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The data functions that are studied in the course of functional
data analysis are assembled from discrete data, and the level of
smoothing that is used is generally that which is appropriate for ac-
curate approximation of the conceptually smooth functions that were
not actually observed. Existing literature shows that this approach
is effective, and even optimal, when using functional data methods
for prediction or hypothesis testing. However, in the present paper
we show that this approach is not effective in classification problems.
There a useful rule of thumb is that undersmoothing is often desir-
able, but there are several surprising qualifications to that approach.
First, the effect of smoothing the training data can be more signifi-
cant than that of smoothing the new data set to be classified; second,
undersmoothing is not always the right approach, and in fact in some
cases using a relatively large bandwidth can be more effective; and
third, these perverse results are the consequence of very unusual prop-
erties of error rates, expressed as functions of smoothing parameters.
For example, the orders of magnitude of optimal smoothing parame-
ter choices depend on the signs and sizes of terms in an expansion of
error rate, and those signs and sizes can vary dramatically from one
setting to another, even for the same classifier.

1. Introduction. All supposedly “functional” data are actually observed
discretely, sometimes on a grid and on other occasions at randomly scattered
points. For example, in longitudinal data analysis the observation points are
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often widely spaced and irregularly placed, and substantial smoothing is
commonly used to convert discrete data like these to functions. The im-
pact of such smoothing has been addressed in the context of prediction or
hypothesis testing for functional data; see, for example, Hall and Van Keile-
gom (2007), Panaretos, Kraus and Maddocks (2010), Wu and Müller (2011),
Benhennia and Degras (2011), Cardot and Josserand (2011) and Cardot, De-
gras and Josserand (2013). The main conclusion of these papers has been
that conventional rules for smoothing discrete data typically apply, and that
smoothing parameters of standard size generally are appropriate.

In contrast, the present paper was motivated by numerical work indicating
that, in the context of classifying functional data, smoothing parameters of
highly nonstandard sizes are appropriate, and more generally that, even for
a relatively simple classifier, there is no simple precept (even an asymptotic
prescription of size) that leads to minimisation of error rate. If one had
to give a rule, valid in some but by no means all cases, it would be to
undersmooth, but even there unexpected caveats must be addressed.

For example, it turns out that the impact of smoothing the training data
can be more significant than that of smoothing the new data to be classified.
Indeed, the effect of smoothing the new data is characteristic of a parametric
problem, rather than a nonparametric one. There, asymptotic arguments
indicate that (sample size)−1/2 is an appropriate bandwidth size for reducing
the impact of smoothing to parametric levels, whereas (sample size)−1/3 is
the nearest analogue for smoothing the training data.

However, both these recommendations are incorrect in many cases. De-
pending on the signs and sizes of certain functionals of the data distribu-
tions, it can be optimal to use smoothing parameters that are an order of
magnitude smaller, or an order of magnitude larger, than these. Using some
viewpoints the need for a low level of smoothing is intuitively clear. Indeed,
we expect that relatively minor features of a curve, of the sort that might
disappear if we were too enthusiastic in the smoothing step, could have
important information to convey in a classification analysis. On the other
hand, our results show that very high levels of smoothing are sometimes
advantageous.

We drew these conclusions after studying three different classifiers for
functional data: the standard centroid-based method, the scale-adjusted
form of that approach, and a version for functional data of quadratic dis-
crimination. Our conclusions are valid for all three approaches, although they
contradict conclusions which are well known for standard nonparametric ap-
proximations to the Bayes classifier in multivariate, rather than functional-
data, settings. Specifically, for univariate and functional data, and nonpara-
metric Bayes classifiers, conventional smoothing parameters, for example,
those chosen using standard plug-in rules for function estimation, typically
are of the correct order even though they do not quite minimise asymptotic
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classification error; see, for example, Hall and Kang (2005). Moreover, there
does not exist a version of our results in univariate or multivariate settings,
since there is no analogue in such cases of the “lattice effect,” represented
by the mkj ’s.

To these comments, we should add that in practice there is relatively
little difficulty in choosing smoothing parameters to minimise error rate;
cross-validation is usually effective. Our aim in this paper is therefore not to
develop methods for choosing the bandwidth optimally, or nearly optimally,
in classification problems, but to provide an understanding of the many
aspects of those problems that conspire together to determine the optimal
choice.

2. Model and methodology.

2.1. Model. We consider n0 (resp., n1) unknown random functions {g0j ,
1≤ j ≤ n0} (resp., {g1j ,1≤ j ≤ n1}) coming from two populations. We ob-
serve a training sample of the data pairs Dkj = {(Xkji, Ykji), 1≤ i≤mkj},
for 1≤ j ≤ nk and k = 0,1, corresponding to noisy versions of the gkj ’s sam-
pled at a discrete set of random points (i.e., Xkji’s) and generated by the
model

Ykji = gkj(Xkji) + εkji,(2.1)

where k indexes the population, Πk, from which the data in Dkj came, j
denotes the index of an individual drawn from Πk, and i is the index of a
data pair (Xkji, Ykji) for the jth individual from the kth population.

The gkj are random functions defined on a compact interval I , but ob-
served only at mkj points Xkj1, . . . ,Xkjmkj

. These points may be fixed or
random, and although we shall develop our arguments in the random case,
they can easily be extended to the fixed case. We assume that each gkj has
two bounded derivatives on I ; the respective sequences of X ’s and ε’s are
each identically distributed with distributions that do not depend on the g’s;
the g’s, X ’s and ε’s are all mutually independent; the X ’s are supported on
I ; and the ε’s have zero mean and finite variance.

We also observe a new data set D = {(Xi, Yi), 1≤ i≤m}, similar to the
Dkj ’s except that in this case we do not know which population the data
come from. Here,

Yi = g(Xi) + εi,(2.2)

where the function g, the X ’s and the ε’s have the properties given in the
previous paragraph. Using the training data, we wish to determine whether
D came from Π0 or Π1.

In the functional data literature [see, e.g., Ramsay and Silverman (2005)],
when the data are noisy, it is common to preprocess them prior to further
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analysis. Typically, this is done by smoothing the data in some way, for ex-
ample, through a spline or kernel smoother, thereby obtaining, from the data
in Dkj and D, estimators ĝkj and ĝ of gkj and g, respectively. In the classi-
fication context, once these estimators have been derived, they are plugged
into functional data classifiers, replacing there the unobserved functions g
and gkj by their estimators ĝ and ĝkj . Our aim in this paper is to describe
the application of estimators ĝ and ĝkj of g and gkj , and in particular to
describe the influence of tuning parameters used to construct them, when
the aim is classification rather than just function estimation.

2.2. Estimating g, gkj and their mean and covariance functions. There
are several ways to obtain nonparametric estimators of the functions g and
gkj , but the most popular ones are spline and local linear methods. They
have similar properties, but since local linear estimators are much more
tractable theoretically, we shall use these in this work. For x ∈ I , the local
linear estimators of g and gkj are defined by

ĝ(x) =
U2(x)V0(x)−U1(x)V1(x)

U2(x)U0(x)−U2
1 (x)

,

ĝkj(x) =
Ukj2(x)Vkj0(x)−Ukj1(x)Vkj1(x)

Ukj2(x)Ukj0(x)−U2
kj1(x)

,(2.3)

where

Uℓ(x) =
1

m

m∑

i=1

(
x−Xi

h

)ℓ

Kh(x−Xi),(2.4)

Vℓ(x) =
1

m

m∑

i=1

Yi

(
x−Xi

h

)ℓ

Kh(x−Xi),(2.5)

Ukjℓ(x) =
1

mkj

mkj∑

i=1

(
x−Xkji

h1

)ℓ

Kh1(x−Xkji),(2.6)

Vkjℓ(x) =
1

mkj

mkj∑

i=1

Ykji

(
x−Xkji

h1

)ℓ

Kh1(x−Xkji),

K is a kernel function, h > 0 and h1 > 0 are bandwidths, and Kh(x) =
K(x/h)/h. See, for example, Fan and Gijbels (1996). For simplicity, through-
out we use the same bandwidth h1 for each population and each individual,
but we could have replaced h1 by bandwidths that depended on k and j, as
we do in our numerical work.

The classifiers we consider in this work require estimators of the popula-
tion means and covariances. For k = 0,1, let µk denote the mean function

µk =Ek(g) =Ek(gkj),(2.7)
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where Ek represents expectation under the assumption that the data come
from Πk. Also, let Gk be the covariance function, defined by Gk(u, v) =
covk{g(u), g(v)} = Ek{g(u)g(v)} − µk(u)µk(v), where covk denotes covari-

ance when the data come from Πk. Estimators µ̂k and Ĝk of µk and Gk

are defined in the standard way by the empirical mean and covariance func-
tions, but replacing, in the definitions of these estimators, the unobserved
gkj by ĝkj :

µ̂k =
1

nk

nk∑

j=1

ĝkj,(2.8)

Ĝk(u, v) =
1

nk

nk∑

j=1

{ĝkj(u)− µ̂k(u)}{ĝkj(v)− µ̂k(v)}.(2.9)

See, for example, Ramsay and Silverman (2005), Chapter 2.
Consider the spectral decomposition of the covariance function

Gk(u, v) =

∞∑

ℓ=1

θkℓψkℓ(u)ψkℓ(v),(2.10)

where (θkℓ, ψkℓ) is an (eigenvalue, eigenfunction) pair for the linear operator
Gk defined by Gk(ψ)(u) =

∫
Gk(u, v)ψ(v)dv, and where, following conven-

tion, we have used the notation Gk for both the operator and the covariance.
The terms in (2.10) are ordered such that θk1 ≥ θk2 ≥ · · · ≥ 0. If g is drawn
from Πk then we can write

g(x) = µk(x) +

∞∑

ℓ=1

Zkℓθ
1/2
kℓ ψkℓ(x),(2.11)

where µk = Ek(g) denotes the mean of the random process of which g is a

realisation, Zkℓ = θ
−1/2
kℓ

∫
(g − µk)ψkℓ, and the Zkℓ’s (for ℓ = 1,2, . . .) com-

prise a sequence of uncorrelated random variables with zero mean and unit
variance. The quantities θkℓ and ψkℓ can be estimated consistently by the

eigenvalues and eigenfunctions θ̂kℓ and ψ̂kℓ of the linear operator Ĝk, defined

by Ĝk(ψ)(u) =
∫
Ĝk(u, v)ψ(v)dv, with the covariance estimator Ĝk defined

as at (2.9):

Ĝk(u, v) =
∞∑

ℓ=1

θ̂kℓψ̂kℓ(u)ψ̂kℓ(v),(2.12)

where θ̂k1 ≥ θ̂k2 ≥ · · · ≥ 0, and, since θ̂kℓ = 0 for all ℓ > nk, all but the first
nk terms in the series at (2.12) vanish. See Hall and Hosseini-Nasab (2006,
2009) for properties of these estimators in the case where g and gkj are
observed; see also Li and Hsing (2010a, 2010b) for other cases.
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2.3. Constructing classifiers. Classifiers for functional data have received
a great deal of attention in the literature. See, for example, Vilar and Pértega
(2004), Biau, Bunea and Wegkamp (2005), Fromont and Tuleau (2006),
Leng and Müller (2006), López-Pintado and Romo (2006), Rossi and Villa
(2006), Cuevas, Febrero and Fraiman (2007), Wang, Ray and Mallick (2007),
Berlinet, Biau and Rouvière (2008), Epifanio (2008), Araki et al. (2009), De-
laigle and Hall (2012) and Delaigle, Hall and Bathia (2012).

In those papers the authors suggest methods for constructing classifiers,
but so far the theoretical impact of smoothing; that is, the impact of using
ĝ and ĝkj instead of g and gkj when constructing classifiers; has been largely
ignored in the literature. In this paper, we study this impact of smoothing for
three relatively simple functional classifiers: the centroid classifier, or Roc-
chio classifier [see, e.g., Manning, Raghavan and Schütze (2008)], commonly
used for classifying high-dimensional data; a scaled version of this classifier,
which we define below in a general way; and a version for functional data of
Fisher’s quadratic discriminant, studied, for example, by Leng and Müller
(2006) and Delaigle and Hall (2012). These classifiers are usually defined in
terms of the functions g and gkj , and here we shall define them in terms of ĝ
and ĝkj . The standard versions of these classifiers are obtained by replacing
ĝ and ĝkj by g and gkj . The functions ĝkj appear only implicitly through
the estimated means and covariance functions constructed in Section 2.2.

In the present setting, the centroid-based classifier assigns the curve g,
observed through D, to Π0 if the statistic

S(ĝ) =

∫

I
{ĝ(t)− µ̂0(t)}2 dt−

∫

I
{ĝ(t)− µ̂1(t)}2 dt(2.13)

is negative, and to Π1 if S(ĝ)> 0.
A scaled version of the centroid classifier, which accommodates differences

in scales between the two populations, can be defined by replacing S in (2.13)
by

Sscale(ĝ) =
1

s20

∫

I
{ĝ(t)− µ̂0(t)}2 dt

(2.14)

− 1

s21

∫

I
{ĝ(t)− µ̂1(t)}2 dt+ log

(
s20
s21

)
,

where s2k is an estimator of the scale of population Πk. For example, we
might take s2k to equal nk

−1
∑nk

j=1

∫
I(ĝkj − µ̂k)

2, the version we used in our

numerical work, or
∫
I

∫
I Ĝk(u, v)ψ(u)ψ(v)dudv, where ψ is open to choice;

or s20 and s21 could be selected empirically by minimising a cross-validation
estimator of classification error. The definition at (2.14) should be compared
with those at (2.15) and (2.16), below. The form of (2.14), and also of (2.15)
and (2.16), is motivated by likelihood-ratio statistics for Gaussian data.
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A version for functional data of Fisher’s quadratic discriminant is based
on

T (ĝ) =

p∑

ℓ=1

[
1

θ̂0ℓ

{∫

I
(ĝ− µ̂0)ψ̂0ℓ

}2

(2.15)

− 1

θ̂1ℓ

{∫

I
(ĝ− µ̂1)ψ̂1ℓ

}2

+ log

(
θ̂0ℓ

θ̂1ℓ

)]
,

where ĝ and µ̂k are as at (2.3) and (2.8), (θ̂0ℓ, θ̂1ℓ) are at (2.12) and p is
a positive truncation parameter. (Here we assume, as is often the case in
practice, that the prior probabilities of each population are unknown and
estimated by 1/2. A more general version of the classifier can be used if
these probabilities are estimated by other values, but this does not alter our
main conclusions.) We assign the new data set D to Π0 if T (ĝ)≤ 0, and to
Π1 otherwise. Of course, the statistic T (ĝ), at (2.15), is just an empirical
version of the quantity

T0(g) =

p∑

ℓ=1

[
1

θ0ℓ

{∫

I
(g − µ0)ψ0ℓ

}2

(2.16)

− 1

θ1ℓ

{∫

I
(g − µ1)ψ1ℓ

}2

+ log

(
θ0ℓ
θ1ℓ

)]
.

If the functions g are Gaussian, and the first p eigenvalues, in versions of
(2.10) and (2.12) for either population, are distinct and nonzero, and the
remaining eigenvalues vanish, then the classifier based on T0(g), at (2.16), is
optimal in the sense of having least classification error among all classifiers,
since it is, after all, just a likelihood ratio statistic. When the eigenvalues
and eigenfunctions are estimated from data, as at (2.15), the classifier is
asymptotically optimal. Bearing in mind the effectiveness of Fisher’s dis-
criminant analysis in the case of vector-valued data, even when the data
are not normal, the classifier based on T (ĝ) is an attractive choice even in
non-Gaussian cases.

3. Theoretical properties.

3.1. Standard centroid-based classifier. In this section, we derive prop-
erties of the centroid classifier based on the estimators ĝ and ĝkj , and in
particular we examine the impact of smoothing. First, we introduce nota-
tion. Let n = n0 + n1 (hence n is a positive integer sequence diverging to
infinity), let m =m(n) be of the same size as mkj [see (3.7) below], and
write σ2εk for the variance of the experimental errors εkji and εi, in (2.1) and
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(2.2), when the data come from Πk. Let

ḡk =
1

nk

nk∑

j=1

gkj, νk = n2k

(
nk∑

j=1

m−1
kj

)−1

(3.1)

and define

bk0 =

∫

I
(µ1 − µ0){2µk − (µ0 + µ1)},

(3.2)

βk0 =

∫

I
(ḡ1 − ḡ0){2µk − (ḡ0 + ḡ1)},

σ2k = 4κ2

∫

I

∫

I
(ḡ1 − ḡ0)(x1)(ḡ1 − ḡ0)(x2)Gk(x1, x2)dx1 dx2,(3.3)

τ2k = 4κ2

∫

I

∫

I
(µ1 − µ0)(x1)(µ1 − µ0)(x2)Gk(x1, x2)dx1 dx2,(3.4)

where κ2 =
∫
u2K(u)du. Finally, put κ =

∫
K2, and let I be the compact

interval that equals the support of the density fX of the Xi’s and Xkji’s,
and of the functions g and gkj .

We make the following assumptions:

(a) The distribution of the experimental errors εkji and εi, in (2.1)
and (2.2), has zero mean and all moments finite, may depend on k,
and has variance σ2εk; (b) the density fX of the variables Xkji andXi

does not depend on i, j or k; (c) fX has two bounded derivatives,
fX(x) ≥ C > 0 for all x ∈ I, and f ′′X is Hölder continuous on the
support I of fX .

(3.5)

(a) The functions g and gkj associated with the populations Πk,
for k = 0,1, are realisations of Gaussian processes, have uniformly
bounded covariance functions Gk and mean functions µk, both de-
pending only on k, and satisfy τ2k > 0 for k = 0,1; and (b) with
probability 1 the functions are uniformly bounded and have Hölder-
continuous second derivatives, with the property that, for a constant
C > 0, all moments of supx1,x2

|g′′(x1)− g′′(x2)|/|x1−x2|C are finite

when g is sampled from either Π0 or Π1.

(3.6)

(a) For a constant C > 0, the results h(1) =O(n−C) and n1−Ch(1) →
∞ hold for h(1) = h and h(1) = h1; (b) the kernel K is a sym-
metric, nonnegative, compactly supported and Hölder continuous
probability density; and (c) for each k the values of m−1minjmkj,
m−1maxjmkj and n0/n1 are bounded away from zero and infinity
as n→∞, and, for constants C1 and C2 satisfying 0<C1 < C2 <∞,
m and n0 lie between nC1 and nC2 .

(3.7)
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The assumption in (3.5)(c) that fX is bounded away from zero on its
support is only a technical requirement, and is unnecessary in practice. To
make this clear, in our numerical work we shall take fX to be a normal den-
sity, and show that the conclusions of Theorem 1 are nevertheless reflected
clearly.

Let errk = Pk{(−1)kS(ĝ) > 0} denote the probability that the standard
centroid-based classifier, based on the statistic S(ĝ) at (2.13), commits an
error when the data set D actually comes from Πk. Theorem 1 below de-
scribes the asymptotic behaviour of errk, and highlights the effect of the
smoothing parameters h and h1, used to construct the estimators ĝ and ĝkj
of g and gkj , on the classifier. A proof is given in Appendix A.1.

Theorem 1. Assume that (3.5)–(3.7) hold, and let Ψ0 = 1 − Φ and
Ψ1 = Φ, where Φ denotes the c.d.f. of a standard normal random variable.
Then

errk = errk0 + h2ck + h21ck1 +
dk0
ν0h1

+
dk1
ν1h1

(3.8)

+O{m−1 + (mh)−2}+ o

(
h2 + h21 +

1

ν0h1

)
,

where errk0 =Ek[Ψk{−βk0/σk}], ck = κ2αk

∫
I(µ1−µ0)µ′′k, ck1 =−κ2αk

∫
I(µ1−

µ0)µ
′′
1−k, dkj = (−1)jαkσ

2
εjκ
∫
I f

−1
X , with αk = (−1)kτ−1

k φ(bk0/τk), and where
φ denotes the standard normal density function.

The leading term errk0 on the right-hand side of (3.8) does not depend in
any way on the bandwidths h and h1. It does involve the training sample
sizes n0 and n1, and in particular does not equal the asymptotic limit of errk
as n increases, since that limit is given by Ψk(−bk0/τk), but the effects of the
bandwidths are all confined to subsequent terms on the right-hand side of
(3.8). The terms in h2 and h21 represent contributions to classification error
arising from biases of the estimators ĝ and ĝkj , and the terms in (ν0h1)

−1

and (ν1h1)
−1 are contributions from the variances of the estimators ĝkj .

While a priori it might be thought that, since the total number of ob-
servations in the training sample,

∑
jmkj , for k = 0 and 1, is an order of

magnitude larger than the number of observations, m, in the new data set
D, then h1 should be chosen smaller than h, Theorem 1 shows that the
influence of bandwidths on error rate is much more complex than this.

For one thing, there are no terms in (mh)−1 on the right-hand side of
(3.8). (Section 3.1.2 will explain the reason for this.) As a result, the terms
on the right-hand side of (3.8) that depend on h can be rendered equal to
O(m−1) simply by taking h equal to a constant multiple of m−1/2. As noted
in Remark 1, below, this level of contribution to the error rate is generally
impossible to remove, even in simple parametric problems. Therefore the
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contribution of h to error rate cannot be rendered smaller than m−1. How-
ever, in some instances choosing h to be an order of magnitude larger or
smaller than m−1/2 can be beneficial; see Section 3.1.1 below.

The terms in h1 on the right-hand side of (3.8) are a different matter
because each of ck1 and dk0ν

−1
0 + dk1ν

−1
1 can be either positive or negative.

Depending on the signs and sizes of ck1 and dk0ν
−1
0 + dk1ν

−1
1 , it can be

optimal to take h1 to be of order ν
−1/3
k , which achieves a trade-off between

terms in h21 and (νkh1)
−1, or to take h1 to decrease to zero more quickly or

to converge to a positive constant, as n increases; see Section 3.1.1 below.
Therefore, the impact that smoothing has on classification performance

is much more subtle than it might have appeared. We discuss these issues
in more detail in the next sections.

3.1.1. Sizes of h and h1 that optimise overall error rate. Using Theorem
1 we can deduce the orders of magnitudes of h and h1 that minimise the
error rate of the classifier, that is, that minimise the probability of misclas-
sification,

err = π0err0 + π1err1,(3.9)

where err0 and err1 are as in (3.8), πk denotes the prior probability attached
to population Πk, and π0 + π1 = 1. Using (3.8) and (3.9), we can write

err = err0 + c0h2 + c01h
2
1 + d0(ν0h1)

−1 +O{m−1 + (mh)−2}
(3.10)

+ o{h2 + h21 + (ν0h1)
−1},

where err0 = π0err00 + π1err10 (recall that errk0 does not depend on the
bandwidths),

c0 = κ2

∫
(µ1 − µ0)

{
π0
µ′′0
τ0
φ

(
b00
τ0

)
− π1

µ′′1
τ1
φ

(
b10
τ1

)}
,

c01 = κ2

∫
(µ0 − µ1)

{
π0
µ′′1
τ0
φ

(
b00
τ0

)
− π1

µ′′0
τ1
φ

(
b10
τ1

)}
,

d0 = κ

(∫

I
f−1
X

){
π0
τ0
φ

(
b00
τ0

)
− π1
τ1
φ

(
b10
τ1

)}(
σ2ε0 − σ2ε1

ν0
ν1

)
.

Since the function φ is symmetric, and b10 =−b00, then b10 can be replaced
by b00 in the formula for d0 without altering its veracity.

To appreciate the very wide range of optimal bandwidth choices that can
arise in the problem of minimising error rate, let us consider minimising err,
at (3.10). To help remove ambiguities, let us assume that as n increases the
value of σ2ε0−σ2ε1ν0ν−1

1 is of the same sign for all sufficiently large n, and its
absolute value is bounded away from zero; assumption (3.7)(c) ensures that
it is uniformly bounded. In this instance, and focusing just on the terms in
h1, we see that four distinct cases can arise in practice:
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(i) c01 and d
0 are both positive. In this case, to minimise the contribution

from h1, we should minimise c01h
2
1+ d0(ν0h1)

−1, which is achieved by taking

h1 to be of size ν
−1/3
0 .

(ii) c01 and d0 are both negative. In this case, the contribution made
by h1 behaves like −{|c01|h21 + |d0|(ν0h1)−1} as sample size increases. The
term within braces here is maximised by taking h1 = 0, and analogously,
in minimising err, it is optimal to take h1 to be of strictly smaller order

than ν
−1/3
0 .

(iii) c01 > 0 and d0 ≤ 0. In this case, to minimise the error rate, we need
to maximise the size of the negative term and minimise that of the positive

term, which is achieved by taking h1 to be of strictly smaller order than ν
−1/3
0

(the precise order depends on the magnitude of second order terms, but
deriving the latter precisely would require a lot of additional computation).

(iv) c01 < 0 and d0 ≥ 0. Here, using arguments similar to those in case

(iii), taking h1 to be of strictly larger order than ν
−1/3
0 is optimal.

The case d0 = 0 occurs, for example, if the covariance Gk of the Gaussian
process g, the experimental error variance σ2εk, and the values of mkj and
nk do not depend on k. Equal values of mkj commonly arise when the data
are observed on a grid; see Remark 4.

A similar analysis can be carried out in the case of optimisation over h
rather than h1, although there the optimum is accessed from a comparison of
terms in h and (mh)−2, rather than h21 and (ν0h1)

−1. [A tedious analysis of
the term of size (mh)−2, represented by the remainder O{(mh)−2} in (3.8),
shows that it can be either positive or negative.] Depending on the relative
signs of the terms in h2 and (mh)−2, it can be optimal to take h≍m−1/2,
or h of strictly larger, or strictly smaller order than m−1/2.

Similar results are obtained if we investigate properties of errk, in (3.8),
instead of the overall error rate, err, at (3.9).

These results explain the very diverse patterns of behaviour that are seen
in numerical work, and that motivated our research; see Section 1. In sum-
mary, in apparently similar problems and using the same type of classifier, it
can be optimal to use a very small bandwidth, or a very large bandwidth, or
a bandwidth of only moderate size, depending on the signs of certain con-
stants. Therein lies the contradictory nature of the smoothing parameter
choice problem for classification of functional data.

3.1.2. Absence of terms in (mh)−1. The centroid-based classifier statis-
tic S(ĝ), at (2.13), can be written equivalently as

S(ĝ) =

∫

I
(µ̂1 − µ̂0)(2ĝ − µ̂0 − µ̂1)dt.(3.11)
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Importantly, there is no quadratic term in ĝ2 in (3.11), and as a result the
impact of the bandwidth h, although not h1, on properties of the classifier is
greatly reduced. This reduction is brought about by the smoothing effect of
the integral in (3.11), which results in the elimination of terms in (mh)−1.

This property, to which we shall refer to as the “integration effect,” is
known in other settings, for example, when integrating a kernel density esti-
mator, computed from a sample of size m, to produce a distribution estima-
tor. Integration results in the variance reducing from order (mh)−1, for the
density estimator, to order m−1, for the distribution function estimator—
just as it does in the setting above.

Remark 1 (Order m−1 term in expansion of classification error). We
assumed in (3.7)(c) that the values of mkj , representing the number of pairs
(Xkji, Ykji) for a given population index k and given individual j, are all
of roughly the same size. In this setting it is easy to see that, even in an
elementary parametric setting, we must expect the operation of observing
the functions gkj at scattered points to affect error rate through a term
of order m−1, and no smaller. For example, consider the case where gkj =
ψ(· | ωkj), with ψ(· | ω) being a known function completely determined by
the parameter ω, and ωkj =

∫
I gkjw where the weight function w is known.

Using the data Dkj on gkj we can estimate ωkj root-m consistently, but no
faster, and as a result we incur a classification error of size m−1, and no
smaller, from not knowing the values ωkj . It is for this reason that, when
developing expansions of classification error, we do not explore the remainder
of size m−1; it is stated simply as O(m−1) on the right-hand side of (3.8).

3.1.3. Other remarks. We conclude our discussion of Theorem 1 with a
number of remarks.

Remark 2 (Definition of µ̂k). The size of the fourth and fifth terms on
the right-hand side of (3.8) is determined by the sizes of ν−1

0 and ν−1
1 , and

those quantities can be made slightly smaller by using a slightly different
definition of µ̂k, at (2.8). In particular in (2.8), on account of the definition
of ĝkj at (2.3), µ̂k is defined as an average of ratios of sums, whereas slightly
better statistical performance is obtained by taking µ̂k to be simply a ratio
of sums:

µ̂k =

∑
j(Ukj2Vkj0 −Ukj1Vkj1)∑

j(Ukj2Ukj0 −U2
kj1)

,

compare (2.3). However, this approach departs from standard practice in
working with functional data, and therefore, since convergence rates do not
alter (only the constant multiples of rates are reduced), we have followed
standard practice in the definition of µ̂k.
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Remark 3 (Gaussian assumption). Of course, if m is sufficiently large
then ĝ is itself approximately Gaussian, and so the assumption that g is a
Gaussian process is reflected particularly well in properties of its estimator.
More generally, our assumption that g is a Gaussian process is made for sim-
plicity, and can be relaxed. For example, generalisations to chi-squared and
other processes, where shape can be described in terms of a small number
of fixed functions (mean and covariance in the Gaussian case), are straight-
forward.

More generally we would require a model which described the properties
of random functions relatively simply. The Gaussian model fills this need
ideally; shape is described by mean and variance functions, on which we have
imposed only smoothness, rather than parametric, conditions. Moreover, in
the Gaussian case all moments of g(x) are finite, for each x (we use this
property repeatedly during our theoretical arguments), and the principal
component scores are independent (this is used frequently during our proof
of Theorem 2).

Remark 4 (Case of regularly spaced design). Theorem 1 continues to
hold if the mkj design variables Xkji are regularly spaced on I for each k

and j. The only change necessary is to replace
∫
I f

−1
X , on the right-hand

side of (3.8), by the square of the length of the interval I .

3.2. Scale-adjusted centroid-based classifier. Recall that scale-adjusted
centroid-based classifier is defined in terms of Sscale(ĝ), at (2.14). A decom-
position similar to that of Theorem 1 can be derived for this classifier, as
we shall prove in Theorem 2 below. For this classifier, it seems necessary
to strengthen (3.7) by imposing conditions on the behaviour of the eigen-
values θkℓ as ℓ increases. However, since our aim in this section is only to
corroborate the conclusions in Section 3.1, drawn there in the case of the
standard centroid-based classifier, then we shall simplify our account by as-
suming that g is finite dimensional, and in particular taking the covariance
expansion at (2.10) to have just q terms:

For k = 0 and 1: (a) the first q eigenvalues in the sequence θk1 ≥
θk2 · · · , arising in the covariance expansion (2.10) of g when the
data come from Πk, are distinct; (b) θkℓ = 0 for ℓ > q; (c) for 1 ≤
ℓ≤ q the eigenfunctions ψkℓ in (2.10) have two Hölder continuous
derivatives on I; (d) Ek(g) is a linear form in ψk1, . . . , ψkq; and (e)
in the definition of Sscale(ĝ), s

2
0 6= s21.

(3.12)

Without (3.12)(a), separate conditions, valid uniformly in j = 1,2, . . . , have
to be imposed on remainders in Taylor expansions of “smoothed” versions
of the eigenvalues θkj , depending on h.



14 R. J. CARROLL, A. DELAIGLE AND P. HALL

The next theorem indicates that the results of Theorem 1 also apply for
the scale-adjusted centroid-based classifier. Its proof is given in the supple-
mentary material [Carroll, Delaigle and Hall (2013)].

Theorem 2. Assume that (3.5), (3.6) and (3.12) hold. Then the error
rate of the scale-adjusted centroid-based classifier, when the data in D are
drawn from Πk, admits the expansion at (3.8), but with different constants,
where the various terms have the properties stated immediately below that
formula.

The diversity of possible signs of ck, ck1 and dk0ν
−1
0 +dk1ν

−1
1 in (3.8), dis-

cussed in Section 3.1.1, is also present in this case. Therefore the conclusions
drawn in that section apply to the scale-adjusted centroid-based classifier.
However, we have not derived explicitly the counterparts of the constants
ck, ck1, dk0 and dk1 that appear in equation (3.8).

The integration effect discussed in Section 3.1.2 is also present here, al-
though we had originally expected that the scale-adjusted centroid classifier
would produce a term of size (mh)−1 in an expansion of error rate. Indeed,
the situation initially seems quite different in the case of the scale-adjusted
version Sscale(ĝ) of S(ĝ), at (2.14), when s

2
0 6= s21. There the quadratic term

in ĝ persists. The reason it still does not produce a term in (mh)−1 is quite
subtle. Define ⊲⊳k to be > or ≤ according as k = 0 or k = 1, respectively.
The probability Pk{Sscale(ĝ) ⊲⊳k 0} can be written as

Pk

{
∞∑

j=1

wj(Zj + Vj)
2 ⊲⊳k W

}
+ negligible terms,

where the Zj ’s are independent N(0,1) variables, conditional on the Vj ’s
and W ; the positive weights wj are nonrandom; and critically, W does not
involve the experimental errors εi in (2.2), from which any term in (mh)−1

would arise. The terms Vj depend on the experimental errors only through
integrals of the error process, and the integration effect at this point largely
removes the impact of the error bandwidth h, with the result that there is
no term of size (mh)−1. However, terms in (ν0h1)

−1 remain; the integration
effect only influences smoothing of the new data, not of the training data.

3.3. Quadratic discriminant. Finally, we show that similar smoothing
effects are present in the case of the quadratic discriminant classifier defined
through the statistic T (ĝ) at (2.15). Recall that, when the data in D come
from Πk, the random function g has covariance function Gk. To derive the
counterpart of Theorem 1 for this classifier, let r, r1, r2 take the values 0 and
1, let 1≤ ℓ, ℓ1, ℓ2 ≤ p, and define the covariances

covk[r1, r2; ℓ1, ℓ2] =

∫

I

∫

I
Gk(x1, x2)ψr1ℓ1(x1)ψr2ℓ2(x2)dx1 dx2,
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the variances vark[r, ℓ] = covk[r, r; ℓ, ℓ], and the correlations

ρk[r1, r2; ℓ1, ℓ2] =
cov[r1, r2; ℓ1, ℓ2]

(vark[r1, ℓ1] vark[r2, ℓ2])1/2
.

Let p ≥ 1, a fixed number, be the number of principal components used
to construct the quadratic discriminant statistic T (ĝ), defined at (2.15).
Theorem 3 below addresses the error rate of the quadratic discriminant
based on T (ĝ), and there we shall assume that:

(a) For k = 0,1 the eigenvalues θk1, . . . , θk,p+1 are distinct; and
(b) among the values taken by ρk[r1, r2; ℓ1, ℓ2] for k, r1, r2 = 0,1 and
1 ≤ ℓ1, ℓ2 ≤ p, the absolute value of ρk[r1, r2; ℓ1, ℓ2] equals 1 only
when r1 = r2 and ℓ1 = ℓ2.

(3.13)

Condition (3.13)(a) ensures that the eigenfunctions ψkℓ are well defined
for k = 0,1 and ℓ = 1, . . . , p; and (3.13)(b) guarantees that the quantities∫
I(g−µr1)ψr1ℓ1 and

∫
I(g−µr2)ψr2ℓ2 , which appear in the definition of T0(g)

at (2.16), cannot be identical, except for a difference in means, unless r1 = r2
and ℓ1 = ℓ2, thereby avoiding degeneracy.

The counterpart of Theorem 1 for the quadratic discriminant classifier is
stated in the next theorem. Its proof is given in the supplementary material
[Carroll, Delaigle and Hall (2013)].

Theorem 3. Assume that (3.5)–(3.7) and (3.13) hold. Then the error
rate of the quadratic discriminant, when the data in D come from Πk, admits
the expansion at (3.8), but with different constants, where the various terms
have the properties stated immediately below that formula.

Again the signs of ck, ck1 and dk0ν
−1
0 + dk1ν

−1
1 , in (3.8), are particularly

diverse, and so the conclusions reached in Section 3.1.1 apply. Likewise, the
integration effect discussed in Section 3.1.2 is also observed. Here, as can be
seen directly from (2.15), the estimator ĝ is integrated, and only the integral
is squared, not ĝ itself. The resulting integration effect eliminates any term
in (mh)−1 from the analogue of the expansion (3.8) in this setting, although
again this influence does not carry over to the training data.

4. Numerical illustrations.

4.1. Simulated data. To illustrate the impact of bandwidth on classifica-
tion performance, we generated data from several instances of model (2.1),
taking, in each case, mkj = 50. Let φσ(x) denote the normal density func-
tion with mean zero and standard deviation σ. We considered the following
cases, each with three different levels of errors, which we refer to as noise
versions 1, 2 and 3:
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(A): gkj(t) = µk(t) + (3t+100)1/2{cos(t/50)}kZkj , where µ0(t) = φ10(t−
5), µ1(t) = µ0(t) + 0.3cos(t/5) + 0.1, Zkj ∼ U [−1/(30− 10k),1/(30 − 10k)],
and εkji ∼N(0,1/(4−2k)2) (noise version 1), εkji ∼N(0,2/(4−2k)2) (noise
version 2) or εkji ∼N(0,4/(4− 2k)2) (noise version 3), and π0 = 1/3, π1 =
2/3. Moreover, Xkji = 2i− 1, for i= 1, . . . ,50.

(B): gkj(t) = µk(t) + (3t + 100)1/2Zkj , where µ0(t) = 30{0.2φ4(t − 5) +
0.1φ4(t − 10) + 0.4φ6(t − 20) + 0.4φ6(t − 35) + 0.6φ7(t − 55) + 0.6φ7(t −
80)}, µ1(t) = µ0(t) + 4/{(t − 50)2 + 10}, Zkj ∼ U [−1/(60 + 15k),1/(60 +

15k)], εkji ∼ {Exp(0.5)−2}/(2+2k) (noise version 1), εkji ∼
√
2{Exp(0.5)−

2}/(2 + 2k) (noise version 2) or εkji ∼ {Exp(0.5)− 2}/(1 + k) (noise version
3), and π0 = 2/5 and π1 = 3/5. Moreover, Xkji was as in (A).

(C): g0j(t) = µ0(t) + (3t+ 100)1/2Z0j , g1j(t) = µ1(t) + (t+ 5)Z1j , where
µ0(t) = 15φ17(t−65) cos(t/7), µ1(t) = µ0(t)+5φ20(t−50), Zkj ∼ U [−1/(50−
10k),1/(50 − 10k)], εkji ∼N(0, (4− k)2/100) (noise version 1), εkji ∼N(0,
(4−k)2/50) (noise version 2), εkji ∼N(0, (4−k)2/25) (noise version 3), and
π0 = 2/3 and π1 = 1/3. Moreover, Xkji was as in (A).

(D)–(F): Same as (A) to (C) but with Xkji = 2i− 1 + Tkji, where Tkji ∼
N(0,0.25).

We chose these examples to illustrate various features of the problems,
namely that the impact of smoothing may differ among classifiers, and that
in some cases, some classifiers perform better with more smoothing and in
other cases, they might perform better with less smoothing.

In each case, for k = 0,1 and for several values of ntr, we generated 100
(resp., ntr) noisy test curves (resp., training curves) from model (2.1), each
of which came with probability πk from Πk. We constructed each classifier
from the training data, and applied it to the test data. To compute ĝ and ĝkj ,
we compared three approaches for selecting the bandwidths: no smoothing
(NS), the standard plug-in (PI) bandwidths hPI and hPI,kj that estimate
the optimal bandwidth for estimation of the regression functions g and gkj ,
which we computed using the dpill function in the R package KernSmooth;
see Ruppert, Sheather and Wand (1995); and the bandwidths γhPI and
γ1hPI,kj, where γ and γ1 (and also the truncation parameter p in the case of
the quadratic discriminant classifier) were chosen to minimise the following
cross-validation (CV) estimator of classification error:

êrr =
π̂0
n0

n0∑

i=1

I{Ĉi0,−i = 1}+ π̂1
n1

n1∑

i=1

I{Ĉi1,−i = 0}

with π̂0 and π̂1 denoting estimators of π0 and π1 (we took π̂k = 1/2), and

Ĉik,−i being the estimator of the class label of the ith training observation
from group k, obtained from the classifier constructed without using this
observation.
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Table 1

Percentage of correctly classified observations for the simulated data of Section 4.1, using
plug-in (PI) regression bandwidths, bandwidths that minimise a crossvalidation (CV)
estimate of classification error, or without smoothing the noisy data (NS). The three

noise versions, in increasing order, are described in cases (A)–(C) in Section 4.1. Here
“Cent” is the centroid classifier (2.13), “Cent sc.” is the scaled centroid classifier (2.14)

and “QDA” is the quadratic discriminant classifier (2.15)

Cent Cent sc. QDA

ntr CV PI NS CV PI NS CV PI NS

Case (A)

Noise version 1 50 82.9 74.1 84.0 91.8 73.2 92.0 95.1 94.1 53.5
Noise version 1 100 84.4 74.9 84.8 92.6 74.1 92.6 97.6 94.8 67.6

Noise version 2 50 77.7 69.6 78.1 94.3 70.4 94.4 91.0 89.3 49.1
Noise version 2 100 79.9 70.7 80.2 95.1 71.2 95.1 94.3 89.7 61.7

Noise version 3 50 71.1 65.6 71.1 97.1 69.0 97.1 85.4 84.3 46.2
Noise version 3 100 73.7 66.8 74.1 97.9 69.4 97.9 89.9 84.1 58.4

Case (B)

Noise version 1 50 63.2 60.1 65.7 96.3 78.7 96.5 77.1 74.3 65.8
Noise version 1 100 65.5 61.5 66.8 96.8 80.0 96.8 81.8 76.3 73.0

Noise version 2 50 61.5 58.6 64.6 96.3 80.6 96.4 76.9 74.1 65.2
Noise version 2 100 62.6 58.7 64.4 96.7 81.3 96.7 81.3 75.0 72.4

Noise version 3 50 60.9 57.6 64.0 96.2 81.6 96.4 77.3 74.2 65.4
Noise version 3 100 60.7 56.8 63.3 96.7 82.3 96.7 81.6 75.2 72.3

Case (C)

Noise version 1 50 61.5 60.8 60.8 88.7 89.2 87.4 84.8 83.7 82.0
Noise version 1 100 59.4 58.4 58.2 90.0 90.3 88.5 86.9 85.7 79.0

Noise version 2 50 61.3 60.2 60.3 87.3 87.9 82.8 81.9 81.2 82.4
Noise version 2 100 58.9 57.9 57.6 88.8 89.0 85.2 84.6 83.1 80.4

Noise version 3 50 61.0 59.7 59.3 85.2 85.4 71.2 80.5 79.9 79.6
Noise version 3 100 58.5 57.4 57.0 87.2 86.6 74.9 82.6 81.1 79.7

For each configuration, we generated B = 200 sets of training and test
samples. In Tables 1 and 2, we report the percentage of correctly classified
test curves, averaged over the B replicates. Depending on the model, the
classifier, and the type of data (test or training), the cross-validation band-
widths were either smaller or larger than the PI regression bandwidths,
illustrating the variety of settings already explained by our theory. See Ta-
ble B.1 in Section B.3 in the supplementary material [Carroll, Delaigle and
Hall (2013)], where we report the value of γ and γ1 averaged over the B
replicates. We can see from the table that in most cases, γ was smaller than
γ1, and both were usually smaller than 1, except in cases (C) and (F).

As expected, we conclude from Tables 1 and 2, depending on the model
and the classifier, the negative impact of smoothing with the standard PI
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Table 2

Percentage of correctly classified observations for the simulated data of Section 4.1, using
plug-in (PI) regression bandwidths, bandwidths that minimise a crossvalidation (CV)
estimate of classification error, or without smoothing the noisy data (NS). The three

noise versions, in increasing order, are described in cases (D)–(F) in Section 4.1. Here
“Cent” is the centroid classifier (2.13), “Cent sc.” is the scaled centroid classifier (2.14)

and “QDA” is the quadratic discriminant classifier (2.15)

Cent Cent sc. QDA

ntr CV PI NS CV PI NS CV PI NS

Case (D)

Noise version 1 50 80.2 69.5 80.6 85.7 68.5 86.3 93.9 92.7 69.2
Noise version 1 100 81.5 70.0 82.0 87.3 69.2 87.3 96.6 93.2 84.3

Noise version 2 50 74.7 65.9 75.6 90.0 65.6 90.3 88.5 86.7 60.9
Noise version 2 100 76.9 66.8 77.3 90.9 66.8 91.0 92.3 86.8 77.6

Noise version 3 50 69.2 62.3 69.6 94.2 65.4 94.4 82.9 80.5 55.6
Noise version 3 100 71.4 63.4 72.0 95.1 66.4 95.1 87.9 80.8 72.7

Case (E)

Noise version 1 50 65.0 61.9 67.3 94.8 79.0 95.0 77.0 73.1 71.2
Noise version 1 100 65.8 62.5 67.6 95.4 79.6 95.4 84.3 69.7 82.8

Noise version 2 50 63.0 60.2 65.4 94.7 80.6 95.0 77.8 74.2 70.5
Noise version 2 100 63.4 59.9 64.9 95.4 81.4 95.5 84.8 69.8 82.4

Noise version 3 50 61.3 59.2 64.3 94.6 81.4 94.9 77.9 74.4 69.8
Noise version 3 100 61.8 58.2 63.1 95.4 82.5 95.5 84.5 71.5 81.8

Case (F)

Noise version 1 50 60.2 59.1 59.4 88.0 88.7 87.9 83.5 82.6 80.4
Noise version 1 100 58.8 57.8 57.7 89.0 89.3 88.5 84.9 83.2 77.3

Noise version 2 50 59.8 58.7 59.0 86.5 87.2 84.6 80.8 80.2 80.0
Noise version 2 100 58.6 57.3 57.2 87.6 87.7 85.8 83.1 81.1 77.0

Noise version 3 50 59.2 58.3 58.2 84.5 84.1 76.7 79.4 78.5 78.9
Noise version 3 100 58.0 56.8 56.5 85.8 84.6 78.5 81.0 79.1 75.7

bandwidth can be quite significant, indeed sometimes reducing the percent-
age of correctly classified data by as much as 10%. In cases (A) and (D),
it is the centroid classifier and its scaled version that are the most affected
by this inappropriate level of smoothing, whereas the quadratic discriminant
classifier is more robust against the level of smoothing. In cases (B) and (E),
the scaled centroid classifier and the quadratic discriminant classifier are the
most affected by inappropriate smoothing. Cases (C) and (F) are more ro-
bust against smoothing; there, all three versions (PI, CV and NS) of the
data result in similar classification performance, although overall the data
smoothed by CV result in slightly improved performance. Depending on the
case, when the noise level increases the impact of inappropriate bandwidth
choice can either increase or decrease.
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Table 3

Percentage of correctly classified observations for the ovarian cancer data, using plug-in
(PI) regression bandwidths or bandwidths that minimise a crossvalidation (CV) estimate
of classification error. Here “Cent” is the centroid classifier (2.13), “Cent sc.” is the

scaled centroid classifier (2.14) and “QDA” is the quadratic discriminant classifier (2.15)

Cent Cent sc. QDA

Data ntr CV PI CV PI CV PI

Original data 50 90.60 80.25 90.05 78.79 93.32 89.69
Original data 100 90.43 80.96 90.00 79.96 98.58 98.86

Noisy version 1 50 88.07 75.19 87.83 74.23 78.03 68.50
Noisy version 1 100 87.58 76.76 88.54 76.27 91.48 90.97

Noisy version 2 50 76.15 66.57 76.65 66.09 56.91 48.54
Noisy version 2 100 81.97 67.55 81.91 67.64 77.62 66.49

4.2. Real data. We illustrate our findings on the ovarian cancer data set
8-7-02, which concerns 253 patients (91 controls and 162 with
ovarian cancer). The data, which were produced to study the effect of
robotic sample handling, are available from http://home.ccr.cancer.gov/

ncifdaproteomics/ppatterns.asp. In this example, the functions Xi rep-
resent proteomic mass spectra and t ∈ [0,20,000] is the mass over charge
ratio, m/z. These raw curves are ideal for illustrating the negative impact
that systematically smoothing by standard methods can have, because in
some ranges of values of t, the spectra have considerable activity, and the
impact of smoothing such data can be striking. We focus on one such ranges,
namely t ∈ [200,500].

To assess the performance of classifiers on this data set, we randomly and
uniformly created B = 200 pairs of (training sample, test sample), where
we took the training sample to be of size ntr and the test sample of size
253 − ntr, for ntr = 50 and ntr = 100. We also generated two more noise
versions of the data, adding to the Ykji’s in both the test and training data,
noise ε′kji ∼N(0,0.04) (noise version 1) or ε′kji ∼N(0,0.25) (noise version 2),

where the ε′kji’s were totally independent.

For each version of the data (original data and noise versions 1 and 2),
and for each pair of test and training sample, we constructed each classifier
from the training sample, and applied the classifier to the test sample using
either plug-in regression bandwidths to construct the estimators ĝ and ĝkj ,
or bandwidths obtained by minimising the CV estimator of classification
error defined in Section 4.1, where we took π̂k = 1/2.

Table 3 reports the percentage, averaged over the B pairs of samples, of
correctly classified observations from the test samples. The table indicates
very clearly that smoothing the data using the plug-in regression bandwidths

http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
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degraded the quality of the two versions of the centroid classifier by about
10%, and a similar phenomenon was observed for the quadratic discriminant
classifier when the training sample was small and when the data were noisy.

APPENDIX: PROOF OF THEOREM 1

A.1. Preliminary results. Define

∆ℓ(x) =
1

mh

m∑

i=1

εi

(
x−Xi

h

)ℓ

K

(
x−Xi

h

)
,

Wℓ(x) =
1

mh

m∑

i=1

[∫ Xi

x
{g′′(t)− g′′(x)}(Xi − t)dt

](
x−Xi

h

)ℓ

K

(
x−Xi

h

)
.

With Uℓ and Vℓ given by (2.4) and (2.5), and using the model at (2.2) and
the exact form of the remainder in Taylor’s theorem, we can write:

Vℓ(x) =
1

mh

m∑

i=1

{g(Xi) + εi}
(
x−Xi

h

)ℓ

K

(
x−Xi

h

)

=
1

mh

m∑

i=1

[
g(x) + (Xi − x)g′(x) +

1

2
(Xi − x)2g′′(x) + εi

]

×
(
x−Xi

h

)ℓ

K

(
x−Xi

h

)
+Wℓ(x)

= g(x)Uℓ(x)− hg′(x)Uℓ+1(x) +
1

2
h2g′′(x)Uℓ+2(x) +∆ℓ(x) +Wℓ(x).

Assuming, without loss of generality, that K is supported on [−1,1],

|Wℓ(x)| ≤ h2
{

sup
t∈I:|t−x|≤h

|g′′(t)− g′′(x)|
} 1

mh

m∑

i=1

K

(
x−Xi

h

)
≤ h2U0(x)Q,

where Q= sups,t∈I:|s−t|≤h |g′′(s)− g′′(t)|. Now,

ĝ =
U2V0 −U1V1
U2U0 −U2

1

= g+
1

2
h2g′′

U2
2 −U1U3

U2U0 −U2
1

+∆+
U2W0 −U1W1

U2U0 −U2
1

,

where ∆= (U2∆0−U1∆1)/(U2U0 −U2
1 ). Therefore, since |Uℓ| ≤ U0 for each

ℓ≥ 0,
∣∣∣∣ĝ −

(
g+

1

2
h2g′′

U2
2 −U1U3

U2U0 −U2
1

+∆

)∣∣∣∣≤
2Qh2U2

0

U2U0 −U2
1

,(A.1)

uniformly on I .
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Similarly, defining Qkj = sups,t∈I:|s−t|≤h |g′′kj(s)− g′′kj(t)|, and

∆kjℓ(x) =
1

mkjh1

mkj∑

i=1

εkji

(
x−Xkji

h1

)ℓ

K

(
x−Xkji

h1

)
,

∆kj =
Ukj2∆kj0 −Ukj1∆kj1

Ukj2Ukj0 −U2
kj1

,

where Ukjℓ is as at (2.6), we have, uniformly on I
∣∣∣∣ĝkj −

(
gkj +

1

2
h21g

′′
kj

U2
kj2 −Ukj1Ukj3

Ukj2Ukj0 −U2
kj1

+∆kj

)∣∣∣∣≤
2Qkjh

2
1U

2
kj0

Ukj2Ukj0 −U2
kj1

.(A.2)

Define

∆̄k =
1

nk

nk∑

j=1

∆kj(A.3)

and recall that κ2 =
∫
u2K(u)du. We shall derive the following result in

Section A.6:

Lemma 1. Under the conditions of Theorem 1, for some C1 > 0, all
C2 > 0 and k = 0,1,

Pk

(
sup
I

∣∣∣∣
U2
2 −U1U3

U2U0 −U2
1

− κ2

∣∣∣∣> n−C1

)
=O(n−C2),

Pk

(
max

j=1,...,nk

sup
I

∣∣∣∣
U2
kj2 −Ukj1Ukj3

Ukj2Ukj0 −U2
kj1

− κ2

∣∣∣∣> n−C1

)
=O(n−C2)

as n→∞, and for some C3 > 0, all C2 > 0 and k = 0,1,

Pk

(
sup
I

U2
0

U2U0 −U2
1

>C3

)
=O(n−C2),

Pk

(
max

j=1,...,nk

sup
I

U2
kj0

Ukj2Ukj0 −U2
kj1

>C3

)
=O(n−C2).

Furthermore, defining Msum =mink=1,2(
∑

jmkj), we have for all C2,C4 > 0,

Pk

{
sup
I

|∆|> nC4(mh)−1/2
}

+ max
k=0,1

Pk

{
sup
I

|∆̄k|>nC4(Msumh)
−1/2

}
(A.4)

=O(n−C2).
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A.2. Initial calculation of errk. Let G1 denote the sigma-field generated
by the random variables introduced in Section 2, and the random functions
gkj , but excluding g. Specifically, G1 is the sigma-field generated by gkj ,
Xkji and εkji for 1≤ i≤mkj, 1≤ j ≤ nk and k = 0,1, and by Xi and εi for
1≤ i≤m. Recall that ⊲⊳k is > or ≤ according as k = 0 or k = 1, respectively,
and recall formula (3.11) for the statistic S(ĝ).

Under the assumption that the new data set D comes from Πk, and con-
ditional on G1, ĝ is a Gaussian process with mean α̂k = Ek(ĝ | G1) and co-

variance function Γ̂k, say. In this notation,

errk ≡Ek[Pk{S(ĝ) ⊲⊳k 0 | G1}] =Ek{Ψk(−β̂k/σ̂k)},(A.5)

where, by (3.11),

β̂k = Ek{S(ĝ) | G1}=
∫

I
(µ̂1 − µ̂0){2α̂k − (µ̂0 + µ̂1)},(A.6)

σ̂2k = var{S(ĝ) | G1}

= 4

∫

I

∫

I
{µ̂1(x1)− µ̂0(x1)}{µ̂1(x2)− µ̂0(x2)}(A.7)

× Γ̂k(x1, x2)dx1 dx2.

The probability on the left-hand side of (A.5) equals the chance that, when
D comes from Πk, the classifier based on S(ĝ) makes an error and assigns
D to the other population.

A.3. Approximations to α̂k, β̂k and σ̂k. In view of (A.1),
∣∣∣∣α̂k −

(
µk +

1

2
h2µ′′k

U2
2 −U1U3

U2U0 −U2
1

+∆

)∣∣∣∣≤
2Ek(Q)h2U2

0

U2U0 −U2
1

.(A.8)

Noting that, for random variables A1, A2, B1 and B2, |cov(A1 +A2,B1 +
B2)− cov(A1,A2)| ≤ |cov(B1,B2)|+ |cov(A1,B2)|+ |cov(B1,A2)| where the
covariances are interpreted conditionally on G1, we deduce from (A.1) that
for a constant C4 > 0,

sup
x1,x2∈I

∣∣∣∣Γ̂k(x1, x2)−
{
Gk(x1, x2) +

1

2
h2G

(0,2)
k (x1, x2)

U2
2 −U1U3

U2U0 −U2
1

(x2)

+
1

2
h2G

(2,0)
k (x1, x2)

U2
2 −U1U3

U2U0 −U2
1

(x1)

}∣∣∣∣(A.9)

≤C4h
2{h2 +Ek(Q+Q2)} sup

I

(
1 +

U2
0

U2U0 −U2
1

)2

,
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where we define G
(j1,j2)
k (x1, x2) = ∂j1+j2Gk(x1, x2)/∂x

j1
1 ∂x

j2
2 . (Recall that

Gk denotes the covariance of the Gaussian process g when the data D are
drawn from Πk.)

With ḡk defined as at (3.1), and defining ∆̄k as at (A.3), we have, in view
of (A.2), Lemma 1 and (3.6)(b), the result

Pk

{
sup
I

∣∣∣∣µ̂k −
(
ḡk +

1

2
h21κ2ḡ

′′
k + ∆̄k

)∣∣∣∣>n−C1h21

}
=O(n−C2)(A.10)

for some C1 > 0 and all C2 > 0. Using Rosenthal’s inequality, it can be
proved from (3.6) and (3.7)(c) that, for some C1 > 0 and all C2 > 0,

Pk

(
sup
I
|ḡ′′k − µ′′k|> n−C1

)
=O(n−C2).(A.11)

Together, (A.10) and (A.11) imply that

Pk

{
sup
I

∣∣∣∣µ̂k −
(
ḡk +

1

2
h21κ2µ

′′
k + ∆̄k

)∣∣∣∣>n−C1h21

}
=O(n−C2).(A.12)

Define H2 = h2 + h21,

βk =

∫

I

{
ḡ1 − ḡ0 +

1

2
h21κ2(µ

′′
1 − µ′′0) + ∆̄1 − ∆̄0

}

×
{
2µk − (ḡ0 + ḡ1) + h2κ2µ

′′
k

− 1

2
h21κ2(µ

′′
0 + µ′′1) + 2∆− (∆̄0 + ∆̄1)

}
,(A.13)

σ̃2k = 4

∫

I

∫

I

{
ḡ1 − ḡ0 +

1

2
h21κ2(µ

′′
1 − µ′′0) + ∆̄0 − ∆̄1

}
(x1)

×
{
ḡ1 − ḡ0 +

1

2
h21κ2(µ

′′
1 − µ′′0) + ∆̄0 − ∆̄1

}
(x2)

×
[
Gk(x1, x2) +

1

2
h2κ2{G(2,0)

k (x1, x2) +G
(0,2)
k (x1, x2)}

]
.

Combining Lemma 1, (A.5)–(A.9) and (A.12), we deduce that, for some
C1 > 0 and all C2 > 0,

Pk(|β̂k − βk|>n−C1H2) =O(n−C2),
(A.14)

Pk(|σ̂2k − σ̃2k|>n−C1H2) =O(n−C2).

Observe from (A.13) that βk = βk0 + bk1 + βk1 + βk2 + ∆̄2, where βk0 is as
at (3.2),

bk1 = κ2

∫

I
(µ1 − µ0)(h

2µ′′k − h21µ
′′
1−k),(A.15)
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βk1 =

∫

I
(ḡ1 − ḡ0){2∆− (∆̄0 + ∆̄1)}

+

∫

I
{2µk − (ḡ0 + ḡ1)}(∆̄1 − ∆̄0),

βk2 =

∫

I
{2∆− (∆̄0 + ∆̄1)}(∆̄1 − ∆̄0)

and ∆̄2 = βk − (βk0+ bk1+βk1+βk2). Using (A.4) it can be shown that, for
some C1 > 0 and all C2 > 0, and when ℓ= 2,

Pk(|∆̄ℓ|>n−C1H2) =O(n−C2).(A.16)

Hence, noting the first result in (A.14), we have:

Pk{|β̂k − (βk0 + bk1 + βk1 + βk2)|> n−C1H2}=O(n−C2).(A.17)

Recall the definitions of σ2k and τ2k at (3.3) and (3.4), and put

σk0 = 2h2κ2

∫

I

∫

I
(ḡ1 − ḡ0)(x1)(ḡ1 − ḡ0)(x2)

(A.18)
× {G(2,0)

k (x1, x2) +G
(0,2)
k (x1, x2)}dx1 dx2,

σk1 = 4h21κ2

∫

I

∫

I
(ḡ1 − ḡ0)(x1)(µ1 − µ0)

′′(x2)Gk(x1, x2)dx1 dx2(A.19)

and ∆̄3 = σ̃2k − (σ2k + σk0 + σk1). Thus, ∆̄3 is the term in ∆̄0 and ∆̄1 that
arises when σ̃2k is expanded. Using (A.4) it can be proved that (A.16) holds
when ℓ= 3. Moreover, σ̂2k can be written as

σ̂2k = σ2k + σk0 + σk1 + ∆̄3 + ∆̄4,(A.20)

where, in view of the second part of (A.14), (A.16) holds in the case ℓ= 4
and for some C1 > 0 and all C2 > 0.

Define τkℓ to be equal to σkℓ, at (A.18) and (A.19), when ḡ0 and ḡ1 on
the respective right-hand sides are replaced by µ0 and µ1. Then for k = 0,1
and ℓ= 0,1, noting property (3.7)(c) on the rates of increase of n0 and n1,
it can be shown that for some C1 > 0,

Pk(|σkℓ − τkℓ|>n−C1h2ℓ) =O(n−C2)(A.21)

for all C2 > 0, where we define h0 = h. Therefore, if C1 > 0 is sufficiently
small,

max
k=0,1

max
ℓ=0,1

Pk(|σkℓ|> n−C1) =O(n−C2)(A.22)

for all C2 > 0.



BANDWIDTH CHOICE IN CLASSIFICATION 25

A.4. Approximation to σ̂−1

k
. In the notation at (A.20),

1

σ̂k
=

1

τk

(
1 +

σ2k − τ2k
τ2k

+
σk0 + σk1 + ∆̄3 + ∆̄4

τ2k

)−1/2

= sk(∞),

where, for 0≤ r ≤∞,

sk(r) =
1

τk

r∑

j=0

j∑

ℓ=0

(
−1

2
j

)(
j
ℓ

)(
σ2k − τ2k
τ2k

)j−ℓ(σk0 + σk1 + ∆̄3 + ∆̄4

τ2k

)ℓ

.

We claim that the infinite series defined by sk(∞) converges with probability
1 − O(n−C2) for all C2 > 0. To appreciate why, note that, by (3.6) and
(3.7)(c), there exists C1 > 0 such that

Pk(|σ2k − τ2k |> n−C1) =O(n−C2)

for all C2 > 0. Combining this property, (A.16) for ℓ= 3 and 4, and (A.22),
we deduce that, for some C1 > 0 and all C2 > 0,

Pk

(∣∣∣∣
σ2k − τ2k
τ2k

∣∣∣∣+
∣∣∣∣
σk0 + σk1 + ∆̄3 + ∆̄4

τ2k

∣∣∣∣≤ n−C1

)
= 1−O(n−C2).

Therefore, if C3 > 0 is given then r0 = r0(C3)≥ 1 can be chosen so large that,
whenever r0 ≤ r ≤∞, Pk{|σ̂−1

k − sk(r)| > n−C3} = O(n−C2) for all C2 > 0.
Using this property and (A.16), again for ℓ = 3 and 4; and employing too
(A.21); we see that for some C1 > 0 and all C2 > 0, if r0 is chosen sufficiently
large,

Pk{|σ̂−1
k − tk(r)|>n−C1H2}=O(n−C2)(A.23)

for r ≥ r0, where

tk(r) =
1

τk

r∑

j=0

min(j,1)∑

ℓ=0

(
−1

2
j

)(
j
ℓ

)(
σ2k − τ2k
τ2k

)j−ℓ(τk0 + τk1
τ2k

)ℓ

.(A.24)

A.5. Approximation to Ek{Ψk(−β̂k/σ̂k)}. Let C1 > 0 and let ℓ0 ≥ 0
be an integer. With Ukjℓ defined as at (2.6), let E denote the event

E = E(C1, ℓ0) =
{

max
1≤ℓ≤ℓ0

max
j=1,...,nk

sup
x∈I

|Ukjℓ(x)− κℓfX(x)| ≤ n−C1

}
,

where κℓ =
∫
uℓK(u)du and hence vanishes for odd ℓ, since by (3.7)(b), K is

symmetric. It will be proved in Section A.6 that, for some C1 > 0 and each
ℓ0 ≥ 0,

Pk{E(C1, ℓ0)}= 1−O(n−C2) for all C2 > 0.(A.25)
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If E(C1, ℓ0) holds for an ℓ0 ≥ 2 then, if 0<C ′
1 <C1, there exists a nonrandom

integer n0 ≥ 1 such that the event E1 = E1(C ′
1), defined by

E1 =
{

max
j=1,...,nk

sup
x∈I

|Ukj2(x)Ukj0(x)−Ukj1(x)
2 − κ2fX(x)2| ≤ n−C′

1

}
(A.26)

holds for all n≥ n0.
Let I = I(E) denote the indicator of E . In view of (A.25),

Ek{Ψk(−β̂k/σ̂k)}=Ek{IΨk(−β̂k/σ̂k)}+O(n−C2)(A.27)

for all C2 > 0, and so to approximate the term on the left-hand side of (A.27)
we may develop an approximation to the first term on the right-hand side.

Let G2 denote the sigma-field generated by the random variables Xi for
1≤ i≤m, and by Xkji and the functions gkji for 1≤ i≤mkj , 1≤ j ≤ nk and
k = 0,1 (i.e., generated by everything except g and the experimental errors
εi and εkji). The quantities I , tk(r) at (A.24), βk0 at (3.2), and bk1 at (A.15)
are all G2-measurable. Therefore, using (A.17) and (A.23), and noting that
Ψk is an analytic function with all derivatives uniformly bounded, we obtain

Ek{IΨk(−β̂k/σ̂k)}
=Ek(Ek[IΨk{−(βk0 + bk1 + βk1 + βk2)tk(r)} | G2]) + o(H2)

=Ek[IΨk{−βk0tk(r)}]− bk1τ
−1
k Ek[IΨ

′
k{−βk0tk(r)}](A.28)

− τ−1
k Ek[Ek(βk2 | G2)IΨ

′
k{−βk0tk(r)}]

+ 1
2τ

−2
k Ek[Ek(β

2
k1 | G2)IΨ

′′
k{−βk0tk(r)}]

+O{(mh)−2 + (Msumh1)
−2}+ o(H2).(A.29)

Here we have used the properties Ek(βk1 | G2) = 0, Ek|tk(r)−τ−1
k |=O(n−C)

for some C > 0,

Ek[Ek(β
ℓ2
kℓ1

| G2)IΨ
(ℓ2)
k {−βk0tk(r)}] =O{(mh)−2 + (Msumh1)

−2}
for ℓ2 ≥ 3 if ℓ1 = 1, and for ℓ2 ≥ 2 if ℓ1 = 2, and

|Ek[Ek(βk1βk2 | G2)IΨ
′′
k{−βk0tk(r)}]|=O{(mh)−2 + (Msumh1)

−2}.
Further, we have used the fact that the event E1, defined at (A.26), obtains
whenever I 6= 0.

In addition,

1

4
Ek[Ek(β

2
k1 | G2)I] = Ek

{
I

∫

I
(ḡ0 − ḡ1)∆

}2

+Ek

{
I

∫

I
(ḡ0 − µk)∆̄0

}2

+Ek

{
I

∫

I
(ḡ1 − µk)∆̄1

}2

(A.30)

=O(m−1),
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that

Ek[Ek(βk2 | G2)IΨ
′
k{−βk0tk(r)}]

= (−1)k+1φ(bk0/τk)

∫

I
Ek[I{Ek(∆̄

2
0 | G2)−Ek(∆̄

2
1 | G2)}]

(A.31)
+ o{(ν0h1)−1}

=
κ

h1
(σ2ε0ν

−1
0 − σ2ε1ν

−1
1 )(−1)k+1φ(bk0/τk)

∫

I
f−1
X + o{(ν0h1)−1}

and that

bk1τ
−1
k Ek[IΨ

′
k{−βk0tk(r)}] = bk1τ

−1
k (−1)k+1φ(bk0/τk) + o(H2),(A.32)

where bk0 and bk1 are as at (3.2) and (A.15), φ is the standard normal
density, and we have used the fact that Ψ′

k = (−1)k+1φ. Combining (A.25)
and (A.27)–(A.32), and taking r sufficiently large (but fixed), we deduce
that

Ek{Ψk(−β̂k/σ̂k)}= Ek[Ψk{−βk0/σk}]− bk1τ
−1
k (−1)k+1φ(bk0/τk)

− κ

τkh1
(σ2ε0ν

−1
0 − σ2ε1ν

−1
1 )(−1)k+1φ(bk0/τk)

∫

I
f−1
X(A.33)

+O{m−1 + (mh)−2}+ o{H2 + (ν0h1)
−1}.

Result (3.8) follows from (A.5) and (A.33).

A.6. Proof of Lemma 1 and (A.25). The results in Lemma 1, with the
exception of (A.4); and also result (A.25); will follow if we show that for
each ℓ≥ 1, some C1 > 0 and all C2 > 0,

Pk

{
sup
x∈I

|Uℓ(x)− κℓfX(x)|> n−C1

}
=O(n−C2),(A.34)

Pk

{
max

j=1,...,nk

sup
x∈I

|Ukjℓ(x)− κℓfX(x)|> n−C1

}
=O(n−C2).(A.35)

We shall derive (A.35); a proof of (A.34) is similar.
Markov’s inequality can be used to prove that

max
j=1,...,nk

sup
x∈I

Pk{|Ukjℓ(x)− κℓfX(x)|>n−C1}=O(n−C2).(A.36)

It follows from (3.7)(c) that each nk is increasing no faster than polynomially
in n, and therefore, if we confine attention to x in a subset In, say, of I that
contains only O(nC) points for some C > 0, we can place the maximum and
supremum inside the probability statement at (A.36), provided that I is
replaced by In: for some C1 > 0 and all C2 > 0,

Pk

{
max

j=1,...,nk

sup
x∈In

|Ukjℓ(x)− κℓfX(x)|>n−C1

}
=O(n−C2).(A.37)
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The assumption, in (3.7)(b), that K is compactly supported and Hölder
continuous, and the implication, in (3.5)(c), that fX is also Hölder continu-
ous, enable (A.35) to be derived directly from (A.37) by taking In to be a
sufficiently fine grid in I .

A proof of (A.4) in Lemma 1 is similar. To illustrate the argument, we
derive the following result part of (A.4): for all C2,C4 > 0,

Pk

{
sup
x∈I

|∆(x)|>nC4(mh)−1/2
}
=O(n−C2).(A.38)

Using Markov’s and Rosenthal’s inequalities, we first obtain the result when
the supremum is outside the probability statement:

sup
x∈I

Pk{|∆(x)|> nC4(mh)−1/2}=O(n−C2).

Taking In to contain only O(nC) points, for any fixed C > 0, we deduce that

Pk

{
sup
x∈In

|∆(x)|> nC4(mh)−1/2
}
=O(n−C2),

and taking In to be a sufficiently fine grid in I we obtain (A.38).

SUPPLEMENTARY MATERIAL

Supplement to “Unexpected properties of bandwidth choice when smooth-
ing discrete data for constructing a functional data classifier”
(DOI: 10.1214/13-AOS1158SUPP; .pdf). The supplementary file contains
the proof of Theorems 2 and 3, as well as additional simulation results.
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