1,754 research outputs found

    Translational Functional Imaging in Surgery Enabled by Deep Learning

    Get PDF
    Many clinical applications currently rely on several imaging modalities such as Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), Computed Tomography (CT), etc. All such modalities provide valuable patient data to the clinical staff to aid clinical decision-making and patient care. Despite the undeniable success of such modalities, most of them are limited to preoperative scans and focus on morphology analysis, e.g. tumor segmentation, radiation treatment planning, anomaly detection, etc. Even though the assessment of different functional properties such as perfusion is crucial in many surgical procedures, it remains highly challenging via simple visual inspection. Functional imaging techniques such as Spectral Imaging (SI) link the unique optical properties of different tissue types with metabolism changes, blood flow, chemical composition, etc. As such, SI is capable of providing much richer information that can improve patient treatment and care. In particular, perfusion assessment with functional imaging has become more relevant due to its involvement in the treatment and development of several diseases such as cardiovascular diseases. Current clinical practice relies on Indocyanine Green (ICG) injection to assess perfusion. Unfortunately, this method can only be used once per surgery and has been shown to trigger deadly complications in some patients (e.g. anaphylactic shock). This thesis addressed common roadblocks in the path to translating optical functional imaging modalities to clinical practice. The main challenges that were tackled are related to a) the slow recording and processing speed that SI devices suffer from, b) the errors introduced in functional parameter estimations under changing illumination conditions, c) the lack of medical data, and d) the high tissue inter-patient heterogeneity that is commonly overlooked. This framework follows a natural path to translation that starts with hardware optimization. To overcome the limitation that the lack of labeled clinical data and current slow SI devices impose, a domain- and task-specific band selection component was introduced. The implementation of such component resulted in a reduction of the amount of data needed to monitor perfusion. Moreover, this method leverages large amounts of synthetic data, which paired with unlabeled in vivo data is capable of generating highly accurate simulations of a wide range of domains. This approach was validated in vivo in a head and neck rat model, and showed higher oxygenation contrast between normal and cancerous tissue, in comparison to a baseline using all available bands. The need for translation to open surgical procedures was met by the implementation of an automatic light source estimation component. This method extracts specular reflections from low exposure spectral images, and processes them to obtain an estimate of the light source spectrum that generated such reflections. The benefits of light source estimation were demonstrated in silico, in ex vivo pig liver, and in vivo human lips, where the oxygenation estimation error was reduced when utilizing the correct light source estimated with this method. These experiments also showed that the performance of the approach proposed in this thesis surpass the performance of other baseline approaches. Video-rate functional property estimation was achieved by two main components: a regression and an Out-of-Distribution (OoD) component. At the core of both components is a compact SI camera that is paired with state-of-the-art deep learning models to achieve real time functional estimations. The first of such components features a deep learning model based on a Convolutional Neural Network (CNN) architecture that was trained on highly accurate physics-based simulations of light-tissue interactions. By doing this, the challenge of lack of in vivo labeled data was overcome. This approach was validated in the task of perfusion monitoring in pig brain and in a clinical study involving human skin. It was shown that this approach is capable of monitoring subtle perfusion changes in human skin in an arm clamping experiment. Even more, this approach was capable of monitoring Spreading Depolarizations (SDs) (deoxygenation waves) in the surface of a pig brain. Even though this method is well suited for perfusion monitoring in domains that are well represented with the physics-based simulations on which it was trained, its performance cannot be guaranteed for outlier domains. To handle outlier domains, the task of ischemia monitoring was rephrased as an OoD detection task. This new functional estimation component comprises an ensemble of Invertible Neural Networks (INNs) that only requires perfused tissue data from individual patients to detect ischemic tissue as outliers. The first ever clinical study involving a video-rate capable SI camera in laparoscopic partial nephrectomy was designed to validate this approach. Such study revealed particularly high inter-patient tissue heterogeneity under the presence of pathologies (cancer). Moreover, it demonstrated that this personalized approach is now capable of monitoring ischemia at video-rate with SI during laparoscopic surgery. In conclusion, this thesis addressed challenges related to slow image recording and processing during surgery. It also proposed a method for light source estimation to facilitate translation to open surgical procedures. Moreover, the methodology proposed in this thesis was validated in a wide range of domains: in silico, rat head and neck, pig liver and brain, and human skin and kidney. In particular, the first clinical trial with spectral imaging in minimally invasive surgery demonstrated that video-rate ischemia monitoring is now possible with deep learning

    Principal variable selection to explain grain yield variation in winter wheat from features extracted from UAV imagery

    Get PDF
    Background: Automated phenotyping technologies are continually advancing the breeding process. However, collecting various secondary traits throughout the growing season and processing massive amounts of data still take great efforts and time. Selecting a minimum number of secondary traits that have the maximum predictive power has the potential to reduce phenotyping efforts. The objective of this study was to select principal features extracted from UAV imagery and critical growth stages that contributed the most in explaining winter wheat grain yield. Five dates of multispectral images and seven dates of RGB images were collected by a UAV system during the spring growing season in 2018. Two classes of features (variables), totaling to 172 variables, were extracted for each plot from the vegetation index and plant height maps, including pixel statistics and dynamic growth rates. A parametric algorithm, LASSO regression (the least angle and shrinkage selection operator), and a non-parametric algorithm, random forest, were applied for variable selection. The regression coefficients estimated by LASSO and the permutation importance scores provided by random forest were used to determine the ten most important variables influencing grain yield from each algorithm. Results: Both selection algorithms assigned the highest importance score to the variables related with plant height around the grain filling stage. Some vegetation indices related variables were also selected by the algorithms mainly at earlier to mid growth stages and during the senescence. Compared with the yield prediction using all 172 variables derived from measured phenotypes, using the selected variables performed comparable or even better. We also noticed that the prediction accuracy on the adapted NE lines (r = 0.58–0.81) was higher than the other lines (r = 0.21–0.59) included in this study with different genetic backgrounds. Conclusions: With the ultra-high resolution plot imagery obtained by the UAS-based phenotyping we are now able to derive more features, such as the variation of plant height or vegetation indices within a plot other than just an averaged number, that are potentially very useful for the breeding purpose. However, too many features or variables can be derived in this way. The promising results from this study suggests that the selected set from those variables can have comparable prediction accuracies on the grain yield prediction than the full set of them but possibly resulting in a better allocation of efforts and resources on phenotypic data collection and processing

    Crop Classification and LAI Estimation Using Original and Resolution-Reduced Images from Two Consumer-Grade Cameras

    Get PDF
    Consumer-grade cameras are being increasingly used for remote sensing applications in recent years. However, the performance of this type of cameras has not been systematically tested and well documented in the literature. The objective of this research was to evaluate the performance of original and resolution-reduced images taken from two consumer-grade cameras, a RGB camera and a modified near-infrared (NIR) camera, for crop identification and leaf area index (LAI) estimation. Airborne RGB and NIR images taken over a 6.5-square-km cropping area were mosaicked and aligned to create a four-band mosaic with a spatial resolution of 0.4 m. The spatial resolution of the mosaic was then reduced to 1, 2, 4, 10, 15 and 30 m for comparison. Six supervised classifiers were applied to the RGB images and the four-band images for crop identification, and 10 vegetation indices (VIs) derived from the images were related to ground-measured LAI. Accuracy assessment showed that maximum likelihood applied to the 0.4-m images achieved an overall accuracy of 83.3% for the RGB image and 90.4% for the four-band image. Regression analysis showed that the 10 VIs explained 58.7% to 83.1% of the variability in LAI. Moreover, spatial resolutions at 0.4, 1, 2 and 4 m achieved better classification results for both crop identification and LAI prediction than the coarser spatial resolutions at 10, 15 and 30 m. The results from this study indicate that imagery from consumer-grade cameras can be a useful data source for crop identification and canopy cover estimation

    Just-in-time Pastureland Trait Estimation for Silage Optimization, under Limited Data Constraints

    Get PDF
    To ensure that pasture-based farming meets production and environmental targets for a growing population under increasing resource constraints, producers need to know pastureland traits. Current proximal pastureland trait prediction methods largely rely on vegetation indices to determine biomass and moisture content. The development of new techniques relies on the challenging task of collecting labelled pastureland data, leading to small datasets. Classical computer vision has already been applied to weed identification and recognition of fruit blemishes using morphological features, but machine learning algorithms can parameterise models without the provision of explicit features, and deep learning can extract even more abstract knowledge although typically this is assumed to be based around very large datasets. This work hypothesises that through the advantages of state-of-the-art deep learning systems, pastureland crop traits can be accurately assessed in a just-in-time fashion, based on data retrieved from an inexpensive sensor platform, under the constraint of limited amounts of labelled data. However the challenges to achieve this overall goal are great, and for applications such as just-in-time yield and moisture estimation for farm-machinery, this work must bring together systems development, knowledge of good pastureland practice, and also techniques for handling low-volume datasets in a machine learning context. Given these challenges, this thesis makes a number of contributions. The first of these is a comprehensive literature review, relating pastureland traits to ruminant nutrient requirements and exploring trait estimation methods, from contact to remote sensing methods, including details of vegetation indices and the sensors and techniques required to use them. The second major contribution is a high-level specification of a platform for collecting and labelling pastureland data. This includes the collection of four-channel Blue, Green, Red and NIR (VISNIR) images, narrowband data, height and temperature differential, using inexpensive proximal sensors and provides a basis for holistic data analysis. Physical data platforms built around this specification were created to collect and label pastureland data, involving computer scientists, agricultural, mechanical and electronic engineers, and biologists from academia and industry, working with farmers. Using the developed platform and a set of protocols for data collection, a further contribution of this work was the collection of a multi-sensor multimodal dataset for pastureland properties. This was made up of four-channel image data, height data, thermal data, Global Positioning System (GPS) and hyperspectral data, and is available and labelled with biomass (Kg/Ha) and percentage dry matter, ready for use in deep learning. However, the most notable contribution of this work was a systematic investigation of various machine learning methods applied to the collected data in order to maximise model performance under the constraints indicated above. The initial set of models focused on collected hyperspectral datasets. However, due to their relative complexity in real-time deployment, the focus was instead on models that could best leverage image data. The main body of these models centred on image processing methods and, in particular, the use of the so-called Inception Resnet and MobileNet models to predict fresh biomass and percentage dry matter, enhancing performance using data fusion, transfer learning and multi-task learning. Images were subdivided to augment the dataset, using two different patch sizes, resulting in around 10,000 small patches of size 156 x 156 pixels and around 5,000 large patches of size 240 x 240 pixels. Five-fold cross validation was used in all analysis. Prediction accuracy was compared to older mechanisms, albeit using hyperspectral data collected, with no provision made for lighting, humidity or temperature. Hyperspectral labelled data did not produce accurate results when used to calculate Normalized Difference Vegetation Index (NDVI), or to train a neural network (NN), a 1D Convolutional Neural Network (CNN) or Long Short Term Memory (LSTM) models. Potential reasons for this are discussed, including issues around the use of highly sensitive devices in uncontrolled environments. The most accurate prediction came from a multi-modal hybrid model that concatenated output from an Inception ResNet based model, run on RGB data with ImageNet pre-trained RGB weights, output from a residual network trained on NIR data, and LiDAR height data, before fully connected layers, using the small patch dataset with a minimum validation MAPE of 28.23% for fresh biomass and 11.43% for dryness. However, a very similar prediction accuracy resulted from a model that omitted NIR data, thus requiring fewer sensors and training resources, making it more sustainable. Although NIR and temperature differential data were collected and used for analysis, neither improved prediction accuracy, with the Inception ResNet model’s minimum validation MAPE rising to 39.42% when NIR data was added. When both NIR data and temperature differential were added to a multi-task learning Inception ResNet model, it yielded a minimum validation MAPE of 33.32%. As more labelled data are collected, the models can be further trained, enabling sensors on mowers to collect data and give timely trait information to farmers. This technology is also transferable to other crops. Overall, this work should provide a valuable contribution to the smart agriculture research space

    Hyperspectral Imaging from Ground Based Mobile Platforms and Applications in Precision Agriculture

    Get PDF
    This thesis focuses on the use of line scanning hyperspectral sensors on mobile ground based platforms and applying them to agricultural applications. First this work deals with the geometric and radiometric calibration and correction of acquired hyperspectral data. When operating at low altitudes, changing lighting conditions are common and inevitable, complicating the retrieval of a surface's reflectance, which is solely a function of its physical structure and chemical composition. Therefore, this thesis contributes the evaluation of an approach to compensate for changes in illumination and obtain reflectance that is less labour intensive than traditional empirical methods. Convenient field protocols are produced that only require a representative set of illumination and reflectance spectral samples. In addition, a method for determining a line scanning camera's rigid 6 degree of freedom (DOF) offset and uncertainty with respect to a navigation system is developed, enabling accurate georegistration and sensor fusion. The thesis then applies the data captured from the platform to two different agricultural applications. The first is a self-supervised weed detection framework that allows training of a per-pixel classifier using hyperspectral data without manual labelling. The experiments support the effectiveness of the framework, rivalling classifiers trained on hand labelled training data. Then the thesis demonstrates the mapping of mango maturity using hyperspectral data on an orchard wide scale using efficient image scanning techniques, which is a world first result. A novel classification, regression and mapping pipeline is proposed to generate per tree mango maturity averages. The results confirm that maturity prediction in mango orchards is possible in natural daylight using a hyperspectral camera, despite complex micro-illumination-climates under the canopy

    Learning to Recover Spectral Reflectance from RGB Images

    Full text link
    This paper tackles spectral reflectance recovery (SRR) from RGB images. Since capturing ground-truth spectral reflectance and camera spectral sensitivity are challenging and costly, most existing approaches are trained on synthetic images and utilize the same parameters for all unseen testing images, which are suboptimal especially when the trained models are tested on real images because they never exploit the internal information of the testing images. To address this issue, we adopt a self-supervised meta-auxiliary learning (MAXL) strategy that fine-tunes the well-trained network parameters with each testing image to combine external with internal information. To the best of our knowledge, this is the first work that successfully adapts the MAXL strategy to this problem. Instead of relying on naive end-to-end training, we also propose a novel architecture that integrates the physical relationship between the spectral reflectance and the corresponding RGB images into the network based on our mathematical analysis. Besides, since the spectral reflectance of a scene is independent to its illumination while the corresponding RGB images are not, we recover the spectral reflectance of a scene from its RGB images captured under multiple illuminations to further reduce the unknown. Qualitative and quantitative evaluations demonstrate the effectiveness of our proposed network and of the MAXL. Our code and data are available at https://github.com/Dong-Huo/SRR-MAXL

    Hyperspectral Imaging for Fine to Medium Scale Applications in Environmental Sciences

    Get PDF
    The aim of the Special Issue “Hyperspectral Imaging for Fine to Medium Scale Applications in Environmental Sciences” was to present a selection of innovative studies using hyperspectral imaging (HSI) in different thematic fields. This intention reflects the technical developments in the last three decades, which have brought the capacity of HSI to provide spectrally, spatially and temporally detailed data, favoured by e.g., hyperspectral snapshot technologies, miniaturized hyperspectral sensors and hyperspectral microscopy imaging. The present book comprises a suite of papers in various fields of environmental sciences—geology/mineral exploration, digital soil mapping, mapping and characterization of vegetation, and sensing of water bodies (including under-ice and underwater applications). In addition, there are two rather methodically/technically-oriented contributions dealing with the optimized processing of UAV data and on the design and test of a multi-channel optical receiver for ground-based applications. All in all, this compilation documents that HSI is a multi-faceted research topic and will remain so in the future

    Data-Driven Artificial Intelligence for Calibration of Hyperspectral Big Data

    Get PDF
    Near-earth hyperspectral big data present both huge opportunities and challenges for spurring developments in agriculture and high-throughput plant phenotyping and breeding. In this article, we present data-driven approaches to address the calibration challenges for utilizing near-earth hyperspectral data for agriculture. A data-driven, fully automated calibration workflow that includes a suite of robust algorithms for radiometric calibration, bidirectional reflectance distribution function (BRDF) correction and reflectance normalization, soil and shadow masking, and image quality assessments was developed. An empirical method that utilizes predetermined models between camera photon counts (digital numbers) and downwelling irradiance measurements for each spectral band was established to perform radiometric calibration. A kernel-driven semiempirical BRDF correction method based on the Ross Thick-Li Sparse (RTLS) model was used to normalize the data for both changes in solar elevation and sensor view angle differences attributed to pixel location within the field of view. Following rigorous radiometric and BRDF corrections, novel rule-based methods were developed to conduct automatic soil removal; and a newly proposed approach was used for image quality assessment; additionally, shadow masking and plot-level feature extraction were carried out. Our results show that the automated calibration, processing, storage, and analysis pipeline developed in this work can effectively handle massive amounts of hyperspectral data and address the urgent challenges related to the production of sustainable bioenergy and food crops, targeting methods to accelerate plant breeding for improving yield and biomass traits

    Learning representations in the hyperspectral domain in aerial imagery

    Get PDF
    We establish two new datasets with baselines and network architectures for the task of hyperspectral image analysis. The first dataset, AeroRIT, is a moving camera static scene captured from a flight and contains per pixel labeling across five categories for the task of semantic segmentation. The second dataset, RooftopHSI, helps design and interpret learnt features on hyperspectral object detection on scenes captured from an university rooftop. This dataset accounts for static camera, moving scene hyperspectral imagery. We further broaden the scope of our understanding of neural networks with the development of two novel algorithms - S4AL and S4AL+. We develop these frameworks on natural (color) imagery, by combining semi-supervised learning and active learning, and display promising results for learning with limited amount of labeled data, which can be extended to hyperspectral imagery. In this dissertation, we curated two new datasets for hyperspectral image analysis, significantly larger than existing datasets and broader in terms of categories for classification. We then adapt existing neural network architectures to function on the increased channel information, in a smart manner, to leverage all hyperspectral information. We also develop novel active learning algorithms on natural (color) imagery, and discuss the hope for expanding their functionality to hyperspectral imagery
    • …
    corecore