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ABSTRACT

ANALYSIS OF GENE EXPRESSION DATA
USING EXPRESSIONIST TM 3.1 AND GENESPRINGTM 4.2

by

Indu Shrivastava

The purpose of this study was to determine the differences in the gene expression

analysis methods of two data mining tools, Expressionists 3.1 and GeneSprings 4.2

with focus on basic statistical analysis and clustering algorithms. The data for this

analysis was derived from the hybridization of Rattus norvegicus RNA to the Affymetrix

RG34A GeneChip. This analysis was derived from experiments designed to identify

changes in gene expression patterns that were induced in vivo by an experimental

treatment.

The tools were found to be comparable with respect to the list of statistically

significant genes that were up-regulated by more than two fold. Approximately 78% of

this gene list was present in both tools. Expressionists 3.1 was capable of representing

the different linkage methods of hierarchical clustering as average, complete and single,

whereas in GeneSprings 4.2, the user could manipulate the separation ratio and

minimum distance of the hierarchical tree.
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CHAPTER 1

INTRODUCTION

1.1 Microarrays and Gene Expression Analysis

Analyzing gene expression patterns to decipher information about biological processes

leads to the discovery of innovative ideas regarding the mechanism of living beings.

There are different methods to decipher patterns of gene behavior, some of which include

application of statistical methods and algorithms to genomic data to discover genes that

may be linked to specific diseases.

The gene code embodied in the DNA and RNA of an organism contains all the

information required for protein synthesis. The study of messenger RNA (mRNA)

expression may lead to the ultimate goal of understanding the expression of a gene. A

new and powerful tool for analyzing gene expression, DNA microarray technology is

being widely adopted at a rapid pace. The estimated increase in the entire DNA array

market, including the actual arrays, as well as instruments and supplies is expected to

grow from approximately $322 million in 2000 to about $1.2 billion in 2006,

representing a compound annual growth rate of 24% [221

DNA microarray technology allows analysis of thousands of genes

simultaneously. This technology, along with others such as Southern and Northern

Blotting is based on the process of hybridization. In Southern and Northern blotting, a

small string of DNA, the oligonucleotide, is used to hybridize to complementary

fragments of DNA by distributing the oligonucleotide probes over a gel containing

samples of RNA or DNA. In microarrays, the oligonucleotides are immobilized on a

1
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surface. This immobilization can be performed at micrometer distances and hence can be

placed on a small single surface of one square centimeter. Microarray technology has

transformed the concept of "one gene-one experiment". There are two major technologies

available for gene expression analysis, namely, Affymetrix, Inc. and Spotted Arrays.

Spotted arrays are custom made chips where a robot is used to spot cDNA or

oligonucleotides on a glass slide [1 ]. The Affyinetrix gene chip technology is being used

for this DNA microarray study.

Microarray hybridization experiments begin with the extraction of mRNA and its

conversion to complementary DNA by means of a reverse transcription reaction. The

eDNA undergoes amplification and labeling, and then fragmentation and hybridization to

25-mer oligos (oligonucleotides) on the surface of the chip. After the unhybridized

material is washed away, the hybridized strands are stained in a microfluidics station with

biotin-labeled cRNA with Streptavidin—Phycoerythrin and then washed. The chip is then

scanned in a confocal laser scanner; the signal is amplified with goat IgG and biotinylated

antibody. The chip is then scanned again and the image analyzed by custom software [1].

The intensity of signal expression measured by laser scanners allows quantitative

measurements of gene expression. It is these intensity values that are stored in the form of

image files [2]. Expression arrays with different conditions as treatment, tissue and time

can be analyzed simultaneously.
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Figure 1.1 Preparation of sample for GeneChip Arrays.
Courtesy: Christopher Brothers [l].

Figure 1.2 Fluidics Station for automation of staining and washing of the array
(post hybridization). Courtesy: Center for Applied Generics.
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The basis for measuring changes in mRNA concentrations lies in the following

concept that was developed by Affymetrix [6]:

A given region of gene DNA sequence is selected by Afymetrix, which consists

of 11-20 oligos and are labeled as a perfect match (PM). As the name suggests, these are

perfectly complementary to the ERNA of the sequence of interest. Another set of 11-20

oligos is taken, which are similar to the perfect match, except for the central (1P)

position, where one nucleotide has been changed to its complimentary nucleotide, i.e., a

homomeric base change takes place. These are termed the mismatch oligos (MM). The

concept of this lies in the understanding that MM oligos may be able to detect a non-

specific or random cross hybridization to quantify weakly expressed mRNAs. The aim is

to detect dipherences in mRNA concentrations, and not to quantitate the actual RNA

concentrations [6].

.CTGATG(iTGGOAKIIGGGTCAGAAGOACI'GT(;GCTAGC/CX;(31:;CC.,. -„

 GOAD ATTGGGICAGAACK1ACTGTGGC	 rakox;13.

GGAATniGGICACAACICIACTSTX:i0C.: • Mismatc11 Wig°

•-•	 1 .. •

Bo,

Figure 1.3 The Affymetrix GeneChip Technology.
Courtesy: Christoffer Brothers [1].
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1.2 Quantitative Measurement of Microarrays

All of the data obtained from the above processes, both numeric and in raw image form,

are stored in databases. The analysis of this data encompasses the whole field of RNA

expression analysis. Study of the gene data involves expression profiling by performing

expression analysis. Expression profiling implies the expression of every single measured

gene over a number of conditions in order to predict its general behavior. This profiling

takes place by the analysis of the expression of a gene by measuring the concentration of

derived cRNA on the array.

The manipulation of data produced from these microarrays entails the

implementation of different tests and analytical tools to determine the importance that a

gene has for a particular disease. The integration of all the information retrieved from this

data and the application of biological knowledge to decipher the gene's identity is termed

as data mining. Thus, the process of data mining involves teasing the important

information from large and "noisy" data sets. The systematic approach to understand the

behavior of a gene is to study the change in gene expression from one condition to

another. One of the methods to determine this change in expression is quantitative; hence

the need for statistical analysis and algorithms emerged. These computational techniques

help to predict the relation between the structure and function of a gene. The focus of this

thesis involves the study of some of these computational techniques encapsulated in an

application, and displayed in the form of a user-friendly interface.

The fastest way to view an initial global expression pattern for a given genome is

to apply selected algorithms and statistical tests to the analysis of gene expression levels

obtained from the signal intensities of the concentration of mRNA produced. The derived
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patterns may depict a related biological function and hence aid in the identification of

particular genes based on its behavior. This whole process brings together many

practically complex components to reach a final conclusion about the gene information

that is being sought by a biologist for a complete understanding of the genetic make up of

an organism. Some of these include:

• Transfer of data sets from the scanned image file to files capable of being read by

a quantitative analytical tool.

• Manipulation of the data sets obtained from the above converted files for an

objective and uniform analysis.

• Implementation of many statistical tests to ensure the significance of the presence

of certain experiments and genes.

• Implementation of different algorithms to group co-expressed genes together.

• Translation of this analysis into a visualizable, low-dimension format, capable of

ready comprehension by the human mind.

• Representation of this visualization in a reproducible form capable of being

understood by those not directly involved in the analysis procedure.

• Export of this information in another form for further subjective analysis if the

need exists.

Genes obtained using microarray technologies are screened as an expression

matrix where each row represents the behavior of a single gene over many experimental

conditions and each column represents the attribute or experimental condition [91
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Figure 1.4 Conceptual view of gene expression data [9] .

The urgent need for tools to rapid computations from these data has stimulated the

production of software packages capable of perfonning concurrent calculations on gene

expression data. Along with the emergence of basic tools, a plethora of competitive

software tools has flooded the research market.

1.3 Available Resources for this Study (The Data Set)

The application of microarrays has become widespread at all levels of medical research

pertaining to disease control and drug development. Some well-established areas of

miczoarray research exist in oncology (the study of cancer), bone metabolism,

cardiovascular diseases, respiratory diseases and immunology studies.

Arthritis is a class of disorders that affects joints and do not have one particular

cause. This class of diseases represents perhaps the most common diseases of the modern

age, affecting one person in seven in the U.S and Canada, or about 45 million people. The
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most common arthritic disease is osteoarthritis, which affects 30 million people in North

America. According to some estimates 80% of the people over the age of 70 suffer from

osteoarthritis. About 3 million people in North America suffer from rheumatoid arthritis

[24]. The cause of osteoaithritis is believed to be general wear and tear within the joint,

and is associated with aging, while rheumatoid arthritis is an autoirmnune disease that

affects all ages. Because the various forms of arthritis have differing causes, different

therapeutic approaches are required to determine the root cause of the disease. Blood

tests for rheumatoid factor (RF), a marker for rheumatoid arthritis, are useful, but there

may be no direct correlation between RF and the disease [24]. One approach to identify

the possible biological cause is to analyze the change in gene expression caused by given

experimental manipulations.

The data set used in this study was part of an experimental study during my

Summer Internship at Novartis Pharmaceuticals and was performed in conformity with

locally applicable animal welfare regulations. The aim was to identify genes that were

up-regulated or down-regulated (in expression) in the development of musculo-skeletal

effects resulting from a given experimental treatment. The experiments were performed

in the general context of understanding the molecular and biochemical basis of arthritis.

Rats underwent an experimental treatment for seven and 21 days. Control animals

were sacrificed at corresponding time points without having undergone this experimental

treatment. At the end of the experiment, tissue samples were taken from paw connective

tissue, liver, lung, skin and kidney, along with blood samples. After hybridization of

Raltus norvegicus tissue RNA to the Affymetrix RG34A, the MAS S 4.0 (Affymetrix

Microarray Suite) that contains empirical algorithms, was used to analyze the data.
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The table depicting the number of replicates per control and treatment group is

listed as follows:

Table 1.1 Number of Replicates (Chips) per Treatment Group

Tissue Type Control Treatment Control Treatment
7-Day 7-Day 21-Day 21-Day

Paw 5 3 4 5

Lung 5 5 4 5

Liver 5 5 4 5

Kidney 5 4 4 5

Blood 4 5 4 5

Skin 5 5 4 5

1.4 The Need to Compare Data Mining Tools

As cited by A. Brass, 2001 [11], "The bioinfonnatics tasks of microarray analysis can be

divided into three linked activities — data capture, data mining and visualization and

interfaces". A lot of attention has been focused on data capture and new technologies to

produce microarrays and techniques to increase the efficiency of capturing data from

biological tissues. On the other hand, not much attention has been given to the data

mining, visualization and interface areas of study. Even though many algorithms are

being developed, the implementation of these algorithms in the form of computer

programs is not progressing at the same pace. The availability of software packages for

gene expression analysis has been a concern for researchers in recent years. The

characteristics of each tool play a major role in the selection process. This is an important
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issue with the limited amount of choices in the market. The selection should be based on

the need of the company or individual and on the availability of servers and computers.

The convenience of a user-friendly statistical tool integrated with computer

programs has eliminated the need for researchers to learn computer programming before

pursuing gene expression analysis. However, a biologist with some statistical knowledge

would be an ideal candidate to comprehend gene expression analysis.

The issue that lies in the selection of the tool is to obtain an accurate and precise

understanding of the gene expression changes. The results of such analyses are critical

since they may affect inferences regarding the expression of a given gene and thus the

possible role of the gene in a particular disease.

Data mining tools should be selected on the basis of their merits and

appropriateness for the given laboratory, independent of promotional information that

may be disseminated by the vendor. It is thus beneficial to determine the efficiency of a

particular software package before expending resources required for its implementation.

The focus of this study is to analyze some of the features of the graphical user interface

(GUI) of data mining software packages and the importance of this aspect in gene

expression analysis studies. Since these packages aim to make results of analyses

available to a wide range of users, thus, the implementation of the algorithms and

statistical tests is favorable only if in a suitable, convenient and easy to use manner. This

demonstration of comparison of features is explained by the implementation of some of

the common statistical analyses and clustering techniques of two different tools by

pursuing an analysis of mRNA expression data.
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There have been a handful of researchers who have envisioned the need to

compare different tools for the benefit of the users. Relatively few reports have described

comparisons of microaffay data analysis tools. A comparison of such tools may provide a

prospective user with some initial guarantee of the enhanced quality of results, based on

prior analysis of analysts, who have studied the details of the external and internal

structure of the gene expression analytical tool. An ongoing study of microaffay data

analysis software by Y. F. Leung [23] is one of the more widely known, publicly

available resources. This study compares the availability, and outlines the features of

many packages, including information on vendor contacts for the tools and prices.

Another large study of comparison of software packages including surveys from users

was performed by the CSC, which is the Finnish IT Center for Science, owned by the

Ministry of Education [19]. Since their study was based on some previous versions of the

tools, there was a mixed response regarding the user-friendliness and ease of learning of

GeneSpring, yet out of the 18 people surveyed, 17 suggested that they preferred

continued use of the tool [20]. The Stanford Microarray Database group of Stanford

University School of Medicine performed another study of the comparison of tools [21],

which outlines some available tools with more expansion referred to the study by

Y. F. Leung [23].



CHAPTER 2

COMPONENTS OF A GENE EXPRESSION ANALYSIS STUDY

2.1	 Biological Aspect

Biologists often require information on particular genes that are induced or repressed in

different treatment and disease conditions. This includes information, such as the

function of the gene, similarity to other genes and how its expression correlates with the

condition under study. A biologist takes this information about a gene and attempts to

understand the function and effect of the gene on other biological mechanisms of the

human body. DNA microarray technology allows biologists to detect the mRNA levels of

thousands of genes in the cells at one time. Microarrays allow rapid gene expression

monitoring and sequence analysis at the genomic level. The information obtained from

this process is further used to assist the drug discovery process. Drug-human interactions

can be explained after a comprehensive understanding of the change in gene expression

by the effect of a certain drug treatment. Thus, the adverse as well as beneficial effects of

a drug can be monitored by the differential expression in the corresponding genes. Since

the information about these genes is computed via different algorithms, the computational

and biological aspects of gene expression analysis studies are closely related.

12
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2.2 Computational Aspect

Analysis of gene expression data can take place in several different ways, the most

common of which are the statistical analysis and gene classification. The statistical

analysis consists of implementation of various statistical tests such as the t-test, multiple

testing correction, p-value, etc. Gene classification is basically of two main types,

namely, supervised and unsupervised classification [17]. The unsupervised type of

classification implies that the classification is not known a priori and hence needs to be

discovered based on the pattern depicted by the data. Hence, new genes would be

identified based on similar expression profiles and then a group of similar genes would be

classified together. Examples of this type of classification are cluster analysis, class

discovery and unsupervised pattern recognition. The supervised type of classification

implies that the classes are predefined before data analysis and the aim is to determine the

basis of classification from training or learning sets, which serve as a model to

understand the behavior of similar genes. In this case, genes are grouped together

according to some similar criteria, and the user has to understand the criteria of grouping,

based on previous knowledge of the genes. Examples of this type of classification are k-

means, discriminant analysis, class prediction and supervised pattern recognition [17].

The simple analysis involves the study of gene expression profiles after the data

was filtered according to several concurrent criteria, so as to minimize the presence of

spurious changes:

1. The fold changes (from the expression levels and normalized data) induced by the

experimental treatment as compared with the corresponding control.

2. The mean expression levels for each group.
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3. The statistical significance of any differences noted between the control and

experimental groups.

Various gene lists were formed and compared (by MS Access) to identify genes

that changed similarly under different conditions of time and tissue.

The basic analysis of gene expression serves the following two purposes:

1. Provides information about the general trend of the change in expression levels of

different genes under different experimental conditions.

2. Acts as a pre-processing step for the data to be clustered for visualization of the

relative expression of many genes at one time.

The basic analysis process includes some of the following steps, described as absolute

call metrics, statistical significance, nonnalization methods and scaling.

2.2.1 Absolute Call Metrics

According to MAST  4.0 (Affymetrix Nificroarray Suite), the criteria for determining the

absolute call is based on the absolute difference measurements [6]. The absolute call, also

known as the absolute measurement, is a criteria for consideration of a gene in some

statistical and gene expression analyses. The three absolute calls are Present, Marginal

and Absent and can be detennined by the Average Difference calculation based on the

perfect match and mismatch oligos [1]. These oligos are present on probe pairs and are

used as a basis of comparison to calculate the non-specific hybridization of mRNA by

calculating an Average Difference, which is calculated according to the formula:
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Average Difference = PM — MM 	(2.1)
N

where N is the number of probe pairs, PM is number of perfect match signals and MM is

the number of mismatch signal intensities [6].

As a way to reduce potential outliers in this calculation, only those probe pairs are

used that deviate less than 3 standard deviations from the calculation [1]. Probe statistics

are the basis for Afiymetrix to decide the absolute call as Present, Absent and Marginal.

The Average Difference is negative if the number of mismatch oligo probe pairs exceeds

those of the present match oligos. This indicates that either the target is absent or the

hybridization is non-specific [6].

Many studies have yielded different interpretations of these absolute calls and

their exact influence on the decision to include the corresponding probe pairs as part of

the calculation for final change in gene expression.

Both the data mining tools assessed in this study allow the use of any combination

of absolute call measurements in the statistical analyses as desired by the user.

2.2.2 Statistical Significance

Statistical significance refers to the mathematical weight given to a particular gene in an

analysis. It re-evaluates the importance of the presence of a gene and considers the

probability that a gene would exist in a calculation by chance. Thus, it is a mechanism to

increase our confidence that a change in expression is more than a simple variation

corresponding to an array process. The reason for a given change in gene expression to

occur by chance may involve experimental error, which could be caused by insufficient

replicates of a particular sample. Statistical significance is calculated by the p-value
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(probability value), which is directly proportional to the observed variation in genes by

chance. The p-value is a transformation of the student's t-test that determines whether the

mean intensity is statistically different from 1. The formula for this is:

X-1
t 	s.

where ' X ' is the Mean intensity, 'E x ' is the Standard deviation and 'n' is the number of

replicates.

For example, while calculating the magnitude of gene expression changes, one

may notice up-regulation of a gene by greater than three fold, i.e., the level of expression

in one group may be three times the level of another group. This also indicates a fold

change of 0.47 if the logarithmic forms of the initial levels are taken [1]. This gene may

be an unstable gene and hence may tend to reveal widely differential values in separate

conditions. Taking replicates of a sample and identifying consistently differentiated genes

increases the probability that observed changes in gene expression are genuine, as

opposed to arising from chance alone. This is where the test for significance comes into

play. It helps to determine relative initial signals in all samples of the same condition and

the corresponding change in signal in all samples of another condition. This can be

calculated by determining the mean and variation of each gene across all samples. This

can also be calculated by determining the standard deviation of each gene, then

comparing the difference in expression levels between the two conditions with this

standard deviation [6]. The more the change exceeds the standard deviation between

replicates, the more significant it is [I].

(2.2)
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2.2.3 Normalization Methods and Scaling

Normalization ensures that all the calculations and analysis from one gene chip to another

are comparable to each other. This is a validation method to ensure that the level of

mRNA measured on one chip is similar to that of on another replicate chip. Thus,

normalization is a method to remove any variations or errors produced by the microarray

technology process. One method to facilitate this comparison is to include

"Housekeeping genes" on every chip and to use them as reference points for

normalization. "Housekeeping genes" are genes whose expression levels are thought to

depict consistent gene activity across any condition or treatment. A comparison of these

genes could serve as a standard towards the initial calculation of bringing all the other

genes on that chip to the same platform thus enabling a valid cross array comparison.

This method is not commonly used any more. They have a limitation, since they may

tend to be highly expressed and hence may not be representative of other genes of interest

[8]. The more widely used method consists of normalization by the mean. Once the mean

is calculated, and graphed as a normal distribution, a certain percentage (from the tails of

the distribution) is clipped off, and the remaining is used as a scaling factor for the

normalization.

The selection of an appropriate normalization method is based on the user's

desired interpretation, and therefore the presence of a variety of normalization methods in

comprehensive data mining tools is recommended.
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2.3 Visualization of Data and Cluster Analysis

Easy visualization and interpretation of data is possible when the data is seen in collective

groups of similar expression, function or general behavior. One of the most common

methods to visualize data in this manner is by cluster analysis. The aim of clustering is to

partition entities (genes) into groups based on given features of each entity to ensure that

the groups are homogenous and well separated. Each group is called a cluster, and the

partition is called clustering [29]. Clustering of data is also known to strengthen the

signal when averages are taken within clusters of genes [17]. Clustering is a method of

grouping genes that share similar expression patterns. This may also translate to similar

biological function or structure, but basically depends on the interpretation by the

biologists for such a conclusion. The results of clustering produce an aggregation of

genes that portray the following properties [4]:

1. Reduced Inter-variability: This is also termed Homogeneity, as the elements in the

same cluster are highly similar to each other.

2. Increased Inter-variability: This is also termed Separation, as the elements in

different clusters show little similarity with each other.

Clustering algorithms are of two types, namely, Agglomerative and Divisive. The

difference between the two can be illustrated in the following descriptions of both:
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1. Agglomerative Clustering:

This is also known as the 'bottom-up' approach, where:

Input:	 Number of clusters = n.

Output: Number of clusters = 1.

Here 'n' is the number of single element sets containing each gene under study.

Example: Hierarchical Clustering

2. Divisive Clustering:

This is also known as the 'top-down' approach, where:

Input:	 Number of clusters = 1.

Output: Number of clusters = n

Example: k-means Cluster, Self-Organizing Nifaps

The type of clustering algorithm to be used depends on the biological problem [14].

Measures of similarity and linkage methods determine the mathematical criteria of

clustering. Some of these are explained below:

2.3.1 Measures of Similarity

Nifeasure of Similarity is a quantitative measure that determines the similarity between

genes based on their expression profiles. These measures affect the clustering process,

since some measure the similarity in expression levels, whereas others measure the

similarity in expression patterns. This can be a critical step in the decision making

process and depends solely on the requirements of the biologist. Also, some decisions are

for the analyst to make whether the similarity measure should consider the effect of the

outliers.
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When each gene is plotted in a dimensional space using a standard x-y coordinate

system, the distance between the genes can be used as a criterion to evaluate the measure

of similarity of the genes.

As an attempt to reduce dimensionality for easy visualization of gene behavior,

genes can be expressed in the form of vectors of a number of dimensions, where each

dimension is represented by an experimental condition. The vector angle between two

genes is also a commonly used distance for gene expression analysis as vectors

demonstrate magnitude and direction similar to genes that demonstrate expression levels

and pattern.

The Measures of Similarity can be divided into the following three types [4]:

1. Measures of Correlation

2. Measures of Distance

3. Measures of Confidence

Each of these is briefly defined below. In the figures corresponding to the

following descriptions, the green line represents the gene from which a distance is

calculated. The blue and black lines represent the genes closest to and furthest from the

green gene respectively, according to the many different distance metrics described [3].

1. Measures of Correlation: 

These are represented as correlation measures ranging from —1 to 1 and can be anywhere

from exactly opposite to the exactly same respectively [4].
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Correlation:

This method clusters genes that are closely related in terms of pattern. The expression

level has no importance. Two genes are correlated when their expression values increase

and decrease simultaneously (gene 1 and 4). They are anti-correlated when the converse

is true (1 and 3). Genes must be correlated or anti-correlated to be clustered [3].

Experiments

Figure 2.1 Correlation Metric.
Courtesy: Gene Data

Standard Correlation:

This measures the angular separation of expression vectors of two genes around zero.

This method emphasizes the consistency of points where genes are over expressed [4].

The standard correlation coefficient (dot product of two normalized vectors) has

been found to agree well to the concept of coexpressed genes. This could be due to the

fact that the statistic considers similarity in shape (the gene pattern) as opposed to the

magnitude of the two series of measurements (the expression levels) [17].

Positive Correlation:

This method clusters genes that are closely related in terms of pattern. The expression

level has no importance. Two genes are positively correlated when their expression

values increase and decrease simultaneously (gene 1 and 3).
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This method is used mainly in gene expression analysis and is most useful for

clustering [3].
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Figure 2.2 Positive Correlation.
Courtesy: Gene Data

Pearson correlation:

This method is similar to standard correlation, except that it measures the angle of

separation of expression vectors of two genes around their mean expression levels instead

of around zero. This method emphasizes consistency of both, over and under expression

of genes. In log mode, Pearson and standard correlation are very similar [4] .

Spearman Correlation:

This is similar to the Pearson correlation, except that the expression levels are replaced

by their ranks. The method reduces the effect of large individual variations on the

calculations (non parametric). The elements are ordered in the vector and then ranked,

and new vectors are formed with ranked and ordered elements [4].

Change Correlation:

This method is applicable only for ordered condition points, and measures the change

between each pair of elements (genes). The standard correlation is computed on these
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change values. This method emphasizes consistency of change in gene expression levels,

both upward and downward [4].

Up-regulated Correlation:

This method focuses on the upward change between each pair of conditions and then the

standard correlation computed for the change values. This emphasizes periods when new

RNA is being synthesized. This is applicable only for ordered condition points [4].

Smooth Correlation:

This method measures the agreement on smooth trends in data. This is measured by

interpolating the average of each consecutive pair of elements (genes). A new value is

inserted in each new value between the old values and then the standard correlation

computed on the result [4].

2. Measures of Distance: 

The distance measurement calculates the dissimilarity from 0 to infinity, by calculating

the square root of the standard deviation. This is based on the measurement of the

Euclidean distance between the expression profiles for gene A and gene B [4].

Euclidean (or L2):

This metric clusters genes that are closely related in terms of expression level. The

method is sensitive to outliers. Thus, although gene 2 generally has expression values

closer to gene 1, it is represented by a black line due to the effect of an outlier (circled
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red) in one of the experiments. It is calculated as the sum of the squared distances of two

vector values of two genes [3].

Figure 2.3 Euclidean Metric.
Courtesy: Gene Data

Normalized Euclidean:

This method of similarity clusters genes that are closely related in terms of expression

pattern. The expression level has limited importance in this method. Two genes are

similar when their expression values increase and decrease simultaneousiy by the same

amount (gene 1 and 3). As a result, on a logarithmic scale, genes have exactly the same

pattern [3].

Figure 2.4 Normalized Euclidean.
Courtesy: Gene Data

Li (or Manhattan):

This is a linear version of the Euclidean distance calculating the sum of the absolute

distances of two vector values of two genes. The genes that are closely related in terms of
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expression level are clustered together. This method is not sensitive to outliers. In this

case the outlier (circled red) has less effect, and gene 2 is deemed closer to gene 1 and

represented by a biue line [3].

Figure 2.5 LI Metric.
Courtesy: Gene Data

Maximum:

This metric clusters genes that are closely related in terms of expression level. This

method is extremely sensitive to outliers. The calculated distance is the maximum

distance between two genes. Therefore, only one outlier determines the calculation of the

distance. In the figure, the blue line represents gene 3 since its maximum expression

value (a) is lower than those of genes 2 and 4 (b and c) [3].

Figure 2.6 Maximum Metric.
Courtesy: Gene Data

3. Measures of Confidence: 

The confidence results range from 0 to 1 representing a transition from no confidence to

perfect confidence [4].
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Spearman Confidence: If the Speannan correlation is represented as `S' then the

confidence is calculated as (1-P) where 'P' is the probability of getting an 'S' or higher

sample correlation by chance alone, if the true correlation is zero [4].

Two-Sided Spearman Confidence: This is also calculated as (1-P), but 'P' here represents

the probability of getting a sample correlation of ISI or higher, or —IS! or lower by chance

alone if the true correlation is zero. This two sided test emphasizes genes that have either

similar expression profiles or opposite profiles. Thus, genes with high two-sided

confidence values contain similar as well as dissimilar genes [4].

2.3.2 Hierarchical Clustering

As described in Section 2.2, hierarchical clustering is a type of unsupervised type of

classification, where the classes are defined by the data analysis and hence the clusters

are not formed based on any previous knowledge of the behavior of genes. The main

purpose of hierarchical clustering is to create a mock-phylogenetic tree also known as a

dendrogram that places genes with similar expression patterns into nearby groups. The

distance of one gene to the node connecting it to another gene indicates how closely the

two genes are correlated. A shorter distance, which can be measured by the number of

intervening nodes marks higher correlation between the genes. The distance travelled up

a branch is directly proportional to how different the genes are.

Hierarchical clustering uses the agglomerative method of clustering algorithm as

described in 2.3. The way the algorithm works is that each gene is considered as an

individual set of elements of its own. The aim is to produce a dendrogram, or tree that
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consists of all the genes under study to form a superset by the combination, or

agglomeration of the entire single element sets.

2.3.2.1 The Algorithm.	 An outline of the algorithm of hierarchical clustering

consists of the following steps [15]:

a) A pair wise distance matrix is constructed for all the genes in the study. This distance

matrix is a table listing the genes along with the distance it bears with other genes.

The distance between the genes is also determinative of the similarity in expression

profiles of the genes and hence closer genes possess similar correlation coefficients.

b) The two closest genes are selected from this matrix that are also computationally, the

least expensive to merge. These two single-gene clusters can be labeled Cif and C2

and clustered together to form a new cluster, which replaces the two single gene

clusters. All the distances affected by the merge are recalculated.

c) This cluster is compared to other similar single element gene clusters and the distance

between them is calculated.

This whole process is iterative from step (b) to (c) until the final result is a single

cluster with smaller clusters analogous to a tree with many branches.

2.3.2.2 Linkage Methods. The Measures of Similarity described in Section 2.3.1

measure the many ways of calculating the similarity between genes in terms of distances

between them. Once the genes merge to form clusters, the between-cluster dissimilarity

measures are termed the linkage methods [15]. If two clusters are represented by x and y,

then the number of gene sequences in each cluster is taken as E x and Sy respectively.

Based on the distance between these sequences of different clusters, there are basically

three types of Linkage Methods [15,17]:
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a) Single Linkage: This method uses the shortest distance between two sequences of

different clusters as the total distance between two clusters. This is also known as the

nearest neighbor or minimum method, since the sequence from one cluster seeks its

closest neighbor (of minimum distance) from another cluster. The result of this

linkage analysis is not very stringent, since the clusters are agglomerated on the basis

of the least possible distance. The cost function of this method can be represented as:

Cost function = min (distance (S i  , Sy )) 	 (2.3)

b) Average Linkage: This method uses the average distance between two sequences of

different clusters as the total distance between two clusters. The cost function of this

method can be represented as:

Cost function = average (distance (Si , Sy)

	  E E (distance (Si , Sy) 	 (2.4)
I SxIJSyl Ex M x Sy M y

The pair wise average linkage method is the most commonly used type of linkage

method used for gene expression analysis studies, based on the results of

Eisen et al. [17].

c) Complete Linkage: This method uses the greatest distance between two sequences of

different clusters as the total distance between two clusters. This is also known as the

furthest neighbor method since the sequence from one cluster seeks its farthest

neighbor from another cluster. The clusters formed are close to each other due to the

agglomeration of distant genes, thus reducing distances between different clusters.

The cost function of this method can be represented as:

Cost function = max (distance (Si , Sy )) 	 (2.5)
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Separation Ratio [4]:

This is how large the correlation difference between groups of clustered genes has to be

for the groups to be considered discrete groups and not be joined together.

a) Increasing separation increases the "branchiness" of the tree.

b) This can range from 0 to 1.

c) At a separation ratio of 0, all gene expression profiles can be regarded as identical.

2.3.3 K Means Clustering

This is the divisive type of clustering technique, or the 'top-down' approach, where the

user chooses the number of clusters desired. The process is based on the supervised type

of classification, described in Section 2.2, since some prior knowledge regarding the gene

expression pattern is known. The genes are randomly assigned into user-defined number

of clusters (based on the different expression patterns displayed by the data set). K-means

clusters are visualised in the fonn of graphs of expression profiles as opposed to

dendrograms of hierarchical clustering. The steps of the algorithm include [15]:

a) Input of a user-defined number of clusters.

b) Random distribution of objects (genes or samples) into user-defined number of

clusters.

c) The average expression vector is calculated for each cluster; this is also the centroid

for each cluster.

d) This is used to detennine the distance between clusters. The objects move according

to the specification of being closer to a cluster's centroid.

e) The centroids are recalculated according to the new objects.
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f) Thus, the final clusters contain objects that are closer to it, as compared to the

previous cluster they were in.

g) The objects continue to move till the clusters formed are not stable enough to be

altered.

This is an iterative process until (g) is no longer achieved. Until then, all steps

from (d) to (g) are repeated. Thus during the run time of a k-means process, the number

of genes per cluster continue to change based on the average radius (centroid) calculated

for each iteration. The average radius is proportional to the tightness or stability of the

gene to stay together, in a cluster and hence a greater correlation [4]. Random start

implies potentially randomized clusters that need to be repeated to verify results.

Improvements have been suggested which reduce the extent to which the search becomes

trapped in local minima.



CHAPTER 3

THE DATA MINING TOOLS

3.1 Types of Data Mining Software

Microarray software can be of many types based on the area of analysis of the data. The

different types include Image Analysis software, Data Nifining software, SNP's Analysis

software, Database/LIMS software, Public Expression Database, Primer Design and

software for further data mining [23]. The scope of this thesis is limited to a study of data

mining software. The purpose of a data mining software package for a research scientist

is to be able to analyze the data based on a user-friendly interface of a robust computer

program. This process of obtaining knowledge from information is the basis of existence

of data mining software. This type of software aids in the transformation of a set of

numbers into images to visualise changes in gene behaviour. It is dependent on the need

of the user to focus in on a particular aspect of the image and analyse it to comprehend

the aim of the particular study.

Data mining software can be divided into four basic types [23]:

I. Turnkey System: This is a computer system that is customized according to the need

of the users. This includes all the requirements of an operating system, server

software, database, client software, statistics software and even hardware. Examples:

Rosetta resolver (Rosetta Biosofiware), Genetraffic (lobion) and Expressionist

(GeneData).

31
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2. Comprehensive Software: This type of software can incorporate many different

analyses for different stages in a single package. Examples: Cluster (Mike Eisen,

LBNL), GeneMaths (Applied Maths) and GeneSpring (Silicon Genetics).

3. Specific Analysis Software: A software package of this type performs a couple of

specific analyses. Examples: GeneCluster (Whitehead Institute Centre for Genome

Research), SAM —Significance Analysis of Microarrays (Stanford University).

4. Extension/accessory of other software: This is an extension of another software's

capability. Examples: Freeview, Arrayminer (Extension of GeneSpring).

3.2 Criteria for Selection of Data Mining Tools

The criteria for selection of data mining tools depend on the needs of the users, and not

necessarily on those of the research scientists who design and carry out the experiments.

The fact, that these users are not experienced computer programmers, statisticians and

biologists has to be taken into consideration. The role of most users of the tools is to

analyse the quantitative data, transfonn it into different forms of easy-to-understand

visual representation and then hand it over to the biologists and scientists responsible for

the detailed analysis of the results.

The requirements of the user include ease of use (in terms of user interfaces),

management of the large amount of data, ability to access the data from different

operating systems (and different workstations) and availability of the maximum number

of options for different statistical analyses tests.

The majority of users may be familiar with some basic computer applications.

Among these, the most commonly used is Windows. Interfaces with the 'click and select'
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or 'drag and drop' methods are the easiest to work with for users lacking advanced

computer technology expertise.

The major aspects of data mining software for gene expression analysis usually

consists of

1. Time Complexity: Time complexity refers to the run time of the algorithms being

used, expressed as a function of the problem size. The exact run time of the algorithm

depends on complexity of the algorithm and this, in turn, depends on the skill of the

programmers who are responsible for writing the program code of these algorithms.

2. Preciseness and Accuracy of the Result: The computer programs should be robust

with respect to the method of calculations, as the accuracy of results is the most

crucial step towards the study of gene expression. The computational analysis of gene

expression data from rnicroarray technology is the first step towards producing a

global perspective of the whole model of study. Results from these preliminary

analyses are the next step to further validation by other laboratory methods and

research studies. If these results were erroneous, subsequent studies could prove futile

and waste time, money and resources. The precision of the results depends on the

written code of the algorithm, which is required to be flawless in terms of coding,

implying the absence of any type of bugs. In other words, the code should be such

that it would work in any given environment and would not have to be debugged in

case of any discrepancy.

3. Reduction in Dimension of Data for Visualisation: Reduction of higher orders of

mathematical dimension improves visualisation of data by lower-dimensional human



34

conceptual and perceptual abilities. The images and data have to be adapted to levels

compatible with human cognitive capacities, for easy interactive interpretation.

4. Import of Data: Access of the data is the first step towards data analysis and hence

ease of database connectivity is a major issue for any data mining software package.

The data then has to be transformed to a standardised data model consisting of rows

of genes and columns of experiment attributes. Open Database Connectivity (ODBC)

is a common method of abstracting a program from a database. JDBC is a Java

Application Programming Interface (API) for executing SQL statements. By using

the JDBC API, one can access almost any data source, from relational databases to

spreadsheets to flat files.

5. Software Architecture: The programs have to be written in a language (e.g. Java) that

is platform independent to make them compatible across many commonly used

platforms at the same time. The most common platforms are workstation-based

applications (as Macintosh, Windows, UNIX and Linux operating systems).

6. Probing of Visualisation: The results of the overall visualisation should be worthy of

being probed further in order to focus in on a particular segment to facilitate a

complete detailed analysis.

7. Cross Validation of Gene Properties by Inter-networking Links: The annotation of a

particular gene can be confinned by accessing other related databases. This is feasible

if the software tool is capable of linking to external databases and has web access.

8. Accessibility and Availability: The accessibility and availability of the software

influences the ease of use.
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There are numerous software packages available, both for commercial use as well as

those that are free for academia. The choice of selection depends on the frequency of use

and the resources available as, size of server and/or speed of computers. If all the criteria

for selection are available, then the selection of the applicable tool has to be made

according to some important and standard criteria which involves the analytical tools

embedded in the software package.

3.3 Criteria for Selection of Expressionist 3.1 and GeneSpringTM 4.2

The criteria for selection for the comparison of the two tools used in this study are based

on the similarity of the functioning of the two commercially available tools. Both tools

belong to a different category of classification of data mining software, yet the final

results produced by both tools are very similar. Expressionist 3.1 is a turnkey type of

software whereas GeneSprings 4.2 is categorized as a comprehensive type of software

package. Besides the similarity in functioning, these tools were conveniently available on

site at Novartis Pharmaceuticals during my Internship. Also, the two tools are Java based

applications thus making them platform-independent to run on the operating system

environments of Windows, Nifacintosh and Linux. Both tools are primarily accessible to

other databases that increase their flexibility to work with in-house proprietary databases.

This is a major issue with pharmaceutical companies and other proprietary research study

fields in order to maintain the integrity and confidentiality of research data. Both tools

also possess a user-friendly Java Applet viewer that makes it easy for anyone without a

statistical or computer programming background to be able to perform the different

analyses.
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There are basically three methods that can be applied to rnicroarray data,

Classification, Clustering and Projection. The classification method comprises of Support

Vector Machines (SVM) and Classification And Regression Trees (CART). The

clustering includes k means and hierarchical trees. The projection method involves Multi

Dimensional Scaling and Principal Component Analysis. Both Expressionist 3.1 and

GeneSpringTM 4.2 contain most of these features and hence can be considered

comparable on the grounds of the commonly used methods for gene expression analysis.

The functionality of the tools utilize the techniques common to Windows of dragging and

dropping, item selection and scrolling. Thus, the user interfaces are friendly and easy to

learn. The usage model of both tools include [31

1. Data Upload and Structuring

2. Data Evaluation

3. Data Cleansing

4. Data Extraction and Analysis

The image representations and data export were reproducible directly from the

data mining Tools.

MS Excel was also used in this analysis, primarily for easy visualization of gene

lists and for summarized results. Results of some analysis were transferred to MS Excel

to obtain a quantitatively global representation of the analysis. Data manipulation was

particularly useful for sorting of lists of data and implementing user-preferred formulas

present in MS Excel.



Table 3.1 Comparison of the System Requirements for the Use of the Selected Tools

Attribute Expressionistic 3,1 GeneSpringT14 4.2 MS Excel

Type of Data
Mining

Software
Turnkey (hence customized for an

application)
Comprehensive (hence incorporates different
analysis in a single package, universal for all) Not applicable

Server
UNIX based computer with 1 GB

RAM: Java 1.3VM Not applicable Not applicable

Client

Windows PC with a minimum of 128
MB RAM ., web browser supporting
Java Web Start

1.Client: Windows: Windows 95/98/NT Version 4.0 or later,
256 MB RAM (512 recommended),
40 MB of free disk space,
1024 x 768 display,
Pentium 75 MHz or higher processor,
Memory
For Windows 95 or Windows 98: 16 MB
of RAM for the operating system
For Windows NT Workstation: — 32 M13
of RAM for the, operating system.
146 MB of available ha4-disk space
Display: VGA or higher resolution
monitor

Windows 95/98/NT/2000, 256 MB RAM (512
recommended)
40 MB of free disk space
1024 x 768 display
Pentium II or better
2. Client: Macintosh:
Mac OS 8.1 or higher (OS Classic mode)
256 MB Rain (512 recommended)
40 MB of free disk space
1024 x 768 display
1VIRJ 2.2.5
3. Client: Unix:
Most common Unix OS's (Linux or Solatix
recommended)
A JVM installed that supports JDK 1.1 or later
256 MB Ram (512 recommended),
40 MB of free disk space
1024 x 768 display

Database Oracle 8.1.6 or higher Not applicable Not applicable
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Table 3.2 Comparison of the Features of Expressionist 3.1 and -GeneSprinem 4.2

Feature Expressionist 3.1 GeneSpringTM 4.2

Data Quality Affyrnetrix Feature Quality

Affymetrix Feature Quality,
Ciontech, Axon, Biodiscovery,

Incyte, Packard Biochip, Generic
one-color and two-color

Data Handling and
Display Profile Dispiay, Log-iog Plot

Profile Dispiay (can change
horizontal and vertical axes or
specify foid change intervals,
colors, piot symbois and grid

lines by using the Dispiay
Option Windows)

Statistical Analysis
Tools

Histogram, Box-Plot, Tile Plot,
Paraliel Coordinate Plot Bar Graph view, Correlation

Data Filtering
Valid Value Proportion, Average

Expression, Variance, Highest Ratio

Average Expression, Fold
Change, Statistical Group

Comparison

Sample
Comparison

N fold Regulation (Scatterplots), 2
Groups (Parametric tests), 2 Groups

(Rank Test), 2 Groups
(Absent/Present Search), K groups,

K Ordered Groups

Scatterplots, Array iayout view,
Pathway views, Ordered List

view

SimilarityStarch Distance, Profiie Distance Search,
Group Characteristic

Similar genes according to
Correlation coefficient and p-values

Clustering

Hierarchical, 2 D Hierarchicai,
Partitioning (k means and Seif-

Organizing Maps)

2 D Hierarchical, Partitioning (k
-means and Seif Organizing

Maps)
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14 Method of Comparative Analysis

The method of comparing two software data mining tools is by examining all external

and internal features available in the tool. The external features refer to the user interface

of the tool. A user-friendly interface is one that is easy to learn for a novice and has

ample resources of learning, available with the tool. These resources could be in the form

of online manuals (either separately, or in the form of hypeclinks from the main

interface), separate handbooks, vendor supported tutorials or telephonic technical support

by the vendor. Comparison of interfaces between two tools can be made by general use of

the tool and outwardly appearance of the results produced. This consists of the quality

and flexibility to modify the graphs and all such pictorial representation of the data.

The other basis of comparison consists of the internal features of the tool,

including the actual algorithms and statistical tests being used by the tool. This type of a

comparison is possible only after a thorough analysis of a data set, followed by

comparison of the results from the two tools. Also the thorough analysis by the gene

expression analysis tool could be followed by the validation of other independent

methods of gene expression analyses, not involving microarray data analysis.

In this analysis, the data set described in Section 1.3 was used as a sample data set

to determine the reliability of results of the two tools in study. This study was organized

to compare the characteristic features of two data mining tools for gene expression

analysis. Since all tools vary in external and internal features available, the aim of the

study was to lay out the results of some statistical analysis involved in microarray data

analysis. The goal was to reveal the observation of the importance of a data analysis tool

in the final results of a study. Many user interface features as well as results of different
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statistical algorithms and tests were compared between the two tools. For a proper

analysis of the reliability of a data mining software and determination of whether it may

comprise of all the essential algorithms, it is essential to understand the components

required for a gene expression analysis study.



CHAPTER 4

RESULTS OF COMPARATIVE ANALYSIS

4.1 Comparative Analysis of the User Interface

Even though Java is used as the application-programming interface for both the tools in

this study, there are some differences in the basic User Interface as follows:

1. Image Quality: In Expressionists 3.1, the image is of a bitmap form, whereas in

GeneSprings 4.2, the image is a vector-based graphic [4]. Bitmap graphics are made

up of bits or pixel, but vector-based graphics are formed from vector objects. Since

the relationship between the vector objects is fixed, the size of vector graphics can be

changed, but still look exactly the same. Vector graphics are resolution independent,

which implies consistency in the looks of the image irrespective of the dots per inch

used. On the other hand, the quality of bitmaps depends on the resolution since they

are made up of individual pixels. Due to this characteristic of bitmaps, the image

quality can be lost due to the change in size. Bitmap images also have a rectangular

shape, which means they generally have a background [4].

2. The Java Apple viewer of GeneSpringTM 4.2 allows the user to view the loaded

experiments as well as the results of the analysis in the same window; in

Expressionist 3.1, the user has to switch between the Data and Results tab while

changing any of the needed selections.

3. The "2 Groups Absent/Present Search" is present only in Expressionists 3.1. This

test is only useful when the user has allowed all calls of "Absolute Call

Measurements", i.e., Present, Absent and Marginal during the pre-processing analysis

41
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Figure 4.1 	 Screenshot of expression profiles of genes during a t-test in
Expressionist 3.1.
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of data. If the user starts an analysis, taking into consideration only Present calls, then

the purpose of this test is nullified.

4. In GeneSpringTM 4.2, the user can modify the color settings of all visual

representations. This includes the actual colors as well as the parameters to be colored

by, for example, by expression, significance, classification and parameters. All color

settings are fixed in Expressionists 3.1 and cannot be modified.

5. In Expressionists 3.1, the user can view individual gene expression profiles during

the process of statistical filters as "Filter by N-Fold Regulation", "Filter by

Expression Levels", "Filter by Variance', "Parametric Test", etc. This is not possible

in GeneSpringTm 4.2, where the filtration of genes is shown by the reduction in the

number of genes in the list.
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6. The annotation of gene lists produced from GeneSpringTM 4.2 consists of different

attributes as gene description, keywords, common name, different accession numbers

and map positions on the chromosome. These can be changed in accordance to user

preferences through the "Edit" drop-down menu. In Expressionists 3.1, the

annotation consists of the accession number and gene description, based on the

information from the local database. The format can only be changed in the Generic

Data version after transfer of the file in a specified file type.

7. When details of a particular gene are required, the expression profile is selected to

bring up a gene inspector window. In Expressionists 3.1, this window relates to

information about the gene's expression levels in the different comparison groups and

associated value of the analysis. In GeneSprings 4.2, besides the expression levels

and associated value, the option of finding similar genes (similar in terms of

correlation coefficients) is also present. Besides this, in both tools, links to other gene

information is present. In the case of ExpressionistsTM 3.1, this consists of BioBench

SRS, Entrez/NCBI, NetAffix, LocusLink and KEGO. In GeneSpringTM 4.2, this

consists of Genbank, Gencards, Unigene, LocusLink, DDBJ, TIGR-TC and PubMed.

8. In GeneSprings 4.2, there is no method of determining a global mean or global

median to be used as a reference value for normalization settings. This is not the case

in ExpressionistTm3.1, where a mean or median value can be determined from a

statistical representation of a histogram or boxplot. This value can then be used as a

reference value for normalization.

9. The user interface to organize gene lists, experiment lists, gene trees, experiment

trees, classifications, drawn genes and pathways into folders and sub-folders
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according to personal requirements in GeneSpringTM 4.2 is based on a proper

hierarchical tree structure. In Expressionists3.1, this is just by a listing of the

different gene lists or experimental groups.

10.The drop down menu for Experiments present in GeneSpringTM 4.2 allows the user to

"Duplicate Experiments", "Merge/Split Experiments", "Change Experiment

Parameters", "Change Experiment Interpretation" and Specifics of Global Error

Model. In Expressionists3.1, there is no option to "Merge Experiments"; the only

method to perform this operation is to reload all samples. There is a way to split

experiments in smaller experimental groups. There is no option for changing the

interpretation of an experiment, i.e., to specify if groups of samples are replicates,

continuous or non-continuous samples. The lists of experiments are linearly arranged

as per order of creation or upload.

11.The physical position of a gene on the chromosere can be viewed in certain generes

in GeneSprings 4.2; there is no such visualization in Expressionists3.1.

Ifs pall

Figure 4.2 Screenshot of physical position of a gene on the chromosome in
GeneSprings 4.2.
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The choices of the different significance analysis in both tools are summarized

below:

Table 4.1 Comparison of Statistical Tests of the Two Tools

Feature Expressionist 3.1 GeneSpringTM 4.2

Parametric Test

I. Analysis of
i) Genes or ii) Experiments
2.Number Of Best Scores
(Default — 20)
3. Valid values per group
(Default — 50% for genes and
20% for experiments)

1. Assuming equal variances
(Student's T-test/ANOVA).
2.Not assuming equal variances
(Welch's T test/ Welch ANOVA)
3. Global error model variances

Non-Parametric
Test

Rank Test-
I. Wilcoxon test
2. Kruskal-Wallis test

Wilcoxon-Mann-Whitney test /
Kruskal—Wallis 	 test:	 application
automatically selects the suitable of the
two

Multiple Testing
Correction No Choice

I. Individual (genewise error rate)
2. Family-wise error rate
3. False Discovery Rate

Expressionists 3.1: 

Parametric Test

This is also known as the 2 Groups (Parametric Test) um — t-test, where the name also

indicates the number of groups that are used for the analysis. This analysis uses the

student's t-tesi assuming equal variances and also a normal distribution. It measures the

extent to which the means of two groups are statistically different from each other. The

analysis is appropriate to compare the means of two groups relative to the spread or

variability of their values [3].

The results of this test allow the detection of genes that possess a maximum variation

between the two groups, but a minimum variation between the genes within the same

group. The increase in replicates per experiment group increases the efficiency of the

result [3]. The different options within this analysis are:

1. Analysis of i) Genes ii) Experiments.
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2. Number Of Best Scores (Default 20): This specifies the number of items initially

contained within the best scoring profile group.

3. Valid values per group (Default = 50% for genes and 20% for experiments): This

specifies a threshold for a gene to be included in the analysis; it must have a valid

value in at least the specified percentage of the genes (or experiments) that are being

analyzed. A value is valid when it satisfies the quality settings (of Present, Absent or

Marginal Absolute Calls).

Non-parametric test

Rank Test: This is also known as the 2 Groups (Rank Test) um — Wilcoxon Test, an

analysis that identifies genes with an expression level in one group which are statistically

different from the other group, based on the ranks of the values and is not based on a

normal distribution. Thus this test does not take into consideration the expression levels

of the genes or experiment. Hence, it has the advantage of not being dependent on the

nonnality of the data set distribution. This is efficient when used for very few numbers of

replicates per group [3].

K Groups: As the name suggests, this analysis is used for more than two groups of

experiments. The default test for this is the Kruskal-Wallis test. The k groups analysis

identifies genes with an expression level that is statistically different in at least one of the

selected groups, based on the ranks of the values. Hence, like the Wilcoxon test, this has

the advantage of not being dependent on the nonnality of the data set distribution [3].
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GeneSpringTM 4.2: 

This tool has the options of different Multiple Testing Corrections within each group of

significance analysis tests.

Parametric Test

The different options of the parametric test are:

1. Assuming equal variances (Student's t- test/ANOVA).

2. Not assuming equal variances (Welch's t-testl Welch ANOVA).

3. Global error model variances: This is a two-component error model, which estimates

measurement precision by combining variability of all genes. The global error model

accounts for two types of error associated with microarrays, namely, measurement

variation and between-samples variation [4]. The two variations to model are based

on replicates and on deviation from 1 (in case of no replicates).

Non-parametric tests

Wilcoxon-Mann-Whitney test I Kruskal—Wallis test: There is no option to choose from

the different methods, since the application automatically selects the most suitable

method of statistical analysis based on the number of groups to be analyzed.

Multiple Testing Correction [4]:

This option is available only in GeneSpringTh 4.2 and is used is to adjust individual p-

values to account for multiple comparisons and keep error rates less than or equal to user

defined p cut-off values. There are different Multiple Testing Corrections available based
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on the error rate, as individual error rate, family-wise error rate and false discovery rate

[4]. These are classified along with the respective options to choose from as follows:

1. Individual (gene wise error rate):

Selection: None

2. Family-wise error rate:

Selection: Bonferroni Bonferroni Step- down (Holm) / Westfall and Young

Permutation

3. False Discovery Rate:

Selection: Benjamini and Hochberg False Discovery Rate.

The Default is Benjamin and Hochberg False Discovery Rate for multiple testing

correction with a p cut-off value of 0.05.

Listed below are some of the options in Expressionist 	 3.1 and

GeneSpringTh44.2:

Table 4.2 Nonnalization Methods in the Two Tools

Expressionist 3.1 GeneSprinem 4.2

1.

Normalization
(i)None
(ii)Logarithmic mean
(iii)Arithmetic mean
(iv)Median

Per Spot
(i) Yes
(ii) No

2. Reference Experiment:
To Be Specified

Per Chip
(i) Positive control genes
(ii) Median
(iii) Constant values
(iv) No Per Sample

Normalization

3. Reference Value:
To Be Specified

Per gene
(i) Median
(ii) Particular Sample
(iii) No Per Gene

Normalization
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Expressionist 3.1: 

1. Nonnalization:

a) None

b) Logarithmic mean

c) Arithmetic mean

d) Median

2. Reference Experiment

3. Reference Value

The reference value takes precedence over other options of reference experiment

and normalization method. This implies that if the user specifies a reference value and a

reference experiment or normalization method is also specified, then the application

automatically considers only the reference value and uses that as the normalization value.

In order to determine a specific value, e.g. the global mean or median of all genes on all

chips, the following method can be used to determine the reference value:

A histogram analysis of the experimental groups is performed with the "Include

Summary" option selected. From the histogram, the "Info" option is selected and in red,

appears the global mean and median of the genes and chips under study. This global

mean or global median can be used as the reference value in the normalization settings.
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GeneSprings 4.2: 

1. Per Spot: This enables expression comparison on a relative scale.

2. Per Chip: This minimizes the differences from sample or array.

i. Positive control genes: mostly "Housekeeping or spiked genes".

Median: by the 50th Percentile, assuming overall similar expression profile.

iii. Constant values: for pre-normalized input data. This could be a custom defined

value.

iv. No per sample normalization.

Option: To use background correction or not, what values to use and which genes to use

(absent, present, marginal).

3. Per gene: This enables expression comparison on a relative scale.

i. Median: mostly used in the absence of a control sample.

ii. Particular sample: When desired to use a designated sample.

iii. No per gene normalization.

If experiments have been merged or split from a group of samples, then the option

of starting with normalized values (from the original experiment) or of starting with the

raw values can be made. In the latter case, the nonnalization can be made according to

the above options.
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4.1.1 The Learning Curve for a Biologist

The application in both tools is slightly different and hence the learning process also

differs for both tools. This is a major factor for biologists who are entering the world of

analyzing their own data, especially for the first time. Comprehension of various

statistical terms and an understanding of the functioning of the algorithms that are

responsible for the different analyses would take some time for a hard-core biologist.

From this point of view, a user-friendly interface as well as accompaniment of sufficient

manuals and guidance is necessary. Expressionist"' 3.1 has online documentation for

registered users of the tool, whereas GeneSpringTm 4.2 has online documentation for

anyone who requests permission from the vendor. Thus, prospective users can familiarize

themselves with the tool before purchasing the license. GeneData, the vendor for

Expressionist 3.1 provides technical support primarily through email correspondence,

whereas SiliconGenetics, the vendor for GeneSpringTm 4.2 provides technical support

primarily with a toll free technical support phone number as well as e-mail

correspondence. The documentation and manuals for GeneSpringTM 4.2 provide detailed

information and instructions on how to use the interface as well as the description of

expression analysis studies and explanation of the relevant terms present as options in the

tool. The user manual of GeneSpringTM 4.2 was more user-friendly and easier to learn. It

was properly organized for an audience of first time users of microarray data analysis

tools.



52

4.2 Implementation of Basic Analysis

The true comparative analysis of both the tools in this study can be brought about by

implementation of the above statistical analysis on a set of data, details of which were

specified in 1.3. The goal was to apply the same methods of statistical analysis in both

tools and compare the final results. Ideally, the gene lists produced should be comparable

with a minimum number of discrepancies, and those should be explainable.

The first step of the analysis involves the 'Import of Data' into the application

packages. In this analysis, since both the tools being compared are commercial packages

and hence are linked to the proprietary database of the affiliated company, the data is

imported from the in-house databases. Expressionisirm 3.1 uploads the data from

Affymetrix LIMSTm or MAS TM and runs it through GeneData's Proprietary Data Quality

Assurance Module [3]. In the case of GeneSprings 4.2, the data is uploaded from a file

that is run through the proprietary database of the company that possesses the license for

the tool. The data could also be imported in any other form; the autoloader feature

recognizes many common fonnats of flat files originated directly from the gene chips [4].

in such cases, then formatting would be the next step to fulfill the requirements of the

proper format for import of the data in accordance to the formatting guidelines.

The next step of the analysis involves 'Quality Control' of the chips as well as the

genes. The purpose of the quality control step entails the removal of chips or genes that

do not meet the threshold for a comparable analysis. In other words, it aids in the removal

of poor quality samples. MAST  4.0 was the tool used for the quality control, The

processes of 'Filter of genes' and 'Quality control' are supplemental to each other in this

study.
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This can be done in a variety of ways:

1. Direct implementation of basic statistical analysis and inference from the global

results.

2. Global analysis by clustering, scatter plots, prediction of parameter values or condition

inspector. Of these, the latter two features are available only in GeneSpringTM 4.2.

Methods such as global representation in the form of box plots can be made, which is

a feature present only in Expressionistm 3.1.

The approach used in this study is the direct implementation of the basic

statistical analysis and global analysis (by clustering and box plot representations) using

both the tools. The gene expression analysis of the data set starts from a global

representation in all six tissues of the paw connective tissue, liver, lung, skin, blood and

kidney. The results of the quality control by direct implementation of basic statistical

analysis is described only for Expressionist 3.1, whereas results of validation by global

analysis by means of clustering and box plots is described for both tools.

4.2.1 	 Comparative Analysis

The first step of the quality control implementation involves normalization of the data.

The normalization method used in this analysis is based on the global median of all the

samples and genes under study. In Expressionistim 3.1, this is performed as described in

section 4.1 by determination of a specific reference value (in this case, the median), while

in GeneSpringTM 4.2 it is performed by making the following selections:

1. Per Spot: No per spot normalization.
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2. Per Chip: Median, by the 50 th Percentile, assuming overall similar expression profile.

3. Per Gene: Median, mostly used in the absence of a control sample.

The second step of the quality control implementation involves filtering of the

data based on absolute calls, statistical filters of t-test and fold changes. The criteria for

choosing the appropriate measurement calls for all analyses is based on the fact that

"Only Present calls" maybe more highly meaningful. Thus, in Expressionist 3.1, this is

selected from the drop down menu of "Quality Settings", whereas in GeneSpringTM 4.2, it

is selected by the drop down menu in "Change Experiment Interpretations" of the

Experiment menu. The next step involves the implementation of different filters for fold

changes, expression levels and statistical analysis. The fold changes for this analysis are

taken as greater than or equal to two-fold change in expression from control to treatment;

this includes induced as well as repressed genes. The criteria of greater than two fold is

taken since there is a great variability in gene expressions, and fluctuations of small

magnitude almost always suggest random changes as opposed to consistent change in

gene expression. In Expressionisfrm 3.1, this brought out by the "N-Fold Regulation" (in

either the "Log-log plot" or "Profile representation") by selecting all genes that are

differentially expressed by a factor greater than or equal to two. In GeneSprings 4.2 this

is done by selecting "Add Filter on fold change" from the Tools menu and right clicking

on the 'control' or 'treatment' interpretation of the experiment. For present purposes,

expression levels were arbitrarily required as greater than or equal to 100 in the

comparable group. This was done in Expressionist 3.1 by performing the "Filter by

Average Expression" analysis, whereas in GeneSpringTM 4.2 it was performed by the

"Expression Level Restriction" option from the Tools menu. The statistical group
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comparisons used involve the parametric test employing the student's t-test that is the

only option among parametric tests in Expressionist 3.1. The same test is implemented

in GeneSpringTM 4.2 with the unequal variances option. The genes obtained after

implementation of all the above analyses are said to be the genes that show significantly

different expression between one condition and another, which in this case, is between

the control and treatment groups.

The results of the above analysis are depicted in the following visual

representations and tables:

Table 4.3 Number of Genes in All Tissues That Change in Expression
Level according to Expressionist 3.1

Tissue Number of
Days

2-fold
change,

non-
significant

2- fold
change,

significant
339Paw 7 day 386

21 day 42 11
Liver 7 day 23 7

21 day 83 27
Lung 7 day 139 35

21 day 76 32
Blood 7 day 29 7

21 day 43 20
Skin 7 day 49 19

21 day 142 66
Kidney 7 day  39 17

21 day 61 21
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Figure 4.3 The Box plots of experiments to assure the medians are aligned together in Expressionists 3.1 (after normalization to
58.45).
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Figure 4.4 Experiment tree of all six tissues in GeneSprings 4.2.
(Expression level >100 in 6 out of 12 conditions)

This type of an analysis can also be performed in Expressionists 3.1 with the

criteria of hierarchical clustering of experiments.

The above cluster representation suggests that the behaviour of genes in the blood

tissue is very different from the rest of the tissues. The basic analysis of filter of genes of

Expressionists 3.1 in Table 4.1 depicted a meager number of genes changing

expression. Also, the box-plot representation in Expressionistm 3.1 in Figure 4.3 shows

how the blood tissue was not aligned with the remaining tissues. This is also visible in
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hierarchical clustering of individual tissues as depicted in the Appendix by observing

separate clusters for the control and treatment groups. Thus, different types of analyses in

different tools suggested the same observation, hence validating the consistency in both

tools to show similar results. These are global representations of the analysis. This does

not, however, provide much information about individual genes.

Table 4.4 Number of Genes Differentially Expressed in Expressionist 3.1
(Expression levels of either control or treatment >100 and >2 fold change)

Time point
Direction of
Regulation Paw Liver Lung Kidney Skin

7 Up 109 2 24 3 1

Down 135 0 13 1 1

21 Up 1 9 8 6 13

Down 2 6 15 7 33

The above tables and figure demonstrate how the seven-day data of the paw is of

more interest, based on the number of differentially expressed genes, both induced as

well as repressed. Teasing apart the different clusters of each tissue and studying the

relation between the control and treatment groups further validated this. The clusters of

individual tissues in Appendix A show that the paw connective tissue is the only tissue

seen to possess separate clusters for the control and treatment conditions. Thus,

arbitrarily, the seven-day, paw connective tissue is used as a sample data set to compare

the two tools.



59

Gene Ire

a

- Control , ;

- Control

- Control , ;

- Treatment , ;

Treatment , ;

Treatment Samples 4,7 sana00001394

Figure 4.5 Experiment tree and gene tree of paw tissue at seven days in
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Figure 4.6 Experiment tree of paw tissue at seven days in Expressionists 3.1.



60

Among genes up-regulated in paw tissue, few or none were also up-regulated in

other tissues at any time point. This was determined in Expressionist 3.1 by creating

gene lists in all tissues, which consisted of genes up-regulated greater than twofold.

These gene lists of different tissues (but same time points) were compared and the

following intersections were seen:

Figure 4.7 Intersections of gene lists from different tissues.

The remaining tissues were not represented in this Venn diagram since there were

no other genes that were common with any other tissue. This type of Venn diagram

analysis cannot be pictorially represented in Expressionism 3.1. GeneSpringTM 4.2 can

generate perform Venn diagrams for up to three gene lists at a time. However, in

Expressionist 3.1, the user can intersect an infinite number of gene lists at a time. After

implementation of basic statistical analysis of genes up-regulated in paw connective

tissue, a list of genes was prepared and sorted in descending order of fold changes and the

following statistics regarding the two tools were gathered:
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Table 4.5 Statistics of Comparison of the Two Tools After the Basic Statistical Analysis

Total Number in Expressionist 3.1 =111
Total Number in GeneSpringTM 4.2 =106

Genes retaining
their ranks in both

tools

Number of genes
present in

Expressionist 3.1
but absent in

GeneSpringTM 4.2

Number of genes
present in

GeneSpringTM 4.2
but absent in

Expressionist 3.1

Number of genes
present in both

Number of genes 2 26 21 85

As a % of total in
GeneSpringTM 4.2

1. 9 % 24.5% 19.8% 80.2%

As a % of total in
Expressionist 3.1 

1.8% 23.4% 18.9% 76.6%

Table 4.6 The Two Genes that Retained Their Rank According to the Fold Changes in
Each Tool

GeneSpringTM

Fold Change

4.2Devalue Expressionist"'

Fold Change

3.1

P ValueRank Systematic
Name

Common
Name

Keywords

1 rcAA893846
at

EST 20.4 0.00035 24.4 0.00037

18 L32132_at Lbp lipopolysacc-halide

binding
protein

4.8 0.00061 7.3 0.00068
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4.2.2 A Desired Comparison

As could be seen from Table 4.5 above, approximately 85% of the genes satisfy the

following selection and are present in both tools:

1. Up-regulation from control to treatment by greater than or equal to two fold.

2. Expression level of treatment group greater than or equal to 100.

3. p-value of compared groups less than or equal to 0.05.

This implies that the tools have different methods of determining some statistical

tests. The following analysis is an attempt towards accounting for the discrepancy in the

final list of genes that satisfy the above criteria. Thus, the two sets of genes are taken that

are present in one tool, but not present in the other, and further analysed in both tools.

The values in red, account for the difference. This may be because one of the above

criterions may not be fulfilled by one tool. The results obtained are showed on the next

page:



Table 4.7 The 21 Genes Present in GeneSprings 4.2, but Absent in Expressionistm13.1

Raw Values Fold
Changes

Absolute Measurement Calls

Exp. GS Exp. GS Expressionistm13.1 GeneSpringTM 4.2 Exp. GS
Keywords Systematic Name Control Control Treatment Treatment Expo. GS Control Treatment Control Treatment Devalue Devalued

1 D86041_at 37.65 ' 37.67 106.0	 ' 106.0  2.8 2.8 a P P P - 0.00030
2 PS-PLA1 D88666_at 27.07 27.07 252.8 252.8 9.3 9.3 A P - 0.00174
3 PMP7O D90038at 60.31 60.33 147.3 147.3 2.4 2.4 P P P P 0.01355 0.00025
4 T-cell receptor M18854_at 48.69 52.85 137.5 142.9 2.8 2.7 A P P P - 0.01333

5 EST Mc AA851381_at 41.57 120.37 111.7 284.2 2.7 2.4 P P P P 0.03075 0.00879
6 EST rcIAA860057 a_ 18 58. 14.97 104.1 125.4 5.6 8.4 A P P P - 0.00726
7 EST rc_AA874990_at 38.37 45.07 176.5 108.5 4.6 2.4 P P P - 0.03706
8 EST rc_AA892849_at 43.27 54.87 111.6 118.7 2.6 2.2 A P P P - 0.03747
9 EST rc_A1639338 at 16.45 42.63 140.6 103.6 8.5 2.4 A P P P - 0.00719
10 EST rcA1639365at 20.71 45.40 106.9 105.8 5.2 2.3 A P P P - 0.00034
11 EST rc_A1639401_at 29.75 14.50 199.4 209.3 6.7 14.4 A P P P - 0.02269
12 EST rc_1131232_at 44.42 80.97 128.5 244.6 2.9 3.0 P P P P 0.217 0.04812
13 S75435_i_at 15.56 41.57 1115 111.7 7.2 2.7 A P P P - 0.00001
14 U09401 s_at 120.37 19.90 206.4 104.0 1.7 5.2 A P P - 0.00513
15 U15550 at 14.97 38.37 125.4 176.5 8.4 4.6	 ' A P P P - 0.00000
16 U31599_g_at 45.08 43.23 108.7 111.6 2.4 2.6 A P P P - 0.03992
17 U76714_at 54.89 21.25 118.7 140.5 2.2 6.6 A P P P - 0.00353
18 U76714,j_at 42.65 23.75 1016 106.9 2.4 4.5 A P P P - 0.00113
19 insulin-like OF 1 X06107J_at 45.38 32.60 110.6 186.9 2.4 5.7 A P  P P - 0.03110

20 Fc-ganuna
receptor

X73371_at 11.02 44.43 209.3 128.5 19.0 2.9 A P P P - 0.01517

21 GHQ releasing
hormone

234004exon_gat 80.99 21.90 159.5 112.5 2.0 5.1 A P P P - 0.00174

Exp.= Expressionists 3.1
GS = GeneSpringTM 4.2
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From Table 4,7 above, the p-values for the analysis in Expressionist 3.1 are

missing for a majority of the genes. The reason for this absence can be attributed to the

fact that once the absolute calls for the genes is determined to be 'Absent', they are

automatically thrown out of the analysis, and hence the p-values for only 3 genes are

shown in the table. These 3 genes have an absolute call as 'Present' and hence were a part

of the analysis,

From a total of 21 genes, there were two genes that were not accounted for, i_e

they appeared to satisfy all the criteria for selection, yet were filtered from the analysis in

Expressionist 3_1, These two genes were PMP7O (1390038_at) and an EST

(re AA851381at). The raw expression levels of the former gene are similar in both

tools, but for the latter, even though the fold changes were comparable, yet there was a

large discrepancy in the original raw expression values. This result cannot be accounted

for at this point in the study_

The next table depicts the 26 genes that were present in Expressionism 3_1, but

absent in GeneSpringTM 4,2.



Table 4.8 The 26 Genes Present in Expressionists 3.1, but Absent in GeneSpringm4.2

Raw Values Fold Changes Absolute Measurement Calls
Exp. ,	 GS Exp. GS Expressionistrm 3.1 GeneSpringTM 4.2 J	 Exp. GS

Systematic Name Control Control Treatment Treatment Exp. GS Control Treatment Control Treatment i	 Devalued Devalue
1 AF050214_at 155.2 211.7 556.0 409.5 1.6 P P P P 0.01095 0.00411
2 AF050214_at 218.5 214.2 1	 443.7 448.3 1.9 1 9 P P P P 0.00046 0.02086
3 AJ005394_at 449.4 419.5 877.2 886.0 2.0 2.0 P P P P 0.00415 0.00651
4 4U223355_1...at 81.9 82.3 I	 154.3 156.4 1.8 1	 9 P P P P 0.00222 0.00068
5 D00753_al 76.9 75.1 140.1 141.4 1.8 1.9 	 ' P P P P 0.00400 0.06429
6 L00191cds#1_s at 1890.7 1849.5 1684.4 1717.3 1.9 2.0 P P P P ,1 	0.00013 0.01196
7 L02529_at 191.9 188.4 372.4 376.9 1.9 2.0 P P P P 0.00010 0.00090
8 M15562_g_at 912.0 914.1 '	 1815.0 1834.3 1.9 2.0 P P P P 0.01156 0.00522
9 M31837_at 116.8 115.0 1	 221.6 224.0 1.9 1.9 P P P P j	 0.00688 ().()577►
10 M81678_at 221.9 219.4 415.6 418.6 1.9 2.0 P P P P 0.00035 0.00021
11 rc_AA799140_at 1446.3 1418.6 2822.2 2843.6 2.0 2.0 P P P P 0.00004 0.00001
12 rc_AA800844_s_at 789.0 771.3 1552.6 1564.6 2.0 2.0 P P P P 0.00007 0.00011
11 rc_AA859757_at  102.5 296.1 593.0 600.3 2.0 2.0 P P P P 0.00734 0.00137
14 rc_AA874848_s_at 511.3 502.6 ;	 969.0 980.1 1.9 2.0 P P P P	 1 0.01626 0.00879
15 rc_AA875021_at 112.2 509.6 I 	249.0 251.1 1.9 1.9 P P P P 0.00009 0.00004
16 rc_AA891204_s_at 1466.7 1440.4j 2845.2 2871.0 1.9 2.0 P P P P 0.00051 0.00950
17 rc_AA893 ,702_s_at 228.4 221.9 409.6 441.5 1.8 2.0 P P P 0.01116 0.01676
18 rc_AA944422_at  475.0 465.5 898.9 901.7 1.9 1.9 P P P P 0.00101 0.00214
19 rc_Al214060_s_at 281.2 275.7 1	 527.8 513.1 1.9 1.9 P P P P 0.00026 0.00006
20 554008J_at 299.7 291.9 557.4 561.8 1.9 1.9 P P P P 0.00087 0.00029
21 U35776_at 142.9 140.2 269.4 272.9 1.9 1.9 P P P P 0.00018 0.00755
22 X04979_at 4062.3 1978.3 '	 7931.2 8008.0 2.0  2.0 P P P P 0.00002 0.00009
21 X11044_g_at 1082.2 1060.7 2500.2 2143.9 2.0 2.0 P P P P 0.00919 0.00408
24 X15512_at 92.1 90.3 179.5 182.2 1.9 2.0 P P P P 0.00243, 0.00093
25 X11044_g_at 107. .8 105.8 217.0 218.9 2.0 2.1 P P P P 1	 0.00058 0.00032
26 X72914_at 811.7 815.4 1	 1665.8 1680.6 2.0 2.1 P P P P 4 	0.00002' 0.00001

Exp.= Expressionists 3.1
GS = GeneSprihgTM 4.2
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As can be seen from Table 4.8 above, there are a total of 16 genes, for which the

discrepancies were not accounted for, i.e., they seem to satisfy all the criteria, yet were

not present in the gene lists produced from both tools. This may imply that there was

some other criterion by which the genes were filtered out of the analysis. Ideally, the fold

changes are calculated from the normalized data. In this case, since the normalized values

for each signal of gene expression were not accessible from Expressionist"( 3.1, a

comparison of fold changes calculated from raw and nonnalized values were analyzed

only in GeneSpringTm 4.2.

Table 4.9 Fold Changes in GeneSpringTM 4.2

Systematic Name of
Gene

Fold Change
Calculated from

Raw Values

Fold Change
Calculated from

Normalised values
1 	 AB012234g_at 1.92 1. 81
2 	 AF050214_at 191 86
3 	 A.1005394 _at 2.02 1. 06
4 	 A223355_g_at 1.90 1.A2
5 	 D00753_at 1.88 1.89
6 L00191cds#1_sat 2.01 1. 97
7	 L02529_at 2.00 1. 94
S 	 M15562_g_at 2.01 1. 92
9 	 M31837_at 1 95 1.9

10 	 M83678_at 2.00 1. 93
11 RQAA799340_at 2.00 ► 94
12 rc_AA800844_s_at 2.02 1. 95
13 RQAA859757_at 2,03 1. 94
14 rc_AA874848_s_at 1.9; 1. 86
15 RQAA875021_at 1. 94 1.87
16 rQAA891204_s_at 1 99 1 . 94
17 rQAA893702_s_at 1.97 1.87
18 Rc_AA944422_at 1.94 1.85
19 rQAl234060_s_at 1 93 1. 87
20 	 S54008_i_at 1.91 1.84
21 	 U35776at 1.95 89
22 	 X04979_at 2.01 1. 95
23 	 X13044_g at 2.02 1. 91
24 	 X15512_at 2.02 1 a32
25 	 X65454gat at 2.07 99

26	 X72914 at 2.06 1.99
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This table accounts for filtration of all 26 genes during the analysis in

GeneSpringTM 4.2, since the fold changes are less than two fold. This validates the fact

that the nonnalized values are used to calculate fold changes in GeneSpring"' 4.2. The

desired way to perform a comparison of this type would be to have some sort of

comparison tool installed in these applications, where the raw data tables could be

compared before any analysis is done. The embedded tool could be an analogy to

NifS Access that can compare two tables containing raw data for a full array of genes.

Once it is ensured that the same set of genes are being used for the analysis, then

the same set of tests should be applied to the data set in both data mining tools. For

example, GeneSpringTM 4.2 has the option to chose a Multiple Testing Correction, which

is used to adjust individual p-values to account for multiple comparisons and keep error

rates less than or equal to user defined p cut-off values. Since this option is not present in

Expressionistim 3.1, a comparative analysis of the precise nature and power of statistical

significance tests of the two tools cannot be made.

Ideally, if the gene lists from one tool can be conveniently transported to the

other, then the comparison of gene outliers and other variable conditions can be made.

All such genes, which are commonly found to be outliers in both tools, can be set-aside

during the preliminary analysis. Also, a comparison of genes after each step of analysis

would be the ideal way to detennine the significant genes that are obtained in all tools

used for the analysis. A validation of the result by another tool at each step of the analysis

ensures the significance and accuracy of the change in gene expression of a gene of

interest.
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A visualization tool such as viewing the physical position of a gene on the DNA

of the organism is feasible only in GeneSpringTM 4.2, and hence the exact location of a

gene cannot be compared in the two tools in this study.

4.3 Comparative Analysis of the Clustering Methods

In this section, the different clustering analyses are compared in Expressionist 3.1 and

GeneSpringTM 4.2. This involves implementation of the different measures of similarity

and clustering methods that are available in current versions of the two tools. It should be

noted that comprehensive software tools are frequently updated with newer versions and

the availability of features will differ with from version to version.

The gene list used for the comparative analysis consists of the 85 genes that were

found to satisfy the criterion of being upregulated after treatment as compared with

control. These genes were statistically significantly different with respect to expression

levels (p-value <0.05); the fold change was greater than or equal to two and raw

expression levels were more than 100.

Some other features of the two tools that are not included in this thesis include

SOM clustering, Principal Components Analysis and Regulatory Sequence Search.

4.3.1 Side-by-Side Comparison of Available Features

All the clustering options of the tools were compared and an attempt was made to use the

corresponding features in both tools, so as to obtain results that would hold the same

significance.
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Some clustering differences explained between Expressionists 3.1 and

GeneSprings4.2:

i. The user can specify the Separation Ratio and Minimum Distance in GeneSpringTM

4.2. These measures control the difference in correlation between the objects being

analysed for the dendrogram (in hierarchical clustering). This option is not present in

Expressionists 3.1.

ii. The Valid Value Percentage of the number of objects (i.e., genes or experiments) to

be included in an analysis can be specified by the user in Expressionistrm 3.1,

whereas it is set to a default value of 50% in GeneSpringTM 4.2.

iii. In Expressionist 3.1, the entire dendrogram cannot be viewed if the length of the

annotations of the genes exceeds a threshold number of permissible characters. This

occurs primarily when the Experiment Name and Description are too long. The

process to circumvent this problem is to export the data into a flat file from

Expressionistrm 3.1, shorten the annotation in MS Excel, and re-import the file with

an extension of `.ads' in the Expressionist 3.1 Generic Data server. This transport

of data has to be done with great caution in order to prevent any discrepancies. This is

because there are attributes associated with each gene that should be re-imported with

the exact information as derived from the original Gene chip; this mainly includes the

Absolute Call Measurement and the type of data, i.e., nonnalised or raw data.

iv. In GeneSprings 4.2 manipulation of labels for dendrograms and graphs can take

place through the option of "Change Experiment Parameters" from the

"Experiments" menu, and hence the labelling of all the data is based on the user and

not the structure of the database. Also, the type of label based on the annotation of the
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genes can be specified from the "Gene Label" option under the 'Preferences" drop

down of "Edit". There is no such option in Expressionists 3.1.

Table 4.10 Hierarchical Clustering Options of the Two Tools

Feature Expressionists 3.1 GeneSprings 4.2

1 Cluster by Experiments or Genes Experiments or Genes

2 Distance Metrics

Positive (Default), Correlation,
Li, Euclidean, Normalized

Euclidean, Maximum

Standard Correlation (Default),
Smooth, Change, Up-regulated,

Pearson, Spearman Confidence, Two-
sided Confidence, Distance

3 Linkage Method Average, Single or Complete Average

4 Separation Ratio Cannot be defined User Specified; default=O.5

5 Minimum Distance Cannot be defined User Specified; ckfault=0.001

6
Automatic
Annotation No Choice Choice of (i) yes or (ii) no

7
Annotate with
Standard Lists No Choice Choice of (i) yes or (ii) no

— _

8
Valid values to be

used User Specified
Default of either (i) Half (ii) All

conditions

9
Ontology

Construction Tool No Choice
Can Construct an Ontological

Classification
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The following table shows some of the differences in the k-means clustering

options of both tools:

Table 4.11 k-means Clustering Options of the Two Tools

Features Expressionist 3.1 GeneSpringTM 4.2
1 Number of Clusters User Specified User Specified

2 Maximum Iterations Cannot be Specified User Specified (Default=100)

3 Distance Metric

Positive (Default), Correlation,
L1, Euclidean, Normalized
Euclidean, Maximum

Standard Correlation (Default),
Smooth, Change, Up-
regulated, Pearson, Spearman
Confidence, Two-sided
Confidence, Distance

4 Valid values to be Used
User Specified
(Default = 20%) No Such Choice

5
Start From Current

Classification No Such Choice Can be selected

6
Animate Display While

Clustering No Such Choice Choice of (i) yes or (ii) no

7
Test Additional Random

Starting Clusters No Such Choice User specified Number

8
Discard genes with No Data for

Half the Conditions No Such Choice Choice of (i) Yes or (ii) No

4.3.2 Clustering Comparison

An ideal clustering comparison would consist of clustering of genes in different tools

using the exact same tests. For example, the only linkage method available in

GeneSpringTM 4.2 is the average linkage method, whereas Expressionist 3,1 also has

options for single and complete linkages. Thus, the accuracy of results produced by a

single or complete linkage clustering cannot be cross-validated between the two tools to

determine which tool is more precise.

Also, the measures of similarity play a major role in the clustering process; hence

only if the measures of similarity are the same in both tools, is it possible to compare
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results and analyze the tool. In order to tease apart some computational information about

the hierarchical clusters, the separation ratio and minimum distance are necessary in

order to obtain gene-to-gene relationship. Since these features are not present in

Expressionist 3.1, this analysis is not feasible and the efficient tool cannot be

determined based on this test.

Another feature that is distinct from Expressionist 3.1 is the ease of making

gene lists for any type of analysis or classification. In GeneSpringTM 4.2 there is a tool

known as the Annotation and Ontology Construction Tool, which can automatically

annotate any gene with public database information using GeneSpider. The user can also

construct an ontological classification of the genome based on biological process,

molecular function, cellular component, etc. This produces gene lists based on the above

criteria within seconds. The same process in Expressionist 3.1 may become tedious due

to constructing individual gene lists per category of the classification and then making a

comparison or further analysis based on that classification. The Annotation and Ontology

Construction Tool of GeneSprings 4.2 allows a simultaneous study of expression

patterns in biological categories of genes by simply browsing through them and can be

cross-referenced to new lists of genes.

In the case of k-means clustering, there is no valid comparison between the two

tools, since the method used to display the number of initial clusters and number of

iterations is very different. The number of clusters (unless user specified as in

GeneSprings 4.2) and the number of genes per cluster changes with every iteration. In

Expressionist 3.1, the user has to perform the k-means cluster analysis for an individual

iteration and hence it is a very tedious process to observe the number of iterations that
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takes place for convergence to occur. In the case of GeneSprings 4.2, the user can

observe the total number of iterations that take place for convergence to occur in one

step, but in order to observe the variation in number of clusters and number of genes per

cluster, the same tedious process of performing a k-means cluster analysis for an

individual iteration has to be performed. This can be proven by the results of the analysis:

K-Means clustering aft the gene list Tina! list of 85 genes to work will' based on:
weight 1.0 Control Vs Treatment, Paw data (Default Interpretation)

Correlation type: Standard Correlation
Converged after 17 iterations.

sett 	 21 	 21 	 21 	 1.4181923. 	 , 	 . 
sell:3 	 :37 	 :i37 	 i 1.9583848-,- 	 : 
Set 	 i7 	 .7 	 17 	 ;1.5185586 	 ilk

sea 	 :29 	 :20,__ 	 , _ 	 € 1;Q39536520 
4- 	 :

Unclassified .. 8732 	 lilt 	 rile 	 ,, 
P1 Classes ;8817 	 85 	 ',OS 11508414

Figure 4.8 Screenshot of the Classification Inspector of GeneSprings 4.2.



Table 4.12 Variation in k-means Clusters in Expressionist 3.1

The
Succession
of Analysis

# of
clusters

# in
Cluster 1

Mean
Distance

# in
Cluster 2

Mean Distance # in
cluster 3

Mean
Distance

# in
Cluster 4

Mean
Distance

# in
Cluster 5

Mean
Distance

1 4 4 0.03505 30 0.03363 29 O.023 22 0.02783 -
2 5 16 0.0273 5 O.04123 37 O.02473 22 O.02657 5 0.01942
3 5 3 0.008616 5 0.03708 27 O.02369 18 O.02074 32 0.03421
4 3 22 0.0287 17 O.02361 46 O.04023 - -
5 5 36 O.02251 1 0 19 O.03339 25 O.02963 4 O.03505
6 5 4 O.03505 20 O.02808 29 O.023 31 O.0297 1 0
7 5 4 O.03505 23 0.02178 22 0.02988 23 O.02398 13 O.02347
8 4 20 0.02678 25 0.02963 6 0.04078 34 O.02468 -
9 4 2 0.03339 4 0.03505 9 0.023 20 O.02808 -
10 5 23 O.02972 26 O.02639 3 0.03792 31 0.02801 2 0.02051
11 3 20 0.02808 32 0.03337 33 0.03356 - -
12 4 14 0.02691 32 O.03337 27 0.02763 50 0.02555 -
13 3 35 0.03393 5  O.04503 45 0.03136 - -
14 4 33 O.02467 24 0.02928 6 0.04078 22 O.02741 -
15 5 31 0.0273 13 O.002578 22 0.02382 16 0.0273 3 0.03191
16 4 26 0.02755 17 0.04085 34 0.02606 8 0.02787 -
17 5 4 O.03505 28 0.0292 32 0.02698 18 0.02218 3 0.008616
18 5 8 0.02305 17 0.02556 32 0.02336 24 O.02857 4 0.03505
19 5 37 0.02597 7 0.02523 18 0.02774 5 O.04123 18 O.02276.
20 4 23 0.02717 5 0.04503 8 0.0256 49 0.0315 -



CHAPTER 5

SUMMARY AND DISCUSSIONS

5.1 Summary of Comparative Analysis

As mentioned in Section 3.1, Expressionists 3.1 belongs to the turnkey type of software

packages, whereas GeneSpringTM 4.2 is a type of comprehensive software [23]. This

implies that because Expressionist 3.1 is customized for the application, the user would

require a separate technical support team, who should be adept in the statistical as well as

biological functioning and algorithmic translation of microarray experiments, so they can

modify the analysis architecture by integrating their own analyses. Thus, the efficiency of

the within-company technical support staff is critical for the quality of results produced.

Genedata (vendor for Expressionist 3.1) can provide a number of value-adding services

upon request. This includes features of integration with other software, either GeneData

products or another existing software. GeneSpringTM 4.2 is a type of comprehensive

software; hence it may not be able to accommodate new analyses developments, since the

user would have to wait till the vendor releases a new version of the software with

enhanced features.

From the biologist's perspective, the learning curve is shorter for GeneSpringTM

4.2 as explained in Section 4.11. The vendor also provides a free 30-day license for

prospective users of the tool to test the efficiency and comfort level of the tool.

GeneSprings 4.2 also generates various analyses easily [4]. The provision of free online

telephone-web conference presentations of various topics also sets the foundation for new

users of the tools. The tool can incorporate a scripting tool language for automated

75
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process control; for example, a script may be written for calculating genes that are up-

regulated by a factor of greater than two-fold and whose expression levels are above a

threshold. Once a script has been written for such an operation, then the whole process is

automated by selecting one test, which would perfonn the whole series of operations

specified in the script.

Both the tools in this study are suitable primarily for commercial use and hence

are not free. The data generated from these software packages may not be compatible

with other contemporary software packages and hence the data need to be modified

before being transported from one tool to another.
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5.2 Development of Future Expression Analysis Tools

As John W, Tukey wrote, "Exploratory data analysis can never be the whole story, but

nothing else can serve as the foundation stone--as the first step." [23]. The simplification

of microarray data analysis came from the emergence of data mining tools, which led to a

new insight into the world of microarray expression technology. The emerging field of

data analysis seems to produce fruitful results in the study of gene behaviour and drug

discovery. The only way to improve the technology is to keep the old methods and tools

as models, and produce modified versions, which will emerge as newer improved tools

that are fit for the existing data.

Based on the background of microarray expression data and the detailed study of

two software tools, future tools can be built according to the needs of the researchers and

analysts. No matter whether the user is a biologist or statistician, the following provisions

by a vendor facilitate the whole process of microarray data analysis:

1, Live web-based or telephonic adept technical support around the clock,

2. Easily accessible and easily available user manuals and documentation, either in hard

copy-form separately, or in the form of hyperlinks in the application programming

interface.

3, Regular on-site training sessions and online training sessions,

Besides this, the features, which when present in a data mining tool facilitates the

whole learning process as well as the actual analysis of the gene data are:

1. User-friendly interface, such as drag and drop menus, gene lists and widgets, for users

with no computer applications background,
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2. Easy incorporation of data from other tools for cross-referencing and validation of

results.

3. Easily manageable database for import of data into the tools, managed by local users

of the tool.

4. Use of an application programming language, such as Java, which is platform

independent.

5. Incorporation of as many statistical test options and clustering algorithms as has been

discovered so far in data analysis studies. This provides flexibility to the user who

may use any test that seems more appropriate for the particular analysis being

performed. This will vary from user to user, as there is no real right or wrong when a

biologist has to set certain criteria for his/her analysis.

6. Visualization tools for almost all analyses, so that the user can visualise the sequence

of events and may be able to modify the process accordingly.

7. Presence of tools that can show intersection of many gene lists at a time.

8. Tools that may construct tables of genes showing gene-to-gene interaction in order to

observe the change in expression pattern or level in the presence of another gene that

is known (or unknown) to the user. This could supplement gene information for a

better understanding of the gene behaviour in different conditions of presence of other

genes in the system.

9. Ontology construction tools to classify the known genes in the study; further

classification and cluster analysis of these ontology differentiated genes for a better

interpretation of the genes.
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10. Ability to build homology tables for an easy comparison of genes from one organism

to another. This feature is available in GeneSprings 5.0.

The formation of small discussion groups and organizations responsible for

standardization of gene expression tool requirements may prove very useful for the future

development of such tools. This includes forums and conferences of computational

biologists from around the world. Such discussions would bring about a more public and

explanatory description of the requirements and specifications to be integrated in gene

expression analysis tools.
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APPENDIX

HIERARCHICAL CLUSTERING OF DIFFERENT TISSUES

This Appendix contains some images after hierarchical clustering in

GeneSpringTM 4.2. The aim is to demonstrate the clustering pattern for the control and

treatment groups in the different tissues of rat in this study.

- Paw , - Control , Days 21 , :

- Paw , - Treatment , Days 21 , :

- Paw , - Treatment , Days 21 ,

- Paw , - Treatment , Days 21 , :

- Paw , - Treatment , Days 21 , :

- Paw , - Control Days 21 :

- Paw , - Control , Days 21 , :

- Paw , - Control , Days 21 , :

Figure A.1 Experiment tree of paw tissue at 21 days in GeneSprings 4.2.
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Figure A.3 Experiment tree of lung tissue at 21 days in GeneSpringTM 4.2.
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Figure A.5 Experiment tree of liver tissue at 21 days in GeneSpringTM 4.2.



Figure A.7 Experiment tree of kidney tissue at 21 days in GeneSprings 4.2.



Figure A.9 Experiment tree of blood tissue at 21 days in GeneSpringTM 4.2.
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