3,784 research outputs found

    Image Clustering and Classification Technique: A Review

    Get PDF
    Image classification is an important tool for extracting information from digital images. The aim of this paper is to summarize information about few image classification techniques. The paper also elaborates different categories of image classification techniques. The image classification techniques considered in this paper are Parallelpiped Technique, Minimum Distance Technique, Maximum Likelihood (ML) Technique, Artificial Neural Networks (ANN) and Support Vector Machine (SVM)

    Feature Selection Based on Hybridization of Genetic Algorithm and Particle Swarm Optimization

    Get PDF
    A new feature selection approach that is based on the integration of a genetic algorithm and particle swarm optimization is proposed. The overall accuracy of a support vector machine classifier on validation samples is used as a fitness value. The new approach is carried out on the well-known Indian Pines hyperspectral data set. Results confirm that the new approach is able to automatically select the most informative features in terms of classification accuracy within an acceptable CPU processing time without requiring the number of desired features to be set a priori by users. Furthermore, the usefulness of the proposed method is also tested for road detection. Results confirm that the proposed method is capable of discriminating between road and background pixels and performs better than the other approaches used for comparison in terms of performance metrics.Rannís; Rannsóknarnámssjóður / The Icelandic Research Fund for Graduate Students.PostPrin

    Human Metaphase Chromosome Analysis using Image Processing

    Get PDF
    Development of an effective human metaphase chromosome analysis algorithm can optimize expert time usage by increasing the efficiency of many clinical diagnosis processes. Although many methods exist in the literature, they are only applicable for limited morphological variations and are specific to the staining method used during cell preparation. They are also highly influenced by irregular chromosome boundaries as well as the presence of artifacts such as premature sister chromatid separation. Therefore an algorithm is proposed in this research which can operate with any morphological variation of the chromosome across images from multiple staining methods. The proposed algorithm is capable of calculating the segmentation outline, the centerline (which gives the chromosome length), partitioning of the telomere regions and the centromere location of a given chromosome. The algorithm also detects and corrects for the sister chromatid separation artifact in metaphase cell images. A metric termed the Candidate Based Centromere Confidence (CBCC) is proposed to accompany each centromere detection result of the proposed method, giving an indication of the confidence the algorithm has on a given localization. The proposed method was first tested for the ability of calculating an accurate width profile against a centerline based method [1] using 226 chromosomes. A statistical analysis of the centromere detection error values proved that the proposed method can accurately locate centromere locations with statistical significance. Furthermore, the proposed method performed more consistently across different staining methods in comparison to the centerline based approach. When tested with a larger data set of 1400 chromosomes collected from a set of DAPI (4\u27,6-diamidino-2-phenylindole) and Giemsa stained cell images, the proposed candidate based centromere detection algorithm was able to accurately localize 1220 centromere locations yielding a detection accuracy of 87%

    Segmentation of Satellite Images Using Self-Organizing Maps

    Get PDF

    Facial Analysis: Looking at Biometric Recognition and Genome-Wide Association

    Get PDF

    Automatic Detection of Blue-White Veil and Related Structures in Dermoscopy Images

    Full text link
    Dermoscopy is a non-invasive skin imaging technique, which permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. One of the most important features for the diagnosis of melanoma in dermoscopy images is the blue-white veil (irregular, structureless areas of confluent blue pigmentation with an overlying white "ground-glass" film). In this article, we present a machine learning approach to the detection of blue-white veil and related structures in dermoscopy images. The method involves contextual pixel classification using a decision tree classifier. The percentage of blue-white areas detected in a lesion combined with a simple shape descriptor yielded a sensitivity of 69.35% and a specificity of 89.97% on a set of 545 dermoscopy images. The sensitivity rises to 78.20% for detection of blue veil in those cases where it is a primary feature for melanoma recognition

    The Unbalanced Classification Problem: Detecting Breaches in Security

    Get PDF
    This research proposes several methods designed to improve solutions for security classification problems. The security classification problem involves unbalanced, high-dimensional, binary classification problems that are prevalent today. The imbalance within this data involves a significant majority of the negative class and a minority positive class. Any system that needs protection from malicious activity, intruders, theft, or other types of breaches in security must address this problem. These breaches in security are considered instances of the positive class. Given numerical data that represent observations or instances which require classification, state of the art machine learning algorithms can be applied. However, the unbalanced and high-dimensional structure of the data must be considered prior to applying these learning methods. High-dimensional data poses a “curse of dimensionality” which can be overcome through the analysis of subspaces. Exploration of intelligent subspace modeling and the fusion of subspace models is proposed. Detailed analysis of the one-class support vector machine, as well as its weaknesses and proposals to overcome these shortcomings are included. A fundamental method for evaluation of the binary classification model is the receiver operating characteristic (ROC) curve and the area under the curve (AUC). This work details the underlying statistics involved with ROC curves, contributing a comprehensive review of ROC curve construction and analysis techniques to include a novel graphic for illustrating the connection between ROC curves and classifier decision values. The major innovations of this work include synergistic classifier fusion through the analysis of ROC curves and rankings, insight into the statistical behavior of the Gaussian kernel, and novel methods for applying machine learning techniques to defend against computer intrusion detection. The primary empirical vehicle for this research is computer intrusion detection data, and both host-based intrusion detection systems (HIDS) and network-based intrusion detection systems (NIDS) are addressed. Empirical studies also include military tactical scenarios

    Analysis of gene expression data using Expressionist 3.1 and GeneSpring 4.2

    Get PDF
    The purpose of this study was to determine the differences in the gene expression analysis methods of two data mining tools, ExpressionisticTM 3.1 and GeneSpringTM 4.2 with focus on basic statistical analysis and clustering algorithms. The data for this analysis was derived from the hybridization of Rattus norvegicus RNA to the Affymetrix RG34A GeneChip. This analysis was derived from experiments designed to identify changes in gene expression patterns that were induced in vivo by an experimental treatment. The tools were found to be comparable with respect to the list of statistically significant genes that were up-regulated by more than two fold. Approximately 78% of this gene list was present in both tools. ExpressionistTm 3.1 was capable of representing the different linkage methods of hierarchical clustering as average, complete and single, whereas in GeneSpringTM 4.2, the user could manipulate the separation ratio and minimum distance of the hierarchical tree
    corecore