Failure,
Continue,
Expired
b

// Association return status
enum AssociationStatus {
AoSuccess,
AoFailure,
AoContinue

5

/fAuthentication method
typedef unsigned long AuthenticationMethod;

/fAccess Control method
typedef unsigned long AccessMethod;

/1 Authentication Types
enum AuthenticationType {
Client,
Server,
Mutual

|5

// Credential types which can be set as Current default
enum Credential Type {

InvocationCredentails,

OwnCredentials,

NRCredentials

|

// Declarations related to Rights

struct Right {
ExtensibleFamily rights_family;
string right;

b
typedef sequence <Right> RightsList;

enum RightsCombinator {

274

Appendix A: IDL for Comprehensive CORBA Securiry

AllRights,
AnyRights
5

// Delegation related
enum DelegationState {
Initiator,
Delegate

|5

{//pick up from TimeBase

typedef TimeBase::UtcT UtcT;
typedef TimeBase::IntervalT IntervalT;
typedef TimeBase:: TimeT TimeT;

// Security features available on credentials

enum SecurityFeature {
NoDelegation,
SimpleDelegation,
CompositeDelegation,
NoProtection,
Integrity,
Confidentiality,
IntegrityAndConfidentiality,
DetectReplay,
DetectMisordering,
EstablishTrustInTarget,
Anonimity

|

struct SecurityFeatureValue {
SecurityFeature feature;
boolean value;

I
typedef sequence<SecurityFeatureValue> SecurityFeatureValueList;

/1 Quality of protection which can be specified
// for an object ref and used to protect messages
enum QOP |

QOPNoProtection,

QOPIntegrity,

QOPConfidentiality,

QOPIntegrityAndConfidentiality

275

Appendix A: IDL for Comprehensive CORBA Securiry

/! Association options which can be administered on secure invocation
/! policy and used to initialise security context
typedef unsigned short AssociationOption;

const AssociationOption AONoProtection = 1;

const AssociationOption AOIntegrity = 2;

const AssociationOption AOConfidentiality = 4;

const AssociationOption AODetectReplay = 8;

const AssociationOption AODetectMisordering = 16;
const AssoctationOption AOEstablishTrustInClient = 32;
const AssociationOption AOEstablishTrustInTarget = 64,
const AssociationOption AOAnonimity = 128;

typedef sequence <AssociationOption> AssociationOptions;

/1 Flag to indicate whether assocation options being administered
// are the "required” or "supported” set
enum RequiresSupports |
Requires,
Supports
I

// Direction of communication for which secure invocation
// policy applies
enum CommunicationDirection {
Both,
Request,
Reply
B

/! AssociationOptions-Direction pair

struct OptionsDirectionPair {
AssociationOptions options;
CommunicationDirection direction;

k:

typedef sequence<OptionsDirectionPair> OptionsDirectionPairList;

// Delegation mode which can be administéered
enum DelegationMode {
DNoDelegation,
DsimpleDelegation,
DCompositeDelegation
b
/1 Association options supported by a given mech type

struct MechandOptions {
MechanismType mechanism_type;

276

Appendix A: IDL for Comprehensive CORBA Security

AssociationOptions options_supported;
b
typedef sequence <MechandOptions> MechandOptionsList;

f/Audit

struct AuditEventType {
ExtensibleFamily event_family;
unsigned short event_type;

)
typedef sequence <AuditEventType> AuditEventTypeList;

typedef unsigned long SelectorType;

/l family = 1, System event selectors
const SelectorType Intface = 1;

const SelectorType Obj = 2;

const SelectorType Operation = 3;
const SelectorType Sellnitiator = 4,
const SelectorType SuccessFailure = 5;
const SelectorType Time = 6;

typedef sequence<SelectorType> SelectorTypeList;

struct SelectorValue {
SelectorType selector;
any value;

¥

typedef sequence <SelectorValue> SelectorValueList;

// used by AuditAnalyser in analyse_data
enum AnalyserResult {
{O=no_violation,
1=raise_suspicion,
2=violation

}

// used by AuditAnalyser when justifying audit analysis
struct AuditJustify {

string justification_message;

Opaque Jjustification_data;
};

/I Msg_part used by QOP to specify how much of the message shouid
// have integrity/confidentiality mechanisms applied
enum msg_part { ’

parameters,

parameters_operations,

277

Appendix A: IDL for Comprehensive CORBA Security

parameters_operations_targetld,
parameters_operations_targetld_servicelnfo
H
typedef sequence <msg_part> MsgPartList;

/1 Used in the Interoperability Interface
enum InteropPolicyType {
Std_mechs,
Translator

}s

/1 Used to define operator types used in access decisions
enum OperatorType {

GT,

LT,

EQ,

GE,

LE,

NE
5

/] Used in securitylevel2

typedef unsigned short minor_status;
typedef unsigned short major_status;
typedef-Opaque errormsg;

typedef Security::MechanismType NRmech;
typedef Security::ExtensibleFamily NRPolicyld;

enum NRVerificationResult {
invalid,
valid,
ConditionallyValid

IR '

// The following are used for evidence validity duration
// month = 30 days; year = 365 days

typedef unsigned long duration_in_minutes;

const duration_in_minutes DURATION_HOUR = 60;
const duration_in_minutes DURATION_DAY = 1440;
const duration_in_minutes DURATION_WEEK = 10080;
const duration_in_minutes DURATION_MONTH= 43200;
const duration_in_minutes DURATION_YEAR =525600;

278

Appendix A: IDL for Comprehensive CORBA Security

typedef long time_offset_in_minutes;

// last_revocation_check_offset may be >0 or <0; add this to evidence
// generation time to get latest time at which mech will check to

[/ see if this authority’s key has been revoked.

struct authorityDescriptor {

string authority_name;
string authority_role;
time_offset_in_minutes last_revocation_check_offset;

)s

typedef sequence <authorityDescriptor> authorityDescriptorList;

/I max_time_skey is max permissible difference between evidence
/! generated time and time of service countersignature

/! ignored if trusted time not required.

struct mechanismDescriptor {

NRmech mech_type;
authorityDescriptorList authority_list;
time_offset_in_minutes max_time_skew;

b

typedef sequence <mechanismDescriptor> mechanismDescriptorList;

enum EvidenceType {
ProofofCreation,
ProofofSubmission,
ProofofReceipt,
ProofofApproval,
ProofofRetrieval,
ProofofOrigin,
ProofofDelivery,
NoEvidence

M

enum EvidenceDirection {
Evidence,
RequestedEvidence

b

struct evidenceDescriptor {

EvidenceType evidence_type;
duration_in_minutes evidence_validity_duration;
boolean must_use_trusted_time;

b

typedef sequence <evidenceDescriptor> evidenceDescriptorList;

279

Appendix A: IDL for Comprehensive CORBA Security

struct NRPolicyFeatures {

NRPolicyld policy_id;
unsigned long policy_version;
NRmech mechanism;

b
typedef sequence<NRPolicyFeatures> NRPolicyFeaturesList;

/l features used when generating requests
struct requestFeatures {

NRPolicyFeatures requested_policy;
Security::EvidenceType requested_evidence;

string requested_evidence_generators;
string requested_evidence_recipients;
boolean include_this_token_in_evidence;

|H

// Used in the NRAdjudicator and NRStore
enum DecistonType {

originator,

target,

undecided,

neither

|

enum ServiceType {
Authentication, .
AccessControl,
Delegation,
QofP,
Audit,
NonRepudiation
IH
typedef string Constraint;
typedef string Preference;

typedef unsigned long Mappingld;
typedef sequence<Mappingld> MappingldSeq;

struct domain_values{
sequence<octet> domainl_value;
sequence<octet> domain2_value;

I

typedef sequence<domain_values> domain_values_list;

// Domain Mapping structure

struct Mapping {
Mappingld mappingld;
ServiceType serviceType;
string policy Classification;

280

Appendix A: IDL for Comprehensive CORBA Security

unsigned short family_definerl;
unsigned short family_id1;
sequence<octet> attribute_typel;
sequence<octet> defining_authorityl;
unsigned short family_definer2;
unsigned short family_id2;
sequence<octet> attribute_type2;
sequence<octet> defining_authority2;
sequence<domain_values> mapped_values;
Security::UtcT . timeStamp;
Security::Opaque remoteDomainld;
Security::Opaque remoteDomainAuthority;

b
typedef sequence<Mapping> MappingSeq;

/Mnteroperability Policy Structures

struct MechRequiresSupports {
sequence<string> mech_required;
sequence<Security::CommunicationDirection>
mech_required_direction;
sequence<string> mechs_supported;
sequence<Security::CommunicationDirection>
mechs_supported_direction;

)

struct AuthPolicyRequiresSupports{
AuthenticationType auth_type_required;
CommunicationDirection . auth_type_required_direction;
sequence<AuthenticationType> auth_type_supported;

sequence<CommunicationDirection>
auth_type_supported_direction;
|5

struct SecurelnvocationFamily {
string policy_classification;
ExtensibleFamily event_family;

15

typedef sequence <SecurelnvocationFamily> SecurelnvocationFamilyList;

struct DelegationPolicy RequiresSupports{

// type = none,simple, composite
Security::DelegationMode mode_required;
Security::CommunicationDirection mode_required_direction;
sequence<Security::DelegationMode> mode_supported;
sequence<Security::CommunicationDirection>
mode_supported_direction;

|5

281

Appendix A: IDL for Comprehensive CORBA Security

struct QOPPolicyRequiresSupports{

HH

AssociationOptions qop_type_required;
sequence<CommunicationDirection> qop_type_required_direction;
AssociationOptions qop_type_supported;
sequence<CommunicationDirection> qop_type_supported_direction;
MsgPartList integ_msg_part_required;

sequence<CommunicationDirection>
integ_msg_part_required_direction;

MsgPartList integ_msg_part_supported;

sequence<CommunicationDirection>
integ_msg_part_supported_direction;

MsgPartList conf_msg_part_required;

sequence<CommunicationDirection>
conf_msg_part_required_direction;

MsgPartList conf_msg_part_supported;

sequence<CommunicationDirection>
conf_msg_part_supported_direction;

struct NRPolicyRequiresSupports{

JH

Security::evidenceDescriptorList
sequence<Security::CommunicationDirection>
evidence_required_direction;
Security::evidenceDescriptorList
sequence<Security::CommunicationDirection>
evidence_supported_direction;
Security::authorityDescriptorList

struct AuditPolicyRequiresSupports{

B H

Security::AuditEventTypelList
sequence<Security::CommunicationDirection>
event_required_direction;
Security::AuditEventTypeList
sequence<Security::CommunicationDirection>
event_supported_direction;
Security::SelectorTypeList
Security::SelectorTypeList

/{ END OF SECURITY DATA MODULE

b

evidence_required;
evidence_supported;

authorities; .

event_required;
eveni_supported;

selector_required;
selector_supported;

// RERRRRRE R KRR R R ER KRR KRR RERREERA R TR F R R TR TRk

n*
n*

Module: 1
Function: Security Level I Interfaces.

*
*

JI ¥EFEEFREEER Rk Rk kdkkkdhhkkdRkhhkhrhdhddckkadookokkdokddkokokk ke k ko

282

Appendix A: IDL for Comprehensive CORBA Securiry

//module securitylevell {

flinterface Current : CORBA::Current {
interface Current {
Security::AttnibuteList get_attributes (
in Security::AttributeList attributes
%
B

/1 END OF securitylevell 1| MODULE
b

// FkckkckkdkekdorkkdokdekkkkRkkrk ki kkckdeck kool kkk ek kb kb kAR RE®

IN* Module: securitylevel2l *
I* Function: Security Level 2 Interfaces (S1.2) *
/, kR RRR kR RRER Rk bRk kR Rk Rk Rk kb kR kR E Rk Rk Rk kkkkkkkkkk
module securitylevel?2 {

typedef string Identifier;

typedef string InterfaceName;

/f moved RequriedRights because SL2 interfaces refer to RequiredRights.
// Previously these interfaces were in SecurityReplaceability module but they
/I are all now part of SL.2.
interface RequiredRights;
interface UserAgent;
interface Principal Authenticator;
interface Credentials;
interface Object2;
_interface Current;

// RequiredRights Interface
interface RequiredRights {
void get_required_rights(

in Object object,
in Identifier operation_name,
in InterfaceName interface_name,
in string ' parameter_name,
in Security::OperatorType operator,
in Security::Opaque parameter_value,
out Security::RightsList rights,
out Security::RightsCombinator rights_combinator
); '
void set_required_rights (
in string operation_name,
in InterfaceName interface_name,
in string parameter_name,
in Security::OperatorType operator,

283

Appendix A: IDL for Comprehensive CORBA Security

in Security::Opaque
in Security::RightsList
in Security::RightsCombinator

interface PrincipalAuthenticator {
Security::AuthenticationStatus authenticate (

)

in Security::AuthenticationMethod
in string

in Security::Opaque

in Security::AttributeList

out Credentials

out Security::Opaque

out Security::Opaque

parameter_value,
nghts,
rights_combinator

method,
security_name,
auth_data,
privileges,

creds,
continuation_data,
auth_specific_data

Security::AuthenticationStatus continue_authentication (

B

in Security::Opaque
inout Credentials

out Security::Opaque
out Security::Opaque

{// Interface Credentials
interface Credentials {

void set_security_features (
in Security::CommunicationDirection direction,

)

in Security::SecurityFeatureValueList

out Security::errormsg
out Security::major_status
out Security::miror_status

response_data,
creds,
continuation_data,
auth_specific_data

security_features,
error,
major_error,
Minor_error

Security::SecurityFeatureValueList get_security_features (
in Security::CommunicationDirection direction,

)

out Security::errormsg
out Security::major_status
out Security::minor_status

boolean set_privileges (

284

error,
major_ervor,
minor_error

Appendix A: IDL for Comprehensive CORBA Security

in boolean

in Security::AttributeL.ist
out Security::AttributeList
out Security::errormsg
out Security::major_status
out Security::minor_status

)

Security::AttributeList get_attributes (
in Security::AttributeTypeList
out Security::errormsg
out Security::major_status
out Security::minor_status

);

boolean set_controls (
in boolean
in Security::AttributeList
in Security::DelegationMode
in Security::UtcT
in Security::AttributeList
in long
out Security::errormsg
out Security::major_status
out Security::minor_status

);

boolean get_controls (
in Security::AttributeList
out boolean
out Security::DelegationMode
out Security::UtcT
out Security::AttributeList
out long
out Security::errormsg
out Security::major_status
out Security::minor_status

);

boolean is_valid (
“out Security::UtcT
out Security::errormsg
out Security::major_status
out Security::minor_status

285

force_commit,
requested_privileges,
actual_privileges,
erTor,

major_error,
minor_error

attributes,
erTor,
major_error,
minor_error

force_commit,
required_attributes,
delegation_mode,
expiry_time,

"privileges_delegated,

no_of_invocations,
error,
major_error,
minor_error

required_attributes,
force_commit,
delegation_mode,
expiry_time,
privileges_delegated,
no_of_invocations,
error,

major_error,
minor_error

expiry_time,
error,

major_error,
minor_error

};

Appendix A: IDL for Comprehensive CORBA Security

boolean refresh();

typedef sequence<Credentials> CredentialsList;

// Interface object derived from Object
// providing additional operations on objref at this security level.
interface Object : CORBA::Object{

};

void override_default_credentials (
in Credentials creds

)

void override_default_QOP (
in Security::QOP qop
);

Secunity::SecurityFeatureValueList get_security_features (
in Security::CommunicationDirection direction

)
Credentials get_active_credentials();

CORBA ::Policy get_policy (

long get_policy (
in Security::PolicyType policy_type
%

Security::MechanismType get_security_mechanism();

void override_default_mechanism (
in Security::MechanismType mechanism_type

)

Security::SecurityMechandName get_security_names();

// Interface Current derived from securitylevell 1::Current
// providing additional operations on Current at this security
// level. This is implemented by the ORB.

interface Current {

Security::AttributeList get_attributes (
in Security::Attribute TypeList attributes

);

void set_credentials {
in Security::Credential Type cred_type,

286

Appendix A: IDL for Comprehensive CORBA Security

in Credentials

%

readonly attribute CredentialsList

creds

received_credentials;

readonly attribute Security::SecurityFeatureValueList

received_security_features;

CORBA::Policy get_policy(
in Security::PolicyType
)

policy_type

readonly attribute RequiredRights required_rights_object;

b
// AUDIT OBJECTS

/I Interface for AuditDecision
interface AuditDecision {
boolean audit_needed (
in Security::AuditEventType
in Security::SelectorValueseq
);
b

/! Interface for AuditAnalyser
interface AuditAnalyser {
boolean analyse_data (
in Security::AuditEventType
in CredentialsList
in Security::UtcT
in Security::SelectorSequence
in Security::Opaque
out Security::AnalyserResult
out Security::Opaque

);

boolean justify (
in Security::Opaque
out sequence<AuditJustify>
)
b
/I Interface for AuditResponder
interface AuditResponder {

boolean define_response (
in Security::AnalyserResult

287

event_type,
value_list

event_type,

creds,

time,

descriptors,
event_specific_data,
result,
analysis_token

analysis_token,
justification

result,

Appendix A: IDL for Comprehensive CORBA Securirty

in Security::Opaque
out sequence<Security::Opaque>
out sequence<Object>

%
|5

// Interface AuditChannel
interface AuditChannel {
readonly attribute Object

boolean audit_write (
in Security::Opaque
out Security::errormsg
out Security::major_status
out Security::minor_status
);
b

/! Interface AuditTrail
interface AuditTrail {
boolean read_record (
in long
out Security::AuditEventType
out CredentialsList
out Security::UtcT
out Security::SelectorSequence
out Security::Opaque -
out Security::AnalyserResult
out Security::Opaque
out Security::errormsg
out Security::major_status
out Security::minor_status

%

boolean write_record (
in long
in Security::AuditEventType
in CredentialsList
in Security::UtcT
in Security::SelectorSequence
in Security::Opaque
in Security::AnalyserResult
in Security::Opaque
out Security::errormsg
out Security::major_status
out Security::minor_status

288

audit_token,
audit_data,
audit_channels

linked_object,

audit_data
error,
major_error,
minor_error

id,

event_type,

creds,

time,

descriptors,
event_specific_data,
result, ‘
analysis_token
error,
major_error,
minor_error

id,

event_type,
creds,

time,
descriptors,
event_specific_data,
result,
analysis_token
error,
major_error,
minor_error

Appendix A: IDL for Comprehensive CORBA Security

)

boolean query_record (
inout sequence<long> id,
inout sequence<Security::AuditEventType> event_type,
inout sequence<CredentialsList> creds,
inout sequence<Security::UtcT> time,
inout sequence<Security::SelectorSequence> descriptors,
inout sequence<Security::Opaque> event_specific_data,
inout sequence<Security::AnalyserResult> result,
inout sequence<Security::Opaque> analysis_token,
out Security::errormsg error,
out Security::major_status major_error,
out Security::minor_status minor_error

);
b

/! Interface AuditAction
interface AuditAction {
boolean get_action_info (
in long id,
out Security::Opaque action_data

);

boolean execute_action (

in Security::Opaque action_data
out Security::errormsg error,
out Security::major_status major_error,
out Security::minor_status minor_error
)

b

” dekkkkkkdedeckkdkkkkkkkkhkk ko ki kk ok kokk ek ok ko ok kok ke dkk

I7* Module: NRservice *

I* Function: Non-Repudiation interfaces *

// s o e s e ok sk e obe o ok o o e o sk o ok ke ok ok e ok oke ok ok o ke ok o e ok ok kool ok ok o ok sk ke ke sk sk ok ok ok ok ok ke ok

{/Interface NRCredentials
interface NRCredentials {
boolean set_NR_features (
in Security::NRPolicyFeaturesL.ist requested_features,
in Security::NRPolicyFeaturesList actual_features

)
Security::NRPolicyFeaturesList get_NR_features();

void generate_token (
/! in sequence <octet> input_buffer,

289

I

)

Appendix A: IDL for Comprehensive CORBA Security

in Security::Opaque

in Security::EvidenceType
in boolean

in boolean

in Security::requestFeatures
in boolean

out Security::Opaque

out Security::Opaque

out Security::errormsg

out Security::major_status
out Security::minor_status

input_buffer,
generate_evidence_type,
include_data_in_token,
generate_request,
request_features,
input_buffer_complete,
nr_token,
evidence_check,

error,

major_error,
minor_error

Security::NRVerificationResult verify_evidence (

%

in Security::Opaque

in Security::Opaque

in boolean

in boolean

out Security::Opaque

out Security::Opaque

out sequence <octet>

out boolean

out boolean

out Security::TimeT

out Security::TimeT

out Security::errormsg
out Security::major_status
out Security::minor_status

void get_token_details (

in Security::Opaque
in boolean
out string

out Security:
out Security:
out Security::
out Security::
out Security:

oul boolean
out boolean

out Security:
out Security:
out Security:
out Security::

:NRPolicyFeatures
:EvidenceType

UtcT
UtcT

:duration_in_minutes

:requestFeatures
:eIrormsg
:major_status

minor_status

290

input_token_buffer,
evidence_check,
form_complete_evidence,
token_buffer_complete,
output_token,
data_included_in_token,
data_included_in_token,
evidence_is_complete,
trusted_time_used,
complete_evidence_before,
complete_evidence_after,
error,

major_error,

minor_error

token_buffer,
token_buffer_complete,
token_generator_name,
policy_features,
evidence_type,
evidence_generation_time,
evidence_valid_start_time,
evidence_validity_duration,
data_included_in_token,
request_included_in_token,
request_features,
error,

major_error,

minor_error

Appendix A: IDL for Comprehensive CORBA Securiry

)X
boolean form_complete_evidence (
in Security::Opaque input_token,
out Security::Opaque output_token,
out boolean trusted_time_used,
out Security::TimeT complete_evidence_before,
out Security::TimeT complete_evidence_after,
out Security::errormsg error,
out Security::major_status major_error,
out Security::minor_status minor_error

b

/! interface NRDeliver
interface NRDeliver {
IMNR_send_generated_token will send a token and its input data to the
/target object specified.
boolean NR_deliver_token(
in Security::Evidence Direction evidence_direction,

in Security::EvidenceType evidence_type,
in Security::Opaque nr_token,

in Security::Opaque evidence_check,
in boolean data_in_token,
in Object ' originator,

in Object target,

out Security::errormsg error,

out Security::major_status major_error,
out Security::minor_status minor_error

)s

// interface NRStore
interface NRStore {
/fThe NR_recerd_add method returns a value of True/False depending on
//whether the record was added successfully. If False, errormsg will
~ //contain a systems message, explaining the problem, or the minor_error
/iwill contain a mechanism dspecific message (GSS-API compliance).
//Otherwise the error parameters will be null.

boolean NR_record_add (

in Security::Opaque nr_token,

in CredentialsList nr_creds,

in Security::EvidenceDirection evidence_direction,
in Security::EvidenceType evidence_type,

in boolean data_in_token,

in Security::Opaque evidence_check,

291

Appendix A: IDL for Comprehensive CORBA Security

in Security::UtcT

out Security::Opaque

out Security::errormsg
out Security::major_status
out Security::minor_status

nr_store_time,
nr_index,
error,
major_error,
minor_error

);

/{An index is supplied to retrieve the appropriate key. This can be the
/fresult of a query or iterator operation (Query and Collection Service).
/lThe NR_record_get method returns a value of True/False depending on
/Iwhether the record was successfully retrieved. If False, errormsg will
/fcontain a systems message, explaining the problem, or the minor_error
/iwill contain a mechanism specific message (GSS-API compliance).
//Otherwise the error parameters will be null,
boolean NR_record_get (

in Security::Opaque

out Security::EvidenceDirection

out Security::EvidenceType

out boolean

nr_index,
evidence_direction,
evidence_type,
data_in_token,

out CredentialsList nr_creds,

out Security::Opaque nr_token,

out Security::Opaque evidence_check,
out Security::UtcT nr_store_time,
out Security::errormsg error,

out Security::major_status
out Security::minor_status

major_error,
minor_error

)

boolean NR_record_query (
inout sequence<Security::Opaque> nr_index,
inout sequence<Security::EvidenceDirection>

evidence_direction,
inout sequence<Security::EvidenceType> evidence_type,
inout sequence<boolean> data_in_token,
inout sequence<CredentialsList> nr_creds,
inout sequence<Security::Opaque> nr_token,
inout sequence<Security::Opaque> evidence_check,
inout sequence<Security::UtcT> nr_store_time,
out Security::errormsg error,
out Security::major_status major_error,
out Security::minor_status minor_error

)

5

/finterface NRAdjudicator

interface NRAdjudicator{
bootean NR_settle_dispute (

292

);
|5

Appendix A: IDL for Comprehensive CORBA Security

in Object

in Security::Opaque

in Object

in Security::Opaque

out Security::Opaque

out Security::DecisionType
out Security::errormsg

out Security::major_status
out Security::minor_status

originator,
originator_nr_token,
target,
target_nr_token,
nr_decision_token,
decision,

error,

major_error,
minor_error

// The NRPolicy has been removed from this module and placed in the
/! SecurityAdmin module.

R e e e R EE R P T

n*
I*

Module:
Function:

SecurityReplacable
Allows replacability

*
*

Jl HERERRRRERRRE R R LR R FFRERRRRERRF R RFFERRF &

interface SecurityContext;

/I INTERFACE VAULT
interface Vault {
Security::AssociationStatus init_security_context (

in CredentialsList
in Security::SecurityName
in Object

creds_list,
larget_security_name,
target,

in Security::OptionsDirectionPairList association_options,

in Security::MechanismType
in Security::Opaque

in Security::Opaque

inout short

out Security::MechanismType
out boolean

out boolean

out boolean

out hoolean

out boolean

out boolean

out boolean

out boolean

out boolean

out Security::Opaque

out SecurityContext

out Security::errormsg

293

mechanism,
mech_data,
chan_binding,
lifetime_rec,
out_mechanism,
deleg_state,
mutual_state,
replay_det_state,
sequence_state,
anon_state,
trans_state,
prot_ready_state,
conf_avail,
integ_avail,
security_token,
security_context,
error,

Appendix A: IDL for Comprehensive CORBA Security

out Security::major_status
out Security::mineor_status

)

major_error,
minor_error

Security::AssociationStatus accept_security_context (

in CredentialsList

in Security::Opaque

in Security::Opaque

out boolean

out boolean

out boolean

out boolean

out boolean

out boolean

out boolean

out boolean

out boolean

out CredentialsList

out Security::Opaque

out short

out SecurityContext

out Security::errormsg
out Security::major_status
out Security::minor_status

)

Security::MechandOptionsList

// Interface SecurityContext
interface SecurityContext {

creds_list,
chan_bindings,
in_token,
deleg_state,
mutual_state,
replay_det_state,
sequence_state,
anon_state,
trans_state,
prot_ready_state,
conf_avail,
integ_avail,
delegated_creds_list,
out_token,
lifetime_rec,
security_context,
error,
major_error,
minor_error

get_supported_mechs();

readonly attribute CredentialsList received_credentials;

readonly attribute
received_security_features;

Security::SecurityFeature ValueList

Security::AssociationStatus continue_security_context {

in Security::Opaque
out Security::Opaque
out Security::errormsg
out Security::major_status
out Security::minor_status

)

void protect_message (
in Security::Opaque

294

in_token,
oui_token,
error,
major_error,
minor_error

message,

Appendix A: IDL for Comprehensive CORBA Securiry

in Security::QOP

inout boolean

out Security::Opaque

out Security::Opaque

out Security::errormsg

out Security::major_status

out Security::minor_status

)

boolean reclaim_message (
in Security::Opaque
in Security::Opaque
out Security::QOP
out boolean
out Security::Opaque
out Security::errormsg
out Security::major_status
out Security::minor_status

)

boolean is_valid (
out Security::UtcT
out Security::errormsg
out Security::major_status
out Security::minor_status

)

boolean refresh();

Hnterface AccessDecision
interface AccessDecision {

/{ END OF SECURITYLEVEL2 MODULE

B

boolean access_allowed (
in CredentialsList
in Object
in Identifier
in string
in Security::OperatorType
in Security::Opaque
in Identifier

)

qop,

conf,
text_buffer,
token,

error,
major_error,
minor_error

text_buffer,
token,
qop,
conf,
message,

error,
major_error,
minor_error

expiry_time,
error,
major_error,
minor_error

cred_list,
target,
operationName,

parameter_name,

operator,
parameter_value,
targétinterfaceName

J EFEEEEREERF X IR LR R RF LRI EFREEFRFRERRF TR R E R REF K

295

Appendix A: IDL for Comprehensive CORBA Securiry

in* Module: SecurityAdmin *

IN* Function: Administration Interfaces *
” kb Fhkkkkkbrdkkkokkkkh kb kpkekkkk ek kb bk bk ohkkokokk

module SecurityAdmin

interface Mappinglterator;

interface UserAgent{
void set_security_name (

in string security_name,
out Security::errormsg error,
out Security::major_status major_error,
out Security::minor_status minor_error

) '

void set_auth_data (
in Security::Opaque auth_data,
out Security::errormsg error,
out Security::major_status major_error,
out Security::minor_status minor_error

);

void set_privileges (

in Security::AttributeList privileges,
out Security::errormsg error,
out Security::major_status minor_error

);

void set_name (

in Security::Opaque security_name,
out Security::errormsg error,
out Security::major_status major_error,
out Security::minor_status minor_error

)

Security::AuthenticationStatus authenticate (
out Security::Opaque continuation_data,
out Security::Opaque auth_specific_data,
out Security::errormsg error,
out Security::major_status major_error,
out Security::minor_status minor_error

);

/[The above methods are used prior to authenticate. The following method
/fis used after the authenticate and with continue_authentication.

Security::AuthenticationStatus reply_to_challenge (
in Security::Opaque response_data,

296

Appendix A: IDL for Comprehensive CORBA Securiry

out Security::errormsg
out Security::major_status
out Security::minor_status

)
|5

/Nnterface QOPPolicy
interface QOPPolicy {
readonly attribute Security::PolicyType

void set_QOP_policy(
in long
in Security:
in Security:
in long
in Security:
in long
in Security::
in Security:
in Security:

:InterfaceDefInfo
:QOP

:msg_part
msg_part

:UteT
);

void get_QOP_policy(
inout long
inout Security::InterfaceDefInfo
out Security::QOP
out long)
out Security::msg_part
out long
out Security::msg_part

out Security::CommunicationDirection

out Security::UtcT
)

void query_QOP_policy(
inout long

inout sequence<Security::InterfaceDefInfo>

inout sequence<Security::QOP>
inout sequence<long>

inout sequence<Security::msg_part>

inout sequence<long>

inout sequence<Security::msg_part>

:CommunicationDirection

error,
major_error,
minor_error

policy_type;

policy_id,
object_type,
QOP_type,
integrity_mech,
integrity_msg_part,
confidentiality_mech,
confidentiality_msg_part,
direction,
expiry_time

policy_id,

object_type,

QOP_type,

integrity_mech,

integrity_msg_part,

confidentiality_mech,
confidentiality_msg_part,

direction,

expiry_time

policy_id,
object_type,
QOP_type,
integrity_mech,
integrity_msg_part,
confidentiality_mech,
confidentiality_msg_part,

inout sequence<Security::CommunicationDirection> direction,

inout sequence<Security::UtcT>

);

297

expiry_time

Appendix A: IDL for Comprehensive CORBA Security

void update_QOP_policy(
in long
inout Security::InterfaceDefInfo
inout Security::QOP
inout long
inout Security::msg_part
inout long
inout Security::msg_part

policy_id,
object_type,
QOP_type,
integrity_mech,
integrity_msg_part,
confidentiality_mech,

confidentiality_msg_part,

inout Security::CommunicationDirection direction,

inout Security::UtcT
)

void delete_QOP_policy(
in long
inout Security::InterfaceDefInfo

)

void set_stored_QOP_policy(
in long
in Security::InterfaceDefInfo
in Security::QOP
in long
in long
in Security::UtcT

)

void get_stored_QOP_policy(
inout long
inout Security::InterfaceDeflnfo
out Security::QOP
out long
out long
out Security::UtcT
);

void query_stored_QOP_policy(
inout sequence<long>

expiry_time

policy_id,
object_type,

policy_id,
object_type,
QOP_type,
integrity_mech,
confidentiality_mech,
expiry_time

policy_id,
object_type,
QOP_type,
integrity_mech,
confidentiality_mech,
expiry_time

policy_id,

inout sequence<Security::InterfaceDefInfo> object_type,

inout sequence<Security::QOP>
inout sequence<long>
inout sequence<long>
inout sequence<Security::UtcT>

);

void update_stored_QOP_policy(
in long
" inout Security::InterfaceDefInfo
inout Security::QOP

298

QOP_type,
integrity_mech,
confidentiality_mech,
expiry_time

policy_id,
object_type,
QOP_type,

Appendix A: IDL for Comprehensive CORBA Security

inout long integrity_mech,
inout long confidentiality _mech,
" inout Security::RequiresSupports requires_supports,

inout Security::UtcT expiry_time

)

void delete_stored_QOP_policy(
in long policy_id,
inout Security::InterfaceDefInfo object_type

)5
15
/Mnterface QOPMechanism
interface QOPMechanism {

readonly attribute Security::PolicyType policy_type;

// Integrity operations

void set_Integrity_mech (
in tong
in string
in Security::Opaque
in Security::Opaque
in boolean
in Security::Opaque
in Security::UtcT

)5

void get_Integrity_mech (
inlong
in string
inout Security::Opaque
inout Security::Opaque
inout boolean
inout Security::Opaque
inout Security::UtcT

)

void query_lIntegrity_mech (
inout sequence<long>
inout sequence<string>

integrity_mech,
integrity_mech_name,
parameters,
remoie_parameters,
Standard_mechanism,
interface_details,
expiry_time

integrity_mech,
integrity_mech_name,
parameters, .
remote_parameters,
Standard_mechanism,
interface_details,
expiry_time

integrity_mech,
integrity_mech_name,

inout sequence<Security::Opaque> parameters,
inout sequence<Security::Opaque> remote_parameters,

inout sequence<boolean>

Standard_mechanism,

inout sequence<Security::Opaque> interface_details,

inout sequence<Security::UtcT>

);

299

expiry_time

Appendix A: IDL for Comprehensive CORBA Security

void delete_Integrity_mech (
in long

)5

// Confidentiality operations

b

void set_Confidentiality_mech (
in long
in string
confitdentiality_mech_name,
in Security::Opaque
in Security::Opaque
in boolean
in Security::Opaque
in Security::UtcT
)

void get_Confidentiality_mech (
in long
in string

confidentiality_mech_name,
inout Security::Opaque
inout Security::Opaque
inout boolean
inout Security::Opaque
inout Security::UtcT

)

void query_Confidentiality_mech (

inout sequence<long>
inout sequence<string>

inout sequence<Security::Opaque>
inout sequence<Security::Opaque>

inout sequence<boolean>

inout sequence<Security::Opaque>
inout sequence<Security::UtcT>

);

void delete_Confidentiality_mech (

in long

);

{/Interface AuthPolicy
interface AuthPolicy {

readonly attribute Security::PolicyType

300

integrity_mech

confidentiality_mech,

parameters,
remote_parameters,
Standard_mechanism,
interface_details,
expiry_time

confidentiality_mech,

parameters,
remote_parameters,
Standard_mechanism,
interface_details,
expiry_time

confidentiality_mech,
confidentiality_mech_name,
parameters,
remote_parameters,
Standard_mechanism,
interface_details,
expiry_time

confidentiality_mech

policy_type;

b

Appendix A: IDL for Comprehensive CORBA Securiry

void set_Auth_policy (
in long
in Security::PolicyType
in Security::PrincipalType
in string
in Security::UtcT
in Security::AuthenticationMethod
in Security::Opaque
in Security::AttributeList
)

void get_Auth_policy (
in long
in Security::PolicyType
in Security::PrincipalType
in string
out Security::UtcT
out Security::AuthenticationMethod
out Security::Opaque
out Security::AttributeList
)

void query_Auth_policy (
inout sequence<long>
inout sequence<Security::PolicyType>
inout sequence<Security::Principal Type>
inout sequence<string>
inout sequence<Security::UtcT>

policy_id,

type,
principal_type,
security_name,
expiry_time,
method,
auth_data,
privileges

policy_id,

type,
principal_type,
security_name,

. exXpiry_time,

method,
auth_data,
privileges

policy_id,

type,
principal_type,
security_name,
expiry_time,

inout sequence<Security::AuthenticationMethod> method,

inout sequence<Security::Opaque>
inout sequence<Security::AttributeList>

);

void update_Auth_policy (
in long
inout Security::PolicyType
inout Security::PrincipalType
inout string
inout Security::UtcT
inout Security::AuthenticationMethod
inout Security::Opaque
inout Security::AttributeList
);
void delete_Auth_policy (

in long

)

301

auth_data,
privileges

policy_id,

type,
principal_type,
security_name,
expiry_time,
method,
auth_data,
privileges

policy_id

Appendix A: IDL for Comprehensive CORBA Security

{/Interface AuthMechanism
interface AuthMechanism {

readonly attribute Security::PolicyType

void set_Auth_mech (
in Security::AuthenticationMethod
in string
in Security::Opaque
in Security::Opaque
in boolean
in Security::Opaque
in Security::UtcT
)5

void get_Auth_mech (

-

policy_type;

method,

mech_name,
parameters,
remote_parameters,
standard_mechanism,
interface_details,
expiry_time

in Security::AuthenticationMethod method,

in string
inout Security::Opaque
inout Security::Opaque
inout boolean
inout Security::Opaque
inout Security::UtcT

)

void query_Auth_mech (

mech_name,
parameters,
remote_parameters,
Standard_mechanism,
interface_details,
expiry_time

inout sequence<Security::AuthenticationMethod> method,

inout sequence<string>

inout sequence<Security::Opaque>
inout sequence<Security::Opaque>
inout sequence<boolean>

inout sequence<Security::Opaque>
inout sequence<Security::UtcT>

);

void delete_Auth_mech (
inout Security::AuthenticationMethod

)
};

//Interface DelegationPolicy

mech_name,
parameters,
remote_parameters,
Standard_ntechanism,
interface_details,
expiry_time

method

// The gevset_delegation_mode operations are taken from the original
// Delegation Policy. The query and get/set_control operations are

// newly defined.
interface DelegationPolicy {

readonly attribute Security::PolicyType

302

policy_type;

]

Appendix A: IDL for Comprehensive CORBA Securiry

void set_delegation_made (

in long policy_id,
in Security::InterfaceDefInfo object_type,
in Security::DelegationMode mode

);

Security::DelegationMode get_delegation_mode (
in long policy_id,
in Security::InterfaceDeflnfo object_type,
out Security::DelegationMode mode

)

void query_delegation_mode (
inout sequence<long> policy_id,
inout sequence<Security::InterfaceDeflnfo> object_type,
inout sequence<Security::DelegationMode> mode.

);

void update_delegation_mode (

in long policy_id,
inout Security::InterfaceDefInfo object_type,
inout Security::DelegationMode mode

)

/Iset_controls is used to specify restrictions on where and when
/fattributes/credentials can be delegated/used. object_type specifies
/Ithe object delegating. force_commit, if true, means that the
/Irestrictions should be applied immediately. required_attributes
/hidentifies the attributes the intermediate/target object should
/Mhave so that this client can use a delegation_mode before the
/fspecified expiry_time. privileges_delegated lists the
/fprivileges that can be delegated (in a composite only some
//might be delegated), while no_of_invocations specifies the
/fmaximum number of delegations allowed. The out parameters
/Ispecify error messages if the method fails.

boolean set_controls (

in long policy_id,

in Security::InterfaceDefInfo ohject_type,

in boolean force_commit,

in Security::AttributeList required_attributes,
in Security::DelegationMode delegation_mode,

in Security::UtcT expiry_time,

in Security::AttributeList privileges_delegated,
in long no_of_invocations

);

303

Appendix A: IDL for Comprehensive CORBA Securiry

/lget_controls will return the restriction controls for the
/finitiating object "object_type" or for a target object with the
/specified required_attributes.

boolean get_controls (

in long policy_id,

in Security::InterfaceDefInfo object_type,

in Security::AttributeList required_attributes,
out boolean force_commiit,

out Security::DelegationMode delegation_mode,
out Security::UtcT expiry_time,

out Security::AttributeList privileges_delegated,
out long no_of_invocations

);

boolean query_controls (
inout sequence<long> policy_id,
inout sequence<Security::InterfaceDefInfo> object_type,
inout sequence<Security::AttributeList> required_attributes,

inout sequence<boolean> force_commit,
inout sequence<Security::DelegationMode> delegation_mode,
inout sequence<Security::UtcT> expiry_time,
inout sequence<Security::AttributeList> privileges_delegated,
inout sequence<long> no_of_invocations

)

boolean update_controls (
in long policy_id,
inout Security::InterfaceDefInfo object_type,
inout Security::AttributeList required_attributes,
inout boolean force_commit,
inout Security::DelegationMode delegation_mode,
inout Security::UtcT expiry_time,
inout Security::AttributeList privileges_delegated,
inout long no_of_invocations

)

boolean remove_controls (
in long policy_id,
inout Security::InterfaceDeflnfo object_type,

);

{/ The operations used in ACCESSPOLICY below are taken from the

/1 original AccessPolicy and DomainAccessPolicy. The operation names
// have been preserved for compatability i.e. they are not using the

// usual get/set/query names.

304

Appendix A: IDL for Comprehensive CORBA Security

/Mnterface AccessPolicy
interface AccessPolicy |

readonly attribute Security::PolicyType

Security::'RightsList get_effective_rights(
in securitylevel2::CredentialsList

in Security::ExtensibleFamily

)

void grant_rights (
in Security::AccessMethod
in Security::Attribute
in Security::DelegationState
in Security::ExtensibleFamily
in Security::RightsList

);

void revoke_rights (
in Security::AccessMethod
in Security::Attribute
in Security::DelegationState
in Security::ExtensibleFamily
in Security::RightsList

)

void replace_rights (
in Security::AccessMethod
in Security::Attribute
in Security::DelegationState
in Security::ExtensibleFamily
in Security::RightsList

)s

Security::RightsList get_rights (
in Security::AccessMethod
in Security::Attribute
in Security::DelegationState
in Security::ExtensibleFamily

)s

void query_rights (

policy_type;

cred_list,
rights_family

method,
priv_attr,
del_state,
rights_family,
rights

method,
priv_attr,
del_state,
rights_family,
rights

method,
priv_attr,
del_state,
rights_family,
rights

method,
priv_attr,
del_state,
rights_family

inout sequence<Security::AccessMethod> method,

inout sequence<Security::Attribute>

priv_attr,

inout sequence<Security::DelegationState> del_state,
inout sequence<Security::ExtensibleFamily> rights_family,

inout sequence<Security::RightsList>

);

305

rights

Appendix A: IDL for Comprehensive CORBA Securiry

|

/nterface AccessMechanism
interface AccessMechanism {

readonly attribute Security::PolicyType

void set_Access_mech (
in Security::AccessMethod
in string
in Security::Opaque
in Security::Opaque
in boolean
in Security::Opaque
in Security::UtcT
);

void get_Access_mech (
in Security::AccessMethod
in string
inout Security::Opaque
inout Security::Opaque
inout boolean
inout Security::Opaque
inout Security::UtcT

);

void query_Access_mech(
inout sequence<Security::AccessMethod>
inout sequence<string>
inout sequence<Security::Opaque>
inout sequence<Security::Opaque>
inout sequence<boolean>
inout sequence<Security::Opaque>
inout sequence<Security::UtcT>

);

void delete_Access_mech(
in Security::AccessMethod
);

|5

//nterface AuditPolicy
interface AuditPolicy {

readonly attribute Security::PolicyType

306

policy_type;

method,

mech_name,
parameters,
remote_parameters,
Standard_mechanism,
interface_details,
expiry_time

method,

mech_name,
parameters,
remote_parameters,
Standard_mechanism,
interface_details,
expiry_time

method,

mech_name,
parameters,
remote_parameters,
Standard_mechanism,
interface_details,
expiry_time

method

policy_type;

Appendix A: IDL for Comprehensive CORBA Securiry

void set_audit_selectors (

)

in leng

in unsigned long

in Security::UtcT

in Security::TimeT

in boolean

in Security::Opaque

in InterfaceDef

in Security::AuditEventTypeList
in Security::SelectorValueList
in Object

in Object

in Security::authorityDescriptor

void clear_audit_selectors (

);

in long

in unsigned long

in Security::UtcT

in Security::TimeT

in boolean

in Security::Opaque

in InterfaceDef

in Security:: AuditEvent TypeL.ist

void replace_audit_selectors (

)

in InterfaceDef

in Security::AuditEventTypeList
in Security::SelectorValueList
in Object

in Object

in Security::authorityDescriptor

policy_id,
policy_version,
expiry_time,
effective_time,
revoked,
revocation_details,
object_type,
events,

selectors,
audit_analyser,
audit_responder,
accepted_authonties

policy_id,
policy_version,
expiry_time,
effective_time,
revoked,
revocation_details,
object_type,
events,

abject_type,
events,

- selectors,
audit_analyser,
audit_responder,
accepted_authorities

Security::SelectorValueList get_audit_selectors (

inout long

inout unsigned long
nout Security::UtcT
inout Security:: TimeT
inout boolean

inout Security::Opaque
inout InterfaceDef

inout Security:: AuditEventTypeList

out Security::SelectorValueList
out Object
out Object

307

policy_id,
policy_version,
expiry_time,
effective_time,
revoked,
revocation_details,
object_type,
events,
selectors,
audit_analyser,
audit_responder,

)

Appendix A: IDL for Comprehensive CORBA Securiry .

out Security::authorityDescriptor

boolean set_audit_channel (

);
|5

in SecurityLevel2::AuditChannel
in Object

/Mnterface AuditMechanism
interface AuditMechanism {

readonly attribute Security::PolicyType

/fAudit_mechanism operations
void set_audit_mech (

);

in Security::MechanismType
in string

in Security::Opagque

in Security::Opaque

in boolean

in Security::Opaque

in Security::UtcT

void get_audit_mech (

);

in Security::MechanismType
in string

inout Security::Opaque
inout Security::Opaque
inout boolean

inout Security::Opaque
inout Security::UtcT

void query_audit_mech(‘
inout sequence<Security::MechanismType> method,

)

inout sequence<string>

inout sequence<Security::Opaque>
inout sequence<Security::Opaque>
inout sequence<boolean>

inout sequence<Security::Opaque>
inout sequence<Security::UtcT>

void delete_audit_mech(

inout Security::MechanismType

308

accepted_authorities

audit_channel,
response_event

policy_type;

method,
mechanism_type,
parameters,
remote_parameters,
Standard_mechanism,
interface_details,
expiry_time

method,
mechanism_type,
parameters,
remote_parameters,
Standard_mechanism,
interface_details,
expiry_time

mechanism_type,
parameters,
remote_parameters,
Standard_mechanism,
interface_details,
expiry_time

method

Appendix A: IDL for Comprehensive CORBA Security

)

void set_audit_authority (

in Security::authorityDescriptor authority,

in Security::Opaque parameters,

in boolean ' Standard_mechanism,
in Security::Opaque interface_details

)

void get_audit_authority (

in Security::authorityDescriptor authority,

inout Security::Opaque parameters,

inout boolean Standard_mechanism,
inout Security::Opaque interface_details

);

void query_audit_authority(
inout sequence<Security::authorityDescriptor> authority,

inout sequence<Security::Opaque> parameters,
inout sequence<boolean> Standard_mechanism,
inout sequence<Security::Opaque> interface_details
)
void remove_audit_authority(
inout Security::authorityDescriptor authority

)
|5

/Mnterface NRPolicy
interface NRPolicy {

readonly attribute Security::PolicyType policy_type;
void set_NR_policy_info (
in Security::ExtensibleFamily NR_policy_id,
in unsigned tong policy_version,
in Security::InterfaceDefInfo object_type,
in Security::TimeT policy_effective_time,
in Security::TimeT , policy_expiry_time,
in boolean revoked,
in Security::Opaque revocation_details,

in Security::evidenceDescriptorList supported_evidence_types,
in Security::mechanismDescriptorList supported_mechanisms,
in Security::authorityDescriptorList accepted_authorities

)s

void get_NR_policy_info (
out Security::ExtensibleFamily NR_policy_id,

309

Appendix A: IDL for Comprehensive CORBA Security

out unsigned long policy_version,

out Security::InterfaceDefInfo object_type,

out Security::TimeT policy_effective_time,
out Security::TimeT policy_expiry_time,
out boolean revoked,

out Security::Opaque revocation_details,

out Security::evidenceDescriptorList supported_evidence_types,
out Security::mechanismDescriptorList supported_mechanisms,
out Security::authorityDescriptorList accepted_authorities

void query_NR_policy_info (

);

inout sequence<Security::ExtensibleFamily> NR_policy_id,

inout sequence<unsigned long> policy_version,
inout sequence<Security::InterfaceDefInfo> object_type,
inout sequence<Security::TimeT> policy_effective_time,
inout sequence<Security::TimeT> policy_expiry_time,
inout sequence<boolean> revoked,

inout sequence<Security::Opaque> revocation_details,

inout sequence<Security::evidenceDescriptorList>
supported_evidence_types,
inout sequence<Security::mechanismDescriptorList>
supported_mechanisms,
inout sequence<Security::authorityDescriptorList>
: accepted_authorities

void update_NR_policy_info (

);

in Security::ExtensibleFamily NR_policy_id,

inout unsigned long policy_version,

inout Security::InterfaceDefInfo object_type,

inout Security::TimeT policy_effective_time,
inout Security::TimeT policy_expiry_time,
inout boolean revoked,

inout Security::Opaque revocation_details,

inout Security::evidenceDescriptorList

supported_evidence_types,
inout Security::mechanismDescriptorList supported_mechanisms,
inout Security::authorityDescriptorList accepted_authorities

void delete_NR_policy_info (

);

in Security::ExtensibleFamily NR_policy_id,
in unsigned long policy_version

310

Appendix A: IDL for Comprehensive CORBA Securiry

//nterface NRMechanism
interface NRMechanism {

readonly attribute Security::PolicyType

//NR_mechanism operations
void set_NR_mech (

)

in Security::NRmech
in string

in Security::Opaque
in Security::Opaque
in boolean

in Security::Opaque
in Security::UtcT

void get_NR_mech (

);

in Security::NRmech
inout string

inout Security::Opaque
inout Security::Opaque
inout boolean

inout Security::Opaque
inout Security::UtcT

void query_NR_mech(

);

inout sequence<Security::NRmech>
inout sequence<string>

inout sequence<Security::Opaque>
inout sequence<Security::Opaque>
inout sequence<boolean>

inout sequence<Security::Opaque>
inout sequence<Security::UtcT>

void delete_NR_mech(

);

inout Security::NRmech

// Authority operations
// authorityDescriptor holds Name, Role and
// Last__revocation_check_offset

void set_NR_authority (

in Security::authorityDescriptor

policy_type;

method,
mechanism_type,
parameters,
remote_parameters,
Standard_mechanism,
interface_details,
expiry_time

method,
mechanism_type,
parameters,
remote_parameters,
Standard_mechanism,
interface_details,
expiry_time

method,
mechanism_type,
parameters,
remote_parameters,
Standard_mechanism,
interface_details,
expiry_time

method

authority,

in Security::Opaque
in boolean

parameters,
Standard_mechanism,

k1B

Appendix A: IDL for Comprehensive CORBA Securiry

in Security::Opaque
);

void get_NR_authority (
in Security::authorityDescriptor
inout Security::Opaqgue
inout boolean
inout Security::Opaque

);

void query_NR_authority(

inout sequence<Security::authorityDescriptor>
inout sequence<Security::Opaque>

inout sequence<boolean>

inout sequence<Security::Opaque>

);

void delete_NR_authority(
' in Security::authorityDescriptor

)

/! Evidence operations
void set_NR_evidence (
in string
in Security::EvidenceType
in Security::duration_in_minutes
in boolean
in Security::UtcT
in Security::Opaque
in boolean
in Security::Opaque

);

void get_NR_evidence (
in string
inout Security::EvidenceType

interface_details

authority,
parameters,
Standard_mechanism,
interface_details

authority,
parameters,
Standard_mechanism,
interface_details

authority

evidence_name,
evidence_type,
evidence_validity_duration,
must_use_trusted_time,
date_on_system,
parameters,
Standard_mechanism,
interface_details

evidence_name,
evidence_type,

inout Security::duration_in_minutes evidence_validity_duration,

inout bootean

inout Security::UtcT
inout Security::Opaque
inout boolean

inout Security::Opaque

);

void query_NR_evidence(
inout sequence<string>

must_use_trusted_time,
date_on_system,
parameters,
Standard_mechanism,
interface_details

evidence_name,

inout sequence<Security::EvidenceType> evidence_type,
inout sequence<Security::duration_in_minutes>

312

Appendix A: IDL for Comprehensive CORBA Security

evidence_validity_duration,

inout sequence<boolean>

inout sequence<Security::UtcT>
inout sequence<Security::Opaque>
inout sequence<boolean>

inout sequence<Security::Opaque>

);

void delete_NR_evidence(
in string
in Security::EvidenceType
)
IH

/! Interface SecurelnvocationPolicy
interface SecurelnvocationPolicy {

readonly attribute Security::PolicyType

void set_interop_policy (
in long
in Security::InteropPolicyType
in Security::InterfaceDefInfo
in Security::Opaque
/i Authentication segment
in Security::MechRequiresSupports
in Security::AuthPolicyRequiresSupports
/fAuthenticationType
in long '
/f Access segment
in Security::MechRequiresSupports
in Security::SecurelnvocationFamily

must_use_trusted_time,
date_on_system,
parameters,
Standard_mechanism,
interface_details

evidence_name,
evidence_type

policy_type;

interop_policy_id,
interop_policy_type,
object_type,
domain_id,

auth_mech,
auth_policy_config,

auth_mapping,

access_mech,

access_Type_policy_config,

//Type=Rights(get,set,manage;etc), Capability,...
in Security::SecurelnvocationFamily

access_Attribute_policy_config,

//Role, Public,...
in long . access_Type_mapping,
in long access_Attribute_mapping,

//Delegation segment

in Security::DelegationPolicyRequiresSupports
delegation_policy_config,
in long delegation_mode_mapping,

/1 QoP segment
in Security::MechRequiresSupports

gop_mech,

in Security::QOPPolicyRequiresSupports qop_policy_config,

inlong
in long

313

qop_type_mapping,

msg_part_mapping,

// NR segment |
in Security::MechRequiresSupports

in Security::NRPolicyRequiresSupports

inlong

/1 Audit segment
in Security::MechRequiresSupports

in long
in long

Appendix A: IDL for Comprehensive CORBA Security

nr_mech,
nr_policy_config,
nr_evidence_mapping,

audit_mech,

in Security::AuditPolicyRequiresSupports audit_policy_config,

audit_event_mapping,
audit_selector_mapping,

// The date the mapping is set is automatically set by the ORB.
/! Tt takes the current date.

)s

in Security::a

uthorityDescriptor

in Security::UteT

void get_interop_policy (

in long

out Security::
out Security::
out Security::
out Security::

out Security::AuthPolicyRequiresSupports

auth_policy_config,

)

out long
out Security::
out Security::

out Security::

out long
out long
out Security::

out long
out Security::
out Security:
out long

out tong

out Security:
out Security:
out long

out Security::
out Security::
out long

out long

out Security::
out Security:

InteropPolicyType
InterfaceDefInfo
Opaque
MechRequiresSupports

MechRequiresSupports

SecurelnvocationFamily

authority,
expiry_time

interop_policy_id,
interop_policy_type,
object_type,
domain_id,
auth_mech,

auth_mapping,
access_mech,

access_Type_policy_config,

SecurelnvocationFamily

access_Attribute_policy_config,
access_Type_mapping,
access_Attribute_mapping,
DelegationPolicyRequiresSupports
delegation_policy_config,
delegation_mode_mapping,

MechRequiresSupports

:MechRequiresSupports
:NRPolicyRequiresSupports

MechRequiresSupports

qop_mech,

:QOPPolicyRequiresSupports qop_policy_config,

qop_type_mapping,
msg_part_mapping,
nr_mech,
nr_policy_config,
nr_evidence_mapping,
audit_mech,

AuditPolicyRequiresSupports audit_policy_config,

authorityDescriptor

UteT

314

audit_event_mapping,
audit_selector_mapping,
authority,

expiry_time

);

Appendix A: IDL for Comprehensive CORBA Securiry

void query_interop_policy (

inout sequence<long>

inout sequence<Security::
inout sequence<Security:
inout sequence<Security::
inout sequence<Security::
inout sequence<Security:

inout sequence<long>

inout sequence<Security:
inout sequence<Security::

inout sequence<Security:

inout sequence<long>
inout sequence<long>

inout sequence<Security::

inout sequence<long>

inout sequence<Security::
inout sequence<Security:

inout sequence<long>
inout sequence<long>

inout sequence<Security:
inout sequence<Security:

inout sequence<long>

inout sequence<Security:

inout sequence<Security::

inout sequence<long>
inout sequence<long>

inout sequence<Security::
inout sequence<Security:

void update_interop_policy (

in long

inout Security::InteropPolicyType
inout Security::InterfaceDeflnfo

inout Security::Opaque

inout Security::MechRequiresSupports

UteT>

Interop_policy_id,
InteropPolicyType> interop_policy_type,

:InterfaceDefInfo> object_type,

Opaque> domain_id,
MechRequiresSupports> auth_mech,

:AuthPolicyRequiresSupports>

auth_policy_config,
auth_mapping,

:MechRequiresSupports>

access_mech,
SecurelnvocationFamily>
access_Type_policy_config,

:SecurelnvocationFamily>

access_Attribute_policy_config,
access_Type_mapping,
access_Attribute_mapping,
DelegationPolicyRequiresSupports>
delegation_policy_config,
delegation_mode_mapping,
MechRequiresSupports> qop_mech,

:QOPPolicyRequiresSupports>

gop_policy_config,
qop_type_mapping,
msg_part_mapping,

:MechRequiresSupports> nr_mech,
:NRPolicyRequiresSupports>

nr_policy_config,
nr_evidence_mapping,

:MechRequiresSupports>

audit_mech,
AuditPolicyRequiresSupports>

audit_policy_config,

audit_event_mapping,

audit_selector_mapping,
authorityDescriptor> authority,
expiry_time

interop_policy_id,
interop_policy_type,
object_type,
domain_id,
auth_mech,

inout Security::AuthPolicyRequiresSupports auth_policy_config,

inout long

auth_mapping,

315

);

inout Security:
inout Security:

inout Security:

inout long
inout long

inout Security::

inout long

inout Security:
inout Security:

:MechRequiresSupports
:SecurelnvocationFamily

:MechRequiresSupports
:QOPPolicyRequiresSupports qop_policy_config,

Appendix A: IDL for Comprehensive CORBA Securiry

access_mech,

access_Type_policy_config,

:SecurelnvocationFamily

access_Attribute_policy_config,

access_Type_mapping

access_Alttribute_mapping,
DelegationPolicyRequiresSupports

delegation_policy_config,

delegation_mode_mapping,
qop_mech,

inout long qop_type_mapping,
inout long msg_part_mapping,
inout Security::MechRequiresSupports nr_mech,

inout Security::NRPolicyRequiresSupports nr_policy_config,
inout long nr_evidence_mapping,
inout Security::AuditPolicyRequiresSupports audit_policy_config,
inout long audit_event_mapping,
inout long audit_selector_mapping,
inout Security::authorityDescriptor authority,

inout Security::UtcT expiry_time

void delete_interop_policy (

b

in long

inout Security:
inout Security:

:InteropPolicyType
:InterfaceDeflnfo

interop_policy_id,

interop_policy_type,
object_type,

inout Security::Opaque

interface MappingLookup {

void query (

);
|8

in Security::ServiceType
in Security::Constraint

in Security::Preference

in unsigned long

out Security::MappingSeq
out Mappinglterator

interface DomainMapping {
Security::Mappingld add (

316

domain_id,

type,
constr,
pref,
how_many,
maps,
map_itr

b

Appendix A: IDL for Comprehensive CORBA Security

in Security::ServiceType
in string

in unsigned short

in unsigned short

in sequence<octet>

in sequence<octet>

in unsigned short

in unsigned short

in sequence<unsigned >
in sequence<octet>

serviceType,
policyClassification,
family_definerl,
family_id1,
attribute_typel,
defining_authorityl,
family_definer2,
family_id2,
attribute_type2,
defining_authority2,

in sequence<Security::domain_values> mapped_values,

in Security::Opaque

in Security::Opaque

out Security::UtcT
)

void withdraw (
in Security::Mappingld
);

Security::MappingSeq describe (
in Security::Mappingld
)

void modify (
in Security::Mappingld
in Security::MappingldSeq
in Security::MappingSeq

)

void list(
in unsigned long
out Security::MappingSeq
out Mappinglterator

);

interface Mappinglterator {

unsigned long max_left ();

boolean next_n (

in unsigned long

out Security::MappingSeq
)

317

remoteDomainld,
remoteDomainAuthority,
timeStamp

id

id

id,
del_list,
modify_list

how_many,
ids,
id_itr

maps

Appendix A: IDL for Comprehensive CORBA Security

void destroy ();
8
/l END OF SECURITYADMIN MODULE
B

/[Feopkokkkp ok kkkkkk bk kckkkkckkckkkkkkkkkkeokk kb ke kfkk bk bk kg

n* Module: SECIOP *

n* Function: Secure Inter-ORB protocol *
l'l ERREEE R R KRR RER R KRR AR REE Rk R Rk kR kR Rk Rk &

module SECIOP {

typedef sequence <octet> Opaque;

const [OP::ComponentID TAG_GENERIC_SEC_MECH = 12;
const [OP::ComponentlD TAG_ASSOCIATION_OPTIONS = 13;
const IOP::ComponentlD TAG_SEC_NAME = 14;

const' 10P::ComponentID TAG_ACCESS_CONTkOL =15;
const IOP::ComponentlD TAG_AUDIT = 16;

const 10P::ComponentID TAG_NON_REPUDIATION=17;

const IOP::ComponentlD TAG_SSL_SEC_TRANS=18;

struct AssociationOptions{

Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
Security::MsgPartList msg_part_supported;
Security::MsgPartList msg_part_required;
sequence <Tagged Component> integ_mechs_supported;
-sequence <TaggedComponent> integ_mechs_required;
sequence <Tagged Component> conf_mechs_supported;
sequence <Tagged Component> conf_mechs_required;

struct GenericMechanisminfo {
sequence <octet> security_mechanism_type;
sequence <octet> mech_specific_data;

318

Appendix A: IDL for Comprehensive CORBA Security

sequence < IOP::TaggedComponent> components,

struct AccessControl {
sequence< Security::SecurelnvocationFamily> Operation_supports;

Security::SecurelnvocationFamily Operation_requires;
sequence< Security::SecurelnvocationFamily> Attribute_supports;
Security::SecurelnvocationFamily Attribute_requires;
sequence < Security::DelegationMode> Delegation_supports;
Security::DelegationMode Delegation_requires;
sequence <TaggedComponent> access_mechs_supported;
_ sequence <Tagged Component> access_mechs_required;

|5

struct Audit {
Security::AuditPolicyRequiresSupports Audit_policy;
sequence <TaggedComponent> Audit_mechs_supported;
sequence <TaggedComponent> Audit_mechs_required;

5

struct NonRepudiation {
Security::NRPolicyRequiresSupports NR_policy;

sequence <TaggedComponent> NR_mechs_supported;
sequence <TaggedComponent> NR_mechs_required;

b

struct SSL{
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
unsigned short port;

// prefix with MT (as in Serv_idl.idl) so that it does not conflict with the struct names
enum MsgType {

MTEstablishContext,

MTCompleteEstablishContext,

MTContinueEstablishContext,

MTDiscardContext,

MTMessageError,

MTMessagelnContext

);
struct ulonglong {

unsigned long low;
unsigned long high;

319

Appendix A: IDL for Comprehensive CORBA Security

b
typedef ulonglong Contextld;

enum ContextldDefn {
Client,
Peer,
Sender

|B

struct EstablishContext {
Contextld client_context_id;
sequence <octet> initial_context_token;

b

struct CompleteEstablishContext {

Contextld clieni_context_id;
boolean target_context_id_valid,
Contextld tartet_context_id;
sequence <octet> final_context_token;

b

struct ContinueEstablishContext {
Contextld client_context_id;
sequence <octer> continuation_context_token;

|H

struct DiscardContext {
ContextldDefn message_context_id_defn;
Contextld message_context_id;

|

struct MessageError {

ContextldDefn message_context_id_defn;
Contextld message_context_id;

long major_status;

long minor_status;

L

struct MessageInContext {

ContextldDefn message_context_id_defn;
Contextld message_context_id;
Sequence<octet> ' message_protection_token;
B
/{ END OF SECIOP MODULE

b

320

Appendix B: IDL for Security-Aware Trader Service

Appendix B - IDL for Security-Aware Trader Service

This appendix will present the [DL for the Security-Aware Trader Service.

Module Structure
The modules used in the IDL are now:

¢ CosTrading : Security-Aware Trading Module
e CosTradingDynamic: Trading Dynamic Property Module

o CosTradingRepos: Trading Service Type Repository Module

The module structure has been preserved. The CORBA 2.0 object interfaces are still
used, but some of the parameter lists are extended and a new security policy interface

has been added.

Object Interfaces
Comments through out the IDL code will explain the modifications to and addition of

new object interfaces. The new IDL code will be highlighted in bold.

321

Appendix B: IDL for Security-Aware Trader Service

IDL

#include <orb.idl>

// IDL for Security-Aware Trading Function Module
module CosTrading {

// forward references to our interfaces

interface Lookup;
interface Register;
interface Link;

interface Proxy;
interface Admin;
interface Offerlterator;
interface OfferldIterator;

// type definitions used in more than one interface

typedef string Istring;
typedef Object TypeRepository,

typedef Istring PropertyName;
typedef sequence<PropertyName> PropertyNameSeq;
typedef any PropertyValue;

struct Property {
PropertyName name;
PropertyValue value;

b
typedef sequence<Property> PropertySeq;
struct Offer |{
Object reference;
PropertySeq properties;
b
typedef sequence<Offer> OfferSeq;

typedef string Offerld;
typedef sequence<Offerld> OfferldSeq;

typedef Istring ServiceTypeName;
typedef Istring Constraint;

enum FollowOption {
local_only,

322

Appendix B: IDL for Securiry-Aware Trader Service

if_no_local,
always

|5

typedef Istring LinkName;
typedef sequence<LinkName> LinkNameSeq;
typedef LinkNameSeq TraderName;

typedef string PolicyName;
typedef sequence<PolicyName> PolicyNameSeq;
typedef any PolicyValue;

struct Policy {
PolicyName name;
. PolicyValue value;
b
typedef sequence<Policy> PolicySeq;

/1 exceptions used in more than one interface

exception lllegalTraderAccess {}; // Security-Aware Trader exception
exception lIlegalServiceO;TerAccess{ }s//Security-AwareTraderexception
exception UnknownMaxLeft { };

exception Notimplemented { };

exception lllegalServiceType {
ServiceTypeName type;
b

exception UnknownServiceType {
ServiceTypeName type,
b

exception IllegalPropertyName {
PropertyName name;

b

exception DuplicatePropertyName {
PropertyName name;

b

exception PropertyTypeMismaich {
ServiceTypeName type;
Property prop;

323

Appendix B: IDL for Security-Aware Trader Service

exception MissingMandatoryProperty {
ServiceTypeName type;
PropertyName name;

};

exception ReadonlyDynamicProperty {
ServiceTypeName type;
PropertyName name;

K

exception IllegalConstraint {
Constraint constr;

)i

exception InvalidLookupRef {
Lookup target,
b

exception lllegalOfferld {
Offerld id;

B

exception UnknownOfferld {
Offerld id;

B

exception DuplicatePolicyName {
PolicyName name;

b
/I the interfaces
interface TraderComponents {

readonly attribute Lookup lookup_if;
readonly attribute Register register_if;,
readonly attribute Link link_if;
readonly attribute Proxy proxy_if;
readonly attribute Admin admin_if;

b

/I Security-Aware Trader Attributes

interface SecurityAttributes {
readonly attribute boolean Security_Aware;
readonly attribute boolean access_control_trader;
readonly attribute boolean access_control_service_offers;
readonly attribute boolean encrypt_stores;

324

Appendix B: IDL for Security-Aware Trader Service

readonly attribute boolean encrypt_comms;
readonly attribute boolean integrity_check_stores;
readonly attribute boolean integrity_check_comms;
readonly attribute boolean nr_trade;

readonly attribute boolean audit_trade;

|H

interface SupportAttributes {
readonly attribute boolean supports_modifiable_properties;
readonly attribute boolean supports_dynamic_properties;
readonly attribute boolean supports_proxy_offers;
readonly attribute TypeRepository type_repos;

)

interface ImportAttributes {
readonly attribute unsigned long def_search_card;
readonly attribute unsigned long max_search_card;
readonly attribute unsigned long def_match_card;
readonly attribute unsigned long max_match_card;
readonly attribute unsigned long def_retum_card,
readonly attribute unsigned long max_return_card,
readonly attribute unsigned long max_list;
readonly attribute unsigned long def_hop_count;
readonly attribute unsigned long max_hop_count;
readonly attribute FollowOption def_follow_policy;
readonly attribute FollowOption max_follow_policy;

B

interface LinkAttributes {
readonly attribute FollowOption max_link_follow_policy;

b

interface Lookup: TraderComponents, SecurityAttributes, SupportAttributes{
typedef Istring Preference;
enum HowManyProps { none, some, all };

union SpecifiedProps switch (HowManyProps) {
case some: PropertyNameSeq prop_names;

b

exception [llegalPreference {
Preference pref;

h

exception lllegalPolicyName {

325

Appendix B: IDL for Security-Aware Trader Service

PolicyName name;

b

exception PolicyTypeMismatch {
Policy the_policy;
b

exception InvalidPolicyValue {
Policy the_policy;
¥

void query (
in ServiceTypeName type,
in Constraint constr,
in Preference pref,
in PolicySeq policies,
in SpecifiedProps desired_props,
in unsigned long how_many,
out OfferSeq offers,
out Offerlterater offer_itr,
out PolicyNameSeq limits_applied

) raises (
IllegalTraderAccess,//Security-Aware Trader exception
IllegalServiceOfferAccess,//Security-Aware Trader except.
IllegalServiceType,
UnknownServiceType,
IllegalConstraint,
IllegalPreference,
IllegalPolicyName,
PolicyTypeMismatch,
InvalidPolicyValue,
IllegalPropertyName,
DuplicatePropertyName,
DuplicatePolicyName

);

IR

interface Register : TraderComponents,SecurityAttributes,
SupportAttributes {

struct OfferInfo |
Object reference;
ServiceTypeName type;
PropertySeq properties;
b

exception InvalidObjectRef {
Object ref;

326

Appendix B: IDL for Security-Aware Trader Service

B

exception UnknownPropertyName {
PropertyName name;

b

exception InterfaceTypeMismatch {
ServiceTypeName type;
Object reference;

|

exception ProxyOfferld {
Offerld id;

b

exception MandatoryProperty {
ServiceTypeName type;
PropertyName name;

B

exception ReadonlyProperty {
ServiceTypeName type;
PropertyName name;

B

exception NoMatchingOffers {
Constraint constr;

b

exception I[llegalTraderName {
TraderName name;

B

exception UnknownTraderName {
TraderName name;

};

exception RegisterNotSupported {
TraderName name;

|

Offerld export (
in Object reference,
in ServiceTypeName type,
in PropertySeq properties
} raises (
IllegalTraderAccess, // Security-Aware Trader exception
IllegalServiceOfferAccess,//Security-Aware Trader except.

-327]

Appendix B: IDL for Security-Aware Trader Service

InvalidObjectRef,
HlegalServiceType,
UnknownServiceType,
InterfaceTypeMismatch,
HllegalPropertyName,
Property TypeMismatch,
ReadonlyDynamicProperty,
MissingMandatoryProperty,
DuplicatePropertyName

)

void withdraw (
in Offerld id

) raises
lllegalTraderAccess, // Security-Aware Trader exception
lllegalServiceOfferAccess, // Security-Aware Trader except
IllegalOfferld, -

UnknownOfferld,
ProxyOfferld
);
OfferInfo describe (
in Offerld id
) raises (
NlegalTraderAccess, // Security-Aware Trader exception
lllegalServiceOfferAccess, // Security-Aware Trader except
lllegalOfferld,
UnknownOfferld,
ProxyOfferld
)
void modify (

in Offerld id,
in PropertyNameSeq del_list,
in PropertySeq modify_list
) raises (
Notlmplemented,
IllegalTraderAccess, // Security-Aware Trader exception
IllegalServiceOfferAccess, // Security-Aware Trader except
llegalOfferld,
UnknownOfferld,
ProxyOfferld,
lllegalPropertyName,
UnknownPropertyName,
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MandatoryProperty,
ReadonlyPreperty,

328

);

Appendix B: IDL for Security-Aware Trader Service

DuplicatePropertyName

void withdraw_using_constraint (

in ServiceTypeName type,
in Constraint constr

) raises (

)

IMegalTraderAccess, // Security-Aware Trader exception
IlegalServiceOfferAccess, // Security-Aware Trader except
lllegalServiceType,

UnknownServiceType,

IllegalConstraint,

NoMatchingOffers

Register resolve (

in TraderName name

) raises (

B

IllegalTraderName,

UnknownTraderName,

RegisterNotSupported,

HlegalTraderAccess, // Security-Aware Trader exception
IllegalServiceOfferAccess // Security-Aware Trader except
RegisterNotSupported

interface Link : TraderComponents, SupportAttributes,

SecurityAttributes, LinkAttributes {

struct LinkInfo {

b

Lookup target,

Register target_reg;

FollowOption def_pass_on_follow_rule;
FollowOption limiting_follow_rule;
OctetSeq Link_security;

exception IllegalLinkName {

)

LinkName name;

exception UnknownLinkName {

|5

LinkName name;

exception DuplicateLinkName {

LinkName name;

329

Appendix B: IDL for Security-Aware Trader Service

b

exception DefaultFollowTooPermissive {
FollowOption def_pass_on_follow_rule;
FollowOption limiting_follow_rule;

b

exception LimitingFollowTooPermissive { .
FollowOption limiting_follow_rule;
FollowOption max_link_follow_policy;

b

void add_link (
in LinkName name,
in Lookup target, -
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule
) raises (
HlegalLinkName,
DuplicateLinkName,
InvalidLookupRef, // e.g. nil
DefaultFollowTooPermissive,
LimitingFollowTooPermissive

);

void remove_link (
in LinkName name
) raises (
IllegalLinkName,
UnknownLinkName

);

LinkInfo describe_link (
in LinkName name
) raises (
[HegalLinkName,
UnknownLinkName

);
LinkNameSeq list_links ();

void modify_link (
in LinkName name,
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule
) raises (
lilegalLinkName,
UnknownLinkName,

330

Appendix B: IDL for Securiry-Aware Trader Service

DefaultFollowTooPermissive,
LimitingFollowTooPermissive

interface Proxy : TraderComponents, SecurityAttributes,
SupportAttributes {

typedef Istring ConstraintRecipe;

struct ProxylInfo {
ServiceTypeName type;
Lookup target;
PropertySeq properties;
bootean if_match_all;
ConstraintRecipe recipe;
PolicySeq policies_to_pass_on;

};

exception lllegalRecipe _
ConstraintRecipe recipe;

1

exception NotProxyOfferld {
Offerld id;

).

Offerld export_proxy (
in Lookup target,
in ServiceTypeName type,
in PropertySeq properties,
in boolean if_match_all,
in ConstraintRecipe recipe,
in PolicySeq policies_to_pass_on
) raises (
IllegalServiceType,
UnknownServiceType,
InvalidLookupRef, // e.g. nil
lllegalPropertyName,
Property TypeMismatch,
ReadonlyDynamicProperty,
MissingMandatoryProperty,
IllegaiRecipe,
DuplicatePropertyName,
DuplicatePolicyName

331

Appendix B: IDL for Securiry-Aware Trader Service

)

void withdraw_proxy (
in Offerld id

) raises (
lllegal Offerld,
UnknownOfferld,
NotProxyOfferld

)

ProxylInfo describe_proxy (
in Offerld id

) raises (
IllegalOfferld,
UnknownOfferld,
NotProxyOfferld
)

interface Admin : TraderComponents, SupportAttributes,
SecurityAttributes, ImportAttributes, LinkAttributes {

typedef sequence<octet> OcletSeq;

// exceptions used for the Security Attributes
exception SecurityAttributesRequired {};

readonly attribute OctetSeq request_id_stem;

unsigned long set_def_search_card (in unsigned long value),
unsigned long set_max_search_card (in unsigned long value),
unsigned long set_def_match_card (in unsigned long value);
unsigned long set_max_match_card (in unsigned long value);
unsigned long set_def_return_card (in unsigned long value);
unsigned long set_max_return_card (in unsigned long value);
unsigned long set_max_list (in unsigned tong value);

boolean set_supports_modifiable_properties (in boolean value);
boolean set_supports_dynamic_properties (in boolean value);
boolean set_supports_proxy_offers (in boolean value);

unsigned long set_def_hop_count (in unsigned long value},
unsigned long set_max_hop_count (in unsigned long value);
FollowOption set_def_follow_policy (in FollowOption policy);
FollowOption set_max_follow_policy (in FollowOption policy);
FollowOption set_max_link_follow_policy (in FollowOption policy);

332

Appendix B: IDL for Securiry-Aware Trader Service

// Set operations for Security Attributes

B

boolean set_Security_Aware (in boolean value);

boolean set_access_control_trader (in boolean value);
boolean set_access_control_service_offers (in boolean value);
boolean set_encrypt_stores (in boolean value);

boolean set_encrypt_comms (in boolean value);

boolean set_integrity_check_stores (in boolean value);
boolean set_integrity_check_comms (in boolean value);
boolean set_nr_trade (in boolean value);

‘boolean set_audit_trade (in boolean value);

TypeRepository set_type_repos (in TypeRepository repository);
OctetSeq set_request_id_stem (in OctetSeq stemn);

void list_offers (
in unsigned long how_many,
out OfferldSeq ids,
out OfferldlIterator id_itr

) raises (_
Notlmplemented

)

void list_proxies (
in unsigned long how_many,
out OfferldSeq ids,
out OfferldIterator id_itr
) raises (
Notlmplemented

)3

interface Offerlterator |

B

unsigned long max_left (
) raises (

UnknownMaxLeft
)

boolean next_n (
in unsigned long n,
out OfferSeq offers
);

void destroy ();

interface Offerldlterator {

333

Appendix B: IDL for Security-Aware Trader Service

unsigned long max_left (
) raises (

UnknownMaxLeft
)

boolean next_n (
/l inunsigned long n,
/I out OfferldSeq ids

)

void destroy ();
M :

}; /* end module CosTrading */

// IDL for Dynamic Property Module
module CosTradingDynamic {

exception DPEvalFailure {
CosTrading::PropertyName name;
corBA:TypeCode returned_type;
any extra_info;

b
interface DynamicPropEval {

any evalDP (
in CosTrading::PropertyName name,
in CORBA::TypeCode returmed_type,
in any extra_info
) raises (
DPEvalFailure
)
b
struct DynamicProp {
DynamicPropEval eval_if;
corBa:TypeCode returned_type;
any extra_info;
b
}; /* end module CosTradingDynamic */

/f IDL for Service Type Repository Module

module CosTradingRepos {

334

Appendix B. IDL for Security-Aware Trader Service

interface ServiceTypeRepository {

/I local types

typedef sequence<CosTrading::Service TypeName>
ServiceTypeNameSeq;

enum PropertyMode {
PROP_NORMAL, PROP_READONLY,
PROP_MANDATORY, PROP_MANDATORY_READONLY

b

struct PropStruct {
CosTrading::PropertyName name;
CORBA:: TypeCode value_type;
PropertyMode mode;

)

typedef sequence<PropStruct> PropStructSeq;

typedef CosTrading::Istring Identifier;

struct IncarationNumber {
unsigned long high;
unsigned long low;

b

struct TypeStruct {
Identifier if_name;
PropStructSeq props;
ServiceTypeNameSeq super_types;
boolean masked;
IncamationNumber incarnation;

b

enum ListOption { all, since };
union SpecifiedServiceTypes switch (ListOption)

{
b

case since: IncarnationNumber incarnation;

// local exceptions
exception ServiceTypeExists {

CosTrading::ServiceTypeName name;

h -

exception InterfaceTypeMismatch {
CosTrading::ServiceTypeName base_service;
Identifier base_if;
CosTrading::ServiceTypeName derived_service;
Identifier derived_if;

IF

exception HasSubTypes {
CosTrading::ServiceTypeName the_type;

335

Appendix B: 1DL for Security-Aware Trader Service

CosTrading::ServiceTypeName sub_type;

b

exception AlreadyMasked {
CosTrading::ServiceTypeName name;

IR

exception NotMasked {
CosTrading::ServiceTypeName name;

B '

exception ValueTypeRedefinition {
CosTrading::ServiceTypeName type_1;
PropStruct definition_l;
CosTrading::ServiceTypeName type_2;
PropStruct definition_2;

b

exception DuplicateServiceTypeName {
CosTrading::ServiceTypeName name;

}

// auributes
readonly attribute IncarnationNumber incarnation;

// operation signatures

IncarnationNumber add_type (
in CosTrading::ServiceTypeName name,
in Identifier if_name,
in PropStructSeq props,
in ServiceTypeNameSeq super_types

) raises (
CosTrading::IllegalServiceType,
ServiceTypeExists,
InterfaceTypeMismatch,

" CosTrading::lllegalPropertyName,
CosTrading::DuplicatePropertyName,
ValueTypeRedefinition,
CosTrading::UnknownServiceType,
DuplicateServiceTypeName

%

void remove_type (
in CosTrading::ServiceTypeName name
) raises (
CosTrading::1ltegalServiceType,
CosTrading::UnknownServiceType,
HasSubTypes

)

ServiceTypeNameSeq list_types (
in SpecifiedServiceTypes which_types

336

].

|5

Appendix B: IDL for Securiry-Aware Trader Service

%

TypeStruct describe_type (
in CosTrading::ServiceTypeName name
) raises (
CosTrading::IMegalServiceType,
CosTrading::UnknownServiceType
);

TypeStruct fully_describe_type (
in CosTrading::ServiceTypeName name
) raises (
CosTrading::IllegalServiceType,
CosTrading::UnknownServiceType
);

void mask_type (
in CosTrading::ServiceTypeName name
) raises (
CosTrading::1llegalServiceType,
CosTrading::UnknownServiceType,
AlreadyMasked
)i

void unmask_type (
in CosTrading::ServiceTypeName name
) raises (
CosTrading::EHllegalServiceType,
CosTrading::UnknownServiceType,
NotMasked

);

/* end module CosTradingRepos */

337

Appendix C: IDL for Generic Securiry Service API

Appendix C - IDL for Generic Security Service API

This appendix presents the IDL for the GSS-API server. Since GSS-API plays an
integral part in the implementation of the Enhanced Security Service, a GSS-API

server was built using this IDL code. It complies with the GSS-API standard.

IDL

”**#******

I
/I NAME : GSSAPLidl

II

/{ DESCRIPTION: IDL for PhD demo - Operates as a GSS-API server
" providing the required GSS-API operations, implemented

/" using cryptlib functions

"

”***************************#*************************************

// GSSAPLidI

module GSSAPI {

/1 IDL defintion of GSS-API operations.
interface GSSAPI {

// Data types used in this idl file.
typedef unsigned long OM_uint32;
typedef long gss_ctx_id_t;

typedef string gss_cred_id_t;
typedef any gss_name_t;

typedef string internalname;
typedef short obj_id,

typedef short obj_id_seq{10];

typedef long contexthandle;

338

Appendix C: IDL for Generic Security Service AP{

typedef string credentialhandle;
typedef string octetstring;

/Itypedef sequence<octet> octetstring;
/ftypedef unsigned char ostring;
/typedef string Soctetstring;

typedef char byteBuffer[1024];

/I IDL operations

// CREDENTIAL MANAGEMENT CALLS

OM_uint32 GSS_Acquire_cred(

)

in intermalname desired_name,

in short lifetime_req,

in obj_id_seq desired_mechs,

in short cred_usage,

out short major_status,

out short minor_status,

out credentialhandle output_cred_handle,
out obj_id_seq actual_mechs,

out short lifetime_rec

OM_uint32 GSS_Release_cred(

%

in credentialhandle cred_handle,
out short major_status,
out short minor_status

OM_uint32 GSS_Inquire_cred(

%

in credentialhandle cred_handle,
out short major_status,

out short minor_status,

out internalname cred_name,
out short lifetime_rec,

out short cred_usage,

out obj_id_seq mech_set

OM_uint32 GSS_Add_cred(

in credentialhandle input_cred_handle,
in internalname desired_name,

in short initiator_time_req,

in short acceptor_time_req,

in obj_id desired_mech,

inout short cred_usage,

out short major_status,

339

Appendix C: IDL for Generic Security Service APl

out short minor_status,

out credentialhandle output_cred_handle,
out obj_id actual_mechs,

out short initiator_time_rec,

out short acceptor_time_rec,

out obj_id_seq mech_set

)

OM_uint32 GSS_Inquire_cred_by_mech(
in credentialhandle cred_handle,
in obj_id mech_type,
out short major_status,
out short minor_status,
out internalname cred_name,
out short lifetime_rec_initiate,
out short lifetime_rec_accept,
out short cred_usage

// CONTEXT LEVEL CALLS

OM_vuint32 GSS_Init_sec_context(
in gss_cred_id_t claimant_cred_handle,
in short input_context_handle,
in internalname target_name,
inout obj_id_seq mech_type,
in boolean deleg_req_flag,
in boolean mutual_req_flag,
in boolean replay_det_req_flag,
in boolean sequence_req_flag,
in boolean anon_req_flag,
in short lifetime_req,
in octetstring chan_bindings,
in byteBuffer input_token,
in short tincount,
out short major_status,
out short minor_status, .
out contexthandle output_context_handle,
out byteBuffer output_token,
out short tcount,
out boolean deleg_state,
out boolean mutual_state,
out boolean replay_det_state,
out beolean sequence_state,
out boolean anon_state,
out boolean trans_state,
out boolean prot_ready_state,

340

Appendix C: IDL for Generic Security Service API

out boolean conf_avail,
out boolean integ_avail,
out short lifetime_rec

OM_uint32 GSS_Accept_sec_contexi(
in credentialhandle acceptor_cred_handle,
in short input_context_handle,
in octetstring chan_bindings,
in byteBuffer input_token,
in short tincount,
out short major_status,
out short minor_status,
out internalname src_name,
inout obj_id mech_type,
out contexthandle output_context_handle,
out boolean deleg_state,
out boolean mutual_state,
. out boolean replay_det_state,
out boolean sequence_state,
out boolean anon_state,
out boolean trans_state,
out boolean prot_ready_state,
out boolean conf_avail,
out boolean integ_avail,
out short lifetime_rec,
out credentiathandle delgated_cred_handle,
out byteBuffer output_token,
out short Loutcount

OM_uint32 GSS_Delete_sec_context(
in contexthandle context_handle,
out short major_status,
out short minor_status,
out contexthandle output_context_token

OM_uint32 GSS_Process_context_token(
in contexthandle context_handle,
out octetstring input_context_token,
out short major_status,
out short minor_status

341

Appendix C: IDL for Generic Securiry Service API

OM_uint32 GSS_Context_time(

)

in contexthandle context_handle,

out short major_status,
out short minor_status,
out short lifetime_rec

OM_uint32 GSS_Inquire_context(

in short input_context_handle,
out short major_status,

out short minor_status,

out internalname src_name,
cut internalname targ_name,
out short lifetime_rec,

out obj_id mech_type,

out boolean deleg_state,.

out boolean mutual_state,
out boolean replay_det_state,
out boolean sequence_state,
out boolean anon_state,

out boolean trans_state,

out boolean prot_ready_state,
out boolean conf_avail,

out boolean integ_avail,

out boolean locally_initiated

// PER-MESSAGE CALLS
OM_uint32 GSS_GetMIC(

in contexthandle context_handle,

in short qop_req,

in octetstring message,

out short major_status,

out short minor_status,

out byteBuffer per_msg_token,
out short tcount

OM_uint32 GSS_VerifyMIC(

in contexthandle context_handle,

in octetstring message,

in byteBuffer per_msg_token,
in short tcount,

out short qop_state,

out short major_status,

342

Appendix C: IDL for Generic Securiry Service API

out short minor_status

)

OM_uint32 GSS_Wrap(
in contexthandle context_handle,
in boolean conf_req_flag,
in short qop_req,
in octetstning input_message,
out short major_status,
out short minor_status,
out boolean conf_state,
out byteBuffer output_message,
out short tcount

)%

OM_uint32 GSS_UnWrap(
in contexthandle context_handle,
in byteBuffer input_message,
in short tcount,
out boolean conf_state,
out short qop_state,
out short major_status,
out short minor_status,
out octetstring output_message

);

/f LIBRARY OPTIONS
OM_uint32 GSS_SetOptions(
in short optiontype,
in short optionvalue

)i
OM_uint32 GSS_GetOptions(

in short optiontype,
out short optionvalue

)

};

}: /* end module GSSAPI */

343

Status Codes for GSS-API

Appendix C: IDL for Generic Securiry Service APl

This appendix also includes the status codes required for GSS-API. There are two

types of status code:

e Major Status Codes: provide a mechanism-independent indication of call

status;

e Minor Status Codes: provide a mechanism-specific indication of status.

Only Major Status Codes are defined in the specification, because as Minor codes are

dependent on the mechanisms used.

GSS-API Major Status Codes

FATAL ERROR CODES Code [Definition
GSS_S_BAD_BINDINGS 901 Channel bindings mismatch
GSS_S_BAD_MECH 902 Unsupported mechanism requested
GSS_S_BAD_NAME 903 Invalid name provided -
GSS_S_BAD_NAMETYPE 904 Name of unsupported type provided
GSS_S_BAD_STATUS ‘| 905 Invalid input status selector
GSS_S_BAD_SIG 906 Token had invalid integrity check
GSS_S_CONTEXT_EXPIRED 907 Specified security context expired
GSS_S_CREDENTIALS_EXPIRED 908 Expired credentials detected
GSS_S_DEFECTIVE_CREDENTIALS | 909 Defective credentials detected
GSS_S_DEFECTIVE_TOKEN 210 Defective token detected
GSS_S_FAILURE o11 Failure, unspecified at GSS-API
level
GSS_S_NO_CONTEXT 912 No valid security context specified
GSS_S_NO_CRED 913 No valid credentials provided
GSS_S_BAD_QOP 914 Unsupported QOP value
GSS_S_UNAUTHORIZED 915 Operation unauthorized
GSS_S_UNAVAILABLE 916 Operation unavailable
GSS_S_DUPLICATE_ELEMENT 917 Duplicate credential element
requested
GSS_S_NAME_NOT_MN 918 Name contains multi-mechanism
’ elements

344

Appendix C: IDL for Generic Security Service AP1

INFORMATORY STATUS CODES [Codes [Definition

GSS_S_COMPLETE 801 Nomal completion

GSS_S_CONTINUE_NEEDED 802 Continuation call to routine required

GSS_S_DUPLICATED_TOKEN 303 Duplicate per-message token detected

GSS_S_OLD_TOKEN 804 Timed-out per-message token detected

GSS_S_UNSEQ_TOKEN 805 Reordered (early) per-message token
detected

GSS_S_GAP_TOKEN 806 Skipped predecessor token(s) detected

345

Appendix D - Cryptlib & Prototype information

This appendix presents an overview of cryptlib, a cryptography library, which was
used in the implementation of the Enhanced Security System. It was used as to

provide the security mechanisms, such as encryption and certificates.

Cryptlib is written by Peter Guttman (pgut001 @cs.auckland.ac.nz), and in part by

Eric Young, Colin Plumb, and others. The cryptlib manual is available at the cryptlib
web site if further details are required on the product

(htip://www.cs.auckland.ac.nz/~pput001/cryptlib/).

The cryptlib encryption library provides an easy-to-use interface that allows
programmers add strong encryption and al;thentication services to their software.
cryptlib uses several encryption, hash, MAC, public-key and digital signature
mechanisms (see Table A-1 below). cryptlib is supplied as source code for Unix

(shared or static libraries), DOS, Windows (16- and 32-bit DLL's), and the Amiga.

Algorithms

cryptlib provides a standardised interface to a number of popular encryption
algorithms, as well as providing a high-level interface which hides the implementation
details and provides an operating-system-independant encoding method which makes

it easy to transfer encrypted data from one system to another. Although use of the

346

Appendix D: Crypilib & Proiorype Information

high-level interface is recommended, programmers can directly access the lower-level

encryption routines for implementing custom encryption protocols or methods not

provided by cryptlib.
Algorithm Key size | Block size Type
Blowfish 448 64 Cipher-block
CAST-128 128 64 Cipher-block
DES 56 64 Cipher-block
Triple DES 1127168 |64 Cipher-block
IDEA 128 64 Cipher-block
RC2 1024 64 Cipher-block
RC4 2048 8 Cipher-stream
RC5 832 64 Cipher-block
Safer 128 64 Cipher-block
Safer-SK 128 64 Cipher-block
MD2 — 128 MD-Hash
MD4 — 128 MD-Hash
MDS — 128 MD-Hash
MDC-2 — 128 MD-Hash
RIPEMD-160 — 160 MD-Hash
SHA — 160 MD-Hash
HMAC-MD5 128 128 MAC
HMAC-SHA 160 160 | MAC
HMAC-RIPEMD-160 | 160 160 MAC
Diffie-Hellman 4096 — Key Exchange
DSA 4096' — Digital Signature
ElGamal 4096 — Public-key
RSA 4096 — Public-key

Digital Signature

Table A - 1: cryptlib mechanisms

Certificate Management

In relation to certificate management, cryptlib implements full X.509 certificate
support, including all X.509 version 3 extensions. Since cryptlib is itself capable of

processing certification requests into certificates, it is also possible to use cryptlib to

' The DSA standard only defines key sizes from 512 to 1024 bits, cryptlib supports longer keys but
there is no extra security to be gained from using these keys.

347

Appendix D: Crypilib & Prororype Information

provide full CA services. cryptlib can import and export certification requests,
certificates, and CRL's in straight binary format,. This covers the majority of
certificate and certificate transport formats used by a wide variety of software such as

web browsers and servers.

Key Database Interface

cryptlib provides an interface to both native-format and external key collections. The
cryptlib native format uses commercial-strength RDBMS’s to store keys in the
internationally standardised X.509 format. The cryptlib key database integrates
seamlessly into existing databases, for example an existing database containing user
names and email addresses may be extended to become a public key database with a
single cryptlib function call. Existing applications need not even be aware that their

address list database has become a public-key database.

cryptlib also suppons-extemal flat-file key collections such as PGP key rings and
X.509 keys stored in disk files. The key collections may be freely mixed (so for
example a private key could be stored in a disk file, a PGP keyring or on a smart card
with the corresponding X.509 public key certificate being stored in an Oracle or SQL

Server database).

Cryptographic Random Number Management

cryptlib contains an internal secure random data management system which provides
the cryptographically strong random data used to generate session keys and

public/private keys, in public-key encryption operations, and in various other areas

348

Appendix D: Crypilib & Prototype Information

which require secure random data. The random data pool is updated with
unpredictable process-specific information as well as system-wide data such as
current disk I/O and paging statistics, network, SMB, LAN manager, and NFS traffic,
packet filter statistics, multiprocessor statistics, process information, users, VM
statistics, process statistics, open files, inodes, terminals, vector processors, streams,
and loaded code, objects in the global heap, loaded modules, running threads, process,
and tasks, and an equally large number of system performance-related statistics
covering virtvally every aspect of the operation of the system. The exact data
collected depends on the hardware and operating system, but generally includes quite
detailed operating statistics and information. In addition if 2 /dev/random-style
randomness driver (which continually accumulates random data from the system) is

available, cryptlib will use this is a source of randomness.

Prototype - Hardware & Software

The hardware platform used for the implementation consists of a PC with utilising

Microsoft NT Server. The details of the hardware specification are as fotlows:

Personal Computer: Omega — Cyrix P166

Processor: Cyrix P166 133MHz
RAM: 97280KB

Hard Drive: 2GB

Network Card: SMC Ethernet Card

Operating system: Microsoft NT Server 4.1; Service Pack 3

349

Appendix D: Crypilib & Protoiype Informaiion

The platform was selected to accommodate the software packages (see below) that
were required to build the demonstration software. The software packages used to

implement the demonstration application were as follows:

Middleware: IONA’s Orbix 2.2c, 2.3c, 3.02
Programming language: Microsoft Visuatl C++ version 4.2, 5, 6
Cryptography software: cryptlib version 2.1b

Database Package Microsoft Access

IONA'’s Orbix was selected because, when the research began, it provided the most
comprehensive set of tools and functions of any of the available middleware products
available for the Microsoft NT platform [i]. Initially, Orbix version 2.2¢c, with
Microsoft Visual C++ Version 4.2 [ii], was used but this was later upgraded to Orbix
version 2.3c using Microsoft Visual C++ version 5 and, finally, Orbix version 3.02
and Microsoft Visual C++ 6. Microsoft Foundation Classes (MFCs) {iii] were
available in Visual C++ and were used to in building the user-interface of the
demonstration software. The Microsoft Foundation Class Library (MFC) is an
application framework for programming in Microsoft Windows and provides much of
the code necessary for managing windows, menus, and dialog boxes; performing

basic input/output; storing collections of data objects; and so on.

cryptlib [iv] is a security toolkit which allows programmers to easily add encryption
and authentication security services to their software. cryptlib provides a transparent
and consistent interface to a number of widely-used security services and algorithms
(see Appendix D), which are accessed through a straightforward, standardized
interface with parameters such as the algorithm and key size being selectable by the

user.

350

Appendix D: Crypilib & Prorotype Information

In relation to certificates, cryptlib implements full X.509 support, including all
version 3 extensions. Since cryptlib is itself capable of processing certification
requests into certificates, it is also possible to use cryptlib to provide full CA services.
cryptlib can import and export certiﬁcatio-n requests, certificates in straight binary
format, and therefore covers the majority of certificate and certificate transport
formats used by a wide variety of software, such as web browsers and seﬁers.
cryptlib was chosen because it is freely available and provides an extensive set of

encryption and certificate management functions for the Win 32 platform.

Microsoft Access was the selected database package, used to store administrative
data, because it utilises the widely supported Open Database Connectivity (ODBC)
API, which provides the ability to write applications that are independent of any
particular database management system (DBMS). Therefore, it is representative of a

large section of the database world.

References

[i] Standish Group
“CORBA ORBs”
Standish Group, February 1997.

(11} I. Horton
“Beginning Visual C++ 4"
Wrox Press Lid., 1996

(i1i] M. Blaszczak
“Professional MFC with Visual C++ 5"
Wrox Press Lud., 1997,

[iv] P. Gutmann

“Encryption Toolkit Version 2.1b"

P. Guutman, August 1998
hup:/www.cs.auckland.ac.nz/~peut00 Leryptlib/

351

Appendix F: Letters

E - Papers

This appendix present the papers based on the research work.

1. “Addressing security in an Integrated Service Engineering environment.”
Proceedings of EUROMEDIA 96, London, UK, December 1996.

2. “CORBA Middleware Services: are they secure?”
Proceedings of EUROMEDIA 2001, London, UK, April 2001.

352

Appendix E: Papers

Addressing security in an Integrated Service Engineering
environment

E.M.Joyce, S.M.Fumell, P.L.Reynolds and P.W _.Sanders

Network Research Group, School of Electronic, Communication and Electrical
Engineering,
University of Plymouth, Plymouth, United Kingdom.

Abstract

This paper examines the requirements for security in the emerging area of
Integrated Service Engineering (ISE). The ISE field is currently characterised by
wwo altemnative architectures, TINA and OSA, and the structure for a generic
service machine encompassing both approaches is discussed. A number of ISE-
specific securily requirements are then identified and a conceptual solution is
proposed based upon the Comprehensive Integrated Security System (CISS)
architecture. This is shown to successfully map onto the structure of the ISE
service machine. The paper is based upon ongoing research in this area which
will lead to a practical implementation.

Introduction

Integrated Service Engineering (ISE) is an environment which handles the
development, deployment and provision of services on a telecommunications
infrastructure. This paper examines the issue from a security perspective, identifying
the requirements involved in realising a secure system.

The current state-of-the-art in the ISE field is characterised by two architectures,
namely TINA (Telecommunications Information Networking Architecture) [1] and
OSA (Open Service Architecture) [2,3]. In order to reap the benefits of both
approaches, this discussion will introduce a generic service machine structure that has
been produced by the merging of the two architectures. This provides a platform
upon which security can be implemented.

As can be seen from figure 1, the service machine has a layered structure. The top
layer is the telecommunication applications level, which is divided into different
segments (or separations) - Management, Service and Resource. Management and
Service are taken from the TINA structure. Management deals with all entities
relating to the control of the managing systems and can be divided by the OSI
functional separations for systems management (i.e. FCAPS - fault, configuration,
accounting, performance and security).

Service deals with all aspects of the service environment. It can be divided into
Support and Session. Support is similar to the support services offered in OSA’s
service machine (i.e. trading service). Session deals with an actual service instance

353

Appendix E: Papers
and how it is completed. It takes on the TINA structure by sub-dividing into Access,
Service and Communication. The service can then be viewed from the User or
Provider perspective.

The Resource segment is seen as an amalgamation of TINA’s Element and Network
Element segments. It handles control of all resources at any level. Its Adaptors handle
the mapping of physical network Resources and logical network Elements, so that
they can be used by a service.

pre Lﬂﬂ'ﬂ Servens Sarbebld.ul Suvhn""
NCCE I DPE
Bardwars Netaock
Applications
Management Service Resource
2 § 8 B 8 m Session | ¢ Adaptors:
PR 1BlE e I ML
DPE
NCCE
Hardware

Fig 1: Generic Service Machine Structure
Security requirements for ISE

This section identifies a number of security considerations with specific relevance to
the ISE environment. These are based upon issues identified by the OMG (Object
Management Group) in respect of security for distributed objects [4].

Authentication: It is essential that system entities (e.g. users, services and
components) can be identified and authenticated. Within ISE there are two possible
scenarios. Firstly, the entity is identified and authenticated locally and, therefore, the
validation can be trusted within the local domain. Alternatively, the entity may have
been identified and authenticated by another node within the distributed system. In
this case, the local security system still has to be able to validate the entity. A trusted
third party (TTP) may be used here to issue a proof of authenticity that the local
system can trust.

Authorisation and Access Control: Each identifiable entity should have an
associated set of privileges which will be used when it is looking to access some other
entity or resource. A large scale system will require the use of groups to cut down

354

Appendix E: Papers
administration overheads. However, it is sometimes desirable to have finer
granularity, where privileges can be assigned to an individual entity to reduce the
amount of damage any one entity can do. Therefore, the security system will have to
be able to cope with different levels of authorisation. Again two levels of operation
may be useful, one within a local system, and one using TTP-certification to allow
access across different domains.

Audit: System users must be able to be held accountable for their actions. As such,
an audit trail should be maintained to record (selected) security-relevant events (e.g.
data access, object activation etc.) associated with specific user identities. The log
itself must be protected to prevent unauthorised modification.

Propagation of Attributes: An entity may invoke some other entity enabling the
latter to carry out operations on its behalf. In order to facilitate authorisation and
access control, the initial entity should be able to delegate its privileges. However, it
may wish to restrict these (e.g. to a specific time or a certain access level, such as read
instead of read/update) and different domain security policies may pose some
difficulty. Firstly trust will have be established between two domains. Secondly, the
attributes from one domain may need to be mapped to authorised attributes in the
other domain to provide validation for access control and auditing.

Secure Communications: Distributed communications require protection to
preserve confidentiality, as well as to guard against corruption, redirection or other
forms of attack. It is, therefore, necessary to guarantee secure end-to-end
communications encompassing integrity, confidentiality and non-repudiation. A
facility should also be available to specify the quality of protection. This would allow
an entity to specify whether a whole session, or a particular message, should be
protected and to what level. '

Administration: Within the security system, identifiable entities need to be
registered. The identities, their related privileges and other information (such as
security groups/roles, access control lists) need to be maintained. Administrative
operations should be restricted to valid entities, e.g. security administrators or parent
entities who may register their child entity with the secunty system. It should be
possible to split operations so that responsibility can be divided between different
entities. This division could be either by function (where, say, a security auditor
would be different from a security administrator) or by role (where service providers
may have different functions available than do network providers).

Inter-domain Operations: ISE is an open and distributed environment. It must
provide for international country boundaries or, more importantly, interactions
between different administrative domains, as has been highlighted in the previous
sections. This means that security policies and administration within a local domain
need to be preserved, but this has to co-exist with the preservation of inter-domain
security. RM-ODP proposes the use of traders and TTPs for this purpose [5]. This
allows federation to take place between domains, via the trader, while trust is
guaranteed by the TTP.

355

Appendix E: Papers

The Comprehensive Integrated Security System

Members of the research team have previously been involved in work relating to the
design and development of the Comprehensive Integrated Security System (CISS)
architecture - which facilitates a layered approach to security in an open distributed
environments [6). Given this legacy knowledge, it was deemed appropriate to
consider CISS-as an example platform upon which to demonstrate security in ISE.
However, before examining this applicability in any detail, it is first necessary to
provide some background information about CISS itself. The architecture supports
local domain security, inter-domain security and incorporates modularity so that it can
operate as an add-on service. It has five distinct layers, as depicted in figure 2 and
described below. '

Level 5 _I Management I-—o
Level 4

level 3

Level 2

Level | Math Modules

Fig 2 : CISS Layered Architecture

Mathematical Modules are used to implement Security Mechanisms. They are the
lowest level, as they cannot be functionally broken down into lower sub-components
Several modules can be combined to implement a security mechanism.

Security Mechanisms are used to implement Security Services. Examples of
mechanisms are simple password or digital signatures for authentication; encryption
for data confidentiality.

Security Services are used by Security Agents. By combining different mechanisms,
security services of varying efficiency and strength can be created to comply with a
security policy.

Security Agents and Protocols provide the necessary interaction between CISS

administration and security services. There are ten in total, as described in table 1
below.

356

Appendix E: Papers

Security Management deals with the support and control of secure operations. This

includes:
e management and control of data (e.g. mechanism parameters);
¢ distribution of data (e.g. keys and security policy information);
s monitoring, logging and recovery (e.g. to ensure a stable security
state);
e inter-domain management (e.g. exchange of security information to
allow inter-domain communications).
CISS Agent Function
User Agent (UA) Interactions between operational/management users and CISS.
Security Interaction with network management personnel and the

Administrator Agent
(SAA)

security administrator, and agent for security policy controls
by management.

Security Services

Provision, co-ordination and management of security services

Agent (SSA) - the core of CISS.

Security Mechanisms | Provision, co-ordination and management of security
Agent (SMA) mechanisms.

SMIB Agent Allows access to the SMIB, and performs all related
(SMIBA) operations on behalf of other CISS components.

Agent for Operational
Environment

Interactions with the operational environment, primarily in the
local environment.

Interactions (OPENA)
Association Agent Establishes and maintains security in the overall peer-entity
(AA) associations.

Inter-Domain
Communications
Agent (IDCA)

Responsible for secure communications between
heterogeneous security domains.

Monitoring Agent
(MA)

Monitoring of all security relevant events, access to the
security log and management of operations upon it.

Recovery Agent (RA)

Responsible for security violation detection and error
recovery.

Table 1 : CISS Agents

Interactions with users and applications occurs via Application Program Interfaces

(APIs).

357

Appendix E: Papers
Mapping CISS to the ISE architecture

It is now necessary to place a security architecture onto the generic service machine.
It is not only the machine, but the security for the ISE environment that must also be
considered. Therefore, the chosen solution for this problem is the application of the
CISS architecture. The reasons for this are outlined in table 2 below.

Reason Detail
Open and CISS provides for an open and distributed environment which
distributed is a necessary requirement for ISE. It allows for local and
inter-domain communications.
Not service or The architecture allows selection from multiple mechanisms

mechanism specific | and services in order to enforce security, enabling it to adapt to
local security policies. These mechanisms allow the important
ISE services of authentication and access control to be

enforced.

Modular The use of APIs and modular structure allows CISS to be
easily “added-on” to any system.

Structure CISS provides separate security service and management

structures. This division is seen as important in ODP
environments.

Meets general CISS can provide for general security requirements in
requirements distributed heterogeneous systems, e.g. scalability,
consistency, interoperability, availability, regulatory
requirements, usability, performance.

Meets ISE security | CISS can provide the ISE-specific security requirements via
requirements the following agents :

Identification & Authentication: SMIBA, SSA,SMA,UA
Authorisation & Access Control: SMIBA, S§SA,SMA,UA

Propagation of Attributes: SMIBA,UA

Secure Communication: OPENA, AA, IDCA
Administration: SAA, SMIBA
Inter-domain Operations: IDCA

Table 2: CISSin ISE

" The CISS functional structure is considered to be compatible with that of the service
machine. This mapping is shown in figure 3 and briefly explained in table 3.

358

Appendix E: Papers

i

=

/.

/ 3
/ \

/ \
5. —
7 A pplications \ ‘I

Managcmcnt Service Resource

= Support Session Adaptors
E %—- E g—. \% Servicea b Support
ke = . [servicd Scrvices
=53 Sroken| =~ FFTE RNEN
DPE
NCCE

Fig.3: \Functional Mapping betwe CISS and service machine

Service CISS Detail
Machine
Management | Layer 1: Management There is a direct mapping between the

Management layers in both CISS and the
Service Machine. Both provide the '
support and control functionality

necessary.

Service Layer 2: Agents and The service machine Service segment
Protocols; will map onto layers 2 and 3 in CISS as
Layer 3: Services both are dealing with services, i.e.

entities which have the ability to
complete operations and are not just
components). These provide the
functionality of the service machine or
security system.

Resource Layer 4: Mechanisms,; The Resource segment in the service
Layer 5: Math. Modules machine maps onto layers 4 and 5. In
both cases, these are the lower levels of
the architectures. They are the
components which are combined to
produce the services required.

Table 3 : Functional mapping between the service machine and CISS

CISS Agents on a Service Machine

Security agents provide the necessary interaction between CISS administration and
security services. They are the core of the security architecture. It is therefore

359

Appendix E: Papers

necessary to see how they map onto the service machine structure. Figure 4 shows
the suggested placement of each agent, with justification provided in table 4.

Appl’icati/ﬁms

Management

Service Resource

jney
3yuod
unosse

(‘}3 uuoprad

> Support Support
Broker, o> %
etc.

o E D %%

= ég Klpnoas

DPE

NCCE

Hardware

Fig. 4 : CISS agents in a service machine

CISS Agent

Service
-Machine
Area

Detail

User Agent (UA)

Access

The TINA model defines the Access area as a
users ability to have flexible access to services
[7]. It also defines a user agent which represents
and acts on behalf of the user. It receives
requests from users to establish or join service
sessions. The CISS UA allows interactions
between users and CISS. Therefore, it should be
placed in the Access area.

Security
Administrator
Agent (SAA)

Security

The Security area is responsible for the support
and control of security services. However, this
has not been fully defined in either OSA or
TINA. The SAA provides interaction between
network management personnel or the security
administrator, and agents for security policy
controls by management. Therefore, the SAA
should be placed in the Security areas to allow
the security administrator access.

Security Services
Agent (SSA)

Support
Services
(Service
Segment)

The Support Services area of the service
segment, will provide any non-core services, i.e.
those not required to actually provide the service
session, but which can support it. The SSA deals
with the provision, co-ordination and
management of security services. Therefore, it
will be involved in providing security when a
service session is established or joined.

360

Appendix E: Papers

CISS Agent

Service
Machine
Area

Detail

Security
Mechanisms
Agent (SMA) -

Support
Services
(Resource

Segment)

The Support Services area of the resource
segment will provide any supporting services
required for resources, either software or
hardware. The SMA deals with the provision, co-
ordination and management of security
mechanisms. As security mechanisms are viewed
as resources, the SMA should be located in the
Support Services area of the resource segment.

SMIB Agent
(SMIBA)

Security

As previously stated, the Security area provides
for the support and control of security functions
and includes all security relevant data. In CISS,
the SMIB is a central repository where all such
security relevant data is maintained. The
SMIBA allows access to the SMIB and performs
all operations on behalf of other CISS
components. Therefore, the SMIBA should be
located in the Security area.

Operational
Environment
Interactions
Agent (OPENA)

Connection

The Connections area handles the
communications connections associated with a
service session, as described in TINA. The
OPENA interacts with the operational
environment to allow access to resources in a
secure way. Therefore, the OPENA should be
placed in the Connection area, to allow secure
communications within the local environment.

Association
Agent (AA)

Connection

The AA establishes and maintains security in the
overall peer-entity associations, i.e. it provides
communication with other applications in the
same domain. Therefore, it too should be placed
in the Connection area to provide secure
communications within the current security
domain.

Inter-Domain
Communications
Agent (IDCA)

Connection

The IDCA is responsible for secure
communications between heterogeneous security
domains, i.e. inter-domain communications. As
the Connection agent deals with all
communications, the IDCA should be placed
there.

Monitoring Agent

(MA)

Performance
or Security

The Performance area is responsible for
monitoring and managing system performance.
The MA monitors all security relevant events,
provides access to the security log and manages

361

Appendix E: Papers

CISS Agent

Service
Machine
Area

Detail

all operations on it. Therefore, aspects of the
MA should be placed in the Performance area.
However, the Security area is another possible
location for this agent, as monitoring can also be
considered a function of security (e.g. a service
such as user or sessicn supervision).

Recovery Agent
(RA)

Fault

The Fault area is responsible for detecting errors
and then managing the corresponding recovery
mechanisms. The RA is responsible for all
security violation detection and CISS error
recovery. Therefore, the RA should be placed in
the Fault area.

Table 4 : CISS Agents in a service machine

A Working Model Example

The following example demonstrates how a security model should operate with a
working service. The service is broken up into basic steps that a user would take:.
Each step is then subdivided into the activities executed by the service. The security
services required are then listed under each of the appropriate service activities and
related back to the requirements listed in section 2. The service example described is a
user engaging in a document editing session with another party and is based upon a
modified version of a TINA service example that is described in [7].

1. User A selects a terminal to give him access to the network.

User A logs on to the network. This can be done using one of several

mechanisms, but for this example an identifier and password are used (a
smartcard would be another possible mechanism).
(a) The ID and password are taken by the security service to authenticate the user.

An information base will be referenced to check that the ID exists and that the

password is valid. Trading may be required if the ID cannot be found
locally, as will a TTP if the ID is in a different security policy domain.

User A’s privileges will be returned to a local information base if they are not

held locally. This will help performance.

Relates to: Identification and Authentication, Administration (to maintain the
information base), Inter-domain (access user information in
another domain, if necessary)

(b) User A’s user agent is now associated with a terminal agent.

User A’s privileges will be checked to ensure he is permitted to use the
terminal he is currently logging onto. Once validated the user agent and
terminal agent are associated.

User A’s privilege’s are propagated to his user agent.

362

(a)

(b)
(©)

(@)
(b)

©

(@)

(b)

(a)
(b)

Appendix E: Papers
The log-on is logged by the security service.

Relates to: Administration, Authorisation and Access Control, Propagation of
Attributes, Audit

User A is presented with a menu of capabilities at his terminal,
The security service checks User A’s privileges to see what capabilities he can
access.
The security service checks User A’s privileges. A list of valid options are
created.
Security service may need to validate that the terminal can access these
capabilities also, by validating the terminal agents privileges.
Relates to: Administration, Authorisation and Access Control
The security service sends a list of the valid options to the terminal agent.
Terminal agent presents a menu on the terminal.

User A selects an option for document editing.

A request is passed to the user agent to establish a document editing service
session.

The user agent creates, via the factory in the DPE, a service session manager
(SSM). '

The factory will be checked by the security service to ensure it has the
capabilities to create such a service, and that it can do so for the specified
user, User A. Again an information base, holding the factory capabilities
will need to be tested and checked against User A’s privileges.

Relates to: Administration, Authorisation and Access Control

User A is joined to the session by creating a user agent

The event is logged.

Relates to: Audit

User A selects a document to be opened.
The user agent sends a request to open a document to the SSM
The security service checks that User A has access to the specified document
and with the correct access type (e.g. read/write).
The security service locates the document, a trader may be necessary, and
checks that document can be accessed.
The security service notifies the SSM that the request has been validated.
Relates to: Administration, Authorisation and Access Control
The SSM opens the document in the session, by notifying the user agent and
connecting the document resource agent.
The event is logged.
Relates to: Audit

User A requests that User B is added to the session.
User agent sends the request to the SSM.
SSM locates User B using the specified ID. A trader and TTP may be required to
locate User B.
The security sérvice locates User B and identifies and authenticates him.

363

Appendix E: Papers
The security service accesses User B’s privileges. This may be in a remote
information base via a remote security service.
The security service then checks that User A and User B can join in a session
together.
Once validated, security service notifies the SSM.
Relates to: ldentification and Authentication, Administration, Inter-domain,
Authorisation and Access Control.
(c) User B’s user agent alerts the appropriate terminal agent of the incoming request.
(d) User B’s terminal agent then alters the terminal by presenting a window on the
terminal.
(e) User B accepts the request.
(f) The response is sent to the SSM.
User B is the validated to ensure he has access to the opened document.
Relates to: Authorisation and Access Control.
(g) SSM creates a user session for User B.
User B’s privileges are propagated to his user agent.
The event is logged.
Relates to: Propagation of Attributes, Audit

7. User A requests SSM to set-up a video conference connection with User B.
(a) User A’s user agent requests SSM to establish video conference connection with
User B.
(b) SSM requests the connection service manager (CSM) to establish a stream
between the end-user applications on the two terminals.
The security services will validate that both User A and User B, and their
terminals, have the appropriate capabilities.
The security service will validate that the CSM has access to the appropniate
resources to establish the stream.
Relates to: Authorisation and Access Control
(c) CSM establishes a stream between the users and sends a response to the SSM.
The stream needs to be secured.
Relates to: Secure Communications
(d) The SSM sends a response to User A.
The event is logged.
Relates to: Audit

This example shows how a security model would operate if all validations were
successful. However, if one failed, then the request would be denied, the appropriate
response sent to the requesting agent and the event then logged. Depending on the
severity of the violation, other measures may have to be taken, such as the security
administrator being alerted. However, the precise actions will depend on the domain
security policy. '

Conclusion

Integrated Service Engineering is a relatively new term which has only come to
prominence in the last few years. It considers the problem of service development,

364

Appendix E: Papers
deployment and provision in the heterogeneous telecommunications environment
today. Security, on the other hand, is a much older school, with well developed
mechanisms and theories. However these are continuously scrutinised and modified
to deal with the new problems posed in a computerised/technological world. The
paper has considered how they may be applied to the specific issue of ISE.

The CISS architecture is shown to be a complete security solution for distributed
networks. However, it also adheres to the requirements specified for ISE in supporting
local security, inter-domain security and providing a modular service that can be
integrated into any system compatible with the ISE architecture. Further practical
work is ongoing in this area and will lead to the development of a demonstrator
system in due course.

References

[i] Barr, W.J.; Boyd, T. and Inoue, Y. 1993. "The TINA Initiative", I[EEE
Communications Magazine, March 1993.

[2] Prevedourou, D.; Stamoulis, G.D.; Tonnby, 1. and An, T. 1994. "Providing
Services in a World of the IBC Resources: An Architectural Approach”, in
Proceedings of the IS&N 94 conference (Aachen, Germany, September 1994).

[3] Bruno, G.; Lucidi, F.; Insulander, J. and Larsson, U. 1994. "A Service-Driven
Vision of Integgrated Broadband Communications: the OSA Approach”, in
Proceedings of the IS&N '94 conference (Aachen, Germany, September 1994).

(4) OMG. 1994. OMG White Paper on Securiry. lIssue 1.0. Object Management
Group Security Working Group. B. Fairthome (Ed.). April 1994.

[5] ISO. 1993. Working document on topic 9.1 - ODP Trader. ISO/IEC JTC1/SC
21/WG7 N 807.

[6] S. Muftic, S.; Patel, A.; Sanders, P.; Colon, R.; Heijnsdijk, J. and Pulkkinen,U.
1994. Security Architecture for Open Distributed Systems. J. Wiley & Sons.

[7] TINA-C. 1995. Overall Concepts and Principles of TINA. Version 1.0 Publicly
Released, http://www.tinac.com, February 1995.

365

Appendix E: Papers
CORBA Middleware services — are they secure?

E.M.Joyce, S.M.Fumell, P.L.Reynolds and P.W .Sanders

Network Research Group, School of Electronic, Cemmunication and Electrical Engineering,
University of Plymouth, Plymouth, United Kingdom.

1. Introduction

Distributed object systems are used everywhere — the Internet, telecommunications,
banking... the list goes on. But securing such systems is not a simple task. For
instance consider one of today’s middleware choices, the Object Management
Group’s (OMG) Common Object Request Broker Architecture (CORBA) is such a
technology. Although there is a security solution, this paper will show that it has not
addressed all the possible security threats.

In CORBA, a client is an entity that wishes to invoke an operation on a target object
via the Object Request Broker (ORB). The object implementation comprises the code
and data that realise the target object’s behaviour. The ORB receives a request and
then locates an appropriate object implementation, and transmits the request data and
results between the client and the target object. There is also a set of supporting
services that are used to extend the ORB functionality, and without which a
standardised distributed solution would not be possible. It is the security of these
services that this paper will focus on.

According to the Intermational Standards Organization (ISO) security should be

provided in a modular format [1]. This architecture divides system management into
functional units, FCAPS — the ‘S’ being the security module. A system should be-able
to function independent of the security service, and when the security module is
introduced the same system should now operate in a functionally similar but secured
fashion. This type of thinking is practical in a centralized system, such as a
mainframe, where the Trusted Computing Base (TCB) [2] is contained within a single
system. The security service can monitor all requests and provide the required
security functionality. However, distributed systems are more complex. Distributed
objects introduce complications and the TCB is no longer contained in a single system
and may need to operate across multiple systems and security domains. This results in
an extended set of security requirement for a distributed processing environment
(DPE) such as CORBA, and therefore the modular solution may be inadequate.

1.1 Security Issues for Supporting Services in a DPE
CORBA currently consists of an ORB and 15 CORBAservices [3]). Each services is
implemented by a number of object, the interfaces of which are defined in Interface
Definition Language (IDL). Currently security is implemented by applying the
security rules to these service objects. This means that access can be granted to a
client, when requesting use of a CORBAservice object, if the client possesses the
appropriate privilege attributes. However, even looking at an overview of the services
some security issues become apparent. They are outlined below:
¢ Persistence State Service (PSS): The PSS stores components persistently on
a variety of storage servers. Although access to the persistent storage objects
are controlled, the store data is not secured — the security service has no

366

Appendix E: Papers
control over this; it would be an implementation level detail, i.e. if the data
was stored in a database, the implementer would enable database security.
Naming Service: The Naming Service (NS) locates components by name.
Once an object can access the NS, it can access all names in the service, as
there are no security restrictions. Also NSs can be federated, i.e. two naming
services are linked together to operate like a single service. If the federation
exists across different security domains the client is unaware that he is
crossing a domain boundary and security controls could be by-passed
Event Service: This service allows “consumers” o register/unregister interest
in specific events. The “suppliers” then generate information about this event
and send it to the consumers via an event channel. It is a basic
publish/subscribe or notification service. Security has not been defined for the
event channels, i.e. access control is not available for specific events on a
single channel, and there is no indication whether the channel requires
encryption. Also the event service demands a certain amount of Quality of
Service (QoS), i.e. guaranteed delivery, persistence of event data in the event
of an event channel failure and use of logging facility. If the event channel
was subject to encryption then the supporting QoS mechanisms, would also
need to ensure security, e.g. the persisted data would have to be protected.
Query Service: This allows a client to use query operations for attributes
associated with objects, in much the same way SQL can be used to query a
database of records by querying the fieclds in the records. It provides for
asynchronous query, so that the query can be issued and the client does not
have to block while waiting for a response. No security precautions have been
added and so there is no way to identify what attributes a client can perform
queries on, e.g. does the client have the security clearance to query a payroll
attribute on an employee database. Another problem is Denial of Service, e.g.
a rogue client can flood the query service with too many asynchronous or long
running synchronous queries thereby causing the services to halt or crash.
Trader Service: Similar in function to the NS, the Trader allows an importer
to locate an object, published by an exporter, but this time is does so by
identifying a set of required properties, e.g. like the Yellow Pages. A security
problem could arise if some of the services offered by the trader require higher
security clearance than others; there is no way of controlling access to
particular offers in a single Trader.

Obviously there are security issues that exist in CORBAservices that are not handled
currently by CORBA Security Service (CORBASec). The above descriptions are just
high-level overviews of such problems, but the problem demands further detaited
investigation. Therefore a single service was selected and examined in detail.

1.2 Selecting a CORBAservice

A Trader facilitates the dynamic offering and discovery of service instances of
particular types within a distributed environment. As such, it allows clients 1o
advertise their available services and to also match their needs against other
advertised services.

367

Appendix E: Papers
Traders have an important role to play in future Internet and telecommunications
networks. It can perform its basic ‘yellow pages’ function in the world of e-commerce
by providing access to internet services, €.g. a financial Trader may provide lists of
financial services that a user may wish to buy over the Internet, everything from car
loans to share brokerage services. The user can decide which Trader to advertise its
services in, and which Trader to import services from. The Traders can be structured
to provide a greater degree of choice, e.g. a financial services Trader, may be linked
to a car loans Trader and a stock brokerage Trader (and many other such traders) as
opposed to having the services registered directly in its own registry.
Resnick [4] suggested that the Trader could be used to standardise World Wide Web
(WWW) facilities. There are a dizzying array of choice of search engines, web
crawlers and white pages such as Yahoo, HotBot, and Alta Vista. However, these
facilities, especially the search engines, lack a programmatic interface and differ not
just in implementation but also in how they are accessed, how predicates are formed
and how Uniform Resource Locators (URLs) are registered. Therefore a synergy
between the CORBA Trader and the Internet facilities would offer a solution. Search
engines would benefit from a standardised programmatic API, represented in CORBA
IDL.
It is also important to remember that CORBA is not just for Internet use. It is
designed to work on any heterogeneous distributed object environment. Therefore
some other possible uses of the Trader have been suggested by the Distributed
Systems Technology Centre (DSTC) research group in University of Canberra,
Australia [5]:

¢ real-time trading, e.g. dynamic configuration of services within
telecommunications switches (combining bandwidth from local and trunk
carriers to provide an end-to-end service); '

e large scale trading, e.g. using wrading to access network elements from
network management applications for a national telephone system.

2. The need for Security
After the publicity and damage caused by viruses and such as the “Love Bug” [6] and
numerous hacker attacks, business are taking security seriously. Businesses have
suffered huge losses as a result of cybercrime. On 8 December 2000, a hacker stole
55,000 credit card numbers from CreditCard.com, and when the company refused to
pay any money for extortion, the hacker posted the numbers on a web-site [7].
According to the 5™ annual “Computer Crime and Security Survey”, conducted by the
Computer Security Institute (CSI) and the US Federal Bureau of Investigation, such
cyber-crimes are widespread, diverse in nature and on the increase [8). 90% of survey
respondents reported computer security breaches within the last year; 74% suffered
financial loss as a result of security breaches and of the 42% (i.e. 273 respondents)
who were willing to quantify those losses, the financial lose was estimated to be
$265,589,940.
Security for any distributed system uses five basic and partially overlapping services
as specified by the International Standards Organisation (ISO):

e Authentication: The security service should be able to guarantee that the

user/resource is actually who/what it claims to be. One type of threat is known

368

Appendix E: Papers
as a masquerade; that is when an entity successfully pretends to be some
other legal entity and thereby gains illegal access to a resource.

e Access control: Protects resources from unauthorised use. It can be used on
various assets, e.g., communications, data. It provides for the various types of
access to a resource, e.g. read, write, update, or execution;

e Confidentiality: Confidentiality means being able to guarantee the privacy
and secrecy of a resource such as a data file containing personnel details.
Apart from unauthorised access to a resource, the loss of anonymity or the
misappropriation of messages or data records can be considered breaches of
security;

e Integrity: Integrity of resources ensures that they are always available and
correct, no matter what corruption attempts have been made. Therefore any
integrity services must guard against any threats involving illegal
asset/resource modification;

e Non-repudiation: Repudiation is the denial of an action by an entity, e.g. a
user may deny sending or receiving a message. Non-repudiation forces an
entity to own up to ils participation in some action. Denial of origin,
transmission, receipt or participation are all repudiation threats.

By applying these concepts, a system can be made secure. However to implement
security, these concepts must be realised. Security mechanisms, or methodologies,
must be used to actually implement these security services, e.g. cryptography, digital
signatures, access control lists. The ISO also defines a security policy as a set of
criteria for provision of security services. It defines what is and what is not permitted
in the area of security during general operation of a secured system. It must be
implemented by taking the appropriate security measures. However, no security
measures, no matter how ingenious they may be, will be effective unless the user
understands what needs to be protected and can determine what mechanisms are used,
i.e. what the policy is. Security needs a complete and usable administration system
that will allow users to maintain and operate security on a day-to-day basis.

It is clear that the intense interest in security in web-based [9] and other distributed
systems security [10,11] means that Traders will have to incorporate security if they
are to be included in this future. Even though Traders can make use of CORBASec to
counteract threats, there are still some security holes. These Trader-Security issues are
addressed below, after describing how CORBASec and the Trader operate.

2.1 CORBA Security Service

CORBASec provides a framework for distributed object secunty There are two levels
of security. Level 1 provides protection for applications that are “unaware” of
security, by transparently calling security functions on object invocation. Level 2
security provides more facilities and allows applications themselves to control the
security provided, i.e. security-aware applications.

CORBASec currently supports certain levels of authentication, access control,
confidentiality, integrity and non-repudiation. Another feature of CORBA security is

369

Appendix E: Papers

Import .-/ Export

- —

~, -
._/I mporter Service Exporter
Interaction

Figure 2 : Trader Interactions

If a Trader cannot find a matching service, it will then pass the request onto another
linked (or federated) Trader. The linked Trader can then check its Registry to see if it
can match the original request. Therefore trading allows an importer access to
multiple Trading domains. The second Trading data store IS the Service Type
Repository. It stores, retrieves, manages and names service types that are used in the
Registry. Importers, Exporters and the Traders are all part of the Trading Community,
i.e. all objects that interact to import/export services.

Each Trader also has Attributes. These define a Trader’s characteristics, €.g. policies
for scoping the extent of a search.

4. Security issues related to Trading & Traders

Traders, in a distributed environment like the Internet, are open to attack, just like any
part of a distributed system. The following outlines the areas most vulnerable to
security breaches and the security services that must be used to counteract them.

4.1 Authentication

Traders receive requests for imports/exports from members of the trading community.
Like any system resource, they are susceptible to masquerade. Authentication is the
service required to deal with this threat. It is a two-way process; traders, as well as
importers and exporters should be identifiable and authenticatable. One possible way
of achieving this is the use of certification by Trusted Third Parties (TTP). The ISO’s
X.509 [13], an authentication framework using public-key certificates, could be used
It is a hierarchy of Certification Authorities (CA) which issue signed certificates”.
Authentication is accomplished through the presentation of a certificate signed by a
trusted CA.

4.2 Access Control

% Service Types are associated with a traded service and are used to describe the service. They comprise
an interface type and zero or more named property types [7].

> A Signed Public-Key Centificate is someone's public key, signed by a trustworthy party. X.509
specifies a structure for pubic-key certificates that includes the users unique name, a version number,
algorithm identifier, issuer’s name, validity period, etc.

3N

Appendix E: Papers
Access Control needs to be handled at two levels. Firstly, access control of the Trader
itself should be considered, i.e. who has access to the Trader. Secondly, access control
of service offers must be dealt with, i.e. which service offers an importer can see.

Unauthorised Trader Access

Traders should have security attributes. Two trading community objects, e.g. Trader
and exporter, have access to the security domain Access Control Manager — in
CORBA this would be the AccessDecision object. Therefore, AccessDecision can
make decisions relating to who can have access to which Trader, using the domain’s
access control mechanisms and working in accordance with the access control
policies.

Unauthorised Service Offer Access

Even if an importer has access to a Trader it may not have access to all the service
offers the Trader holds. Some of the service offers may be of a higher security
classification. Therefore, a Trader will have to hold an associated security attribute
with each service offer held in the Registry.

Current Access Control Limitations

Although access control of the Trader can currently be handled by CORBA’s
AccessDecision. object, the access control of the service offers within the Registry
cannot. It would require the storage of a security attribute in the Registry itself. The
reason for this is that such an attribute would be used to sort and make selections
when providing service offer lists to importers. This problem is also linked to
Delegation, as the security attribute would have to be set and would probably be
delegated from the exporter, e.g. use the exporter’s security level.

4.2 Integrity and Confidentiality
Integrity and confidentiality of data, stored or in transit, must be guaranteed in a
distributed system,; this has to include trading-related data.

Stored Data

Details of service offers, including an object reference, are stored in the Registry.
Therefore it must be protected, as an intruder may try to gain unauthorised access to a
service, by gaining illegal access to the object. Similarly details of the Service Type
held in the Repository, should be protected to ensure that intruders do not have
knowledge of “how” to use the service type, i.e. interface details, parameters, etc.

It is not wise to assume that the Trader’s backend data, i.e. the data stored in the
Registry and Repository, is hidden behind object interfaces and, therefore, is not as
vulnerable to attack as object references that are exported through the interface.
Intruders do not always use legitimate access mechanisms and, therefore, the
‘backdoor’ entry must be considered. Such data will usually be held in persistent
storage, such as a database, or flat file. Therefore the Trader, if operating as a
security-aware service, should be able to guarantee that the data is secure, even when
it is in storage. Cryptographic mechanisms are used to ensure that the confidentiality
and integrity of the data is preserved.

372

Appendix E: Papers
However, these types of solutions are product dependent and so the only way to
ensure a truly generic solution would be to use the Persistent State Service® (PSS) in a
secure fashion.

Inter-Community Communications

Since a Trader is operating in a distributed environment, this provides an intruder with
ample access to intercept any communications between members of a trading
community. From such interceptions, one may be able to re-construct
Registry/Repository information. In addition, replay attacks have to be considered.

All communications between trading community members should be encrypted to
ensure the confidentiality of any intercepted messages. Another form of
communications security is a digital signature. The Digital Signature Standard (DSS)
[14] uses a public key to verify to a recipient the integrity of data and the identity of
the sender of the data. The DSS can also be used by a third party to ascertain the
authenticity of a signature and its associated data. Finally replay attacks can be dealt
with by using sequencing data.

Use could again be made. here of security- aware CORBAservices. In this case it
would also be necessary for the Query service’ 1o be security-aware. This would allow
the Trader or other trading community members to interrogate the
Registry/Repository, in a secure manner.

Current Integrity and Confidentiality Limitations

Securing trader data, such as that held in the Registry and Repository, needs to be
addressed. Currently these databases are not encrypted. Also trading community
communications should be secured. The level of security would depend on the objects
involved and their security level, as well as the level of the service offers being
exported/imported.

4.3 Non-Repudiation

The trading community is made up of distributed objects, which are less predictable,
due to their flexible and granular nature. There are two problems. Firstly, if the
intruder is an authorised user, or is successfully masquerading as an authorised user,
how can their actions be discovered? For example, an intruder can masquerade as an
importer, and query Traders to find useful service offers. The processing of a
monitoring database may help, by providing clues to an intruder’s activities.
Secondly, if adhoc interactions are taking place, how can it be proven that a specific
interaction took place, if one party wishes to deny the event, i.e. accountability?
Irrefutable evidence is required, i.e. a non-repudiation service.

Monitoring

All security related events should be monitored. These events are defined by the
security policy. Apart from notifying an administrator, via an alarm, that an illegal
action has be taken, monitoring could also provide clues to a previously unknown

* The Persistent State Service provides a single interface for storing components persistently on a
variety of storage servers - including object databases, relational databases and Rat files.
% The Query service provides query operations for objects. It is a superset of SQL.

373

Appendix E: Papers
intruder, e.g. an importer making multiple unauthorised import requests on several
Traders. However this requires data filtering to find trends that can be used to raise a
system administrator’s suspicions, i.. intrusion detection.

Irrefutable Evidence

Non-repudiation is used to provide irrefutable evidence that certain events took place.
For example, digital signatures can be used with audit logs to record events. Just as
other system resources are subject to a non-repudiation policy, so too are all the
trading community members.

Current Non-Repudiation Limitations

There are two issues relating to non-repudiation. Firstly, the current CORBASec non-
repudiation service is not complete. It deals with evidence generation and verification,
but does not address delivery and evidence storage. Secondly, non-repudiation is
considered to be an optional service. It is available, but only to security-aware
applications. It should be made available to security-unaware applications.

5. Modifications required for Security-Aware Traders
Both the Trader and the Security Service require modification if they are to provide a
Security-Aware Trader.

5.1 Security-Aware Trader Attributes

Attributes are already used in the Trader specification to provide a framework for
describing the behaviour of any OMG Trader. It is proposed that Security Attributes
be added for use by the Trader. They will control the security behaviour of a Trader,
by specifying which security services the Trader uses, i.e. just how security-aware the
Trader is. The suggested security attributes are defined in Table | below.

Security Policy-Attributes | Flags use of following function

Security-aware

All other policies are checked as the Trader is using
security (at some level)

Access_control_trader

Includes Trader in ACL and uses authentication with
trading community members, etc.

Access_control
_service_offers

Provides access control on the service offers listed in a
Query

Encrypt_stores

Encrypis Registry and Repository

Encrypt_comms

Encrypts communications

Integrity_check_stores

Integrity checks Registry and Repository

Integrity_check_comms

Integrity checks communications

NR_trade

Non-repudiation of Trading related events

Audit_trade

Audit Trading related events

Table 1 : Trader Security Attributes

For example, a Trader could be a Public Trader. This means that everyone would
have access to it and it would have no security applied, i.e. the Security-aware
attribute would be set to off, indicating that all other attributes were also turned off.

374

Appendix E: Papers

Alternatively a Trader may be a Secured Trader. It would be Security-aware and
have all other attributes turned on, i.e. it would use all the available security services.
Another option is to make a Trader a Security-Aware Trader. In this case the
security-aware attribute would be on, and some of the other attributes would be on,
e.g., Encrypi_stores and Interity_check_stores, but not NR_trader or Audii_trader,
thereby providing a specified level of security.

5.2 Security-Aware Trader Data Structures

The two Trader data structures are the Repository and the Registry. The Repository
should not have to be modified, as it will hold the security attnbutes in the same
manner as it currently holds any other properties.

The Registry will not have to be modified either. It holds details of the instances of
service offers: This includes the service type, an object reference and a set of
properties held as name-value pairs. A new security property that defines the security
level of a service offer will now be held in the Registry so that access controls can be
applied to the offer. The exporter will specify the security level.

5.3 Security-Aware Trader Interfaces

There are eight interfaces defined for a CORBA Trader. However only one of these .
interfaces should have to be modified, namely the Admin interface. The Admin

interface allows the administrator to configure the Trader, by using Set methods on

the Trader’s Aftributes. These methods will now have to deal with the additional

security attributes specified in table 1 above, to control the Trader’s security

behaviour. If Security-aware is set to on, then at least one other security attribute must
be set to on also; otherwise an error will be returned on the Set method. If Security-

aware is set to off, then all other security attributes must also be set to off; otherwise

an error will be returned on the method.

375

Appendix E: Papers

5.4 An Enhanced CORBA Security Service \

The CORBA security service is itself incomplete. There are certain facilities missing
or incomplete. Firstly non-repudiation is only supporis evidence generation and
verification. It does not deal with delivery, storage or adjudication issues. Secondly,
the audit facility is a simple one and does not address the needs of today’s Intrusion
Detection Systems. Thirdly, Secure Interoperability is also limited between security
domains. Both domains must possess the same mechanisms and policies. Such
limitations would mean that if two federated traders existed in different security
domains, they may not be able to communicated if they have to do so securely.
Finally, security administration is another problem area. Most ORB security product
vendors promote the fact that they have gone beyond the CORBA Level 2
specification and provide administration services, but sure security administration
should be part of the overall standards to allow integration between products. By
enhancing CORBASec to make these facilities available, it would provide better
security for ORB operations. However, this is a complete topic in itself and outside
the scope of this paper.

5.5 Security-Aware CORBAservice

As was mentioned earlier, if other CORBAservices were secured then a more generic
security solution could be applied. If services such as the PSS, Query and Collection
services were security-aware they would able to guarantee security of the data they
were accessing. Then other CORBAservices, such as the Trader, could make use of
them. For example, if the PSS was secure, the Trader could use it to access its
Registry and Repository.

5.6 Modification Summary
Figure 3 (based on the OMG Trader), summarises the modifications that have to be
made to the CORBA Trader to create a Security-aware Trader. The modifications are
as follows:

1. New Trader Security Attributes;

2. New Registry Security Property;

3. Modified Admin interface;

4 Use of the Enhanced Security Service (including Enhanced Secure

Interoperability Service);
5. Use of security-aware CORBAservices

376

Appendix E: Papers

Securiry-aware Trader I CORBAservices
/T{_cgislh)
pa ~ (o [Security | .
1 Exporter} N_"'| Propeny 2 Socunt_\'-nwftre
\ 3 .’ Query Service
y o P a | Security-aware
P r > Collection Service
-2l 3

—_— | F— |_ - Socuﬁt__\'-ﬂ“fnﬂ!
Inmporter . _ml ! POS

INew Security |
t |‘ e .
Attributes 1 Enhnnced

3. ADMIN(Astributcs, | 4. Securily
Set. List_Offers, _[Service
Lis1_Propertics) .~ o Tervice™. | Service

{ Admin ' r" Type |
l

¢ |) Trader Component Security-aware CORBAsenvice
HF\ . - . .

() Trader Community Object Dﬁnhnnced Security Service

Interface (with defined . .

LOOKUP(Brs) pesations in brackets) Ddecr Modifications

Figure3: Modifications to create a Security-aware Trader

6. Conclusion

In a distributed object system such as the Internet, services could be built using
objects. Therefore finding the objects required, local or remote, is pivotal to the
success of such an environment. A Trader can do this. However, the Trader provides a
very vulnerable point for attack, providing an intruder with access to a multitude of
services. Therefore it should be made security-aware. It should be able to ensure that
only authorised clients can access it, and that clients can only view the service offers
which they are authorised to see. To provide a Security-Aware Trader, modifications
have to be made to the CORBA Trader and Security services.

However the Trader was only a detailed example given in this paper, to act as a proof
of concept. But other CORBAservices need to be secured, and be part of the TCB, if
the OMG is to provide a secure environment, where security administration does not
become fragmented and therefore impossible to manage. The bottom line is that
security cannot be completely treated as an “add-on” facility. Within CORBA, each
CORBAservice has to be “aware” of security and able to interact with comprehensive
security service.

References
[V} ITU, “ITU X.700 Series — System Managemen:”, ITU, hup://www. ilw.int

377

Appendix E: Papers

[2] OMG Security Working Group, “OMG White Paper on Securiry”, 1ssue 1.0. OMG FTP site, April
1994. ’

[3] R. Orfali, D. Harkey, J. Edwards, “Instant CORBA™, J. Wiley & Sons, 1997.
[4] R. Resnick, “Intergalactic Distributed Objects”, Dr.Dobb’s SourceBook, January/February 1997.

(5} M. Bearman, “Tuterial on ODP Trading Function”, DSTC, University of Canberra,. Australia,
hup://www.dsic.edu.ou

[6] D.I. Hopper, “Destructive ILOVEYOU virus strikes worldwide”, CNN, 4 May, 2000,
hitp://www.cnn.com

{7] P. Chavez, “55,000 credit card numbers stolen, posied by hacker”. Nandotimes, December 14,
2000, hup://www.nandotimes.com .

[8] CSVFBI, “2000 Computer Crime and Security Survey”, CSVFBl, December 2000,
hup://www.csi.com

[9] D. Rodgers, “Developing Secure, Web-Based Applications”, Software Development Joumal, May
1998, huip://www.sdmagazine.com/supplement/ss/feature/s985{2c.shim

[10] The Australian, “Mobile fraud runs riot”, The Australian, 22 September, 1998.

[11} E. Leahy, “Ericsson Fraud Management Solution — FraudOffice”. Ericcson, Business Evolution
and Components Seminar, 12 March, 1999.

[12] OMG, “OMG RFP5 Submission: Trading Object Service”, OMG Document orbos/96-05-06,
Version 1.0.0, May 19 1996,

[13] CCITT, Reconunendation X.509 "The Directory-Authentication Framework”, Consultation
Committee, International Telephone and Tetegraph, International Telecommunications Union, Geneva,

1989. .

[14] National Institute of Standards and Technology (NIST), “Proposed Federal Information
Processing for Digital Signature Standard (DSS)”, Federal Register, v. 56, n. 169, 30 August 1991.

378

Appendix F: Leners

Appendix F - Letters

This appendix present letters of support for the research. The letters are from:

1. Declan O’Sullivan, who acted as an industrial supervisor, from IONA
Technologies.

2. Orange

379

UNIVERSITY OF DUBLIN

Fax: 35316772204
Tel: 35316081765
Telex: 93782 TCD El

Department of Computer Science
School of Engineering

Trinity College

Dublin 2

Declan O'Sullivan

Lecturer

Computer Science Department
Trinity College Dublin

Publin 2

Ireland

Prof. Paul Reynolds
Orange PCS
Bradley Stoke
Bristo]

BS32 4QJ

UK

With Reference to thesis of Elizabeth Joyce
Dear Pauj,

Thank you for forwarding on Elizabeth’s thesis for review. It was a pleasure to act as
Elizabeth’s industrial supervisor in IONA Technologies.

This research is a significant and pragmatic contribution to the area of security and
distributed systems. As Elizabeth has quite rightly highlighted, security has been too
often been an after thought in system design, and this deficiency is all too painfully
being increasingly exposed in value added telecom and internet services.

The framework proposed is impressive, especially since it proposes solutions to a
wide set of separate but interlinked problems, namely security components for DPE;

. security interoperability components; and security aware DPE services, On this later
point, the choice of Trader for analysis is I believe particularly welcomed, especially
given the emergence of Trader-like services in the wider web services community
(e.g. UDDI) which is gathering momentum.

Overall the research has demonstrated in my opinion: a thorough analysis of the
problems faced by the DPE community; design and proposal of an innovative
[ramework solution; and a pragmatic approach to proof of concept; leading to a step
forward in the state of the art with respect to CORBA, TINA and DPE security.

Yours sincerely,

Ty

Declad O'Sullfvan

St James Court

Grem Park Road
Or Stephen Furnell Amondsbury Part
University of Plymouth Bradiey Stoke
Orake Circus Brtgtol BSI2 40
Plymouth Phone 01454 824800
UK Fax 01454 61850t

Web SRe: www.Oringe.co.uk

Monday 10 December 2001

Dear Stephen,
Reference Security Service for CORBA

Orange has been experimenting with the use of distributed processing environments
for some five years; starting in applications we are currently investigating its use in the
transport layer.

It is clear that before CORBA can be used in earnest two things must happen; one it
needs to more scalable, and two, it needs to be more secure. It is the latter that
caused us to be involved with Elizabeth Joyce's research.

Whilst Elizabeth has focused upon the development of a generic security service she
spend a significant amount of time to understand our, i.e. the mobile operator
communities, requirements. She has used these requirements to validate the
applicability of her research. Indeed, we are impressed enough with the results she
has achieved that we intend to continue the experimentation work within our
laboratories. '

Orange has been pleased to be associated with her research which we believe has
contributed to the State of the Art in security for distributed systems.

Yours sincerely,

NO=

Paul Reynolds

