36 research outputs found

    Support vector machine for functional data classification

    Get PDF
    In many applications, input data are sampled functions taking their values in infinite dimensional spaces rather than standard vectors. This fact has complex consequences on data analysis algorithms that motivate modifications of them. In fact most of the traditional data analysis tools for regression, classification and clustering have been adapted to functional inputs under the general name of functional Data Analysis (FDA). In this paper, we investigate the use of Support Vector Machines (SVMs) for functional data analysis and we focus on the problem of curves discrimination. SVMs are large margin classifier tools based on implicit non linear mappings of the considered data into high dimensional spaces thanks to kernels. We show how to define simple kernels that take into account the unctional nature of the data and lead to consistent classification. Experiments conducted on real world data emphasize the benefit of taking into account some functional aspects of the problems.Comment: 13 page

    Functional Mixture Discriminant Analysis with hidden process regression for curve classification

    Full text link
    We present a new mixture model-based discriminant analysis approach for functional data using a specific hidden process regression model. The approach allows for fitting flexible curve-models to each class of complex-shaped curves presenting regime changes. The model parameters are learned by maximizing the observed-data log-likelihood for each class by using a dedicated expectation-maximization (EM) algorithm. Comparisons on simulated data with alternative approaches show that the proposed approach provides better results.Comment: In Proceedings of the XXth European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Pages 281-286, 2012, Bruges, Belgiu

    Consistency of Derivative Based Functional Classifiers on Sampled Data

    Get PDF
    International audienceIn some applications, especially spectrometric ones, curve classifiers achieve better performances if they work on the mm-order derivatives of their inputs. This paper proposes a smoothing spline based approach that give a strong theoretical background to this common practice

    Mixtures of Spatial Spline Regressions

    Full text link
    We present an extension of the functional data analysis framework for univariate functions to the analysis of surfaces: functions of two variables. The spatial spline regression (SSR) approach developed can be used to model surfaces that are sampled over a rectangular domain. Furthermore, combining SSR with linear mixed effects models (LMM) allows for the analysis of populations of surfaces, and combining the joint SSR-LMM method with finite mixture models allows for the analysis of populations of surfaces with sub-family structures. Through the mixtures of spatial splines regressions (MSSR) approach developed, we present methodologies for clustering surfaces into sub-families, and for performing surface-based discriminant analysis. The effectiveness of our methodologies, as well as the modeling capabilities of the SSR model are assessed through an application to handwritten character recognition

    Unexpected properties of bandwidth choice when smoothing discrete data for constructing a functional data classifier

    Get PDF
    The data functions that are studied in the course of functional data analysis are assembled from discrete data, and the level of smoothing that is used is generally that which is appropriate for accurate approximation of the conceptually smooth functions that were not actually observed. Existing literature shows that this approach is effective, and even optimal, when using functional data methods for prediction or hypothesis testing. However, in the present paper we show that this approach is not effective in classification problems. There a useful rule of thumb is that undersmoothing is often desirable, but there are several surprising qualifications to that approach. First, the effect of smoothing the training data can be more significant than that of smoothing the new data set to be classified; second, undersmoothing is not always the right approach, and in fact in some cases using a relatively large bandwidth can be more effective; and third, these perverse results are the consequence of very unusual properties of error rates, expressed as functions of smoothing parameters. For example, the orders of magnitude of optimal smoothing parameter choices depend on the signs and sizes of terms in an expansion of error rate, and those signs and sizes can vary dramatically from one setting to another, even for the same classifier.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1158 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Un r\'esultat de consistance pour des SVM fonctionnels par interpolation spline

    Get PDF
    This Note proposes a new methodology for function classification with Support Vector Machine (SVM). Rather than relying on projection on a truncated Hilbert basis as in our previous work, we use an implicit spline interpolation that allows us to compute SVM on the derivatives of the studied functions. To that end, we propose a kernel defined directly on the discretizations of the observed functions. We show that this method is universally consistent.Comment: 6 page
    corecore