2,772 research outputs found

    INTELLIGENT ROAD MAINTENANCE: A MACHINE LEARNING APPROACH FOR SURFACE DEFECT DETECTION

    Get PDF
    The emergence of increased sources for Big Data through consumer recording devices gives rise to a new basis for the management and governance of public infrastructures and policy de-sign. Road maintenance and detection of road surface defects, such as cracks, have traditionally been a time consuming and manual process. Lately, increased automation using easily acquirable front-view digital natural scene images is seen to be an alternative for taking timely maintenance decisions; reducing accidents and operating cost and increasing public safety. In this paper, we propose a machine learning based approach to handle the challenge of crack and related defect detection on road surfaces using front-view images captured from driver’s viewpoint under diverse conditions. We use a superpixel based method to first process the road images into smaller coherent image regions. These superpixels are then classified into crack and non-crack regions. Various texture-based features are combined for the classification mod-el. Classifiers such as Gradient Boosting, Artificial Neural Network, Random Forest and Linear Support Vector Machines are evaluated for the task. Evaluations on real datasets show that the approach successfully handles different road surface conditions and crack-types, while locating the defective regions in the scene images

    Combining local features and region segmentation: methods and applications

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Tecnología Electrónica y de las Comunicaciones. Fecha de lectura: 23-01-2020Esta tesis tiene embargado el acceso al texto completo hasta el 23-07-2021Muchas y muy diferentes son las propuestas que se han desarrollado en el área de la visión artificial para la extracción de información de las imágenes y su posterior uso. Entra las más destacadas se encuentran las conocidas como características locales, del inglés local features, que detectan puntos o áreas de la imagen con ciertas características de interés, y las describen usando información de su entorno (local). También destacan las regiones en este área, y en especial este trabajo se ha centrado en los segmentadores en regiones, cuyo objetivo es agrupar la información de la imagen atendiendo a diversos criterios. Pese al enorme potencial de estas técnicas, y su probado éxito en diversas aplicaciones, su definición lleva implícita una serie de limitaciones funcionales que les han impedido exportar sus capacidades a otras áreas de aplicación. Se pretende impulsar el uso de estas herramientas en dichas aplicaciones, y por tanto mejorar los resultados del estado del arte, mediante la propuesta de un marco de desarrollo de nuevas soluciones. En concreto, la hipótesis principal del proyecto es que las capacidades de las características locales y los segmentadores en regiones son complementarias, y que su combinación, realizada de la forma adecuada, las maximiza a la vez que minimiza sus limitaciones. El principal objetivo, y por tanto la principal contribución del proyecto, es validar dicha hipótesis mediante la propuesta de un marco de desarrollo de nuevas soluciones combinando características locales y segmentadores para técnicas con capacidades mejoradas. Al tratarse de un marco de combinación de dos técnicas, el proceso de validación se ha llevado a cabo en dos pasos. En primer lugar se ha planteado el caso del uso de segmentadores en regiones para mejorar las características locales. Para verificar la viabilidad y el éxito de esta combinación se ha desarrollado una propuesta específica, SP-SIFT, que se ha validado tanto a nivel experimental como a nivel de aplicación real, en concreto como técnica principal de algoritmos de seguimiento de objetos. En segundo lugar, se ha planteado el caso de uso de características locales para mejorar los segmentadores en regiones. Para verificar la viabilidad y el éxito de esta combinación se ha desarrollado una propuesta específica, LF-SLIC, que se ha validado tanto a nivel experimental como a nivel de aplicación real, en concreto como técnica principal de un algoritmo de segmentación de lesiones pigmentadas de la piel. Los resultados conceptuales han probado que las técnicas mejoran a nivel de capacidades. Los resultados aplicados han probado que estas mejoras permiten el uso de estas técnicas en aplicaciones donde antes no tenían éxito. Con ello, se ha considerado la hipótesis validada, y por tanto exitosa la definición de un marco para el desarrollo de nuevas técnicas específicas con capacidades mejoradas. En conclusión, la principal aportación de la tesis es el marco de combinación de técnicas, plasmada en sus dos propuestas específicas: características locales mejoradas con segmentadores y segmentadores mejorados con características locales, y en el éxito conseguido en sus aplicaciones.A huge number of proposals have been developed in the area of computer vision for information extraction from images, and its further use. One of the most prevalent solutions are those known as local features. They detect points or areas of the image with certain characteristics of interest, and describe them using information from their (local) environment. The regions also stand out in the area, and especially this work has focused on the region segmentation algorithms, whose objective is to group the information of the image according to di erent criteria. Despite the enormous potential of these techniques, and their proven success in a number of applications, their de nition implies a series of functional limitations that have prevented them from exporting their capabilities to other application areas. In this thesis, it is intended to promote the use of these tools in these applications, and therefore improve the results of the state of the art, by proposing a framework for developing new solutions. Speci cally, the main hypothesis of the project is that the capacities of the local features and the region segmentation algorithms are complementary, and thus their combination, carried out in the right way, maximizes them while minimizing their limitations. The main objective, and therefore the main contribution of the thesis, is to validate this hypothesis by proposing a framework for developing new solutions combining local features and region segmentation algorithms, obtaining solutions with improved capabilities. As the hypothesis is proposing to combine two techniques, the validation process has been carried out in two steps. First, the use case of region segmentation algorithms enhancing local features. In order to verify the viability and success of this combination, a speci c proposal, SP-SIFT, was been developed. This proposal was validated both experimentally and in a real application scenario, speci cally as the main technique of object tracking algorithms. Second, the use case of enhancing region segmentation algorithm with local features. In order to verify the viability and success of this combination, a speci c proposal, LF-SLIC, was developed. The proposal was validated both experimentally and in a real application scenario, speci cally as the main technique of a pigmented skin lesions segmentation algorithm. The conceptual results proved that the techniques improve at the capabilities level. The application results proved that these improvements allow the use of this techniques in applications where they were previously unsuccessful. Thus, the hypothesis can be considered validated, and therefore the de nition of a framework for the development of new techniques with improved capabilities can be considered successful. In conclusion, the main contribution of the thesis is the framework for the combination of techniques, embodied in the two speci c proposals: enhanced local features with region segmentation algorithms, and region segmentation algorithms enhanced with local features; and in the success achieved in their applications.The work described in this Thesis was carried out within the Video Processing and Understanding Lab at the Department of Tecnología Electrónica y de las Comunicaciones, Escuela Politécnica Superior, Universidad Autónoma de Madrid (from 2014 to 2019). It was partially supported by the Spanish Government (TEC2014-53176-R, HAVideo)

    Modeling, Simulation, and Analysis of a Decoy State Enabled Quantum Key Distribution System

    Get PDF
    Quantum Key Distribution (QKD) is an emerging technology which uses the principles of quantum mechanics to provide unconditionally secure key distribution. QKD systems are unique in their ability to detect an eavesdropper\u27s presence and are being marketed for applications where high levels of secrecy are required such as banking, government, and military environments. QKD systems are composed of electrical, optical, and electrooptical components. Their design requires expertise across multiple disciplines including computer science, computer engineering, electrical engineering, information theory, optical physics, and quantum physics. This multidisciplinary nature makes QKD an ideal candidate for study using Model Based Systems Engineering (MBSE) Processes, Methods, and Tools (PMTs). The primary research goal is to gain understanding of the operation and performance of the QKD decoy state protocol through the use of MBSE PMTs. The main research contributions include development of a decoy state model, validation of the this protocol in a QKD system model implementation, and confirmation that application of MBSE PMTs are critical to the understanding and analysis of complex systems. This work presents the first known application of MBSE PMTs to analyze a QKD system and provides utility to system developers, designers and analysts who seek to quantify performance and security

    Data Association for Semantic World Modeling from Partial Views

    Get PDF
    Autonomous mobile-manipulation robots need to sense and interact with objects to accomplish high-level tasks such as preparing meals and searching for objects. To achieve such tasks, robots need semantic world models, defined as object-based representations of the world involving task-level attributes. In this work, we address the problem of estimating world models from semantic perception modules that provide noisy observations of attributes. Because attribute detections are sparse, ambiguous, and are aggregated across different viewpoints, it is unclear which attribute measurements are produced by the same object, so data association issues are prevalent. We present novel clustering-based approaches to this problem, which are more efficient and require less severe approximations compared to existing tracking-based approaches. These approaches are applied to data containing object type-and-pose detections from multiple viewpoints, and demonstrate comparable quality using a fraction of the computation time.National Science Foundation (U.S.) (NSF Grant No. 1117325)United States. Office of Naval Research (ONR MURI grant N00014-09-1-1051)United States. Air Force Office of Scientific Research (AFOSR grant FA2386-10-1-4135)Singapore. Ministry of Education (Grant to the the Singapore-MIT International Design Center

    Vision for Social Robots: Human Perception and Pose Estimation

    Get PDF
    In order to extract the underlying meaning from a scene captured from the surrounding world in a single still image, social robots will need to learn the human ability to detect different objects, understand their arrangement and relationships relative both to their own parts and to each other, and infer the dynamics under which they are evolving. Furthermore, they will need to develop and hold a notion of context to allow assigning different meanings (semantics) to the same visual configuration (syntax) of a scene. The underlying thread of this Thesis is the investigation of new ways for enabling interactions between social robots and humans, by advancing the visual perception capabilities of robots when they process images and videos in which humans are the main focus of attention. First, we analyze the general problem of scene understanding, as social robots moving through the world need to be able to interpret scenes without having been assigned a specific preset goal. Throughout this line of research, i) we observe that human actions and interactions which can be visually discriminated from an image follow a very heavy-tailed distribution; ii) we develop an algorithm that can obtain a spatial understanding of a scene by only using cues arising from the effect of perspective on a picture of a person’s face; and iii) we define a novel taxonomy of errors for the task of estimating the 2D body pose of people in images to better explain the behavior of algorithms and highlight their underlying causes of error. Second, we focus on the specific task of 3D human pose and motion estimation from monocular 2D images using weakly supervised training data, as accurately predicting human pose will open up the possibility of richer interactions between humans and social robots. We show that when 3D ground-truth data is only available in small quantities, or not at all, it is possible to leverage knowledge about the physical properties of the human body, along with additional constraints related to alternative types of supervisory signals, to learn models that can regress the full 3D pose of the human body and predict its motions from monocular 2D images. Taken in its entirety, the intent of this Thesis is to highlight the importance of, and provide novel methodologies for, social robots' ability to interpret their surrounding environment, learn in a way that is robust to low data availability, and generalize previously observed behaviors to unknown situations in a similar way to humans.</p
    corecore