177 research outputs found

    Artificial Intelligence-based Technique for Fault Detection and Diagnosis of EV Motors: A Review

    Get PDF
    The motor drive system plays a significant role in the safety of electric vehicles as a bridge for power transmission. Meanwhile, to enhance the efficiency and stability of the drive system, more and more studies based on AI technology are devoted to the fault detection and diagnosis of the motor drive system. This paper reviews the application of AI techniques in motor fault detection and diagnosis in recent years. AI-based FDD is divided into two main steps: feature extraction and fault classification. The application of different signal processing methods in feature extraction is discussed. In particular, the application of traditional machine learning and deep learning algorithms for fault classification is presented in detail. In addition, the characteristics of all techniques reviewed are summarized. Finally, the latest developments, research gaps and future challenges in fault monitoring and diagnosis of motor faults are discussed

    DATA DRIVEN INTELLIGENT AGENT NETWORKS FOR ADAPTIVE MONITORING AND CONTROL

    Get PDF
    To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments

    Intelligent maintenance management in a reconfigurable manufacturing environment using multi-agent systems

    Get PDF
    Thesis (M. Tech.) -- Central University of Technology, Free State, 2010Traditional corrective maintenance is both costly and ineffective. In some situations it is more cost effective to replace a device than to maintain it; however it is far more likely that the cost of the device far outweighs the cost of performing routine maintenance. These device related costs coupled with the profit loss due to reduced production levels, makes this reactive maintenance approach unacceptably inefficient in many situations. Blind predictive maintenance without considering the actual physical state of the hardware is an improvement, but is still far from ideal. Simply maintaining devices on a schedule without taking into account the operational hours and workload can be a costly mistake. The inefficiencies associated with these approaches have contributed to the development of proactive maintenance strategies. These approaches take the device health state into account. For this reason, proactive maintenance strategies are inherently more efficient compared to the aforementioned traditional approaches. Predicting the health degradation of devices allows for easier anticipation of the required maintenance resources and costs. Maintenance can also be scheduled to accommodate production needs. This work represents the design and simulation of an intelligent maintenance management system that incorporates device health prognosis with maintenance schedule generation. The simulation scenario provided prognostic data to be used to schedule devices for maintenance. A production rule engine was provided with a feasible starting schedule. This schedule was then improved and the process was determined by adhering to a set of criteria. Benchmarks were conducted to show the benefit of optimising the starting schedule and the results were presented as proof. Improving on existing maintenance approaches will result in several benefits for an organisation. Eliminating the need to address unexpected failures or perform maintenance prematurely will ensure that the relevant resources are available when they are required. This will in turn reduce the expenditure related to wasted maintenance resources without compromising the health of devices or systems in the organisation

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    Improvements on the bees algorithm for continuous optimisation problems

    Get PDF
    This work focuses on the improvements of the Bees Algorithm in order to enhance the algorithm’s performance especially in terms of convergence rate. For the first enhancement, a pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of previous and current bees so that the best bees in each patch are appropriately guided towards a better search direction after each consecutive cycle. This method eliminates the need to differentiate the objective function which is unlike the typical gradient search method. The improved algorithm is subjected to several numerical benchmark test functions as well as the training of neural network. The results from the experiments are then compared to the standard variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis generally confirmed that the PG-BA is effective at speeding up the convergence time to optimum. Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) with the POA-BA forbids the exact exploitation of previously visited solutions along with their corresponding neighbourhood. Patches are not allowed to intersect not just in the next generation but also in the current cycle. This reduces the number of patches materialise in the same peak (maximisation) or valley (minimisation) which ensures a thorough search of the problem landscape as bees are distributed around the scaled down area. The same benchmark problems as PG-BA were applied against this modified strategy to a reasonable success. Finally, the Bees Algorithm is revised to have the capability of locating all of the global optimum as well as the substantial local peaks in a single run. These multi-solutions of comparable fitness offers some alternatives for the decision makers to choose from. The patches are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified solutions throughout the search process in addition to minimising the chances of getting trap. This version is proven beneficial when tested with numerous multimodal optimisation problems

    Production Optimization Indexed to the Market Demand Through Neural Networks

    Get PDF
    Connectivity, mobility and real-time data analytics are the prerequisites for a new model of intelligent production management that facilitates communication between machines, people and processes and uses technology as the main driver. Many works in the literature treat maintenance and production management in separate approaches, but there is a link between these areas, with maintenance and its actions aimed at ensuring the smooth operation of equipment to avoid unnecessary downtime in production. With the advent of technology, companies are rushing to solve their problems by resorting to technologies in order to fit into the most advanced technological concepts, such as industries 4.0 and 5.0, which are based on the principle of process automation. This approach brings together database technologies, making it possible to monitor the operation of equipment and have the opportunity to study patterns of data behavior that can alert us to possible failures. The present thesis intends to forecast the pulp production indexed to the stock market value.The forecast will be made by means of the pulp production variables of the presses and the stock exchange variables supported by artificial intelligence (AI) technologies, aiming to achieve an effective planning. To support the decision of efficient production management, in this thesis algorithms were developed and validated with from five pulp presses, as well as data from other sources, such as steel production and stock exchange, which were relevant to validate the robustness of the model. This thesis demonstrated the importance of data processing methods and that they have great relevance in the model input since they facilitate the process of training and testing the models. The chosen technologies demonstrated good efficiency and versatility in performing the prediction of the values of the variables of the equipment, also demonstrating robustness and optimization in computational processing. The thesis also presents proposals for future developments, namely in further exploration of these technologies, so that there are market variables that can calibrate production through forecasts supported on these same variables.Conectividade, mobilidade e análise de dados em tempo real são pré-requisitos para um novo modelo de gestão inteligente da produção que facilita a comunicação entre máquinas, pessoas e processos, e usa a tecnologia como motor principal. Muitos trabalhos na literatura tratam a manutenção e a gestão da produção em abordagens separadas, mas existe uma correlação entre estas áreas, sendo que a manutenção e as suas políticas têm como premissa garantir o bom funcionamento dos equipamentos de modo a evitar paragens desnecessárias na linha de produção. Com o advento da tecnologia há uma corrida das empresas para solucionar os seus problemas recorrendo às tecnologias, visando a sua inserção nos conceitos tecnológicos, mais avançados, tais como as indústrias 4.0 e 5.0, as quais têm como princípio a automatização dos processos. Esta abordagem junta as tecnologias de sistema de informação, sendo possível fazer o acompanhamento do funcionamento dos equipamentos e ter a possibilidade de realizar o estudo de padrões de comportamento dos dados que nos possam alertar para possíveis falhas. A presente tese pretende prever a produção da pasta de papel indexada às bolsas de valores. A previsão será feita por via das variáveis da produção da pasta de papel das prensas e das variáveis da bolsa de valores suportadas em tecnologias de artificial intelligence (IA), tendo como objectivo conseguir um planeamento eficaz. Para suportar a decisão de uma gestão da produção eficiente, na presente tese foram desenvolvidos algoritmos, validados em dados de cinco prensas de pasta de papel, bem como dados de outras fontes, tais como, de Produção de Aço e de Bolsas de Valores, os quais se mostraram relevantes para a validação da robustez dos modelos. A presente tese demonstrou a importância dos métodos de tratamento de dados e que os mesmos têm uma grande relevância na entrada do modelo, visto que facilita o processo de treino e testes dos modelos. As tecnologias escolhidas demonstraram uma boa eficiência e versatilidade na realização da previsão dos valores das variáveis dos equipamentos, demonstrando ainda robustez e otimização no processamento computacional. A tese apresenta ainda propostas para futuros desenvolvimentos, designadamente na exploração mais aprofundada destas tecnologias, de modo a que haja variáveis de mercado que possam calibrar a produção através de previsões suportadas nestas mesmas variáveis

    Pertanika Journal of Science & Technology

    Get PDF
    corecore