
United States Military Academy
USMA Digital Commons

West Point ETD

Winter 12-29-2006

The Unbalanced Classification Problem: Detecting
Breaches in Security
Paul Evangelista
United States Military Academy, paul.evangelista@westpoint.edu

Follow this and additional works at: https://digitalcommons.usmalibrary.org/faculty_etd

Part of the Numerical Analysis and Scientific Computing Commons, Operational Research
Commons, Statistical Models Commons, and the Systems Engineering Commons

This Doctoral Dissertation is brought to you for free and open access by USMA Digital Commons. It has been accepted for inclusion in West Point
ETD by an authorized administrator of USMA Digital Commons. For more information, please contact nicholas.olijnyk@usma.edu.

Recommended Citation
Evangelista, Paul, "The Unbalanced Classification Problem: Detecting Breaches in Security" (2006). West Point ETD. 14.
https://digitalcommons.usmalibrary.org/faculty_etd/14

https://digitalcommons.usmalibrary.org?utm_source=digitalcommons.usmalibrary.org%2Ffaculty_etd%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usmalibrary.org/faculty_etd?utm_source=digitalcommons.usmalibrary.org%2Ffaculty_etd%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usmalibrary.org/faculty_etd?utm_source=digitalcommons.usmalibrary.org%2Ffaculty_etd%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.usmalibrary.org%2Ffaculty_etd%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.usmalibrary.org%2Ffaculty_etd%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.usmalibrary.org%2Ffaculty_etd%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=digitalcommons.usmalibrary.org%2Ffaculty_etd%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=digitalcommons.usmalibrary.org%2Ffaculty_etd%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usmalibrary.org/faculty_etd/14?utm_source=digitalcommons.usmalibrary.org%2Ffaculty_etd%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicholas.olijnyk@usma.edu

THE UNBALANCED
CLASSIFICATION PROBLEM:

DETECTING BREACHES IN SECURITY

By

Paul F. Evangelista

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Decision Sciences and Engineering Systems

Approved by the
Examining Committee:

Mark J. Embrechts, Thesis Adviser

Boleslaw K. Szymanski, Thesis Adviser

Joseph G. Ecker, Member

William A. Wallace, Member

Robert H. Kewley, Jr., Member

Rensselaer Polytechnic Institute
Troy, New York

November 2006
(For Graduation December 2006)

THE UNBALANCED
CLASSIFICATION PROBLEM:

DETECTING BREACHES IN SECURITY

By

Paul F. Evangelista

An Abstract of a Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Decision Sciences and Engineering Systems

The original of the complete thesis is on file
in the Rensselaer Polytechnic Institute Library

Examining Committee:

Mark J. Embrechts, Thesis Adviser

Boleslaw K. Szymanski, Thesis Adviser

Joseph G. Ecker, Member

William A. Wallace, Member

Robert H. Kewley, Jr., Member

Rensselaer Polytechnic Institute
Troy, New York

November 2006
(For Graduation December 2006)

c© Copyright 2006

by

Paul F. Evangelista

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

ACKNOWLEDGMENT . xii

ABSTRACT . xiii

1. INTRODUCTION AND INNOVATIONS 1

1.1 Statement of the Problem . 2

1.2 Notation and Formulation of the Security Classification Problem . . . 2

1.3 Objectives of the Research . 3

1.4 Hypotheses . 4

1.5 Innovative Progress to Date . 5

1.5.1 Pursuit of the Synergistic ROC Curve 5

1.5.2 The Relationship between ROC Curves and Decision Values . 6

1.5.3 Intelligent Selection of Subspaces 6

1.5.4 The Fuzzy ROC Curve and Synergistic Classifier Fusion . . . 7

1.5.5 Contributions to Computer Intrusion Detection 9

1.5.6 The Curse of Dimensionality, Kernels, and Class Imbalance . . 9

1.6 Kernel Behavior in High-Dimensional Input Space 13

1.7 Organization of this Document . 16

2. REVIEW OF LITERATURE AND RELATED MATHEMATICAL MOD-
ELS . 18

2.1 Introduction . 18

2.2 Selected Mathematical Models for Unbalanced Binary Classification . 18

2.2.1 Statistical Dimension Reduction Techniques 19

2.2.1.1 Principal Component Analysis (PCA) 19

2.2.1.2 Canonical Correlation Analysis 23

2.2.1.3 Independent Component Analysis 23

2.2.2 Taxonomy of the Security Classification Problem 26

2.2.3 Prediction Models . 29

2.2.3.1 Kernel Partial Least Squares (K-PLS) 29

iii

2.2.3.2 The One-Class Support Vector Machine (SVM) . . . 31

2.2.3.3 An Experiment to Illustrate the Impact of Dimen-
sionality on the One-Class SVM 34

2.2.3.4 Multiple Classification Systems(MCS) 36

2.3 Receiver Operating Characteristic (ROC) Curves 37

2.4 Recent Work in Computer Intrusion Detection 39

2.5 The Schonlau Dataset . 39

2.5.1 Introduction to the Dataset 39

2.5.2 Recent Work with the SEA Dataset 39

2.5.3 Network Intrusion Detection Systems (NIDs) 40

3. THE RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE . . 43

3.1 Confusion Matrices . 43

3.2 Algorithms for Creating an ROC Curve and Finding the Area Under
the Curve . 45

3.3 Sub-ROC curves . 50

3.4 Pseudo ROC curves . 53

3.5 Improved Decision Making with the Decision ROC Chart 53

4. COMPUTER INTRUSION DETECTION VARIABLES 57

4.1 Information and Computer Security 57

4.2 Types of Intrusion Detection Systems 58

4.3 Analysis of the Host Based Dataset 59

4.4 Schonlau’s Analysis . 60

4.5 Text Mining Variables . 61

4.6 Matrix Plots for Visualizing Variables 62

4.7 Analysis of the Network-Based Dataset 64

5. CREATING SYNERGY WITH UNSUPERVISED CLASSIFICATION . . 67

5.1 Introduction . 67

5.2 Introduction to the Problem . 67

5.3 Dataset and Model . 71

5.3.1 Curse of Dimensionality . 72

5.4 Method to Create Fuzzy ROC Curves 72

5.4.1 Subspace Modeling . 73

iv

5.4.1.1 The Genetic Algorithm 74

5.4.2 Output Processing . 76

5.4.2.1 Mapping into Comparable Decision Spaces 76

5.4.2.2 Fuzzy Logic and Decisions with Contention 77

5.5 Results with Masquerading Data . 78

5.6 Seeking Diverse Subspaces with Nonparametric Statistics 82

5.7 Mapping into Comparable Decision Spaces 84

5.8 Experimental Results . 84

6. SYNERGISTIC CLASSIFIER FUSION . 88

6.1 Introduction . 88

6.2 Recent Related Work . 90

6.3 Pseudo-ROC Curves . 90

6.4 Rank Distributions . 93

6.4.1 Utilizing Simulation to Create Rank Distributions 93

6.4.2 Behavior of Rank Distributions 95

6.5 Behavior of Fused Classifiers . 96

6.5.1 Why the Average and min Fusion Metrics Work 97

6.5.2 An Illustration of Rank Fusion 100

6.6 The Properties of Synergistic Fusion - a Factorial Design Illustration 101

6.7 Experimental Results with Several Datasets 112

6.7.1 The leave-l-features-out Ensemble Method 112

6.7.2 Experimental Results . 114

6.8 Conclusion . 117

7. SOME STATISTICAL PROPERTIES OF THE GAUSSIAN KERNEL
MATRIX . 119

7.1 Recent Work . 120

7.2 The One-Class SVM . 121

7.3 Method . 122

7.3.1 The Squared Coefficient of Variance 124

7.3.2 Visualization of the One-Class SVM 127

7.3.3 Why Direct Tuning of the Kernel Matrix Works 129

7.4 Comments on Supervised Learning 131

7.5 Experimental Results . 131

7.6 Conclusions . 137

v

8. THREE APPLIED CASES . 139

8.1 Introduction . 139

8.2 Skaion Dataset . 140

8.3 Geospatial Datamining for Threat Templating 144

8.3.1 Recent Work . 144

8.3.2 Experimental Design . 146

8.4 Insights into Insurgent Response to Traffic Flow Strategies 152

8.4.1 Results and Discussion . 155

8.4.2 Predictive modeling with MANA data farming 156

9. CONCLUSION AND FUTURE DIRECTIONS 159

9.1 Contributions to Theory and Methodology 159

9.2 Contributions to Applications . 161

9.3 Future Directions . 163

9.3.1 Computer Intrusion Detection 163

9.3.2 Tuning of the Gaussian Kernel 164

9.3.3 Ensemble Methods . 164

9.3.4 Intelligent Selection of Subspaces and Dimensionality Reduc-
tion with ICA . 164

9.3.5 Geospatial Prediction Modeling 165

9.4 Concluding Remarks . 165

REFERENCES . 167

APPENDICES

A. Comments on Computing . 180

A.1 Some of the Technology Utilized . 180

A.2 The Computing Processes . 180

B. COMBINING DATA MINING TECHNIQUES WITH SCHONLAU’S DATA184

B.1 Determining Optimal Variable Combinations for K-PLS Prediction . 184

B.2 Results of Combining Data Mining Techniques 187

B.3 Defining and Striving for Synergy . 191

B.4 Orthogonal Preprocessing . 192

B.4.1 Analyzing The Text Mining Variables and RDM Variables . . 193

B.4.1.1 Principal Components Analysis for Orthogonality . . 193

vi

B.4.1.2 Canonical Correlation Analysis for Orthogonality . . 195

B.5 Experimental Results for Orthogonal Analysis 196

C. IMPLEMENTATION OF GENETIC ALGORITHM IN PERL 200

vii

LIST OF TABLES

2.1 One Class SVM experiment for various dimensions on artificial data . . 35

3.1 The Confusion Matrix . 44

4.1 Description of text mining variables . 62

5.1 Decision rules for ROC plots in Figure 5.6 80

5.2 Overall Results with Best Subsets. 80

5.3 Overall Results with Worst Subsets. 81

5.4 Results of SEA data with diverse and non-diverse subsets 85

5.5 Overall results of ionosphere data with diverse and non-diverse subsets . 86

6.1 Examples of Distributions for Creating Artificial Ranks 91

6.2 A Toy Rank Fusion Problem . 101

6.3 Design of Experiments . 103

6.4 Experimental results and full factorial table - part 1. 106

6.5 Experimental results and full factorial table - part 2. 107

6.6 Experimental results and full factorial table - part 3. 108

6.7 ANOVA summary table for factorial experiment. 110

6.8 Correlations between factors and yield. 111

6.9 Datasets examined - experimental results for synergistic fusion 114

6.10 paired t-test values for the comparisons illustrated in Figure 6.7. 115

8.1 Skaion Data . 142

8.2 Experimental design for threatmapper experiment. 147

8.3 Description of factors and measure of effectiveness 153

B.1 Preprocessing Techniques and Results 186

B.2 Canonical Correlation Analysis Results 198

viii

LIST OF FIGURES

1.1 Illustration of synergistic ROC curve vs. ROCCH 6

1.2 Fuzzy aggregation operators . 8

1.3 Plot of critical value for two-sample Kolmogorov test with fixed N2,
α = .05 . 12

1.4 Plot of of the product of two standard normal random variables, vi = zizi′ 14

2.1 Principal component score plot and scree plot 22

2.2 Initial images for ICA analysis or S . 27

2.3 Mixed images for ICA analysis or X = AS 27

2.4 Results of ICA attempting to uncover S 27

2.5 Taxonomy of problems in the security classification domain. 28

2.6 A three dimensional visualization of an enclosing sphere for the one-class
SVM . 32

2.7 Relationship between PDFs of classification groups and ROC curve . . . 38

3.1 Toy dataset for ROC curves . 45

3.2 An ROC curve created from a toy dataset 47

3.3 Illustration of the partial AUC . 52

3.4 Decision ROC Chart from data in figure 3.1 54

3.5 Decision ROC Chart for a large dataset 56

4.1 Distinct commands plotted vs. unique commands 60

4.2 Matrix plots for the description of variables 63

4.3 Printout of five network packets captured by TCPdump 65

4.4 Printout of TCPtrace representation of a TCP connection 66

5.1 A sketch of subspace modeling to seek synergistic results 70

5.2 Curse of dimensionality induced by the introduction of probe variables . 73

5.3 Illustration of chromosome and subspaces 75

ix

5.4 Fuzzy aggregation operators . 77

5.5 Correlation matrix of subspace principal components 79

5.6 ROC plots illustrating effect of different decision rules 79

5.7 A comparison of correlated and uncorrelated subspaces 83

5.8 ROC for SEA data using algebraic product with contention 85

5.9 ROC plot for ionosphere data with minimize aggregation technique . . . 86

6.1 Five pseudo-ROC curves . 92

6.2 Extreme rank histograms . 95

6.3 Rank histograms generated for various values of U 96

6.4 Rank histograms for various fusion metrics 99

6.5 Experimental ROC curve results for synergistic fusion 100

6.6 Scatterplots illustrating results from design of experiments 105

6.7 Synergistic fusion results for actual data 116

6.8 Spectrum of fuzzy aggregators. 118

7.1 Color visualization of a gaussian kernel matrix 126

7.2 Toy two dimensional dataset - the cross data 127

7.3 Gaussian kernel statistics for the two dimensional cross data 128

7.4 Visualization of one class SVM for smaller values of σ 129

7.5 Visualization of one class SVM for larger values of σ 130

7.6 Experimental results for three benchmark datasets 132

7.7 Experimental results of two computer intrusion datasets 133

7.8 Four normal distributions with different squared coefficients of variance 134

7.9 Mean value for gaussian kernels with various values of σ 135

7.10 Squarred coefficient of variance for gaussian kernels with various values
of σ . 136

7.11 Schonlau results after principal component reduction 137

7.12 Sick results after principal component reduction 138

x

8.1 Conversion of TCPdump traffic to vector summaries of connections . . . 141

8.2 Color visualization of Skaion data . 143

8.3 Color visualization of geospatial data 147

8.4 Experimental design for geospatial learning 148

8.5 Comparison of models on the geospatial test data 149

8.6 Comparison of models on the geospatial validation data 150

8.7 Color visualization of geospatial function 151

8.8 Correlation matrix of eleven factors and insurgent success 155

8.9 Matrix plot of data . 156

8.10 Decision ROC chart illustrating binary SVM performance for MANA
data farming data . 157

A.1 Data flow diagram (DFD) of security classification applied to computer
intrusion detection . 181

B.1 Matrix plot of combined variables . 188

B.2 Correlation of combined variables . 189

B.3 ROC curve illustrating synergy from combination 190

B.4 Cartoon example of synergistic ROC curve 192

B.5 Experimental results illustrating synergistic combination 194

B.6 Color correlation of first 3 principal components between text mining
variables and RDM variables . 195

B.7 ROC curves and correlation matrix from Case 1 196

B.8 ROC curves and correlation matrix from Case 2 197

B.9 ROC curves and correlation matrix from Case 3 198

xi

ACKNOWLEDGMENT

There are a tremendous number of people and organizations who supported this

work. From a technical standpoint, I thank Mike Kupferschmidt for motivating me

to use LATEXand Harriet Borton for sharing her brilliant LATEXexpertise. Professor Al

Wallace started me on this work a long time ago by sharing his trademark common

sense and no nonsense advice on how to proceed. The United States Army entrusted

me and provided me with the opportunity to complete this work. The Department

of Systems Engineering at the United States Military Academy, West Point, played

an instrumental role with guidance and unwavering support of this work. More

specifically, the leadership of the Systems Engineering Department and climate that

they foster enabled this work. Robert Kewley provided crucial guidance early during

the course of this work. Most importantly, he was a tremendous trail blazer who

led the way and generously showed me the way down the trail to finish this work.

My advisers, Professors Mark Embrechts and Bolek Szymanski, shared substantial

amounts of time on a consistent basis demonstrating patience and trust in my work.

As my primary adviser, Professor Embrechts provided an unquestionable touch of

brilliance to this work but more importantly impressed me as a sincere, selfless

leader of his students.

The support and love from my family during this work will never be forgotten.

I thank my parents for passing along precious values that I consider as bedrock for

all that I do. My beautiful children Alex and Jacqueline inspire me every day. They

are the true meaning of happiness. My wife, Heather, supported this work from

start to finish with unrivaled generosity, love, and loyalty. She provided me with

counsel, tolerated the seemingly endless hours of “tinkering”, gladly had food on the

table for me every night, and even gave me the necessary kick I occasionally needed

to get moving. Bliss and success occurred in my life when I married her.

Lastly to the source of my strength and my being, my Lord and my Faith

continue to provide tremendous inspiration, guidance, and clarity - especially when

nothing seems clear. Without this, I would unquestionably be lost.

xii

ABSTRACT

This research proposes several methods designed to improve solutions for

security classification problems. The security classification problem involves unbal-

anced, high-dimensional, binary classification problems that are prevalent today.

The imbalance within this data involves a significant majority of the negative class

and a minority positive class. Any system that needs protection from malicious

activity, intruders, theft, or other types of breaches in security must address this

problem. These breaches in security are considered instances of the positive class.

Given numerical data that represent observations or instances which require classi-

fication, state of the art machine learning algorithms can be applied. However, the

unbalanced and high-dimensional structure of the data must be considered prior to

applying these learning methods. High-dimensional data poses a “curse of dimen-

sionality” which can be overcome through the analysis of subspaces. Exploration of

intelligent subspace modeling and the fusion of subspace models is proposed. De-

tailed analysis of the one-class support vector machine, as well as its weaknesses and

proposals to overcome these shortcomings are included. A fundamental method for

evaluation of the binary classification model is the receiver operating characteristic

(ROC) curve and the area under the curve (AUC). This work details the underlying

statistics involved with ROC curves, contributing a comprehensive review of ROC

curve construction and analysis techniques to include a novel graphic for illustrating

the connection between ROC curves and classifier decision values. The major inno-

vations of this work include synergistic classifier fusion through the analysis of ROC

curves and rankings, insight into the statistical behavior of the gaussian kernel, and

novel methods for applying machine learning techniques to defend against computer

intrusion detection. The primary empirical vehicle for this research is computer in-

trusion detection data, and both host-based intrusion detection systems (HIDS) and

network-based intrusion detection systems (NIDS) are addressed. Empirical studies

also include military tactical scenarios.

xiii

CHAPTER 1

INTRODUCTION AND INNOVATIONS

During the air defense battles of World War II, the value of radar and signal de-

tection grew at an explosive rate. Radar techniques were relatively primitive and

required significant human interaction and interpretation. The essence of the prob-

lem was simple. Radar detected incoming aircraft. A radar operator needed to

be able to distinguish between friendly and enemy aircraft. Identifying a friendly

aircraft as enemy (a false positive), created an expensive sequence of drills and de-

fensive responses. This could potentially subject the inbound friendly aircraft to

friendly fire. There was also the danger of not alerting when actual enemy aircraft

were inbound, a false negative. Radar represents one of the earliest signal detec-

tion problems which required humans to interact and interpret a technical measure,

the radar signal, with the overall goal of classifying the observation as one of two

classes. This is a binary classification problem. In order to measure the effectiveness

of radar operators, the military recorded the performance of these radar operators.

This performance measure became known as the radar receiver operating charac-

teristic illustrated on the receiver operating characteristic (ROC) curve [53]. Radar

became one of the earliest applications of signal detection theory. After World War

II, atomic weapons boosted the importance of air defense. In the 1950s tremen-

dous research efforts, such as the MIT led Project Charles, communicated the vast

problems and gaps that existed in national air defense. The final report of Project

Charles, originally a classified document, emphasized that in order to improve air

defense the program would need significant manpower and a deliberate layered de-

tection strategy in order to overcome costly false positives [103].

Much of the enemy aircraft threat existed in remote areas where vast expanses,

such as oceans or harsh northern territories further constrained the nation’s ability

to man an adequate air defense system. This marked the beginning of a long quest

to automate signal detection. Naka and Ward explain the history of air defense

coverage across Alaska and Canada and the critical need for an automated system

1

2

that could defend this enormous territory [115].

Although ROC curves and automated signal detection has matured immensely

since its inception over half a century ago, there is a continued effort to improve

automation and vast use of ROC curves to support various types of binary decisions.

This dissertation contributes several novel methods that involve the automation and

accuracy of binary prediction models. Although the applications presented in this

thesis do not involve radar and air defense, many similar threads exist between early

research of automated binary decision making and the novelties included in this

dissertation. Today’s binary classification problems have increased complexity and

dimensionality, however today’s binary prediction models and computing resources

provide tools and leverage necessary to tackle the problems. There is still a continued

quest to automate these systems, reduce false positives, and simply improve overall

accuracy. In many ways, this quest is no different from the quest that Naka and

Ward discuss when they explain one of the original quests for automated signal

detection that occurred over half a century ago [115].

1.1 Statement of the Problem

A novel framework for solving the high-dimensional unbalanced binary classi-

fication problem in both the supervised and unsupervised domain is proposed. This

type of classification problem will be referred to as the security classification

problem.

A typical security domain abounds with healthy instances or observations.

The healthy instances in a security problem will always comprise the majority, and

hence are called the majority class. The unhealthy, or positive instances are the

minority class.

1.2 Notation and Formulation of the Security Classification

Problem

The formulation of the security problem assumes there is a given data set

X ∈ R
N×m. X contains N instances or observations, x1,x2, ...,xN , where xi ∈ R

1×m.

There are m variables to represent every instance. For every instance there is a label

3

or class, yi ∈ {−1, +1}. The unbalanced nature of this problem indicates a prevailing

negative or healthy class and minimal instances of the positive or unhealthy class.

A fundamental problem within the security classification problem is that in-

creased dimensionality, especially if it contains noisy data, can degrade learning.

For classification problems that assume the data is balanced and plentiful, there are

feature extraction techniques designed to effectively reduce dimensionality without

degrading performance [67, 76], however this is not the case with the security clas-

sification problem. Managing high-dimensional data is not as simple if the classes

are unbalanced. It is even more difficult when there are no instances of the positive

class or unknown instances of the positive class in the training data.

The underlying premise of this research is that given a security classification

problem, improved performance can be achieved through a divide and conquer ap-

proach that involves analyzing the subspaces within X.

1.3 Objectives of the Research

This research includes three objectives:

1. Create a general framework for improving the accuracy of solutions for secu-

rity classification problems. This framework will include specific models that

are particularly applicable for security classification problems, however more

importantly the framework will provide procedural knowledge for solving se-

curity classification problems. This framework will also expose a taxonomy for

security classification problems to enhance a practitioner’s ability to quickly

identify the type and nature of problem he is facing.

2. Examine computer intrusion detection data as the primary empirical vehicle

for this research. Intrusion detection is an excellent example of a security clas-

sification problem. Intrusion detection datasets which stress state-of-the-art

learning models are available, and additionally this is an active and constantly

changing field of research.

3. Utilize and enhance state-of-the-art learning methods for solving security clas-

sification problems. Unsupervised learning is a major component of this re-

4

search, with a particular emphasis on one-class support vector machines (SVM)

which are suited exceptionally well for solving security classification problems.

Learning models will focus on kernel methods. These advanced learning meth-

ods will be combined with multivariate statistical analysis and dimension re-

duction techniques to address problems within the learning models that have

not been solved and tailor these models for security classification problems.

1.4 Hypotheses

Several hypotheses that seek to characterize the security classification problem

have been created. The purpose of itemizing the hypotheses is to clearly indicate

unsolved problems and the chapters within this dissertation that address these un-

solved problems.

1. Kernel-based pattern recognition suffers from a curse of dimensionality. The

underlying theory and fundamentals that prove this hypothesis as true are

shown in this chapter. This is also shown experimentally in section 2.2.3.3.

2. Subspace modeling and fusion of models with fuzzy logic aggregators can im-

prove accuracy. This is perhaps the most important finding of this disserta-

tion. Chapter 6 provides theoretical and empirical proof that class imbalance

is a critical additional parameter that must be included when fusing models.

T-norms (minimum, algebraic product, etc.) have consistently demonstrated

superior performance as a subspace aggregator when there is a minority posi-

tive class. Modeling in randomly selected subspaces consistently outperforms

models constructed from the entire set of dimensions. Chapters 5 and 6 detail

the efforts that prove this hypothesis as true.

3. The general problem of the curse of dimensionality can be systematically solved

with intelligent subspace modeling and model fusion. This is an explored but

unproven hypothesis. Selecting the right subspaces is a difficult problem which

has been approached with several alternatives. Chapter 5 includes several

exploratory efforts that aim to create intelligent subspace models.

5

4. Statistical analysis of the gaussian kernel provides an opportunity for auto-

mated kernel tuning for the one class SVM. The nonlinear patterns recognized

by the gaussian kernel make this kernel a favorite amongst practitioners. How-

ever, this kernel contains an additional free parameter that requires additional

tuning and validation. Chapter 7 provides novel insight into the statistical be-

havior of the gaussian kernel. Optimization of certain statistical measures of

the gaussian kernel present opportunities for automated tuning. The chapter

proposes a heuristic that illustrates the use of these statistics to automate the

tuning of the gaussian kernel. Promising empirical results support use of the

heuristic as an automated tuning method.

1.5 Innovative Progress to Date

This section highlights some of the novel contributions of this research. Each of

the following subsections summarizes an innovative approach that has been applied

during the course of this research.

1.5.1 Pursuit of the Synergistic ROC Curve

Given that the security problem involves binary classification, Receiver oper-

ating characteristic (ROC) curves will provide the primary measure of effectiveness

of the models. The ROC curve plots the false positive rate on the x-axis and the

true positive rate on the y-axis. Given that both of these rates have minimal values

of zero and maximal values of unity, the area under the ROC curve also ranges be-

tween zero and one. This area is an excellent scalar measure of binary classification,

and it also involves a probabilistic interpretation. This area is the probability that

the classifier will correctly rank a negative instance lower than a positive instance.

The pursuit throughout this research is to develop techniques that improve the area

under the ROC curve for security classification problems, both in the supervised and

unsupervised domain. Consistent with the divide and conquer approach, subspaces

of X play a critical role throughout this research. Every subspace could provide an

independent model, and each independent model would create an ROC curve. An

ongoing pursuit involves combining these independent models such that synergistic

6

improvement of the ROC curve occurs.

1

1

A combined
system that
creates a
synergistic curve
from component
systems.

T
R

U
E

 P
O

S
IT

IV
E

FALSE POSITIVE

ROC Convex Hull
(ROCCH)

Figure 1.1: Illustration of synergistic ROC curve vs. ROCCH

1.5.2 The Relationship between ROC Curves and Decision Values

Chapter 3 provides a summary on how to construct ROC curves from ranks.

The chapter includes several algorithms used for construction, with an additional

discussion regarding the analysis of the partial area under the ROC curve. Most

of the chapter is not novel information, however the chapter does provide a useful

survey regarding ROC curve construction. The one novel aspect of the chapter

involves a graphical method to illustrate the relationship between ROC curves and

decision values. Although ROC curves can be built entirely from ranks, it is possible

to plot the decision values versus the false positive rate which creates much more

insight into the nature of the classification problem and the performance of the

classifier that the ROC curve represents.

1.5.3 Intelligent Selection of Subspaces

One of the hypotheses states that synergistic combination will not occur unless

there is intelligent subspace selection. Building models for the intelligent selection

of subspaces is an exploratory effort. Three different methods to intelligently select

subspaces have been explored. The first method involves selection of orthogonal

subspaces through the analysis of subspace principal components. Given a selection

of subspaces, it is possible to calculate the principal components of each subspace.

7

If the principal components of subspaces do not demonstrate correlation, these sub-

spaces are viewed as orthogonal. Uncorrelated principal components indicates that

the subspaces are measuring different behavior. The method utilized to find these

orthogonal subspaces is evolutionary optimization.

Another technique that is closely related involves the analysis of nonparametric

statistics. Once again given a selection of subspaces, the orthogonality of these

subspaces can be measured with the use of Kendall’s W , a nonparametric statistic

that measures concordance (agreement) of rankings. Given a centroid for each

subspace, the distance of an instance can be measured to the centroid. For each

subspace, given instances 1...n, each instance can be ranked based on the distance

to the subspace centroid. The correlation of the ranked distances is calculated with

Kendall’s W . We seek a low value for Kendall’s W , indicating discordance; this is

again pursued with evolutionary optimization.

A third subspace modeling effort exploits the covariance structure of the data.

Experiments have been performed with subspaces constructed from hierarchical clus-

tering of the variables based upon their covariance as a similarity measure. Exper-

iments have also been performed with subspaces constructed with maximally co-

variant variables in subspace one, minimally covariant variables in subspace 3, and

the remaining variables in subspace 2 (as an example for a model with number of

subspaces = 3). Each of these alternatives for intelligent subspace modeling is an

innovative approach, however rigorous testing of the effectiveness of these subspace

modeling techniques is ongoing.

1.5.4 The Fuzzy ROC Curve and Synergistic Classifier Fusion

Given several subspace models, it is necessary to fuse the decision results to

determine the ultimate prediction. This fusion occurs with the application of a

technique inspired by fuzzy logic. The prediction models considered in this research

create a soft-valued decision value for each instance. Let us refer to this decision

value as d ∈ R
1. For the ith observation predicted by the jth subspace model, the

soft label will be dij. dij is not a probability or a known distribution; it simply

indicates the relative confidence of a model that the instance belongs to one class

8

or the other. The fusion of dij across several subspace models requires some type

of scaling enabling comparative analysis. Scaling this value as a simple rank has

shown exceptional promise for fusion; ranks provide a comparable and meaningful

measure for fusion. The rules used to fuse the decision values invoke fuzzy logic.

These ranks are then mapped to range in (0,1) without the loss of any information,

and T-norm and T-conorm aggregation operators provide a method for fusion [83].

The fusion method of choice will reflect the risk aversion of the decision maker,

indicating the decision makers aversion to either false positives or false negatives.

Furthermore, rather than blindly fusing all decisions with the same aggregator, the

model also addresses methods for fusing contentious, or disagreeing decisions. It is

often appropriate to fuse contentious decisions with a different aggregation rule.

Intersections(T-Norms) Unions(T-Conorms)Averages

0 max (0, x + y – 1) x x y min(x,y) max (x,y) x + y - x x y min(1, x + y) 1
(algebraic
product)

(bounded
product)

(algebraic
sum)

(bounded
sum)

Figure 1.2: Fuzzy aggregation operators

The measure of effectiveness for subspace modeling and fusion involves com-

paring performance of these intelligent subspace modeling techniques against both

the base model and fusion of randomly selected subspaces. The performance of the

novelty detection method can be benchmarked by running the method with every

variable in one subspace. This will be referred to as the base model. This base

model is often a poor performer due to degradation created by a high-dimensional,

noisy input space.

It is not uncommon for randomly selected subspaces that are modeled and

fused to consistently perform better than this base model. The effectiveness of alter-

nate aggregation operators can be explored with these randomly selected subspaces.

The effectiveness of the subspace modeling is measured by comparing performance

of randomly selected subspaces and a fixed fusion method versus the intelligently

selected subspaces. Results of intelligent subspace modeling and fuzzy ROC curve

fusion has been reported in [48, 49].

Promising results from the fusion of ranks produced by prediction models led

to the analysis of rank distributions and pseudo ROC curves. This analysis spawned

9

some of the most important results in this research. Class balance, a parameter of

every prediction model that is rarely considered and almost never included as part

of the model, provides crucial insight into the behavior of prediction models. If it is

possible to assume the balance of the classes in a binary classification problem, it is

possible to use fuzzy logic aggregators to create synergistic and improved prediction.

Chapter 6 details these results.

1.5.5 Contributions to Computer Intrusion Detection

The primary empirical vehicle and an immediate application for this research

is the computer intrusion detection problem. Computer intrusion detection is a

broad field in itself, and in general terms it can be considered an unbalanced classi-

fication problem. There are two types of intrusion detection: Host-Based Intrusion

Detection Systems (HIDS) and Network-Based Intrusion Detection Systems (NIDS).

Host-based systems monitor the behavior of workstations and user profiles. HIDS

typically detect anomalies. Results published in [50] illustrate datamining and clas-

sification techniques for a host-based intrusion detection problem that involved iden-

tifying authentic users versus intruders based upon command usage history of users.

This same type of model could be applied to user logs that exist on every computer.

NIDS monitor network behavior and typically detect attacks with signature-based

models (identify signatures of known attacks) and / or anomalies. In order to model

both host based data and network based data with the machine learning techniques

utilized in this research, numeric data must be extracted. The variables created to

represent the data span the full spectrum of creativity; some variables are simple

rates and averages, other variables are products of interesting data mining routines.

The data collection model and representation of the host and network data is a

byproduct of this research, however it is a contribution to the computer intrusion

detection community that should not be overlooked.

1.5.6 The Curse of Dimensionality, Kernels, and Class Imbalance

The curse of dimensionality is a commonly known problem in datamining and

machine learning. Machine learning and data mining typically seek to show a de-

gree of similarity between observations. This degree of similarity can be measured

10

by numerous metrics. Most of these metrics consider some type of distance. A

problem with distance metrics in high-dimensional spaces is that distance is typ-

ically measured across volume. Volume increases exponentially as dimensionality

increases, and points tend to become equidistant. The curse of dimensionality is

explained with several artificial data problems in [93]. A simple example of this

involves a cube with sides of unit length in hyperspace. If two points within this

hypersphere are randomly selected, the variance of the distance between these two

points approaches zero as dimensionality increases. If a cube has a side of length

that is less than one, the volume of this cube approaches zero with increased dimen-

sionality; if the side is of length greater than one, the volume approaches infinity as

dimensionality increases.

Kernel-based pattern recognition, especially in the unsupervised domain, is not

entirely robust in high- dimensional input spaces. A kernel is nothing more than

a similarity measure between two observations. Given two observations, x1,x2,

the kernel between these two points is represented as κ(x1,x2). A large value for

κ(x1,x2) indicates similar points, where smaller values indicate dissimilar points.

Typical kernels include the linear kernel, κ(x1,x2) = 〈x1,x2〉, the polynomial

kernel, κ(x1,x2) = (〈x1,x2〉 + 1)p, and the popular gaussian kernel, κ(x1,x2) =

e(−‖x1−x2‖/2σ2).1 As shown, these kernels are all functions of inner products. If the

variables within x1 and x2 are considered random variables, these kernels can be

modeled as functions of random variables. The fundamental premise of pattern

recognition is that (κ(x1,x2)|y1 = y2) > (κ(x1,x2)|y1 �= y2). If this premise is

consistently true, good performance occurs. By modeling these kernels as functions

of random variables, it can be shown that the addition of noisy, meaningless input

variables degrades performance. This noise increases the variance of the kernels,

and increased variance degrades the likelihood of the fundamental premise shown

above.

For balanced supervised classification problems, feature selection methods ex-

ist for eliminating meaningless noisy variables. This is not the case in the security

problem. Certain properties may indicate a noisy variable, but it is not possible to

1Throughout this text the inner product, or dot product betwee two vectors will be represented
as 〈·, ·〉.

11

determine whether or not the variable is meaningless. The notion of modeling in

subspaces is to dilute the impact of the noise while retaining every variable.

In a classification problem, the curse of dimensionality is a function of the

degree of imbalance. If there are a small number of positive examples to learn from,

feature selection is possible but difficult and the evidence required to illustrate that

a feature is not meaningful is burdensome. If the problem is balanced, the burden

is not as great. Features are much more easily filtered and selected.

A simple explanation of this is to consider a two-sample Kolmogorov test [123].

This is a classical statistical test to determine whether or not two samples come from

the same distribution, and this test is general regardless of the distribution. This

indicates that the test can be performed without knowing the underlying distribution

of the data. In classification models, a meaningful variable should behave differently

depending on the class, implying distributions that are not equal. Stated in terms of

distributions, if x is any variable taken from the space of all variables in the dataset,

(Fx(x)|y = 1) should not be equivalent to (Gx(x)|y = −1). Fx(x) and Gx(x)

simply represent the cumulative distribution functions of (x|y = 1) and (x|y =

−1), respectively. In order to apply the two-sample Kolmogorov test, the empirical

distribution functions of Fx(x) and Gx(x) must be calculated from a given sample,

and these distribution functions will be denoted as F ∗
N1

(x) and G∗
N2

(x). N1 will

equate to the number of samples in the minority class, and N2 equates to the number

of samples in the majority class. These empirical distribution functions are easily

derived from the order statistics of the given sample, which is shown in [123]. The

Kolmogorov two-sample test states that if the supremum of the difference of these

functions exceeds a tabled critical value depending on the modeler’s choice of α(sum

of probabilities in two tails), then these two distributions are significantly different.

Stated formally, our hypothesis is that Fx(x) = Gx(x). We reject this hypothesis

with a confidence of (1 − α) if equation 1.1 is true.

DN1,N2 = sup
−∞<x<∞

|F ∗
N1

(x) − G∗
N2

(x)| > DN1,N2,α (1.1)

For larger values of N1 and N2 (both N1 and N2 greater than 20) and α = .05,

we can consider equation 1.2 to illustrate an example. This equation is found in the

12

tables listed in [123]:

DN1,N2,α=.05 = 1.36

√
N1 + N2

N1N2
(1.2)

If N2 is fixed at 100, and N1 is considered the minority class, it is possible

to plot the relationship between N1 and the critical value necessary to reject the

hypothesis.

increasing class balance

in
cr

ea
si

n
g

 c
u

rs
e

o
f

d
im

en
si

o
n

al
it

y

Figure 1.3: Plot of critical value for two-sample Kolmogorov test with
fixed N2, α = .05

Figure 1.3 illustrates the effect of class imbalance on feature selection. If the

classes are not balanced, as is the case when N1 = 20 and N2 = 100, there is a large

value required for DN1,N2 . It is also evident that if the classes were more severely

imbalanced, DN1,N2 would continue to grow exponentially. As the classes balance,

DN1,N2 and the critical value begins to approach a limit. The point of this exercise

was to show that the curse of dimensionality is a function of the level of imbalance

between the classes, and the two sample Kolmogorov test provides a compact and

statistically grounded explanation for this.

13

1.6 Kernel Behavior in High-Dimensional Input Space

The previous subsections list the innovative claims of this research. Most of

these innovative claims rely on the assumption that noisy high-dimensional input

space can degrade the performance of kernel methods, especially given a security

classification problems. In order to further support this assumption, an example is

given in this section which illustrates the impact of dimensionality on linear kernels

and gaussian kernels.

Consider two random vectors that will serve as artificial data for this example.

x1 = (z1, z2, ..., zm), zi ∼ N(0, 1) i.i.d

x2 = (z1′ , z2′ , ..., zm′), zi′ ∼ N(0, 1) i.i.d

m′ = m, and let vi = zizi′

The expected value of vi is zero. vi is the product of two standard normal

random variables, which follows an interesting distribution discussed in [65]. The

plot of this distribution is shown in figure 1.4.

To find the expectation of a linear kernel, it is straightforward to see that

E(〈x,y〉) =
∑

i vi = E(z1z1′ + z2z2′ + ... + zmzm′) = 0. The variance of the linear

kernel can be found as follows:

fzi,zi′ (zi, zi′) is bivariate normal ⇒ fzi,zi′ (zi, zi′) =
1

2π
e

−(z2
i +z2

i′)
2

fv(v) =

∫ ∞

−∞
fzi,zi′ (zi,

v

zi

)
1

|zi|dzi

E(v) = 0 ⇒ variance = E(v2) =

∫ ∞

−∞
v2[fv(v)]∂v = 1

(verified by numerical integration)

Again considering the linear kernel as a function of random variables, κ(x1,x2) =

〈x1,x2〉 =
∑m

i=1 vi is distributed with a mean of 0 and a variance of
∑m

i=1 1 = m.

In classification problems, however, it is assumed that the distributions of the

14

Figure 1.4: Plot of of the product of two standard normal random vari-
ables, vi = zizi′

variables for one class are not the same as the distributions of the variables for

the other class. Let us now consider v− as a product of dissimilar distributions,

and v+ as a product of similar distributions. Let v− = (zi − 1)(zi′ + 1). v− will

be distributed with a mean of µ− = E(zizi′ − zi′ + zi − 1) = −1, and a variance

of 3 (verified through numerical integration). The linear kernel of the dissimilar

distributions can be expressed as:

κ(x1 − 1,x2 + 1) =
m∑

i=1

v−

This linear kernel is distributed with the following parameters:

mean− = mµ− = −m, variance = mσ2 = 3m

For the similar observations, let v+ = (zi + 1)(zi′ + 1) = (zi − 1)(z′i − 1).

15

The parameters of the kernel for the similar observations can be found in the same

manner. v+ is distributed with a mean of µ+ = E(zizi′ + zi′ + zi + 1) = 1 and a

variance of σ2 = 3. The linear kernel of the similar distributions can be expressed

as:

κ(x1 + 1,x2 + 1) =

m∑
i=1

v+

This kernel is distributed with the following paramaters:

mean+ = mµ+ = m, variance = mσ2 = 3m

The means and variances of the distributions of the linear kernels are easily

tractable, and this is all the information that we need to analyze the effect of di-

mensionality on these kernels. In the above example, the mean of every variable for

dissimilar observations differs by 2. This is consistent for every variable. Obviously,

no dataset is this clean, however there are still interesting observations that can be

made. Consider that rather than each variable differing by 2, they differ by some

value εi. If εi is a small value, or even zero for some instances (which would be the

case for pure noise), this variable will contribute minimally in distinguishing similar

from dissimilar observations, and furthermore the variance of this variable will be

entirely contributed. Also notice that at the rate of 3m, variance grows large fast.

Based on this observation, an assertion is that for the binary classification

problem, bimodal variables are desirable. Each mode will correspond to either the

positive or negative class. Large deviations in these modes, with minimal variation

within a class, are also desired. An effective model must be able to distinguish v−

from v+. In order for this to occur, the model needs good separation between mean−

and mean+ and variance that is under control.

It is also interesting to explore the gaussian kernel under the same example.

For the gaussian kernel, κ(x1,y2) = e−‖x1−x2‖2/2σ2
. This kernel is entirely dependent

upon the behavior of ‖ x1 − x2 ‖2 and the modeler’s choice of the parameter σ

(which has no relation to variance).

Restricting our attention to ‖ x1 − x2 ‖2, an initial observation is that this

16

expression is nothing more than the euclidean distance squared. Also, if x1 and x2

contain variables that are distributed ∼ N(0, 1), then (x1 − x2) contains variables

distributed normally with a mean of 0 and a variance of 2.

Let w = (zi − zi′)
2, implying that w/2 is a chi-squared distribution with a

mean of one (which will be annotated as χ2(1)). This also indicates that w =

2χ2(1), indicating that w has a mean of 2 and a variance of 8 (verified by numerical

integration).

Therefore, ‖ x1 − x2 ‖2=
∑m

i=1 wi will have a distribution with a mean of

2m and a variance of 8m. Notice that the variance grows much faster under this

formulation, indicating even more sensitivity to noisy variables.

The purpose of the above example is to show how every variable added will

contribute to the overall behavior of the kernel. If the variable is meaningful, the

pattern contributed to the -1 class is not equivalent to the pattern contributed to

+1 class. The meaningfulness of the variable can also be considered in terms of

cost and benefit. The benefit of including a variable in a classification model is the

contribution of the variable towards pushing mean− away from mean+. The cost of

including a variable involves the variance. This variance will be included regardless

of the significance of the benefit.

The goal is to include variables where this benefit outweighs the cost. Feature

selection manages this behavior for supervised classification models. For security

classification models, an alternative method to achieve this goal is to model in

subspaces. Subspaces reduce variance and mitigate cost of noisy variables, however

subspace modeling is complicated with the task of intelligent selection of subspaces

and proper fusion of the subspace models.

1.7 Organization of this Document

Chapter 2 provides a summary of related mathematical models and some of

the previous work that relates to the research included in this dissertation. Chapter

3 is an overview on ROC curves, focusing on the construction of ROC curves and

including a novel representation of the relationship between ROC curves and deci-

sion variables, the Decision ROC Chart. Chapter 4 discusses the methods utilized

17

to model computer intrusion detection problems. This includes techniques to cre-

ate variables from both host based intrusion detection and network based intrusion

detection. Chapter 5 details exploratory methods undertaken to find synergistic

classifier ensembles. Much of this chapter discusses efforts for the creation of in-

telligent subspaces. The chapter details several subspace analysis methods which

represent possible avenues for intelligent subspace selection. Chapter 6 includes the

most important findings in this dissertation. The chapter introduces pseudo-ROC

curves, rank distributions, and the synergistic fusion of ranks to improve classifier

performance. Chapter 7 discusses the gaussian kernel matrix and insights regarding

the statistical properties of this matrix. These statistical properties provide poten-

tial avenues for the automated tuning of the gaussian kernel. Chapter 8 presents

three applied cases. Each of these cases represent security classification problems

that have been investigated using principles discussed in this research. The appen-

dices include comments on the computing methods and tools utilized as well as a

discussion of some text mining techniques utilized to analyze a host based computer

intrusion detection problem.

CHAPTER 2

REVIEW OF LITERATURE AND RELATED

MATHEMATICAL MODELS

2.1 Introduction

The literature and mathematical models that apply to this research involve

many domains. In the interest of the organization of this chapter, each section will

discuss the material reviewed from a particular domain. These domains include

the related mathematical models, ROC curves (output analysis), and recent work

in computer intrusion detection which will cover both host based (masquerading)

intrusion detection and network based intrusion detection. Throughout this chapter

the Schonlau et. al. dataset is abbreviated as the SEA dataset. This is a host-based

intrusion detection dataset that provided initial results for the work with the models

discussed. A detailed description of this dataset is included in Chapter 4.

2.2 Selected Mathematical Models for Unbalanced Binary

Classification

There are numerous mathematical models used in binary classification prob-

lems, and this section introduces several of the techniques explored and applied

for this research. Included is a brief introduction to each model or technique and

typically a short discussion of known applications or initial experimental results.

Many of the models have alternate formulations or perhaps even several algorithms

which achieve the same result. Only the algorithms which have been studied and

implemented have been included.

Dimension reduction is an important concept that includes several techniques,

and there is a brief discussion on this concept and the application to the security

problem. Scaling of data will be described as “Mahalanobis” scaling of the data.

This simply means that we scale each variable by subtracting from it the variable’s

mean and dividing by the variable’s standard deviation. For the actual prediction

18

19

modeling there are two models specifically discussed. The first model is a supervised

classification technique. This model is Kernel Partial Least Squares (KPLS) [124].

The model selected for unsupervised classification is the One-Class Support Vector

Machine (SVM), which is a variant of the traditional (SVM) [127].

2.2.1 Statistical Dimension Reduction Techniques

Dimension reduction techniques are important statistical tools that are often

necessary to create manageable data sets (meaning that rapid computing is possi-

ble with the data), explain interaction between variables, indicate root causes, and

capture the most important information with many fewer dimensions. Computer in-

trusion detection, and security problems in general, can involve mountains of data.

Introduce any type of multimedia data and file sizes explode. If this multimedia

needs to be represented as some quantifiable variable, it is often necessary to em-

ploy dimension reduction. Dimension reduction techniques can increase computing

speed and reduce storage. Furthermore, these techniques are not destructive to

the data, meaning that datasets can be reconstructed from the dimensionally re-

duced space back to its original space and form. There are a number of dimension

reduction techniques to include principal component analysis (PCA), partial least

squares (PLS), independent component analysis (ICA), and canonical correlation

analysis(CCA). Each of these techniques solves a particular problem, and we will

briefly discuss each of these. PLS serves as a regression model, and therefore it will

be discussed under the prediction modeling section.

2.2.1.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a very old multivariate statistical anal-

ysis technique. If X is our N × m data matrix, PCA seeks to solve the equation

S = XL where we can consider S as our scores matrix and L as our matrix of

loading vectors. L is equivalent to E for the formulation presented here. Harold

Hotelling [78] was the pioneer of principal components, and today almost every text-

book that serves as an introduction to multivariate statistics will contain a chapter

on principal component analysis [85]. PCA is a dimension reduction technique that

seeks to find linear combinations of the variables in order to maximize variance along

20

a single axis. This single axis that contains the maximum variance can be consid-

ered the direction of the first principle component. The second principal component

captures maximal variance in an orthogonal direction(all principle components are

orthogonal to each other and the scores uncorrelated). There can only be as many

principal components as there are variables in a data set. Typically, the first few

principal components capture most of the variance.

Mathematical preliminaries for PCA include understanding the correlation

matrix of the data. There are a few interesting points regarding the correlation ma-

trix. Much confusion exists regarding the difference between the covariance matrix

and the correlation matrix. They are not the same. Covariance matrices contain

the variance of each variable on the diagonal and the covariance between variables

for the off-diagonal elements. The correlation matrix contains a 1 in each diagonal

entry and the pairwise correlation between variables in the off diagonal elements.

If data are normalized and it is assumed that every variable within the scaled data

possesses a mean of 0 and a variance of unity, then the correlation matrix will equal

the covariance matrix for this data. Given a N × m normalized data matrix, X,

where every row represents a multivariate observation, the correlation matrix is ex-

actly equal to (1/(N − 1))XTX. The proof for this is quite simple. Consider ρij as

the correlation between variable i and variable j, σ2
ij as the unbiased estimator of

the covariance between the ith and jth variables, xij as the ith observation of the jth

variable. xj is the column vector of all observations for variable j.

ρij =
σ2

ij

σiiσjj
= σ2

ij when σii = σjj = 1

σ2
ij =

1

N − 1

N∑
k=1

(xki − µi)(xkj − µj) =
1

N − 1

N∑
k=1

(xki)(xkj) when µi = µj = 1

=⇒ σ2
ij = ρij =

1

N − 1
xT

i xj

21

=⇒

⎛
⎜⎜⎜⎜⎜⎝

ρ11 ρ12 ... ρ1m

ρ21 ρ22 ... ρ2m

...

ρm1 ρm2 ... ρmm

⎞
⎟⎟⎟⎟⎟⎠ =

1

N − 1
XTX

A projection of the data on the eigenvectors of the correlation matrix creates

the principal components. Consider a matrix of the eigenvectors as E, where every

column in the matrix is an eigenvector. We will refer to a diagonal matrix D that

contains the eigenvalues, λi, in decreasing order. Every eigenvalue corresponds to

a specific eigenvector. The largest eigenvalue corresponds to the eigenvector that

represents the first principal component, which captures the most variance. The

first eigenvector is the first loading vector.

E =

⎛
⎜⎜⎜⎜⎜⎝

e11 e12 ... e1m

e21 e22 ... e2m

...

em1 em2 ... emm

⎞
⎟⎟⎟⎟⎟⎠ (2.1)

D =

⎛
⎜⎜⎜⎜⎜⎝

λ1 0 0 ... 0

0 λ2 0 ... 0

...

0 0 0 ... λm

⎞
⎟⎟⎟⎟⎟⎠ (2.2)

The eigenvectors can be considered as loading vectors, or the coefficients for the

linear combinations for each principle component. If we have variables x1, x2, ..., xm,

we can represent a principal component score as e11x1 + e12x2 + ... + e1mxm. These

scores can be represented in a plot, and it is often useful to plot the scores of two

different principal components on a two dimensional plot for visualization.

Figure 2.1 illustrates both a score plot and a scree plot. The scree plot shows

the values for each eigenvalue. A scree plot with a sharp elbow, meaning that the

first one or two eigenvalues is large with small successive eigenvalues, indicates that

that most of the variance is captured in the first couple of principal components. A

gentle sloping scree plot, similar to the one shown, illustrates dispersion of variance

22

Component Number

Ei
ge

nv
al

ue

7654321

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Scree Plot of % UNIX com, ..., XU value
Correlation PC1 vs PC2

-4

-2

0

2

4

6

8

10

12

14

16

-20 -15 -10 -5 0 5

No Intrusion

Intrusion

Figure 2.1: Principal component score plot and scree plot

which often indicates a more interesting data set.

In 1966 Herman Wold published a paper that included the Non Iterative Par-

tial Least Squares Algorithm (NIPALS) [146], a technique for calculating the prin-

cipal components without the cost incurred by directly calculating eigenvectors and

eigenvalues (which requires solving a system of linear equations). This algorithm

is remarkably elegant and compact, and the style of this algorithm extends to the

technique used to extract partial least squares components and independent compo-

nents. It is worth illustrating this algorithm here so the reader can draw comparisons

to the algorithms shown for PLS and ICA component extraction. It is assumed that

all data are scaled to a mean of 0 and variance of unity (Mahalanobis scaling).

Algorithm 1 Wold’s Non Iterative Partial Least Squares Algorithm

1: for i = 1 to m do
2: Randomly estimate a normalized (length of unity) loading vector, tT

3: while t ← l
‖l‖ has not converged do

4: Compute the score vector, s=Xt

5: Compute new loadings, lT =sTX, t ← l
‖l‖

6: end while
7: X=X-stT

8: t = ith principal component loading vector
9: end for

23

2.2.1.2 Canonical Correlation Analysis

Canonical correlation analysis is multivariate statistical technique designed for

comparing two sets of variables. Conceptualized by Hotelling in 1936 [78], canonical

correlation analysis actually measures the correlation that exists between two sets

of variables. Consider two sets of variables, x = x1, ..., xa and y = y1, ..., yb that

measure a certain phenomena. There are a + b variables. For each observation, one

can observe x and y. Canonical correlation analysis provides a measure of corre-

lation between x and y by creating linear combination of each. Consider a linear

combination of x, Ui(x), and a similar linear combination of y, Vj(y), such that

the correlation between Ui(x) and Vi(y) is maximized when i = j, subject to the

constraint that the correlation between Ui(x) and Vj(y) is 0 when i �= j. It is addi-

tionally stipulated that the variance of Ui(x)is equal to the variance of Vj(y) which

equals 1. Let us call the correlation that exists between U1(x) and V1(y) the first

canonical correlation. When i = j = a, this is the ath canonical correlation. Several

experiments involving the SEA data indicate that canonical correlation between sets

of variables is often related to the amount of synergy that exists when these variable

sets combine in a multiple classification system. For a more detailed explanation of

canonical correlation analysis, see [85, 130].

2.2.1.3 Independent Component Analysis

Independent Component Analysis(ICA) is the newest of all of the dimension

reduction techniques. ICA was considered as a potential dimension reduction tech-

nique to apply to the security classification problem, however the properties of this

technique rendered ICA infeasible for SCPs. Although dimension reduction is pos-

sible with ICA, unlike PCA there is no importance or value associated with the

components. Any given component could contain noise or critical information for

the problem. Worse yet, every time the ICA algorithm solves for the components,

ordering of the components can differ. Regardless, ICA is a fascinating new dimen-

sion reduction and signal detection technique. The following ICA survey has been

included to illustrate the basic nature of this method, its relation to solving SCPs,

and perhaps provide enough insight to spur future research towards the application

24

of ICA to solve SCPs.

ICA appeared in the 1980s and 1990s, however the first comprehensive text

written on this subject is written by Aapo Hyvarinen, Juha Karhunen, and Erkki Oja

[81]. Hyvarinen also wrote a comprehensive survey paper on ICA [80]. Independent

component analysis seeks to find linear combinations of the data which separates the

data into independent variables. Again consider our data matrix X which will be

referred to as the mixed signal. We are interested in extracting S, the independent

signals. The problem formulation is X=AS such that A can be considered a mixing

matrix. In [69], the authors illustrate the use of ICA to separate randomly mixed

images. ICA is a very useful technique anytime the problem involves a noisy signal

such as visual, audio, radar, sonar, and it is necessary to decipher the true signal.

A common explanation of independent component analysis is the cocktail party

problem. Imagine three conversations that take place at a cocktail party. Three

microphones are positioned in the room to record these conversations, all of which

can be recorded but each conversation creates conflicting sound and the end result

is what sounds like a noisy room. In [81], this problem is formulated in the following

manner:

The audio collected on each microphone is x1, x2, and x3, and our three signals

are s1, s2, and s3. In order to separate theses signals, a matrix W should be found

such that S=WX. There are several key points about ICA that must be understood

before showing the algorithm.

The first step in ICA involves “whitening” the observed data. Whitening con-

sists of transforming the scaled variables into uncorrelated variables with a variance

of unity [81]. Whitening can be explained as follows: Given Mahalanobis scaled data

in X, determine the matrix V such that Z = VX is the whitened data associated

with X. Given the aforementioned definition of whitening, the theory of PCA comes

into practice where V = D−1/2ET where E and D are the eigenvector and eigenvalue

matrices as discussed in the section on principal components. From this definition,

a whitened Z is computed. However, caution is advised when calculating D−1/2. If

there are small eigenvalues, which is common, a ridge matrix must be added to D

such that D′ = R + D, where R contains a small ridge offset value in the diagonal

25

and zeros elsewhere.

Whitening is only the first part of ICA. This whitening, or sphering of the data,

creates uncorrelated but highly gaussian variables in Z [81]. In order to eliminate

this gaussian property, Hyvarinen discusses the idea of entropy and negentropy.

Entropy is used in the context of information theory and statistics, where the more

random a variable, the higher the entropy. Entropy is different from variance given

that variance measures the dispersion of a probability distribution. Entropy is an

overall index that illustrates the degree of equivalence of the cumulative distribution

function across the entire distribution, or the randomness of the variable. Entropy,

measured by the function H(y), can be estimated for the observed data using a

technique that estimates y as a gaussian function compensated by the nongaussian

properties of y through a Taylor series expansion of the Kurtosis functions of y [81].

There are several numerical computing techniques that can be used to estimate

negentropy. Now the idea is to extract independent components by maximizing

negentropy.

Hyvarinen created the following algorithm, known as FastICA. This is another

iterative algorithm that uses deflation to extract orthogonal vectors. The similarities

that exist between NIPALS for PCA, NIPALS for PLS, and FastICA are remarkable.

Here is the algorithm from [81]:

Algorithm 2 Hyvarinen’s FastICA Algorithm

1: Choose m, the number of ICs to estimate
2: for p = 1 to m do
3: Randomly estimate a normalized (length of unity) vector t
4: while t ← wp

‖wp‖ has not converged do
5: wp = t
6: wp = E{zg(wT

p z)} - E{g′(wT
p z)}w

7: t ← wp

‖wp‖
8: end while
9: end for

Initial results with this algorithm applied to IDS data are promising. Natural

clusters occur often with independent components, and this is particularly useful

for unsupervised learning problems. Similar to the pursuit of using principal com-

ponents as features, independent components can create features as well. There is

26

innovative opportunity involving the use of independent components as features, to

include a thorough analysis of how to create these features and their impact in pre-

dictive modeling. Independent components have a natural tendency to filter noise

and present underlying independent patterns. Noise is exactly what we are trying to

eliminate in the security classification problem. The following example with images

provides a good example of how independent components filter this noise.

Using an implementation of the FastICA algorithm implemented in MATLAB,

two personal photos are randomly mixed with noise to create a source separation

problem. This example uses four images as the initial source vectors (the vectors

are the pixel values for the grey-scale image, an integer between 0 and 256), creating

S. These four images are mixed with a mixing matrix, A ∈ R
4×4. The first image is

two children in an office, the second image is a soldier wearing a ski cap, the third

image is random noise, and the fourth image is a meaningless pattern.

The mixing matrix, A, is considered unknown and not utilized at all in the

algorithm to separate the pictures. An important subtlety of this source separation

included proper scaling. Independent components are completely oblivious to scale.

The solution is to Mahalanobis scale the results, and then project this back into the

desired scale.

Independent components are unlike principal components with regard to order

and relation to eigenvalues. Given the same ICA problem, two different iterations

will uncover the source signals but they often will not occur in the same order.

Therefore, every independent component is just as significant as the other, unlike

PCA. Additionally, the sign of independent components are ambiguous. The picture

of the children is inverted in the results, resulting in an image that looks like a photo

negative.

2.2.2 Taxonomy of the Security Classification Problem

In an effort to improve understanding of the types of problems and models

available within the domain of security classification, a brief taxonomy is presented.

This taxonomy is important because it clarifies terms used throughout machine

learning which are often wrongly exchanged and misunderstood, and secondly it

27

Figure 2.2: Initial images or S Figure 2.3: Mixed images or X = AS

Figure 2.4: Results of ICA attempt-
ing to uncover S

provides examples of the types of models that could be used depending upon the

problem.

Recall the definition of the security classification problem: a high-dimensional

unbalanced binary classification problem which could exist in either the supervised

and unsupervised domain. The security classification problem is often unsupervised.

If the classes of the data are either unknown or all negative, this is an unsupervised

problem. There are three types of unsupervised problems identified in this taxon-

omy.

1. Novelty Detection. The one-class SVM is a good example of a novelty detection

algorithm. This type of algorithm trains on negative data, and based upon

the behavior of negative data, attempts to predict the instances of positive

data in the test set.

28

Unsupervised

Novelty
Detection

(One Class
SVM)

Outlier
Detection
(Classical
Statistics)

Unsupervised
Classification
(Clustering)

Unbalanced
Supervised
Learning
(KPLS)

Supervised

The Security
Classification Domain

Figure 2.5: Taxonomy of problems in the security classification domain.

2. Unsupervised Classification (Clustering). In clustering, the classes are com-

pletely unknown and there typically is no training. Clustering utilizes similar-

ity metrics to cluster similar instances. Clustering algorithms exist for both

an unknown number of classes and a predefined number of classes. K near-

est neighbor, K means, Hierarchical, and Density Based are several types of

clustering algorithms.

3. Outlier Detection. In classical statistics, outliers are a common term. Given

a sample of data, instances which deviate a specified measure from the mean

are labeled as outliers. An outlier detection approach could exist without any

training of the data, or if training occurs with only healthy data, this would

be identical to novelty detection.

Supervised learning is also a critical component of the security classification

problem. The critical component needed to apply supervised learning is instances

of the positive class. Typically these instances are few, therefore making feature

selection somewhat difficult. One of the best suited supervised algorithm for this

problem is Kernel Partial Least Squares, because it performs a natural feature se-

lection method and responds well to a minority class by scaling of the response.

29

2.2.3 Prediction Models

There are two prediction models that have been applied to the host-based

computer intrusion detection data and the network intrusion detection data. For

supervised modeling, Kernel Partial Least Squares (K-PLS) is a powerful technique

that will be discussed. If unsupervised modeling is necessary, the model of choice is

the one-class support vector machine (SVM).

2.2.3.1 Kernel Partial Least Squares (K-PLS)

Partial Least Squares Regression (PLS) was conceived by the Swedish statis-

tician Herman Wold for econometrics modeling of multi-variate time series [146].

The first PLS publication was a sociology application in 1975 [147]. His son, Svante

Wold, applied PLS to chemometrics in the early eighties [148,149] and currently PLS

has become one of the most popular and powerful tools in chemometrics, mainly

because of the quality of building models with many variables. PLS is not easy to

explain and the mathematics involved are far from transparent. Partially for that

reason PLS has a low emphasis in mainstream statistics and machine learning.

K-PLS is a technique that has grown from partial least squares analysis. The

study of partial least squares(PLS) regression is similar to principal components re-

gression (PCR). Foundations for principal components analysis have been presented

in section 2.2.1.1.

PLS analysis considers the response vector (or matrix for multiple responses),

typically denoted as Y. PLS regression is a technique that maximizes latent variable

correlation with a response vector. Therefore, the first latent variable (which is again

a linear combination of the input variables), possesses maximum correlation with

the response variable while remaining orthogonal to the remaining latent variables.

Since the first few partial least squares components or latent variables capture the

majority of correlation with the response variable, powerful prediction models result

with desirable dimension reduction properties.

Rosipal explains in [124] how to extract these PLS components. Utilizing the

NIPALS approach, algorithm 3 illustrates Rosipal’s method.

At each full iteration (completion of step 10), we will store the t,u,w and c

30

Algorithm 3 PLS extraction with NIPALS

1: for i = 1 to m do
2: randomly initialize u
3: while u and t have not converged do
4: w = XTu
5: t = Xw, t ← t

‖t‖
6: c = YTt
7: u = Yc, u ← u

‖u‖
8: end while
9: deflate X,Y:

X ←X−ttTX
Y ←Y−ttTY

10: Assign t as the ith PLS component
11: end for

vectors. These vectors will create matrices T,U,W and C which will be used to

complete the PLS regression model. If we write the typical regression model as

Y = XB +F

where B is our regression matrix and F is the residual matrix, Rosipal shows

in [124] the following:

B = XTU(TTXXTU)−1TTY

The key to Kernel PLS (KPLS) is realizing the kernel matrix formed in the

algorithm shown above between steps 2 and 3. The algorithm for KPLS is no

different than what is shown for the PLS algorithm, except steps 2 and 3 combine

to create:

t = φφTu, t ← t
‖t‖

φ represents the nonlinear function, or kernel function, that transforms the

input variables into feature space. φφT is the well known kernel matrix. KPLS

provides the attractive aspect of feature reduction while also combining the powerful

similarity technique that exists within nonlinear kernels. KPLS has been extensively

benchmarked with other models such as support vector machines and often yields

nearly identical results [9].

KPLS was the original model applied to the SEA dataset for this research.

31

2.2.3.2 The One-Class Support Vector Machine (SVM)

The one-class SVM is an unsupervised learning technique, sometimes referred

to as outlier detection or anomaly detection, originally proposed in [137]. The

purpose of a one-class SVM is to learn the attributes of known, “healthy” cases

without ever learning from an “unhealthy” or positive case. When introduced to a

test set that contains both healthy and unhealthy, or intruders and non-intruders,

the one-class SVM utilizes what it learned from the healthy cases to segregate the

classes.

The software package utilized to implement the one-class SVM is called LIB-

SVM (library of support vector machines) [24]. This software employs both the

one-class SVM and the more popular supervised learning version of the SVM. The

programs are well written in C++ and C, and there is thorough documentation

for both understanding the software and understanding the underlying theory. The

source code is available, and this software is widely cited and utilized in machine

learning applications.

The one-class SVM is a less popular but natural extension from the supervised

SVM which is has become a very popular learning technique. Cristianini and Shawe-

Taylor provide a detailed explanation of one-class SVMs in [130]. Stolfo and Wang

[132] successfully apply the one-class SVM to the SEA dataset and compare it with

several of the techniques mentioned above. Chen uses the one-class SVM for image

retrieval [27]. The simplest way to express the one-class SVM is to envision a

sphere or ball, and the object is to squeeze all of the training data into the tightest

ball feasible. This is analogous to the idea of variance reduction for distribution

estimation; given a set of data, we want to estimate a distribution that tightly

defines this data, and any other data that does not look the same will not fit this

distribution. In other words, once the distribution is estimated, data that does not

fit the distribution will be considered an outlier or not a member of the negative

class. Consider the following formulation of the one-class SVM originally from [127]

and also clearly explained in [27]:

Due to the applicability of the one-class SVM to the security classification

problem and the innovative research opportunities involving potential enhancement

32

of this learning model, a detailed derivation of this technique follows. Consider

x1,x2, ...,xl ∈ X instances of training observations, and Φ is a mapping into the

feature space, F , from X .

The following minimization function attempts to squeeze R, which can be

thought of as the radius of a hypersphere, as small as possible in order to fit all of

the training samples. If a training sample will not fit, ζi is a slack variable to allow

for this. A free parameter, v, enables the modeler to adjust the impact of the slack

variables.

min
R∈R,ζ∈Rl,c∈F

R2 +
1

vl

∑
i

ζi (2.3)

subject to ‖ Φ(xi) − c ‖2≤ R2 + ζi, ζi ≥ 0 for i ∈ [l]

Figure 2.6: A three dimensional visualization of an enclosing sphere. Sev-
eral novelties are shown as squares.

In order to solve this optimization problem, the following steps occur:

1. Place constraints in standard form:

subject to ‖ Φ(xi) − c ‖2 −R2 − ζi ≤ 0, −ζi ≤ 0 for i ∈ [l]

33

2. Find max of Lagrangian:

L(R2, c, ζi) = R2 +
1

vl

∑
i

ζi +
∑

i

αi(‖ Φ(xi) − c ‖2 −R2 − ζi) −
∑

i

βiζi

∂L
∂R

= 2R − 2R
∑

i αi = 0 ⇒∑
i αi = 1

∂L
∂c

= 2
∑

i αi(Φ(xi) − c) = 0 ⇒∑
i αiΦ(xi) − c ⇒∑

i αiΦ(xi) = c

∂L
∂ζi

= 1
vl
− αi − βi = 0

R2 cancel ⇒
L(R2, c, ζi) = �����1

vl

∑
i ζi −����∑

i ζiαi −��������∑
i(

1
vl
− αi)ζi +

∑
i αi ‖ Φ(xi) − c ‖2

3. The following algebraic expansion leads to equation 7.3:

‖ Φ(xi) − c ‖2= 〈Φ(xi), Φ(xi)〉 − 2〈Φ(xi), c〉 + 〈c, c〉
= κ(xi,xi) − 2〈Φ(xi),

∑
j αjΦ(xj)〉+ ‖∑j αjΦ(xj) ‖2

= κ(xi,xi) − 2
∑

j αjκ(xi,xj) +
∑

j,k αkαjκ(xk,xj)

⇒∑
i αi ‖ Φ(xi) − c ‖2=∑

i αiκ(xi,xi) − 2
∑

i,j αiαjκ(xi,xj) +
∑

j,k αkαjκ(xk,xj) ⇒

max
α

∑
i

αiκ(xi,xi) −
∑
i,j

αiαjκ(xi,xj) (2.4)

subject to 0 ≤ αi ≤ 1

vl
,
∑

i

αi = 1

All training examples with αi > 0 are support vectors, and the examples which

also have a strict inequality for αi < 1
vl

are considered non-bounded support vectors.

In order to classify a new test instance, v, we would evaluate the following

decision function:

f(v) = κ(v,v) − 2
∑

j

αjκ(v,xj) +
∑
j,k

αkαjκ(xk,xj) − R2

Before evaluating for a new point, R2 must be found. This is done by finding

a non-bounded support vector training example and setting the decision function

equal to 0 [8]. If the decision function is negative for a new test instance, this

34

indicates a negative or healthy prediction. A positive evaluation is an unhealthy or

positive prediction, and the magnitude of the decision function in either direction is

an indication of the model’s confidence.

2.2.3.3 An Experiment to Illustrate the Impact of Dimensionality on

the One-Class SVM

In order to illustrate the impact of dimensionality on kernels and the one-

class SVM specifically, an experiment with artificial data was constructed. Experi-

ments with artificial data fill a critical gap by enabling modelers to entirely control

datasets. Real-world data are required to validate techniques and demonstrate ap-

plicability. However, real world data often contains erroneously labeled instances,

noise that may create spurious patterns, and human error. It is impossible to clean

this data entirely. Testing performed with real data will always assumes these po-

tential problems. Artificial data prevents these types of problems. If constructed

properly, artificial data can truly test the limits of pattern recognition algorithms

in a carefully controlled experimental environment.

In order to create data for the one-class SVM experiment, it was necessary

to build a model of the pattern. This model is quite simple, involving standard

normal distributions where the positive class and negative class have a difference of

2 between their means. This model can be presented as follows:

x+1 = (z1 + 1, z2 + 1, z3, ..., zm), zi ∼ N(0, 1) i.i.d

x−1 = (z1′ − 1, z2′ − 1, z3′..., zm′), zi′ ∼ N(0, 1) i.i.d

The true pattern only lied in the first two variables. All remaining variables

were noise. Three types of kernels were examined. The linear kernel, polynomial

kernel, and gaussian kernel.

Gaussian Kernel : κ(x+1,x−1) = e−‖x+1−x−1‖2/2σ2

Linear Kernel : κ(x+1,x−1) = 〈x+1,x−1〉
Polynomial Kernel : κ(x+1,x−1) = (〈x+1,x−1〉 + 1)p

35

Table 2.1: One Class SVM experiment for various dimensions on artificial
data

Kernel Parameter dimensions AUC R2

polynomial p=1 2 0.874 12.8000
polynomial p=1 5 0.8664 16.3600
polynomial p=1 10 0.829 24.0600
polynomial p=1 50 0.6642 73.2300
polynomial p=1 100 0.618 127.9000
polynomial p=1 250 0.5854 290.7000
polynomial p=1 500 0.5683 551.1000
polynomial p=1 1000 0.5549 1,064.0000
polynomial p=2 2 0.7312 149.3000
polynomial p=2 5 0.5946 359.8000
polynomial p=2 10 0.5476 791.2000
polynomial p=2 50 0.5014 5,918.0000
polynomial p=2 100 0.4912 18,050.0000
polynomial p=2 250 0.4952 88,640.0000
polynomial p=2 500 0.5269 314,300.0000
polynomial p=2 1000 0.5036 1,167,000.0000
polynomial p=3 2 0.741 3,710.0000
polynomial p=3 5 0.6065 10,490.0000
polynomial p=3 10 0.5538 22,900.0000
polynomial p=3 50 0.492 517,300.0000
polynomial p=3 100 0.5172 2,634,000.0000
polynomial p=3 250 0.5076 26,930,000.0000
polynomial p=3 500 0.5111 179,700,000.0000
polynomial p=3 1000 0.5117 1,291,000,000.0000
gaussian 2 0.9201 0.5149
gaussian 5 0.8978 0.4665
gaussian 10 0.8234 0.4356
gaussian 50 0.7154 0.3306
gaussian 100 0.6409 0.5234
gaussian 250 0.6189 0.4159
gaussian 500 0.5523 0.6466
gaussian 1000 0.5209 0.4059

The gaussian kernels in this experiment were tuned using an auto-tuning

method. Typically for gaussian kernels, a validation set of positive and negative

labeled data is available for tuning σ. In unsupervised learning, these examples of

positive labeled data do not exist. Therefore, the best tuning possible is to achieve

some variation in the values of the kernel without values concentrated on either ex-

36

treme. If σ is too large, all of the values will tend towards 1. If too small, they tend

to 0. The auto tuning function ensures that the off-diagonal values for κ(x+1,x−1)

average between 0.4 and 0.6, with a min value greater than 0.2 (notice that diagonal

elements of a gaussian kernel matrix will always be one).

2.2.3.4 Multiple Classification Systems(MCS)

An interesting problem that exists with the one-class SVM involves the curse

of dimensionality. This so called curse refers to the tendency for multivariate data to

become equidistant as dimensions increase, preventing discrimination, classification,

and clustering.

Given a classification problem of high dimension (greater than 10 variables),

initial experimental results indicate that the creation of subspaces and aggregation

of the subspace classification decision values results in improved classification over

a model that utilizes all variables at once as shown in chapter 5 (the unsupervised

classification model that will be utilized is the linear kernel one-class SVM from [24]).

Creating subspaces for outlier detection, which is essentially what we are describing,

is not a new concept [1]. However, considering this problem as a function of one-

class SVM outputs and utilizing fuzzy logic for aggregation of output is a novel idea

that this thesis explores.

A valid question would be to ask why not try a dimension reduction technique,

such as principal components. Principal components work well with balanced clas-

sification problems, however caution is advised to use principal components as an

overall dimension reduction technique for unsupervised problems. Often the differ-

ence between an intruder and non-intruder is subtle, and principle components along

with other dimension reduction techniques often dilute the information content of

the variables, especially in an unsupervised setting. Therefore, other techniques

should be considered.

Bonissone et. al. explored the concept of applying fuzzy logic to the Multiple

Classifier Systems (MCS) problem [15]. Their technique involved exploring the

different aggregation techniques used in fuzzy logic, such as T-norms, to fuse decision

variables. Chapter 5 details much of the recent work with multiple classification

37

systems. Multiple classification techniques presents an alternative to overcome this

curse of dimensionality.

2.3 Receiver Operating Characteristic (ROC) Curves

A Receiver Operating Characteristics Curve is a simple and elegant way to

display the performance of a binary classification system. ROC curves date back to

World War II during the advent of radar. It was necessary to detect friendly planes

from enemy planes, and the military needed reliable systems to perform this task.

Continuing with our concept of referring to a true positive as the correct detection

of something dangerous or malicious, it was desirable for the military to possess a

system which performed at a high true positive (correctly identify an enemy plane)

and low false positive (identify a friendly plane as enemy). The reasons for this is

obvious. The medical community uses ROC curves extensively for measuring the

accuracy of medical diagnosis tests [34–36].

Tom Fawcett published several papers regarding the application of ROC curves.

He considers ROC curves and multiple classification systems in the context of game

theory in [57]. In [55], he provides a very thorough theoretical review concerning

in regard to everything that an ROC curve can (and sometimes cannot) represent.

Kristin Bennett extended ROC theory for regression in the paper titled “Regression

Error Characteristic Curves” [12].

ROC curves are a critical component of any binary classification problem.

Classification systems create a real valued number as a decision value for each ob-

served instance of the testing sample. Given a sample of test data, each data point

will be assigned a decision value that typically ranges from -1 to +1. The data points

that are true positive should fall closer to +1, where as the true negative cases closer

to -1. The modeler must determine a threshold value for which to segregate and

predict classes. The outcome in regard to true positive and false positive for one

threshold value would correspond to one point on the ROC curve. If this threshold

value is now incremented by some small value epsilon, from -1 to +1, a range of

operating points will emerge. Plotting these operating points with respect to true

positive (y axis) and false positive (x axis) will generate the ROC curve.

38

An ROC curve can also be considered a graphic representation of the rela-

tionship between the probability of a true positive outcome (sensitivity, 1-α error)

and the probability of a false positive outcome (Type II error(β) or 1-specificity).

The overall curve reflects the quality of the classification system. The area under

the curve (AUC) is typically used as method of comparing alternate ROC curves;

the better ROC curve typically has more AUC. Section 3.2 discusses in detail the

meaning of the AUC, to include exactly how this statistic ties with the Wilcoxon

Rank sum statistic and ranked data.

general threshhold, t, used to trigger IDS alarm This t corresponds to a point on the ROC curve, perhaps here.

Probability Density
Function of Legal

transactions

Probability Density
Function of Illegal

transactions

general threshhold, t, used to trigger IDS alarm This t corresponds to a point on the ROC curve, perhaps here.

Probability Density
Function of Legal

transactions

Probability Density
Function of Illegal

transactions

Figure 2.7: The plot on the left shows the PDFs of legal and illegal trans-
actions (non intruders and intruders), respectively. The ROC
curve on the right shows the possible operating point repre-
sented by the tolerance threshold shown on the PDF plots.

The plot of the probability density functions illustrates the idea of false pos-

itives and true positives. The hashed area represents the probability of a true

positive, and the small red area represents a false positive. Imagine shifting the

threshold, t, to the left. The true positive rating would definitely increase, but so

would the false positive. The user must identify what point on the curve is accept-

able, and this is usually accomplished through a cost-benefit analysis.

39

2.4 Recent Work in Computer Intrusion Detection

Computer intrusion detection systems involve either host-based intrusion de-

tection or network-based intrusion detection. The first part of this section will

cover recent work with host-based intrusion detection, detailing the Schonlau et.

al., or SEA dataset. The second section will briefly cover recent work with network

intrusion detection.

2.5 The Schonlau Dataset

2.5.1 Introduction to the Dataset

The SEA data provided a platform to explore host based intrusion detection.

Before detailing exploratory effort with this data, the history and structure of the

data will be explained. Matthius Schonlau collected this data from an AT&T lab

in New Jersey, observing the UNIX computing behavior of 50 users. The data set

consists of 50 users with each user contributing a stream of 15,000 truncated UNIX

commands. The user’s data stream is further divided into blocks of 100 commands,

thus creating 150 blocks of commands for each user. The first 50 blocks of data is

training data only (contains no masquerading data), and the remaining 100 blocks

of data contains masquerading data that appears based on a probability. Given

that there are 50 users, this implies that in total there are 2,500 tuples of data

in the non-intruded initial set and 5,000 tuples of data that potentially contain

intrusion data. Since the true outcome of each of these subsequent 5,000 tuples

is known, understand that there are only 231 intruded tuples. Only 4.62% of the

data contains simulated intruders, which makes this a very difficult problem. These

simulated intruders involve streams of commands taken from other outside users

(not part of the 50 authentic users). It is a very unbalanced classification problem.

The objective is to determine if a block of data contains masquerading data or not.

2.5.2 Recent Work with the SEA Dataset

Schonlau et. al. [41–43, 128, 129] conducted the original work with this data.

Their contributions included a thorough analysis of several statistical techniques for

identifying masqueraders. Schonlau et. al. explored approaches that include: Bayes

40

one-step Markov model, hybrid multistep Markov model, text compression, Incre-

mental Probabilistic Action Modeling (IPAM), sequence matching, and a uniqueness

algorithm [41]. Schonlau stressed the importance of minimizing false positives, set-

ting a goal of 1% or less for all of his classification techniques. Schonlau’s uniqueness

algorithm, explained in [129], achieved a 40% true positive rating before crossing the

1% false positive boundary. Wang [144] used one-class training based on data rep-

resentative of only one user and demonstrated that it worked as well as multi-class

training. Coull [30] applied bioinformatics matching algorithm for a semi-global

alignment to this problem. Lee [101] built a data mining framework for construct-

ing features and model for intrusion detection. Evangelista et. al. applied KPLS

models as a supervised learning approach to the SEA dataset from several variables

that they created for measuring user behavior [50].

Roy Maxion contributed insightful work with this data that challenged both

the design of the data set and previous techniques used on this data [110, 111].

Maxion uses a 1v49 approach in [111], where he trains a Naive Bayes Classifier one

user at a time using the training data from one user as true negative examples versus

data from the forty-nine other users (hence 1v49) as true positive (masquerader)

examples. Maxion claimed the best performance to date in [111], achieving a true

positive rating of 60% while maintaining a false positive rating of 1% or less. Maxion

also examines masquerade detection with a similar data set that contain command

arguments in [110].

2.5.3 Network Intrusion Detection Systems (NIDs)

There are volumes of material that discuss network intrusion detection. It is a

very broad field. NIDS is another vehicle to explore unbalanced binary classification.

The NIDs problem involves collecting network traffic, which is typically collected as

TCPdump packets [104], and these packets can be either stored for later analysis

or inspected in an online fashion. Credit for some of the earliest work in intrusion

detection goes to Denning who published a paper in 1986 that discussed a framework

for monitoring system audit files [38]. Denning’s original work served somewhat as

a sentry call for the tremendous problem that computer security would become.

41

Since then, Denning wrote a book that covers many of the general threats that exist

from the internet [37]. Numerous packet sniffing technology exists, and one of the

more popular programs is Snort [2]. Snort is a rule based system that can employ

both custom rule sets and generic rule sets that generally apply to all. Snort, and

many of the other commercial NIDs, use signature detection. Known malicious code

and malicious network attacks have a particular pattern, and once this pattern is

understood it is simple to devise a technique to detect the pattern, or signature,

and alarm appropriately. A more difficult problem involves detecting novel attacks,

and significant progress is yet to be made towards this challenging problem.

As much as intrusion detection is actively pursued by academic researchers, it

is probably more aggressively pursued by the commercial industry seeking practical

implementations. Crothers wrote a book that takes a common sense, practical

approach towards implementing network intrusion detection [32]. These types of

works are becoming more common which is a clear indicator that the problem of

intrusion detection is vast and organizations want solutions that can be implemented

immediately. Ning, Jajodia, and Wang published some original concepts regarding

distributed intrusion detection systems [82]. Distributed intrusion detection has

increasingly become an important concept since attacks have become distributed

(such as the distributed denial of service attack - ddos), and speed of detection

has becoming extremely important. One of the commonly criticisms of intrusion

detection is that intruders are not detected often until their deed is done, and that

can be too late. Distributed detection may be a technique to improve upon this

problem.

Some of the most popular research in NIDs involves the MIT Lincoln Lab

DARPA testbed [68]. This testbed simulated network traffic that would be com-

mon to U.S. Air Force Base. Eight weeks of traffic was generated at 40 hours per

week. This is almost a gigabyte of TCPdump data per week, which is significant

if anything more than a trivial algorithm will be employed. Bernhard Sick ana-

lyzed this network traffic and generated 140 different variables, and from this set

of variables he utilized evolutionary computing techniques to conduct variable se-

lection [76]. Most of the testing conducted with this data revealed the obvious -

42

intrusion detection systems were very good at identifying previously known attacks,

and very poor with anything novel. Marchette wrote a text that explores network

monitoring and intrusion detection from a statistical viewpoint [108]. His work

discusses the fundamentals of network data, techniques to quantify the data, and

methods for detecting malicious activity.

CHAPTER 3

THE RECEIVER OPERATING CHARACTERISTIC

(ROC) CURVE

Given the importance of the ROC curves to intrusion detection and binary classi-

fication problems as a whole, it is worthwhile to dedicate a chapter to discuss the

aspects of this curve. ROC curves are widely studied and utilized for the evaluation

of machine learning applications and medical classification and decision making [55].

Much of the appreciation for ROC curves stems from the complete display binary

classifier performance across the full spectrum of thresholds. This is particularly

important for unbalanced problems where performance in particular ranges of the

ROC curve are of interest. The medical community studies ROC curves largely

to better understand the performance of medical tests and the statistics which can

support a diagnosis [134]. This chapter concludes by introducing the decision ROC

chart, a novel method for illustrating the relationship between ROC curves and

decision values.

Before further discussion, let us define some notation. xi will represent a m-

dimensional pattern or observation, and yi will represent the associated label or class

of this pattern (for binary classification yi ∈ (−1, 1)). ŷi ∈ R
1 will represent the

decision value created by the machine learning algorithm, and Ri ∈ (1, 2, ..., N) will

represent the rank of the decision value, an important number when constructing

ROC curves.

3.1 Confusion Matrices

ROC curves are a two dimensional graph, plotting the true positive (TP) rate

on the y or vertical axis and the false positive (FP) rate on the x or horizontal axis.

The confusion matrix is closely related and essentially a subset of an ROC curve.

The confusion matrix displays four numbers - true positive(TP), true negative(TN),

false positive(FP), false negative(FN) - which illustrate the prediction performance

of a classifier at a specific threshold. Table 3.1 shows a typical confusion matrix.

43

44

Predicted Label
positive negative

Actual positive TP FN
Label negative FP TN

Table 3.1: The Confusion Matrix

From this confusion matrix there are a number of statistical performance met-

rics which can be derived. All of these metrics are based upon the binary classifica-

tion problem. These metrics are also defined in [92].

Accuracy = TP+TN
TP+TN+FP+FN

True Positive Rate(Recall, Sensitivity) = TP
TP+FN

True Negative Rate(Specificity) = TN
TN+FP

Precision = TP
FP+TP

False Positive Rate = FP
FP+TN

False Negative Rate = FN
FN+TP

The medical community uses the terms specificity and sensitivity, and it is ev-

ident that sensitivity is equivalent to the true positive rate and specificity is equiv-

alent to (1 - false positive rate). It is quite common for medical researchers to

illustrate medical test performance through plotting sensitivity versus specificity.

The more common ROC curve plots the false positive rate on the horizontal axis

and the true positive rate on the negative axis.

A confusion matrix can also display the accuracy of a multi-class problem,

often illustrating model tendencies and which classes the model tends to “confuse”.

The simplest way to better understand confusion matrices is through an example.

Figure 3.1 is a toy dataset that will be used to illustrate several concepts in

this chapter. Let us assume that a threshold of 0 is applied to this dataset, creating

the confusion matrix shown on the right side of figure 3.1.

45

Decision Rank (Ri) True
Value (ŷi) Class (yi)

2.893 1 1
2.208 2 1
1.664 3 1
0.991 4 1
0.889 5 -1
0.609 6 1
0.015 7 1
0.013 8 -1
-0.240 9 -1
-0.278 10 1
-0.808 11 -1
-1.257 12 -1
-1.437 13 -1
-1.750 14 -1
-1.864 15 -1

Predicted Label
positive negative

Actual positive 6 1
Label negative 2 6

Figure 3.1: Toy dataset with sorted decision values, ranks, and true
classes. Confusion matrix illustrates performance with a ŷi

threshold of 0.

3.2 Algorithms for Creating an ROC Curve and Finding the

Area Under the Curve

The simplest and most conceptually straightforward algorithm to create an

ROC curve is to build confusion matrices that illustrate performance for a range of

threshold values. These confusion matrices will each represent a point on the ROC

curve; each confusion matrix will have a unique point on the curve created from the

false positive rate and true positive rate that the confusion matrix represents. In

order to create an empirical ROC curve with the best granularity, a confusion matrix

could be created at a threshold boundary which separates two distinct observations.

It is possible to define these thresholds through either the ranks or actual decision

values. As will be shown in later algorithms, it is more more elegant to manage

the ranks. Algorithm 4 illustrates how to create ROC curves based on confusion

matrices.

Fawcett details algorithm 5 in [55], a method which creates an ROC curve

based solely on ranks . Algorithm 4 is a much more intuitive method, however

algorithm 5 is much more elegant and compact, and requires less computation.

46

Algorithm 4 Creating an ROC curve from N confusion matrices.

1: Reverse rank order all observations by ŷi, assigning the smallest rank (1) to the
largest ŷi, i ∈ (1, 2, ..., N)

2: Let p represent the total number of positive instances and b represent the total
number of negative instances

3: for Ri = 1 to N do
4: t = Ri, TP = 0, FP = 0
5: for Rj = 1 to t do
6: if yj = 1 then
7: TP = TP + 1
8: else if yj = −1 then
9: FP = FP + 1

10: end if
11: k = Ri

12: True Positive Rate (TPRk) = TP/p
13: False Positive Rate (FPRk) = FP/b
14: Store or plot (FPRk, TPRk) as kth point on ROC curve
15: end for
16: end for
17: Let TPR0, FPR0 = (0, 0)

Algorithm 5 Creating an ROC curve solely based on ranks.
1: FP = 0, TP = 0
2: Let (FPR0, TPR0) = (0, 0)
3: for Ri = 1 to N do
4: if yi = 1 then
5: TP = TP + 1
6: else if yi = −1 then
7: FP = FP + 1
8: end if
9: k = Ri

10: FPRk = FP/b
11: TPRk = TP/p
12: Store or plot FPRk, TPRk as kth point on ROC curve
13: end for

47

ROC curves of good classifiers typically have a large convex rise which ap-

proaches the (1,1) point. It is also possible that ROC curves will indicate poor

classifier performance at false positive or true positive ranges. In the security clas-

sification problem, our primary interest involves improving performance in the low

false positive range. An ROC curve which simply plots along the diagonal, creating

an AUC of approximately 0.5, indicates a classifier which contains no predictive

power; this ROC curve indicates random classification, no better than tossing a

coin. It is also possible to have a concave ROC curve, which usually indicates a

reverse classification or reverse labeling problem.

Rank (Ri) True
Class (yi)

1 1
2 1
3 1
4 1
5 -1
6 1
7 1
8 -1
9 -1
10 1
11 -1
12 -1
13 -1
14 -1
15 -1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AREA UNDER THE CURVE : 0.9107

'ROC.txt'

k = 1

80

61

k = 4

80

34

k = 5

71

34

k = 7

71

16

k = 9

53

16

k = 15

08

07

Figure 3.2: An example of the ROC curve created from the toy dataset
as per algorithm 4. The values in the confusion matrices are
consistent with table 3.1.

It is also of interest to find the area under the ROC curve (AUC), as this is

a good overall performance metric for a binary classification problem. The most

obvious way to find this area is through numerical integration of the curve found in

algorithm 4. Algorithm 6 uses a sum of trapezoidal areas to estimate the AUC.

It is also well known that the AUC has a special probabilistic meaning. The

AUC is equivalent to the probability that a randomly selected positive instance

ranks above (has a smaller Ri) than a randomly selected negative instance. Let

48

Algorithm 6 Finding the Area Under the ROC Curve (AUC) from Numerical
Integration.
1: AUC = 0
2: for k = 1 to N do
3: A = .5(TPRk + TPRk−1)(FPRk − FPRk−1)
4: AUC = AUC + A
5: end for

Ri, i ∈ (1, 2, ..., p) represent the rank of positive instances, and Rj , j ∈ (1, 2, ..., b)

represent the rank of negative instances. This probability is also known as the

Mann-Whitney U statistic, a statistic we will use to find the AUC.

P (Ri < Rj) = AUC = U

Much of the original rank statistics studies which apply to ROC curves can be

attributed to Wilcoxon, Mann, and Whitney who used ranks to measure whether or

not two random variables were statistically different. Wilcoxon’s work was a cursory

exploration to “obtain a rapid approximate idea of the significance of the differences

in experiments” [145]. The dataset utilized in his experiments measured the lethality

of two different fly sprays. Mann and Whitney also used rank statistics to determine

the statistical difference between two treatments, with much more of an emphasis

on describing the underlying distribution of the U statistic [107]. Lehmann provides

a comprehensive study of rank statistics in his book Nonparametrics: Statistical

Methods Based on Ranks, thoroughly discussing the Wilcoxon Rank Sum statistic

and Mann-Whitney U statistic [102].

Let Ri, i ∈ (1..p) represent the rankings of actual attacks, and let Rj , j ∈ (1..b)

represent the rankings of the workstations which were not actually attacked. The

Wilcoxon Rank Sum Statistic, Ws, is equivalent to
∑p

i=1 Ri. Since the sum of all

rankings is 1
2
N(N + 1), it follows that the sum of non-attack instance rankings is

Wr = 1
2
N(N + 1) − Ws. Wr can also be calculated as shown in equation 3.1 [102].

Wr =

b∑
j=1

Rj =
1

2
b(b + 1) +

p∑
i=1

b∑
j=1

ϕ(Si, Sj) (3.1)

49

where ϕ(Ri, Rj) =

⎧⎨
⎩ 1 if Ri < Rj

0 otherwise

The statistics WXY = Ws− 1
2
p(p+1) and WY X = Wr− 1

2
b(b+1) are also popular

forms of the Wilcoxon Rank Sum statistic, and it is this form of the statistic that

relates to the area under the ROC curve. The Mann-Whitney U statistic, which is

exactly equal to the area under the receiver operating characteristic curve, is directly

proportional to the Wilcoxon rank sum statistic WY X and shown in equation 3.2.

U =
WY X

pb
=

1

pb

n∑
i=1

p∑
j=1

ϕ(Ri, Rj) = AUC (3.2)

Hanley and McNeil show in [71] that the area under the ROC curve equates

to the Mann-Whitney U statistic. Realizing this, algorithm 7 can be used to find

the AUC.

Algorithm 7 Computing the Mann-Whitney U statistic.
1: Wr = 0
2: for i = 1 to N do
3: if yi = −1 then
4: Wr = Wr + Ri

5: end if
6: end for
7: WY X = Wr − 1

2
b(b + 1)

8: AUC = U = WY X

pb

ROC curves are not the panacea for measuring the performance of binary

classification. Although these curves convey significant information, it is important

that researchers understand the limitations and properties of these curves. Many

authors, to include Fawcett [55], Bradley [17], and Mason and Graham [109], advise

due caution when using ROC curves to measure the performance of binary classifiers.

ROC curves are non-parametric. There is value in the simplicity and pragmatism of

displaying a classifier’s output as non-parametric ranks, however it is without doubt

that information is lost when we reduce the decision value from the classifier to a

rank.

50

3.3 Sub-ROC curves

Quite often researchers may only have concern with a portion of the ROC

curve. In the medical community, false negatives are of major concern. It is not

acceptable to have a test commonly dismiss a diseased patient as healthy. Therefore,

physicians are likely to prefer operating in a relatively high false positive range; false

positives are tolerable, but false negatives are not. In the security domain, false

positives can become a significant problem. This is due to the extreme imbalance

between the classes in this problem. In the computer network security domain,

there are significantly more benign connections compared to the number of malicious

connections. A large percentage of false positives can create an overwhelming load

of benign connections tagged as malicious, each of which must be examined. If the

false positive load becomes too burdensome, the system no longer creates value and

simply turns into a bottleneck which end users quickly abandon.

Therefore, it is quite useful to study a portion of the ROC curve, especially if

it is likely that this is the only region which an application will ever operate, the rest

of the ROC curve is relatively meaningless. McClish was likely the first researcher

to write about the concept of partial ROC curves. McClish’s method assumes a

binormal distribution between the two classes which the classifier is attempting to

separate, and her interest involves comparing two ROC curves only within a certain

false positive range [112]. Jiang et. al. analyzed partial ROC curves for specific

ranges in sensitivity, or true positive [84]. Zhang applied the same non-parametric

method established in the Mann-Whitney U statistic to only a portion of the ROC

curve [152]. This non-parametric approach to partial ROC curves is the method

which will be discussed here.

The following discussion of sub-ROC curves and the partial AUC utilizes statis-

tics derived during the course of this research. These statistics are not claimed as

novelties of this thesis. The partial AUC is the truly creative component of this

theory and this concept has been studied by others. ROC stickiness, although a

relatively simple concept, has not been mentioned in the literature reviewed and

could be claimed as a novelty of this work.

One of the simplest ROC metrics involves calculating what type of true positive

51

rate to expect before observing a single false positive. Counting from the top of the

rankings until reaching the first negative instance, let R∗
i be the rank of the last

positive instance. The stickiness of the ROC curve (stickiness refers to the ROC

curve sticking to the 0 FP line) can be defined as:

ROC stickiness =
R∗

i

p

The next step beyond sticky ROC curves involves the partial AUC, when

a portion of the false positive range is of interest. In the security classification

problem, the typical ROC curve region of interest is the low false positive domain.

Some authors insist that good performance must occur at a very small false positive

range, such as Schonlau did in [41].

Suppose that in a given dataset, b negative instances exist and p positive

instances exist. If the false positive tolerance, or false positive point of interest

(FPPOI) is a threshold which is not acceptable to cross, then we can define:

FPPOI =
b′

b

b′ now represents the number of false positives for a specific dataset which

define the threshold. It is also possible now to define the following additional statis-

tics:

W ′
r =

b′∑
j=1

W ′
r −

1

2
b′(b′ + 1) = W ′

Y X

(W ′
Y X/p′b′)(p′/p)(b′/b) =

W ′
Y X

pb
= AUC up to FPPOI

The AUC up to the FPPOI is the partial AUC, the area under the ROC curve

up to the FPPOI. It also may be of interest to observe what the Mann Whitney U

statistic is for that region of the ROC curve. For example, given this small fraction

of observations up to the FPPOI, what is the probability that a positive instance is

52

ranked higher than a negative instance? This can be calculated by simply managing

this fraction of observations as its own set of rankings and its own ROC curve. It

has already been established that there are b′ negative instances and p′ positive

instances in this subset. Let R′
j , j ∈ (1, 2, ..., b′) define the ranks of the negative

instances in the subset, and let R′
i, i ∈ (1, 2, ..., p′) define the ranks of the positive

instances in the subset.

P (R′
i < R′

j) =
W ′

Y X

p′b′

Rank (Ri) True
Class (yi)

1 1
2 1
3 1
4 1
5 -1
6 1
7 1
8 -1
9 -1

10 1
11 -1
12 -1
13 -1
14 -1
15 -1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AREA UNDER THE CURVE : 0.9107

'ROC.txt'

375.
8

3' ==
b

b

857.
7

6' ==
p

p

Figure 3.3: Illustration of the partial AUC

An example with the toy dataset shown in figure 3.3 will further illustrate the

sub-ROC curve concept. Assume that our false positive tolerance is .375, implying

a FPPOI = b′ = 3 and p′ = 6. From previous equations, W ′
r = 5 + 8 + 9 = 22 =⇒

W ′
Y X = 16. The AUC up to the FPPOI is 16/(8×9) = .286. It also follows that the

AUC of a sub-ROC curve, considering only these 9 instances as the total number of

observations, would equate to 16/(3×6) = .89.

The probabilistic meaning of the area under the ROC curve enables researchers

to create ROC curves that possess the exact types of attributes of interest, without

the need for any data or prediction modeling. These ROC curves, created strictly

53

from pseudo-random numbers, are a novelty of this research and included in section

6.3. The analysis of these pseudo ROC curves, and their underlying rank distri-

butions, provided a solid foundation to show why certain types of fusion methods

created synergistic results. Further discussion of this can be found in chapter 5.

3.4 Pseudo ROC curves

Many of the fundamental concepts regarding ROC curves from this chapter

are applied in chapter 5 to introduce one of the significant novelties of this research.

Chapter 5 discusses the probabilistic meaning of the AUC and utilizes this prop-

erty to create pseudo-ROC curves and rank distributions. Creation of pseudo-ROC

curves and rank distributions provide the underlying theory for ensemble methods

designed specifically for the security classification problem. The detailed discussion

of pseudo ROC curves is left to this future chapter.

3.5 Improved Decision Making with the Decision ROC Chart

The eventual purpose of an ROC curve is to support a decision, however ROC

curves provide an incomplete representation of the decision environment. Important

information not included in ROC curves include balance of classes and decision

values. Practitioners value ROC curves for the insight that these curves provide to

a classifier or detection device, however applying information from the ROC curve is

difficult without some type of translation from ROC space to the decision space. The

decision space for a binary classification problem involves considering the output of

a model, ŷi, and comparing this output with a threshold, t.

Classifiers create decision values. These decision values, ŷi, exist on a spec-

trum in the real number realm (ŷi ∈ R
1), where ŷi represents nothing more than the

classifier’s judgment on the class membership of an observation. Classifiers base this

judgment on some type of function created from other observations, so the decision

value becomes the classifier’s similarity or strength of belief metric indicating class

membership. Decision values often contain no true meaning. Many decision values

follow some type of sigmoidal function, clustering in the center and existing in a

lower density at the extreme ends of the the spectrum. For some types of detec-

54

tion equipment, decision values could represent the output of some type of sensor.

This could be a chemical measurement as in a medical test or an electronic signal

measurement which exists in many types of detection scenarios. Regardless of the

classification problem, the end result is that a decision must be made whether to

classify an unlabeled instance as positive or negative. ROC curves illustrate the

performance of a classifier, but they do not provide a complete picture or aid in

classification decisions. Practitioners must bridge the gap between ROC curves and

decision values. The following extension to the ROC curve is a simple and novel

method to aid decision makers and assist in bridging the gap from ROC curves to

decision values.

Choosing t = -.5 captures every
positive instance

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

D
E

C
IS

IO
N

 V
A

L
U

E

FALSE POSITIVE RATE

8 negative observations

7 positive observations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

AUC: 0.9107

Figure 3.4: Decision ROC Chart from data in figure 3.1

The horizontal axis of an ROC curve measures the false positive rate of a

classifier, and this false positive rate is simply a fraction of negative instances.

55

Referring to table 3.1, recall that the False Positive Rate = FP
FP+TN

. The extension

to the ROC curve, referred to as the Decision ROC Chart, plots the false positive rate

on the horizontal axis, enabling the bridge between the ROC curve and the decision

value. The vertical axis represents the decision value, ŷi. The Decision ROC Chart

captures much of the information absent from the ROC curve, to include the balance

of the problem, distribution of the decision values, and perhaps most importantly

the connection between the the ROC curve and the decision value through the false

positive rate.

Figure 3.4 illustrates the Decision ROC Chart for the toy running problem

discussed in this chapter from starting in figure 3.1.

Figure 3.5 illustrates the Decision ROC Chart for a larger dataset. In addition

to aiding the threshold decision for a classification problem, the Decision ROC Chart

provide clarity to ROC curves for those who are not familiar with ROC curves. The

area under the curve is visibly seen as a probability with the Decision ROC Chart.

It is much more believable, and understandable, that the probability of a positive

value out ranking a negative value is 0.959.

Decision ROC Charts educate decision makers and students involved with

classification. The purpose of these curves is simply to educate, assist in decision

making, and provide a more complete picture of a decision environment.

56

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

D
E

C
IS

IO
N

 V
A

L
U

E

FALSE POSITIVE RATE

2863 negative observations

137 positive observations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

AUC: 0.9593

Figure 3.5: Decision ROC Chart for a large dataset

CHAPTER 4

COMPUTER INTRUSION DETECTION VARIABLES

This chapter discusses how to harvest variables for machine learning from host-based

monitoring and network-based monitoring. The methods introduced are techniques

that worked. Other methods, perhaps even better techniques for creating variables,

could be possible. This is a chapter designed to illustrate how to transform mea-

surements from a security environment into data that models the environment. This

chapter introduces the necessary first preprocessing steps that must be accomplished

before applying techniques described in subsequent chapters of this dissertation.

4.1 Information and Computer Security

There are numerous techniques used to enhance the security of information

and computers. Many of these techniques attempt to block or deter attackers,

preventing them from intruding in the first place. These techniques include many of

our everyday encounters such as user-accounts and passwords, firewalls, and VPN

encryption. All of these techniques aim to keep the wrong people out and the right

people in. However, attackers continually strive to break through these barriers and

invade protected information. These barriers are preventive measures, and digital

firms must augment these preventive measures by implementing intrusion detection

systems (IDS) that monitor the network and detect fraudulent or unusual activity.

Certain characteristics of computer IDS define their effectiveness. The typical

measures of an IDS involve accuracy of detection, often expressed as a true positive

rating and false positive rating. The overall effectiveness of an IDS can be shown on

a receiver operating characteristic (ROC) curve, which plots the full range of a clas-

sification system’s true positive and false positive rates. Typically, minimizing false

positive alarms while maintaining an acceptable rate of true positives is paramount

with intrusion detection systems. Falsely identifying a significant portion of au-

thentic users as intruders represents a problem for a digital firm. Authentic users

could experience temporary restriction or no access to the network. This creates

57

58

frustration on an individual level and could result in reduced efficiency on a larger

scale. Minimizing false positive ratings is a key criterion when evaluating an IDS,

even while realizing that a lower true positive rating will occur.

Intrusion detection is inherently a statistical problem [41]. The problem in-

volves collecting a sample of data, describing the data through statistical attributes,

and then classifying the data based upon these attributes. Intrusion detection of-

tentimes involves identifying intruders without any training data that indicates the

behavior of intruders.

4.2 Types of Intrusion Detection Systems

There are two types of intrusion detection systems: host-based IDS (HIDS),

and network-based IDS(NIDS). Host-based IDS monitor individual workstations,

and Network-based IDS monitor network packets. The types of intrusion detection

used for these types of IDS are inherently different due to the type of data generated

by each. Computer workstations monitored by a HIDS can generate very specific

data regarding user behavior. Networks monitored by HIDS produce one type of

data: network packets.

Monitoring with HIDS is a domain specific task. The purpose of using a HIDS

is to prevent an individual from masquerading as an authentic user and to prevent

authentic users from wandering into computing domains where they do not belong.

Smaller banks of computers with consistent users operating in a relatively secure

environment would be an appropriate domain for a HIDS. The intent of the HIDS

is to capture telling statistics about user behavior that helps to identify a particu-

lar user. This information is then transformed into some type of statistic or set of

statistics that can be used as a benchmark to compare the future behavior of the

same user. If this user’s behavior strays far enough from this statistic, the HIDS will

alarm an intruder. The idea is that computer users have certain behavior, and often

patterns of behavior, that they perform every time they log onto a machine. Signif-

icant deviation from this behavior indicates a potential intruder. The types of data

that can be collected by a HIDS included keystroke statistics, program preferences,

websites visited, times logged on, command usage, etc. HIDS intrusion detection

59

often is considered anomaly detection since the purpose is to detect anomalies or

outliers measured against historical statistics.

Monitoring a network with a NIDS is somewhat different. The purpose of a

NIDS is to identify network traffic indicative of network attacks. Examples of this

include individuals attempting to attack into a company’s intranet and computers

inside of the network attempting to attack from within. NIDS typically utilize

some type of packet sniffing software, such as Snort [2], which has the capability to

filter packets based upon certain decision criteria. A NIDS will typically pass any

packets deemed as benign and analyze all of the packets identified as a potential

attack. NIDS utilize known characteristics established from known attacks, and

for this reason these techniques are often referred to as signature based detections.

Previous attacks typically have a certain signature, and a NIDS attempts to identify

matching or similar signatures.

4.3 Analysis of the Host Based Dataset

Section 2.5.1 provides a detailed account of the contents of the SEA dataset.

Although widely used for masquerade detection, this dataset has some limitations

[41]. First, command arguments, which may contain valuable information for in-

trusion detection and authorship, were not collected because of privacy concerns.

Second, the 20 intruders are ”other” users from a general population similar to the

legitimate users and not ”real” masqueraders who may exhibit unusual patterns

distinguished more easily from normal patterns. Third, mistyped commands may

violate the signature profile built for a user. Regardless of these shortcomings, we

found the data to be a valuable set and used it to test our methods.

The initial programming effort involved determining the data dictionary (list

of every unique command). In addition to generating this list, the programs also

report the frequency of the commands and the popularity of the commands (number

of users who use distinct command). In an effort to validate the data dictionary,

frequency, and popularity of the commands, we relied upon a graph created by

Schonlau that plots distinct commands vs. unique commands [129].

Figure B.4 contains Schonlau’s plot from [129] on the right and an identical plot

60

used to validate analysis of the data on the left. These plots illustrate the uniqueness

(1 - (total users of that command / total users)) of the distinct commands. As shown,

almost 50% of the distinct commands have a uniqueness of .98, meaning that almost

50% of the distinct commands are used by only one user. In total, there are 856

distinct commands within the entire data set, and within the training data set (first

5000 commands for each user) there are 635 distinct commands.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Distinct Commands

U
n

iq
u

en
es

s

Figure 4.1: Distinct commands plotted vs. unique commands

4.4 Schonlau’s Analysis

Before creating text mining variables, much of Schonlau’s original work and

results with this data were recreated. Schonlau developed, analyzed, and compared

numerous detection algorithms. Schonlau’s work includes analyzing unpopular com-

mands, real time hypothesis testing, principal components regression, and structural

zeroes [41–43,128,129].

Following the work of Schonlau accomplished two critical goals. Replicating

his work and achieving the same results through new text mining programs written

in Perl completed a validity check for the programs. Secondly, his work with this

dataset is comprehensive, and understanding and replicating his work provides a

solid foundation of knowledge that enables further exploration of this dataset.

Shortly after finishing the initial programming and validity check with Schon-

61

lau’s algorithm based upon unpopular commands [129], new techniques were ex-

plored. It is possible to measure this data in numerous ways and provide variables

that a learning machine can use to predict outcomes. After creating a new set of

variables that measure user behavior, these variables serve as a basis for experi-

mentation in predictive modeling with learning machines. The primary learning

machine utilized in this article is Rosipal’s K-PLS [124]. Although other learning

machines may offer comparable or even better results, our choice to remain with

this particular learning machine is primarily an effort to remain consistent. With

numerous combinations of variables presented to the learning machine with different

preprocessing techniques, exploration of improved classification begins.

4.5 Text Mining Variables

After validating the Perl programs and developing a solid understanding of the

dataset, new variables were necessary to create different techniques that accurately

predict the presence or absence of an intruder. The spirit of these variables come

from Schonlau’s original work [129], however the machine learning approach in-

volving these variables is fundamentally different from Schonlau’s technique. These

variables were created with the goal of developing a technique to measure the behav-

ior of computer users in a manner that captures the differences between intruders

and authentic users. There are a number of techniques available to capture com-

puter user behavior and/or network behavior. The selected technique is largely a

function of the dataset utilized. The new variables and the prediction models in-

volving these new variables work primarily with the latter 10,000 commands from

each user. Therefore, with each user contributing 100 tuples of data for this section,

there are a total of 5,000 tuples that we will examine. These new variables we are

discussing measure the overall characteristics of the 100 commands contained within

the tuple, and these variables can be seen in table 4.5.

An important aspect that remained true throughout the search for effective

classification involved the importance of Mahalanobis scaling the data - essentially

normalizing every entry in the data matrix - by subtracting the mean and dividing

by the standard deviation of the variable. This was due to the extreme ranges

62

Table 4.1: Description of text mining variables

Name of Variable Description
1 new Binary variable that indicates presence of com-

mand never used by this user
2 % of Unix commands Percent of commands that are UNIX
3 % Top 20 most popular com-

mands
Fraction of commands that are within the top 20
most popular commands in the data set

4 % of internet commands Fraction of commands that are internet/email
commands (sendmail and netscape)

5 Average Uniqueness Averages Uniqueness (number between .02 and .98
) of commands in tuple

6 Average Frequency Averages the frequency of each command in the
dataset

7 % of foreign commands Percent of commands never seen before - this will
be zero for all training data

8 xu value xu value from Schonlau’s algorithm[8], essentially
providing a signature index that is based upon us-
age pattern of that particular user

9 user Integer between 1 and 50 that indicates the iden-
tity of the user

of different variables; with similar reasoning, the covariance matrix provides little

useful information, however the correlation matrix provides a true measure of the

interdependency between variables.

4.6 Matrix Plots for Visualizing Variables

It is sometimes possible to predict a response directly from the values of the

variables, without any learning machine or algorithm. If a variable takes on a certain

range of values for one response, and a separate range for another response, it is

sometimes possible to infer with a good degree of certainty the response based on

a single variable or multiple variables that have this property. “Fisher’s Iris data”,

shown in Figure 4.2, is a great illustration of this point. The iris dataset is a classic

multivariate dataset originally analyzed by Fisher in [58] and also included in the

work of Johnson and Wichern [85]. Four predictor variables: petal length, petal

width, sepal length, and sepal width are used to distinguish types of iris flowers.

The AnalyzeTM [46] software package contains an option to color map observations

from the dataset. This is very similar to the color map PM3D process available

63

from gnuplot [140].

Fisher’s Iris Data

Text Mining Variables

Figure 4.2: Matrix plots for the description of variables

In the Iris dataset it is apparent that the sepal length and width (first two

variables) will not be as effective determine the type of iris since the colors do not

have a distinct similarity with those in the response column. On the other hand, the

colors generated for the petal length and width are distinctly similar to the response

column. A reasonable assumption is that petal length or petal width can be used to

fairly accurately predict the type of iris. The computer intrusion dataset was sorted

by the “Intrusion/ Non-Intrusion” column and color coded in the same way as the

Iris data set. These new variables introduced for the computer intrusion detection

problem do not exhibit this type of behavior, except for Schonlau’s xu value from

the uniqueness algorithm(7th variable shown adjacent to output variable) and the

1st variable, “new”, which is a binary variable which represents the presence or

absence of commands never seen from a particular user. This is expected because

the xu value is an overall index that predicts the presence or absence of an intruder;

low xu values correspond with potential intruders, and higher xu values indicate

authentic users, hence the inverse relationship illustrated. The correlation of the

“new” variable and the output variable is a direct reflection of the consistent and

stagnant command vocabulary of most of these users.

64

4.7 Analysis of the Network-Based Dataset

The analysis of network-based data is an entirely different problem from hos-

based intrusion detection. The network-based data are much more voluminous,

and also contain many more dimensions. It is important to initially have a basic

understanding of network traffic. Network traffic consists of packets of information

sent from a host to a destination. The most popular protocol today is transmission

control protocol / internet protocol (TCP/IP). This protocol breaks messages into

packets, labels the packets, and routes the packets to a host. The receiving machine

ensures all packets are received and assembled correctly based upon this protocol.

TCP/IP is what makes the internet work. There are other protocols, such as user

datagram protocol(UDP) and address resolution protocol(ARP), which exist on the

network, however they are not nearly as prevalent or important as TCP/IP.

The typical collection format of network data is TCPdump. TCPdump is a

UNIX program that collects packets from a network line. This is usually a router

or gateway when attempting to monitor a network. Collecting and analyzing TCP-

dump data is the fundamental method of analyzing network traffic.

The primary dataset for examining network intrusion detection is the 1998

and 1999 DARPA Intrusion Detection Evaluation [68]. This evaluation took place

at the Lincoln Laboratory at the Massachusetts Institute of Technology. The MIT

researchers collected several weeks of data from an Air Force base that was not

exposed to any known network attacks. The researchers then artificially inserted

attacks within this data through simulation. The end result was a dataset with

known attacks of several types, and the start and end of these attacks is known

and marked. This is exactly the type of information necessary for machine learning

research. However, there is a significant challenge involving the representation of

this data.

TCPdump data is alphanumeric data presented as a header followed by the

payload of data. An example of five different TCPdump packets are shown in figure

4.3.

There are several problems with directly analyzing TCPdump packets. The

first problem is the volume. An average eight hour day of traffic from the DARPA

65

Figure 4.3: Printout of five network packets captured by TCPdump

network data consists of around 700,000 packets. The second problem is leveraging

information from the packets. A single packet gives minimal information, however

all of the packets from a connection between two computers provides all of the

information exchanged during the connection. Therefore, it is necessary to analyze

connections rather than packets. This enables an abstraction of information which

will begin to provide a much more manageable data representation. A connection is

simply a completed exchange of information between two computers. Connections

can consist of less than ten packets or several hundred packets. The software utilized

for the analysis of connections is TCPtrace, a TCP connection analysis tool written

by Shawn Ostermann [116].

TCPtrace provides an overall summary of the connection, to include the num-

ber and type of packets, date-time group of the connection, duration, and other

useful analysis. This is again represented in an alphanumeric format, however I

wrote Perl program which parses the TCPtrace representation into a numeric rep-

resentation which is compatible with machine learning software. An example of

TCPtrace output for a TCPtrace connection is shown in figure 4.4.

After parsing TCPtrace output with the Perl program, the connection can

be represented as a single tuple of 80 variables. Each tuple must furthermore be

marked as either an attack or non-attack, and an example of how to mark tuples as

66

Figure 4.4: Printout of TCPtrace representation of a TCP connection

such is shown in chapter 8.

Bernhard Sick performed similar analysis based upon this same data set [76].

Sick examined feature selection techniques with a neural network to predict out-

comes for this data. His data consists of 137 features (he uses a large number of

binary variables - thus creating more variables). He shared this data and I have

been able to apply both the one-class SVM and K-PLS as initial experiments. It

is a goal in this research to utilize both the TCPtrace collected data and Sick’s

data to improve our understanding and ability to predict network based intrusions.

A detailed explanation of a data flow diagram representing the data processing for

both host based computer intrusion detection and network based computer intrusion

detection is located in Appendix A.

CHAPTER 5

CREATING SYNERGY WITH UNSUPERVISED

CLASSIFICATION

5.1 Introduction

This chapter includes exploratory work involving intelligent subspace selection

and much of the original efforts that led to important findings regarding the fusion

of classifiers included in chapter 6. A novel method for receiver operating charac-

teristic (ROC) curve analysis and anomaly detection is proposed. The ROC curve

provides a measure of effectiveness for binary classification problems, and this chap-

ter specifically addresses unbalanced, unsupervised, binary classification problems.

Furthermore, this work explores techniques in fusing decision values from classifiers

and using ROC curves to illustrate the effectiveness of the fusion techniques. In

describing an unbalanced classification problem, understand that this is a problem

that has a low occurrence of the positive class (generally less than 10%). Since

the problem is unsupervised, the one-class SVM is utilized. The chapter includes a

discussion of the curse of dimensionality experienced with the one-class SVM, and

to overcome this problem techniques involving subspace modeling are explored. For

each subspace created, the one class SVM produces a decision value. The aggrega-

tion of the decision values occurs through the use of fuzzy logic, creating the fuzzy

ROC curve. The primary source of data for this research is a host based computer

intrusion detection dataset.

5.2 Introduction to the Problem

The purpose of this chapter is to illustrate synergistic combinations of multiple

classifiers for the unbalanced, unsupervised binary classification problem. The SEA

data and the Ionosphere data from the UCI data repository will be explored in this

chapter.

Combinations of multiple classifiers (CMC), also referred to as multiple classi-

67

68

fication systems (MCS) or committee machines, is an active area of research today.

Given the numerous classification techniques and vast problem area domain, re-

search within this field seems only bounded by creativity and computational power.

A particularly interesting problem that involves CMC is the unbalanced, unsuper-

vised binary classification problem. Consider the following example that referred

to as the “airport security problem”. An airport security system exists in layers,

all the way up to and including the aircraft while it is airborne. Each layer in this

security system can be considered a classifier; the objective of each layer is to deter-

mine whether or not an intruder, for example, breaches security. How should these

classifiers be arranged? How can the results of classifiers be combined to achieve

synergistic results?

An unsupervised classifier is handicapped by the fact that it often cannot learn

from true positive (intruders) examples. The only examples available to learn from

are true negatives (non-intruders). Furthermore, the problem is unbalanced. This

means that the frequency of intruders is very small; in an airport, this number of

true positives is a tiny fraction of a percent. Some airports work for years without

experiencing an intruder. Yet the cost of not identifying a true positive can be

catastrophic, and the cost of falsely identifying non-intruders, or having too many

false positives, can create is also formidable.

Given a classification problem of high dimension (perhaps >10 variables), ini-

tial experimental results indicate that the creation of subspaces and aggregation of

the subspace classification decision values results in improved classification over a

model that utilizes all variables at once (the unsupervised classification model that

will be utilized is the one-class SVM [127]). This is often known as the “curse of

dimensionality”. Creating subspaces for outlier detection is not a new concept [74].

However, considering this problem as a function of one-class SVM outputs to create

a “fuzzy ROC curve” is novel. As multiple classifiers combine, synergistic improve-

ment in ROC curves can be observed. Fuzzy logic is the basis for the aggregation.

Each classifier will create a decision value that ranges from -1 to +1, where +1 should

indicate the negative (non-intruder) class, and -1 indicates the positive (intruder)

class. These decision values represent a degree of membership in an intruder or a

69

non-intruder class. The decision values must be combined to make a final decision,

and fundamentals of fuzzy logic can be used to aggregate these decision values.

As mentioned earlier, unsupervised learning does not perform well in higher

dimensions. A valid question would be to ask why not try a dimension reduction

technique, such as principal components. Principal components work well with bal-

anced classification problems, however caution is necessary with unbalanced prob-

lems. Often the difference between an intruder and non-intruder is subtle, and

principle components can dilute the information content of the variables.

The overall performance measure is the area under the ROC curve, or AUC,

with a secondary performance measure of good performance at low false positive

rates. Overall, the ROC curve created from the subsets should exceed the curve

created by processing one lump sum of variables. Claiming success requires this to

occur. The results section shows several instances where this occurred. Secondly,

in the range of low false positives, where intrusion detection and security systems

typically operate, performance must be good which means that in the range from 0

to 50% true positive, the false positive rate diverges slowly from 0. Examples of this

are shown in the results section. Typically good low false positive range performance

and increased AUC will occur simultaneously, but not always.

Figure 5.1 is a cartoon sketch that summarizes the goal of the work in this

chapter. There is an assumed high dimensional dataset, X ∈ R
N×m. X contains

N instances or observations, x1,x2, ...,xN , where xi ∈ R
1×m. Modeling the data

in subspaces reduces dimensionality problems and fusing the results of subspace

models creates robust results.

70

Le
ar

ni
ng

 M
ac

hi
ne

su
b

sp
ac

e
2

in
p

ut
s

su
b

sp
ac

e
3

in
p

ut
s

Le
ar

ni
ng

 M
ac

hi
ne

Le
ar

ni
ng

 M
ac

hi
ne

su
b

sp
ac

e
1

in
p

ut
s

F
U

S
IO

N
 O

F

D
E

C
IS

IO
N

V

A
R

IA
B

L
E

S
t

t

t

S
Y

N
E

R
G

IS
T

IC

R
O

C
 C

U
R

V
E

(O
R

 F
U

ZZ
Y

 R
O

C
 C

U
R

V
E

IF

 U
S

IN
G

 F
U

ZZ
Y

 L
O

G
IC

A

G
G

R
E

G
A

TI
O

N
)

In
te

lli
g

en
t

S
el

ec
ti

o
n

 o
f

S
u

b
sp

ac
es

t:
 th

re
sh

ol
d

va
lu

e
fo

r
cl

as
si

fi
ca

tio
n

t

di
st

ri
bu

ti
on

 o
f

ne
ga

ti
ve

 (
he

al
th

y)
 p

oi
nt

s

di
st

ri
bu

ti
on

 o
f

po
si

ti
ve

 (
un

he
al

th
y)

 p
oi

nt
s

L
E

G
E

N
D

1

1

A
n

o
ve

ra
ll

sy
st

em

of
 I

D
S

 t
ha

t
ge

ne
ra

te
s

a

sy
ne

rg
is

tic
 c

ur
ve

fr

om
 c

om
po

ne
nt

sy

st
em

s.

TRUE POSITIVE

F
A

L
S

E
 P

O
S

IT
IV

E

C
on

ve
x

H
ul

l

M
O

D
E

LI
N

G
 IN

 S
U

B
S

P
A

C
E

S

Figure 5.1: A sketch of subspace modeling to seek synergistic results

71

5.3 Dataset and Model

This chapter explores many facets of recent research, to include intrusion de-

tection models, outlier detection, and fusion of classifiers using fuzzy ROC curves.

Recent work with classifier fusion and fuzzy ROC curves will be discussed during

the presentation of the methods for that material.

Schonlau et. al. [41–43, 128, 129] conducted the original work with the data

explored in this chapter. A detailed discussion of this data can be found in sections

2.5.1 and 4.3. Throughout these experiments normalization of the data occurs(by

subtracting the mean and dividing by the standard deviation). The dataset contains

5000 observations and a host of variables to measure these observations (see [50,

135] and section 4.3 for a description of variables). The training set consists of

2500 observations and the test set contains 2500 observations. After eliminating all

positive cases from the training data, 2391 negative cases remain which are used

for training the one-class SVM. Recall that the one-class SVM trains with solely

negative instances. In the testing data, there are 122 positive cases out of the 2500

observations.

The one-class SVM is an outlier detection technique originally proposed in

[127]. Stolfo and Wang [132] successfully apply the one-class SVM to this dataset

and compare it with several of the techniques mentioned above. Chen uses the one-

class SVM for image retrieval [27]. The simplest way to express the one-class SVM

is to envision a sphere or ball, and the object is to squeeze all of the training data

into the tightest ball feasible. This is analogous to the idea of variance reduction for

distribution estimation; given a set of data, I want to estimate a distribution that

tightly defines this data, and any other data that does not look the same will not

fit this distribution. In other words, once the distribution is estimated, data that

does not fit the distribution will be considered an outlier or not a member of the

negative class. Consider the following formulation of the one-class SVM originally

from [127] and also clearly explained in [27]:

If we consider X1, X2, ..., Xl ∈ χ instances of training observations, and Φ is a

mapping into the feature space, F , from χ.

72

min
R∈R,ζ∈Rl,c∈F

R2 +
1

vl

∑
i

ζi

subject to ‖ Φ(Xi) − c ‖2≤ R2 + ζi, ζi ≥ 0 for i ∈ [l] (5.1)

This minimization function attempts to squeeze R, which can be thought of

as the radius of a ball, as small as possible in order to fit all of the training samples.

If a training sample will not fit, ζi is a slack variable to allow for this. A free

parameter, v, enables the modeler to adjust the impact of the slack variables. The

output, or decision value for a one-class SVM, takes on a values from -1 to +1,

where values close to +1 indicate datapoints that fit into the ball and values of -1

indicate datapoints lying outside of the ball. A detailed discussion of the one class

SVM can be found in section 2.2.3.2.

5.3.1 Curse of Dimensionality

It is commonly understood that high-dimensional data suffer from a curse of

dimensionality. This curse of dimensionality involves the inability to distinguish dis-

tances between points because as dimensionality increases, every point tends to be-

come equidistant as volume grows exponentially. This same curse of dimensionality

occurs in the one-class SVM. (The SVM tool used for this research is LIBSVM [24]

with a linear kernel.)

Figure B.4 illustrates an experimental example of the curse of dimensionality

where there are originally 27 meaningful variables, however meaningless probe vari-

ables (uniform (0,1) random variables) are added to create degradation. The area

under the ROC curve, or AUC, will serve as a measure of classifier performance. See

chapter 3 for a discussion of ROC curves. Tom Fawcett also provides an excellent

discussion of ROC curves in [55].

5.4 Method to Create Fuzzy ROC Curves

The following technique seeks to overcome this curse of dimensionality. The

technique involves creating subspaces of the variables and aggregating the outputs

of the one-class SVM for each of these subspaces.

73

Figure 5.2: Curse of dimensionality induced by the introduction of probe
variables

5.4.1 Subspace Modeling

Intelligent subspace modeling is an important first step. Orthogonal subspaces

are desired, because we are interested in subspaces that measure different aspects of

the data. The idea of creating diverse classifiers is not novel [15,96,97,99], however

in the literature the measures of classifier diversity involve functions of the classifier

output. This is feasible with supervised learning, however in unsupervised learning

this is more difficult because there are no true positive examples to measure diversity

against. I propose measuring diversity through the actual data. The following

method involves an analysis of the correlation between principal components of

each subspace.

Given a Mahalanobis scaled data matrix X, containing m variables that mea-

sure n observations, create l mutually exclusive subspaces from the m variables.

Assume there are k variables in every subspace if m is divisible by l. Experience

with the one-class SVM indicates that for k > 7, increased dimensionality begins

to degrade performance, however this is simply a heuristic and may vary depending

upon the unsupervised classifier selected. For each subspace, principal components

can be calculated. L will refer to the matrix that contains the principal component

loading vectors (eigenvectors). To determine correlation between principal compo-

74

nents, calculate the principal component scores for each subspace, where S=XL. Let

πi represent subspace i, and consider Si as the score matrix for the πi. Calculate the

pairwise comparison for every column vector in Si against every column vector in

Sj , i �= j. This would be the equivalent of concatenating Si for all i and calculating

the correlation matrix, Σ.

We are interested in values approaching zero for every pairwise correlation

across subspaces (principal components within subspaces are orthogonal and there-

fore their correlation is zero, as seen in Figure 5.5). However, there are a combina-

toric number of subspace combinations to explore.

Number of subspace combinations =

⎛
⎝ m

k

⎞
⎠
⎛
⎝ m − k

k

⎞
⎠ ...

⎛
⎝ 2k

k

⎞
⎠ (5.2)

Equation 5.2 assumes that m is divisible by l, and even if this is not true the

equation is almost identical and on the same order of magnitude. Our approach

to search this subspace involved the implementation of a simple genetic algorithm,

utilizing a chromosome with m distinct integer elements representing each variable.

There are many possible objective functions that could pursue minimizing principal

component correlation between subspaces, and I utilized the following letting q ∈
(1, 2, ..., l):

min max
∀πq

| ρij | ∀(i �= j) (5.3)

The fitness of each member is simply the maximum | ρij | value from the

correlation matrix such that ρij measures two principal components that are not in

the same subspace.

5.4.1.1 The Genetic Algorithm

The purpose of this GA is to seek optimality for equation 5.3. Appendix C

contains the perl code written to implement this GA. Principal components from the

same subspace will have 0 correlation, however principal components from different

subspaces will have correlation. If principal components are correlated, then this is

75

an indicator that the subspaces measure the same behavior. Therefore, uncorrelated

principal components are desirable.

The chromosome consisted of 26 elements, and each of these elements repre-

sented a variable. The initial population consisted of 50 randomly ordered chro-

mosomes. Figure 5.3 is an example of the chromosome encoding used in this algo-

rithm(this is actually the best configuration discovered to date). The three subsets

are extracted as shown, and then the AnalyzeTM [46] software package calculates the

principal components and correlation of the principal components across subspaces.

23 31525138252416161920264221814121171721109

subset 1 subset 2 subset 3

crossover point

Figure 5.3: Illustration of chromosome and subspaces

The selection of chromosomes followed the common roulette wheel process,

where chromosomes with a better fitness receive a higher probability of being se-

lected. In order to retain the fittest chromosome found, an elitist rule retains the

single best chromosome and passes it to the next generation. Immigrants were also

implemented. These were two new random chromosomes who took the place of the

least fit chromosomes selected for breeding. After selecting a group of chromosomes

for breeding, these chromosomes had a 40% chance of directly passing to the next

generation and a 60% chance of crossover. Crossover occurred at the point shown in

Figure 5.3. This crossover option was somewhat unorthodox since a clean crossover

could not occur due to the fact that every element in the chromosome must be

unique. Therefore, after executing a crossover, the new chromosomes required ad-

justment to ensure unique elements. This adjustment occurred only on the first

half of the new chromosome (before the crossover point); ie, if a redundant element

occurred in the new chromosome, this would randomly be replaced by one of the

variables not yet accounted for in the new chromosome.

The last step involved mutation. Mutating chromosomes also required special

76

consideration due to constraints of chromosome elements. Each element had a 1%

chance of encountering mutation. If an element was selected for mutation, the

element was simply swapped with its mirror element. If the chromosome contains

l elements, and the kth element is selected for mutation, then I swap this with the

(l − k)th element, which I refer to as its mirror.

5.4.2 Output Processing

After selecting the subspaces, prediction modeling begins. As mentioned pre-

viously, the choice for a prediction model is the one-class SVM with a linear kernel.

However, the problem of classifier fusion still persists. Classifier fusion techniques

have been discussed in [15, 96, 97, 99]. Classifier fusion is a relatively new field and

it is often criticized for lack of theoretical framework and too many heuristics [97].

The methods in this chapter do not claim to provide a solution to this criticism.

The presented method of classifier fusion is a blend of techniques from fuzzy logic

and classifier fusion, and although it may be considered another heuristic, it is op-

erational and should generalize to other security problems.

5.4.2.1 Mapping into Comparable Decision Spaces

For each observation within each subspace selected, the classifier will produce

a decision value, dij, where dij represents the decision value from the jth classifier

for the ith observation. Since the distribution of the output from almost any clas-

sification technique is questionable, first consider a nonparametric measure for the

decision value, a simple ranking. oij represents the ordinal position of dij (for the

same classifier, meaning j remains constant). For example, if d71 is the smallest

value for the 1st classifier, o71 = 1. This nonparametric measure allows comparison

of classifiers without considering the distribution. However, do not rule out the dis-

tribution altogether. Next create pij, which is the Mahalanobis scaled (normalized)

value for dij. In order to incorporate fuzzy logic, oij and pij must be mapped into

a new space of real numbers, let us call Λ, where Λ ∈ (0, 1). This mapping will be

pij → δij and oij → θij such that δij , θij ∈ Λ. For oij → θij this is a simple scaling

procedure where all oij are divided by the number of observations, m, such that

θij = oij/m. For pij → δij , all pij values < −1 become -1, all pij values > 1 become

77

1, and from this point δij = (pij + 1)/2.

5.4.2.2 Fuzzy Logic and Decisions with Contention

There are now twice as many decision values for every observation as there were

numbers of classifiers. Utilizing fuzzy logic theory, T-conorms and T-norms can be

considered for fusion. The choice between T-norms and T-conorms depends upon the

type of decision. The medical community is cautious of false negative tests, meaning

that they would rather have error on the side of falsely telling someone that they have

cancer as opposed to letting it go undetected. The intrusion detection community is

concerned about minimizing false positives, because too many false positives render

an intrusion detection system useless as analysts slog through countless false alarms.

In the realm of one-class SVMs, the original decision values will take on values

ranging generally from -1 to +1, where values closer to +1 indicate observations

that fit inside the ball or estimated distribution (indicating non-intruders), and

values closer to -1 indicate outliers (potential intruders). Consider the max and

min, simple examples of a respective T-conorm and T-norm. Systems that need to

be cautious against false negatives will operate in the realm of the T-norms, creating

more false alarms but missing fewer true positives. Systems that need to be cautious

against false negatives will operate in the realm of the T-conorms, perhaps missing

a few true positives but generating fewer false positives. Figure 5.4 illustrates the

domain of aggregation operators.

Intersections(T-Norms) Unions(T-Conorms)Averages

0 max (0, x + y – 1) x x y min(x,y) max (x,y) x + y - x x y min(1, x + y) 1

Properties of T-Norms
T(x,y): [0,1] x [0,1] > [0,1]
T(x,0) – T(0,x) = 0
T(x,1) = T(1,x) = x
T(x,y) = T(y,x)
T(x,T(y,z)) = T(T(x,y),z)
T(x,y) T(y,x) if x u, y u≤ ≤ ≤

Properties of T-Conorms
S(x,y): [0,1] x [0,1] > [0,1]
S(x,0) – S(0,x) = x
S(x,1) = S(1,x) = 1
S(x,y) = S(y,x)
S(x,S(y,z)) = S(S(x,y),z)
S(x,y) S(y,x) if x u, y u≥ ≥ ≤

Properties of (Normalized)
Average Functions
H(x,y): [0,1] x [0,1] [0,1]
min(x,y) < H(x,y) < max(x,y)
H(x,H(y,z)) H(H(x,y),z) ≠

Figure 5.4: Fuzzy aggregation operators

One problem with T-norms and T-conorms is that contention within aggrega-

78

tion is not captured. By contention I am referring to a vast difference of decision

values between classifiers. However, contention can be captured and considered ap-

propriately. Typically, if contention exists, a system needs to reflect caution. In

other words, if we are minimizing false positives and contention exists in a decision,

we may simply choose negative or choose a different aggregator for contentious deci-

sions. If contention exists in a medical decision, it is likely that the initial diagnosis

will report positive (cancer detected) and then further tests will be pursued. There

are numerous ways to measure contention, and one of the simplest is to consider

the difference between the max and min decision values. If this difference exceeds a

threshold, contention exists and it may be best to choose a different aggregator or

make a cautious decision.

5.5 Results with Masquerading Data

Experimental results involved the SEA dataset. There are m=26 variables

and n=2500 observations in the training data. For our subspace selection, there are

l=3 subspaces creating subspaces containing 9, 9, and 8 variables respectively. For

each subspace we consider three principal components. The genetic algorithm used

the fitness function shown in Equation 5.3, roulette wheel selection, a crossover rate

of .6 and mutation rate of .01. Our number of generations = population size = 50.

Figure 5.5 is the correlation matrix of the principal components from our selected

subspaces, where max∀πq | ρij |= .4 ∀(i �= j).

Given this subspace configuration, LIBSVM can calculate the one-class SVM

decision variables. Given the decision variables dij, map dij → oij → θij and

dij → pij → δij as described in section 5.7. The decision rule was to take the

maximum value unless there was contention > .5, and in this case take the median

of all decision values. The ROC curves shown in figure 5.6 and tabled values in

Table 5.2 illustrate the results. The red (superior) ROC curve represents the result

with some type of aggregation, the green (inferior) ROC curve represents the result

without any aggregation and utilizing 26 variables for the one-class SVM input.

As Figure 5.6 illustrates, different decision rules create various outcomes. The

best plot, (d), integrates all decision variables as the algebraic sum. Table 5.1

79

Figure 5.5: Correlation matrix of subspace principal components

(a) (b)

(c) (d)

Figure 5.6: ROC plots illustrating effect of different decision rules

80

Table 5.1: Decision rules for ROC plots in Figure 5.6

ROC Plot Decision Rule for Each Observation (i); (t = threshold for contention)
(a) algebraic sum of (θij)∀j
(b) algebraic product of (θij)∀j
(c) if t < .5, algebraic sum of (δij , θij)∀j; if t ≥ .5, median (δij , θij)∀j
(d) algebraic sum of (δij , θij)∀j

Table 5.2: Overall Results with Best Subsets.

∀δij , θij ∀θij ∀δij

AUC comment AUC comment AUC comment
T-norms
minimum .695 .8632 poor low

FP
.7

algebraic product .5204 .887 low FP
not the
best

.676

minimum with con-
tention

.6907 .8458 .6929

algebraic product with
contention

.4999 .8363 poor high
FP

.677

T-conorms
maximum .8206 poor high

FP
.7967 .825

algebraic sum .8596 best low
FP

.8727 .858

maximum with con-
tention

.849 .8105 .86

algebraic sum with con-
tention

.8678 poor low
FP

.8548 .887 low FP
not the
best

describes the decision rules.

These results provide interesting insight. It is an overall assumption that T-

conorms provide the best rules for the security classification problem. However, for

the ordinal decision variables (θij), T-norms performed well. The ordinal variables

are interesting in themselves since there is no distance considered when comparing

variables; the only aspect considered is order. This is a non-parametric method for

comparison, and this is done since the distribution of the decision variables is not

easy to estimate and perhaps should not be assumed. The distance based decision

81

variables (δij) do not perform well with T-norms. Overall, the ROC plot d appears

to perform best since there is exceptional performance for low false positive rates

and the overall AUC is among the best. The idea of contention deserves much more

study, and this parameter is likely to need tuning. It obviously does impact the

overall results and warrants consideration, however it is not entirely understood.

Table 5.3 is an illustration of poor results, which should reinforce some of the claims

previously made.

Table 5.3: Overall Results with Worst Subsets.

AUC ∀δij , θij AUC ∀θij AUC ∀δij

T-norms
min .6167 .7767 .617
algebraic
product

.5204 .775 .62

min with
con-
tention

.726 .787 .648

algebraic
product
with con-
tention

.557 .790 .653

T-conorms
max .7457 .769 .7466
algebraic
sum

.814 .775 .818

max
with con-
tention

.6874 .769 .6929

algebraic
sum with
con-
tention

.7563 .725 .762

Table 5.3 illustrates the results obtained for the worst subset encountered (the

configuration that scored highest for our minimization fitness function). This is in-

teresting to observe since it is difficult to show that some type of optimality has been

reached by minimizing the correlation between principal components. Empirically,

this shows that there are much worse configurations and it is worth exploring for

improved subspace configurations.

82

5.6 Seeking Diverse Subspaces with Nonparametric Statis-

tics

It is widely known that diversity is desirable for classifier fusion [97, 98], and

there are numerous methods for measuring classifier diversity for supervised classi-

fication. It is undesirable to have multiple classifiers that all make the same errors

in the same direction; it is desirable to have classifiers making different mistakes

on different instances, and when combined, synergistic performance occurs through

intelligent combination. A simple regression model illustrates this idea. This model

can be expressed as Xw=y, where X ∈ R
N×m, w ∈ R

m×1, y ∈ R
N×1. If y is known

for the training data, the measures of diversity shown in [97, 98] apply. However,

when y is either unknown or only contains the negative class, measures of diver-

sity must involve X. Therefore, since our desire is to create subspaces of a high

dimensional dataset, we seek diverse subspaces.

In order to measure this diversity, a distance measurement, dij, will be cal-

culated for the ith observation in every jth subspace. The distance measurement

is the Euclidean distance of the observation point to the subspace centroid. How-

ever, other distance measurements should not be discounted, and nonlinear kernel

distance measurements can also be considered. This distance measurement will pro-

vide the basis of our intelligent subspace modeling. Our interest is to find subspaces

that are not correlated with respect to dij . If subspaces are correlated with respect

to dij , these subspaces capture similar behavior. Uncorrelated subspaces indicate

subspaces that are somewhat orthogonal, and we interpret this as diversity.

Figure 5.7 illustrates the idea of correlated versus uncorrelated subspaces based

upon Kendall’s W , a nonparametric measure of concordance which calculates agree-

ment across multiple subspaces using only ranks. The vertical axis in figure 5.7

measures dij, and the ranking of the points is obvious from plots. Similar ordering

occurs in the subspaces on the left with a higher W , however the subspaces on the

right contain a much more random order, and W reflects a lower value.

Kendall’s W provides a scalar measurement of agreement or disagreement of

the rankings between subspaces. In order to compute W , first map dij → Rij such

that Rij represents the rank of the ith point distance-wise with respect to the jth

83

a
b

c

d

e

f

0

2

4

6

8

10

12

a

b
c

d

e

f

0

2

4

6

8

10

12

a

b

c
d

e

f

0

2

4

6

8

10

12

a

b

c

d

e

f

0

2

4

6

8

10

12

a
b

c

d

e

f

0

2

4

6

8

10

12
a

b

c

d
e

f

0

2

4

6

8

10

12

DIVERSE SUBSPACESNON-DIVERSE SUBSPACES

W = 0.82 W = 0.35

Figure 5.7: A comparison of correlated and uncorrelated subspaces

centroid. Assuming that there are N points in our training data and l subspaces,

Kendall defines W as follows in [89]:

W =
12S

l2(N3 − N)
(5.4)

where S =

N∑
i=1

((
l∑

j=1

Rij

)
− l(N + 1)

2

)2

It is our hypothesis that diverse subspaces will create a small W , and this

diversity will provide improved ensembles for unsupervised learning. The same

genetic algorithm is used to minimize W .

Receiver operating characteristic (ROC) curves provide an elegant, simple rep-

resentation of the performance of a binary classification system, based entirely upon

nonparametric ranks. The curve presents the relationship between a false positive

rate and a true positive rate across the full spectrum of operating points, which can

also be considered the full spectrum of a continuous threshold value for a decision

method. The nonparametric interpretation of the ROC curve and the AUC is dis-

cussed in [17, 71, 109]. Many machine learning algorithms provide a real number,

or soft decision value, as the output. It is difficult, and often not necessary, to as-

84

sociate this output to a probability distribution. It is more meaningful to consider

this output as a degree of confidence towards one class or the other. Interpreting

this soft decision value as a ranking leads directly to the nonparametric statistics

associated with the area under the ROC curve. The Wilcoxon Rank Sum statistic,

which is directly proportional to the Mann-Whitney U statistic, provides this asso-

ciation. Chapter 3 provides a detailed summary of ROC curve construction and the

relationship between ROC curves and ranks.

5.7 Mapping into Comparable Decision Spaces

For each observation within each subspace selected, the classifier will produce

a decision value, Dij , where Dij represents the decision value from the jth classifier

for the ith observation. oij represents the ordinal position, or rank, of Dij (for the

same classifier, meaning j remains constant). For example, if D71 is the smallest

value for the 1st classifier, o71 = 1. In order to incorporate fuzzy logic, oij must

be mapped into a new space of real numbers, let us call Λ, where Λ ∈ (0, 1). This

mapping will be oij → θij such that θij ∈ Λ. For oij → θij this is a scaling procedure

where all oij are divided by the number of observations, N , such that θij = oij/N .

5.8 Experimental Results

Two datasets have been explored for the experimental results. The first

dataset, which we will refer to as the Schonlau et. al. or SEA dataset, is a computer

intrusion dataset originally created by Schonlau and discussed in [41–43, 128, 129].

The data consists of the combination of text mining variables (described in [50]) and

recursive data mining variables (described in [135]) derived from the SEA dataset.

In total there are 26 variables.

The results shown in table 5.4 and figure 5.8 illustrate the improvements ob-

tained through our nonparametric ensemble technique for unsupervised learning.

The plot of the ROC curves shows the results from using 26 original variables that

represented the SEA data as one group of variables with the one-class SVM and

the result of creating l = 3 subspaces of features and fusing the results to create

the fuzzy ROC curve. It is interesting to notice in the table of results that nearly

85

every aggregation technique demonstrated improvement, with the most significant

improvement in the T-norms.

Table 5.4: Results of SEA data with diverse and non-diverse subsets

DIVERSE NON-DIVERSE
(AUC) (AUC)

T-norms
minimum .90 .84
algebraic product .91 .85
minimum with con-
tention

.86 .81

algebraic product with
contention

.93 .90

T-conorms
maximum .84 .80
algebraic sum .89 .85
maximum with con-
tention

.82 .77

algebraic sum with con-
tention

.86 .81

for contention, t = .5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AREA UNDER THE CURVE : 0.9318

Fuzzy_ROC Curve, AUC = 0.9318
26 vars, AUC = .7835

Figure 5.8: ROC for SEA data using algebraic product with contention

The ionosphere data is included to illustrate the performance of our ensemble

technique with a balanced benchmark data set. This dataset is available from the

86

UCI repository, and it consists of 34 variables that represent different radar signals

received while investigating the ionosphere for either good or bad structure. For

this experiment we again chose l = 3.

Table 5.5: Overall results of ionosphere data with diverse and non-diverse
subsets

DIVERSE NON-DIVERSE
T-norms
minimum .96 .953
algebraic product .61 .64
minimum with con-
tention

.86 .92

algebraic product with
contention

.85 .91

T-conorms
maximum .69 .70
algebraic sum .69 .70
maximum with con-
tention

.82 .88

algebraic sum with con-
tention

.85 .91

for contention, t = .5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AREA UNDER THE CURVE : 0.9604

Fuzzy_ROC Curve, AUC = 0.9604
34 vars, AUC = .931

Figure 5.9: ROC plot for ionosphere data with minimize aggregation
technique

It is very logical to ask why a simple dimension reduction technique, such

87

as principal components, is not sufficient to overcome the curse of dimensionality.

Principal components capture variance, and by utilizing principal components the

modeler is assuming that the variables from the training and testing data follow

similar distributions, and furthermore that it is possible to identify novelties as an

outlier along one of these axis of maximal variance, or principal component. If this

novelty occurs as an outlier from only one variable, and this variable contributes

minimal variance to the dataset in the training sample, it is likely that this novelty

will go undetected. Furthermore, it is important that subspaces consist of meaning-

ful dimensions for causality analysis [117].

For both the SEA data and the ionosphere data, principal components analysis

was used as a dimension reduction technique to compare performance versus the

ensemble method. For the SEA data, the PCA technique did improve classification

reaching an AUC of .91, however the diverse subspaces with T-norm aggregation

performed comparable to this and in some cases better. For the ionosphere data,

however, the PCA technique actually degraded performance, achieving an AUC of

0.89 and falling well short of the best ensemble shown above.

T-norms provide the best aggregation for both datasets. This illustrates the

idea of diversity, where different classifiers apparently correctly identify different

positive cases. Every aggregator does not create improved performance with the

ionosphere data; actually, it is only the minimization operator that improves per-

formance. Furthermore, the impact of diversity does not seem as significant with

the ionosphere data as it is with the Schonlau data. It is possible that a different

distance measure could be appropriate for the ionosphere data.

The purpose of this chapter was to illustrate the work that took place during

the course of this research to explore subspace modeling and model aggregation.

Throughout the chapter, T-norms performed well. The next chapter will describe

why a particular T-norm, the min, consistently performs well with unbalanced data.

The important findings included in the next chapter would never have been possible

without the exploratory work discussed in this chapter.

CHAPTER 6

SYNERGISTIC CLASSIFIER FUSION

This chapter includes the most important findings of this thesis. Unbalanced classi-

fication is a fundamental theme of this thesis, and this chapter explains why model

fusion for unbalanced datasets performs differently than model fusion for balanced

data. Exposing this difference provides researchers with an additional parameter,

the balance of the data, which must be considered when building ensembles of clas-

sification models.

6.1 Introduction

Consider several sensors responsible for detecting some type of anomolous be-

havior. The sensors serve as sentries to a larger system. Suppose that every sensor

reacts to every observation, evaluating or ranking the observation based upon a

history of known behavior. Suppose that for each observation, some of the sensors

have an opportunity to closely observe and measure an observation (a “good” mea-

surement), and some of the sensors remotely observe (a “poor” measurement). All

of the sensor measurements will be considered for the decision, and it is unknown

which sensors closely observe and which ones remotely observe. How should the

measurements of these sensors fuse to create the best signal? What other consid-

erations regarding the observed population should be included when choosing the

fusion method? What other information should be considered when choosing the

fusion method for this situation?

These are a few of the questions that this chapter addresses. This scenario

is also one potential application of synergistic classifier fusion. Synergistic classifier

fusion is an ensemble technique designed for the unbalanced classification problem,

very applicable with SCPs. Synergistic classifier fusion uses one additional piece of

information to improve performance - assumed imbalance of the classes. With this

simple assumption, it is possible to take advantage of the behavior of rank distri-

butions and use min or max aggregators for synergistic performance. The generic

88

89

framework of this chapter considers the classic case of model ensembles. With model

ensembles, fusion of ranks is all the more important because the underlying distri-

butions of the model decision values is unknown. Several important novelties stem

from this chapter:

• Pseudo ROC curves. ROC curves are a performance metric. However, it is

entirely possible to examine the underlying statistics which create ROC curves

to better understand classifier behavior. Typically ROC curves are built from

a classification scenario and simply observed for what they are. However, how

does an ROC curve with an AUC of 0.7 differ from an ROC curve with an

AUC of 0.9? How does an ROC curve with an AUC of 0.9 that measures

a classification problem with a 90% negative class differ from an ROC curve

with an AUC of 0.9 that measures a classification problem with a 50% negative

class? These questions can be explored with Pseudo ROC curves.

• Rank distributions from pseudo ROC curves. Rank distributions illustrate

the behavior of classifiers from a non-parametric position. ROC curves are

non-parametric, and the underlying distributions of the ranks which create

ROC curves are non-parametric. When comparing two classifiers, comparing

them with non-parametric statistics makes sense. The underlying distribution

of classifier decision values is unknown - using (non-parametric) ranks enables

comparison of classifiers on a level field. These rank distributions also lead to

consideration of the max and min aggregation or fusion metrics.

• The min and max aggregators provide robust classifier fusion for imbalanced

classification problems. This chapter will discuss the behavior of rank distribu-

tions for imbalanced classification problems - rank distributions of imbalanced

classification problems behave with different likelihoods (discrete rank prob-

abilities) than a balanced problem. It is possible to take advantage of this

difference in likelihoods to improve classification.

This chapter discusses the methods utilized to achieve synergistic classifier

fusion and the underlying theory explaining why this synergistic classifier fusion

90

occurs. The fusion methods described provide consistently robust solutions to the

security classification problem. The first part of this chapter introduces the fusion

method and the experimental results achieved. The second part of this chapter

explains why this technique consistently performs well.

6.2 Recent Related Work

Recent work involving ensemble methods which contain combinations of fea-

ture subsets include Breiman’s work on Random Forests [19] and Ho’s work with

Random Subspaces [74]. Both of these methods use a random approach for subspace

selection, which is different from the method proposed in this chapter. Furthermore,

both of these authors utilize decision trees and the average (avg) function to fuse

or aggregate the ensemble. This chapter will show that the avg aggregator alone

is not the best aggregator for the security classification problem. Furthermore, the

methods described in this chapter generalize to the machine learning domain where

it is assumed that model output involves real valued decision values as opposed to

a binary decision value which is the case with decision trees.

Other recent work in ensemble techniques include Kuncheva’s extensive work

on combinations of pattern classifiers and diversity of classifier combinations in

[96–99]. Bonissone et. al. and Evangelista et. al. have introduced the idea of

fuzzy fusion of classifiers in [15] and [48, 49], respectively. Some of the work in

cluster ensembles ([133], [117]) also relates to the material in this chapter. The

pseudo ROC curve and rank distributions discussion in this chapter has also been

published by Evangelista et. al. in [51].

6.3 Pseudo-ROC Curves

A study of pseudo-ROC curves and rank distributions will provide support and

insight to the underlying behavior of classifier fusion for the security classification

problem. This discussion is critical in understanding why certain classifier fusion

metrics work best when fusing multiple models in the security classification domain.

ROC curves are based entirely upon ranks. Furthermore, the Mann-Whitney

U statistic, which is equivalent to the area under the ROC curve, is also equivalent to

91

the probability that any random positive instance is ranked higher than a negative

example. Stated formally, let us refer to R(xi) as the rank of observation xi. The

aforementioned property of the Mann-Whitney U statistic indicates the following:

U = P{R(xi|yi = 1) < R(xj|yj = −1)}

When referring to the rank of an observation, a higher rank is a smaller value,

meaning that a rank of 1 is considered higher than a rank of 10, for example. Given

this property, it is entirely possible to create pseudo-ROC curves.

ROC curves represent the performance of a binary classifier, based entirely

upon how the binary classifier ranks the observations and the true class of these

observations. However, if an assumption is made that a classifier has a certain

discriminating ability reflected in the AUC or Mann-Whitney U statistic, artificial

ranks can be created with pseudo-random numbers. The simplest way to accomplish

this is assuming normal distributions for the sake of creating artificial ranks. Sup-

pose A and B are two random variables such that P (A > B) = U , or equivalently

P (A−B > 0) = U . If W = A−B, and it is assumed that W is a standard normal

random variable, clearly A and B are also normal random variables with a variance

of .5. The following table provides examples of this relationship ((w ∼ N(µ, σ2)

represents a normal distribution with a mean of µ and a variance of σ2, with the

same notation for the distributions of a and b).

Table 6.1: Examples of Distributions for Creating Artificial Ranks

P (A > B) = .9 w ∼ N(1.28, 1) a ∼ N(1.28, .5) b ∼ N(0, .5)
P (A > B) = .8 w ∼ N(.84, 1) a ∼ N(.84, .5) b ∼ N(0, .5)
P (A > B) = .7 w ∼ N(.52, 1) a ∼ N(.52, .5) b ∼ N(0, .5)

Given the distributions shown in table 6.1, it is now possible to create random

numbers which will behave with the desired probability of P (A > B) = U . This

will also enforce that P (R(a) > P (R(b)) = U .

These rankings will now enable the creation of pseudo-ROC curves with an

area under the curve equivalent to U . The essence of this method is that it allows for

92

the study of ROC curves where control variables consist of the AUC, the number

of positive examples, and the number of negative examples. An example of five

pseudo-ROC curves with U = .9 is shown in figure 6.1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AUC: 0.9070
AUC: 0.9360
AUC: 0.9117
AUC: 0.8730
AUC: 0.8950

Figure 6.1: Five pseudo-ROC curves

Pseudo-ROC curves serve a multitude of purposes. ROC curves are a very

popular method to assess the performance of a binary classifier. Empirical research

involving ROC curves has largely been limited to the analysis of curves created by

the output of models with real data. The study of ROC curves solely created from

the output of classification models limits our ability to fully understand and explore

the complete beahvior of ROC curves and ranks. The study of pseudo-ROC curves

places a number of parameters into the hands of the researcher - the discriminating

power (reflected in the U statistic), proportion of the classes, and total number

of observations are all parameters controlled by the researcher with pseudo-ROC

curves.

ROC theory research focuses extensively on the topic of the nonparametric

statistics which impact ROC curves. This is primarily the Wilcoxon Rank Sum

93

statistic and Mann-Whitney U statistic [17, 55, 71]. Exceptions to this include [45]

and [54, 57] where the authors have taken creative looks at ROC curves to include

the application of game theory. However, the concept of the pseudo-ROC curve and

use of this method to improve our understanding of ROC curves is a novel approach.

6.4 Rank Distributions

Given a U statistic and desired number of positive and negative instances, it is

possible to create rank distributions. Let us consider p positive instances, b negative

instances (choosing the letter b to signify a benign or negative observation), and

N = p + b total observations. The rank distribution will be a discrete probability

distribution, or probability mass function, with 1...N possible states, or ranks. Rank

distributions reflect the likelihood that a particular rank is a positive or negative

observation. For every case there is a given U , p, and b. This information is all that

is necessary to create two rank distributions, one for positive observations and one

for negative observations.

6.4.1 Utilizing Simulation to Create Rank Distributions

Simulation will be utilized to study these distributions. As stated in [10],

estimating probabilities by simulation due to pragmatic necessity (because the ana-

lytical solution is very difficult) is an acceptable approach. Given a simulation that

models behavior based upon true probabilities, the simulation estimates these prob-

abilities with high accuracy. The combinatoric complexity and implications of order

statistics involved with these rank distributions become problematic in creating an

analytical solution for the mass functions of the rank distributions. This combina-

toric complexity can be shown with a brief example. Suppose that we are interested

in a rank distribution with p = 1 positive instances and b negative instances. This

rank distribution can be solved using the binomial probability distribution. Let r

represent the rank of the one positive instance, where r ∈ (0, 1, 2, ...b). If r = 0, the

positive instance is ranked first and has come out on top of all negative instances;

if r = b, the opposite is true (lowest ranking). Given a prediction model with some

accuracy, intuition indicates that P (r = b) should be small, and P (r = 0) or at least

94

the probability that r is close to 0 should be large. This can be modeled as follows:

P (r|b) =

(
b

r

)
U b−r(1 − U)r

However, this is a trivial case when p = 1, which is typically never the case.

Given a value of p > 1, complexity of the analytical solution grows quickly. There are

two ways to attempt to solve the problem analytically for p > 1. The first involves

attempting to create a discrete probability distribution, similar in essence to the

binomial distribution above. This involves managing a distribution that will contain

a high degree of combinatoric complexity. The other approach involves studying the

order statistics of the underlying distributions that generated the ranks. If q is a

continuous random variable which generated the ranks for positive instances, and c

is the same for the negative instances, then (q(1), q(2), ..., q(p),) and (c(1), c(2), ..., c(b),)

represent the ordered values of the positive and negative instances, respectively.

Again defining P (r = 0) as the probability a positive instance ranks above all other

instances, this equates to the following:

P (r = 0) = P (q(1) > c(1))

This is a relatively simple problem, assuming that the underlying distributions

of q and p are known. However, solving the probability that r equates to (1,2,...,b+p)

is not as simple.

P (r = 1) = P{(q(2) > c(1)) ∪ (c(1) > q(1) > c(2))}

P (r = 2) = P{(q(3) > c(1)) ∪ (c(1) > q(2) > c(2)) ∪ (c(2) > q(1) > c(3))}

...

The study of these probabilities through simulated rank distributions is much

more practical and demonstrates sufficient evidence of the behavior of these rank

probabilities.

95

6.4.2 Behavior of Rank Distributions

These ranking distributions have interesting behavior which directly impact

the outcome of ROC curves. First consider two extreme cases. The first extreme case

involves a classifier with no predictive power, and in this case U = .5. The resulting

rank distributions would simply be two uniform distributions ranging between 1 and

N (shown as the right plot in Figure 6.2). The other extreme case would be the

perfect classifier where U = 1. This case would also create two uniform distributions,

however the distribution for the ranks of the positive observations would range from

1...p and the uniform distribution of the negative observations would range from

p + 1...N (shown as the left plot in Figure 6.2).

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80 90 100

RANK FREQENCIES (10 positive samples, 90 negative samples)

positive
negative

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 10 20 30 40 50 60 70 80 90 100

RANK FREQENCIES (10 positive samples, 90 negative samples)

positive
negative

Figure 6.2: The histograms on the left represent perfect classification(U =
1, and the histograms on the right represent a random (mean-
ingless) classifier (U = .5). These histograms resulted from
simulations each with 90 positive instances, 10 negative in-
stances, and 1000 simulation runs. The histograms clearly
indicate uniform distributions.

Typically, however, U ranges somewhere between .5 and 1. As U increases

from .5 to 1, the histogram representing the positive class experiences a reduction in

the frequencies of the larger ranks and an increase in the frequencies of the smaller

ranks. It is also evident as this shift occurs that the distribution of the positive

(minority) class begins to take on the familiar form of the exponential distribution.

Figure 6.3 illustrates exactly this phenomenon. This figure illustrates an example

which involves 10% positive instances, and each line represents the rank distribution

of the positive instances for different values of U . Notice the familiar shape of the

exponential distribution emerging as U transitions.

96

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80 90 100

RANK FREQENCIES (10 positive samples, 90 negative samples)

U = AUC = .5
U = AUC = .6
U = AUC = .7
U = AUC = .8
U = AUC = .9

U = AUC = 1.0

Figure 6.3: The histograms shown above illustrate how the rank frequen-
cies for the minority class transition as U spans the spectrum
between .5 and 1.

6.5 Behavior of Fused Classifiers

Analyzing how these rank distributions behave provides insight for model fu-

sion. The fusion metric utilized in the most popular ensemble techniques such as

random forest, bagging, and the random subspace method, is the average [18,19,74].

The average is a powerful aggregator, especially if all of the models possess roughly

the same predictive power.

Model fusion involves considering several models, all of which measure the

same observations, and for each observation fuse the results of each model to arrive

at a final decision value for each observation.

Good prediction occurs for a model when the decision value distribution of

the positive class achieves separation from the decision value distribution of the

negative class. Fusion with the avg function invokes the properties of the central

limit theorem, and improved separation occurs as a result of variance reduction.

This can be further explained in a brief example. Assume that three models each

97

create a distribution for the decision values of the negative class with a mean of

-1 and a variance of 1. Assume the distributions of the positive class have a mean

of 1 and a variance of 1. The fused model, using the avg aggregator, will create

a distribution for the decision values of the negative class with a mean of -1 and

a variance of 1/3. The positive class will have a mean of 1 and variance of 1/3.

Tighter distributions for both the positive and negative classes creates improved

prediction. The fundamental premise of pattern recognition becomes stronger.

6.5.1 Why the Average and min Fusion Metrics Work

The disadvantage of the avg aggregator involves the equal weighting and in-

clusion of all models, good and bad. When fusing security classification problem

models, it is likely that some of the models are poor classifiers. Therefore, it is de-

sirable to utilize fusion that is robust against poor classifiers without knowing which

classifiers are poor. This is precisely what the min aggregator accomplishes. Given

an unbalanced classification problem, the rank distributions which result clearly

favor the highest rankings and quickly tail off (see figure 6.3). The behavior is

remarkably similar to the exponential distribution. An interesting property of the

exponential distribution involves the distribution of the min of this distribution.

Given an exponential random variable x distributed with a mean (and standard

deviation) of θ, the distribution of the min of x, x(1), is exponential with a mean

(and standard deviation) of θ/n. The brief proof of this follows:

f(x) =
1

θ
e−x/θ

F (x) = 1 − e−x/θ

F (x(1)) = 1 − (1 − F (x))n

F (x(1)) = 1 − e−nx/θ

f(x(1)) =
n

θ
e−nx/θ

This property indicates that the distribution of x(1) contains less dispersion,

concentrating in a tighter range. This concentration enables separation, however

98

more importantly the min fusion metric creates robustness against poor classifiers.

In the security classification problem, we now understand from our study of rank

distributions that given a good model the probability of encountering a large rank

value for a positive instance is small. It is more likely to observe a small rank

value. The min fusion metric indiscriminately eliminates large rank values. This

indiscriminant elimination works based on the fact that there are a small number

of positive instances. Machine learning researchers will immediately question the

contribution of this fusion metric since it is difficult to identify how this fusion metric

improves classification. Haykin indicates in [72] that one of the fundamentals in

every classification or pattern recognition problems involves ensuring the inclusion

of all available information. The min aggregator works based upon our assumption

that there is a small number of positive instances. This information contributes and

improves performance.

Figure 6.4 illustrates rank distributions for several fusion metrics. This exper-

iment involved fusing a model set where 60% of the models predicted well at a rate

of U = .9, and 40% of the models create random prediction at a rate of U = .5. It

is assumed that 10% of the observed instances are positive. Figure 6.4 illustrates

the performance of the min, max, and avg fusion metrics. The max fusion metric

does not work well. This metric flattens the dispersion of the positive instances,

creating poor separation between the positive and negative rank distributions. The

avg fusion metric clearly works well, creating two normal distributions produced

from the effect of the central limit theorem. These distributions contain minimal

overlap. The min aggregator creates the familiar exponential distribution effect, and

although there is separation, the quality of the separation is clearly questionable. In

the spirit of fuzzy logic, it is possible to combine these metrics. This combination,

created simply by computing min +avg
2

, creates two distributions which appear tighter

than those created from the avg fusion metric without any obvious improvement in

performance.

The improvement in performance is not evident until plotting the ROC curves

from these rank distributions. Figure 6.5 contains these ROC curves. There are five

curves shown, with two models (40%) providing no predictive power (U ∼= .5). It

99

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50 60 70 80 90 100

RANK FREQENCIES (MAX+AVG)/2 (10 positive samples, 90 negative samples)

positive
negative

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50 60 70 80 90 100

RANK FREQENCIES (MIN+AVG)/2 (10 positive samples, 90 negative samples)

positive
negative

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50 60 70 80 90 100

RANK FREQENCIES AVG (10 positive samples, 90 negative samples)

positive
negative

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50 60 70 80 90 100

RANK FREQENCIES MAX (10 positive samples, 90 negative samples)

positive
negative

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50 60 70 80 90 100

RANK FREQENCIES MIN (10 positive samples, 90 negative samples)

positive
negative

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 10 20 30 40 50 60 70 80 90 100

RANK FREQENCIES (10 positive samples, 90 negative samples)

positive
negative

Figure 6.4: The plot in the upper left represents the distributions of the
positive and negative classes for a classifier that predicts with
a U = .9. Simulating that there were 3 classifiers with this
accuracy and 2 classifiers with U = .9, the other plot represent
the performance of various fusion metrics when 60% of the
models predict well and 40% predict randomly.

is apparent that the avg and min aggregators perform well, achieving performance

close to the convex hull of the ROC curves. However, it is the fusion metric of min+avg
2

which clearly performs best, exceeding the convex hull and creating a synergistic

fusion effect.

100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AUC: 0.8915
AUC: 0.8972
AUC: 0.9266
AUC: 0.5026
AUC: 0.5375
AUC: 0.9363

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AUC: 0.9073
AUC: 0.8759
AUC: 0.9303
AUC: 0.5508
AUC: 0.4879
AUC: 0.9108

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AUC: 0.9049
AUC: 0.913

AUC: 0.8884
AUC: 0.4851
AUC: 0.5093
AUC: 0.9512

Average Min

(Min + Avg)/2

Figure 6.5: The dominant min+ avg / 2 fusion method was compared
against the min and avg with a paired t-test, resulting with a
p-value of nearly 1 illustrating a very high level of statistical
significance in the difference.

6.5.2 An Illustration of Rank Fusion

It is useful to illustrate rank fusion through a toy problem. Table 6.2 shows

three models, two of which perform adequately and one which appears to have no

predictive power. The resulting ranks created by the min, avg, and min +avg/2

functions are also shown. Realize that the resulting columns do not equate to

f(R1(xi), R2(xi), R3(xi)) = f(oi1, oi2, oi3). The aggregation columns represent

R(f(oi1, oi2, oi3)). Particularly for the min function, ties must be solved which is

101

done simply at random. Immediately following any aggregation, decision values are

immediately mapped to ranks, or oij . Table 6.2 is consistent with Algorithm 8 which

is detailed later in this chapter; if desired, an interested reader could recreate the

last six columns to reinforce the concept.

Table 6.2: A Toy Rank Fusion Problem

True R1 R2 R3 R4 R5 min avg R(min) R(avg) min +avg
2 R(min+avg

2)
Class = oi2 = oi2 = oi2+oi2

2

0 8 15 5 6 10 5.005 8.807 16 8 12.005 12

0 16 16 19 7 17 7.006 15.003 18 20 19.000 19
0 17 18 13 15 9 9.008 14.400 19 17 18.004 18

0 15 20 8 19 1 1.002 12.601 2 15 8.504 8

0 11 13 7 1 2 1.008 6.804 4 3 3.509 3

0 14 9 4 9 18 4.007 10.808 12 12 12.008 13

0 6 6 9 18 3 3.004 8.402 10 5 7.503 6

0 13 7 20 10 5 5.003 11.007 15 13 14.008 16

0 18 17 11 3 13 3.002 12.410 8 14 11.006 11

0 7 8 16 4 7 4.003 8.402 11 4 7.508 7

0 19 19 6 8 19 6.001 14.202 17 16 16.510 17

0 12 11 14 20 15 11.003 14.404 20 18 19.008 20

0 4 10 15 5 11 4.009 9.000 13 9 11.005 10

0 5 12 17 11 6 5.003 10.209 14 11 12.509 14

0 20 3 18 17 16 3.001 14.801 7 19 13.007 15

1 3 2 10 16 12 2.001 8.605 5 6 5.508 5

1 9 4 3 14 20 3.003 10.007 9 10 9.509 9

1 1 5 1 12 14 1.003 6.609 3 2 2.508 1

1 10 1 12 13 8 1.001 8.804 1 7 4.005 4
1 2 14 2 2 4 2.005 4.801 6 1 3.505 2

AUC 0.87 0.85 0.83 0.44 0.43 - - 0.88 0.853 - 0.920

6.6 The Properties of Synergistic Fusion - a Factorial De-

sign Illustration

There is a fundamental synergistic fusion property discussed in this chapter.

Stated simply, this property claims that when fusing ranks, there is improved dis-

criminating power from the min aggregator if the problem is unbalanced with a

minority positive class. The opposite is true for the max aggregator if the problem

102

is unbalanced with a minority negative class. The chapter supports this property

with a discussion that includes a statistical explanation of the behavior of ranks cre-

ated in a classification problem as well as the scenario depicted in figure 6.5. Figure

6.5 provides results for only one scenario, or parameter set. This begs a question:

how does this fusion strategy behave across the spectrum of each parameter? A way

to address this question involves creating a factorial design. Factorial design stems

from a body of knowledge known as design of experiments, or DOE. R.A. Fisher was

a pioneer of DOE, and researchers give much credit to Fisher for the current studies

involving DOE [16]. For a comprehensive collection of Fisher’s work to include his

DOE work, see [59].

The DOE for this problem involved four factors. These factors were derived

from simply considering what parameters effect this fusion problem. These param-

eters, or factors, include:

• balance: the number of observations (out of 1000) which are members of the

negative class. This factor becomes the most important factor in the exper-

iment. The primary hypothesis of this study claims that the balance of the

problem closely relates to the utility of the min aggregator. This experiment

will reinforce this hypothesis.

• AUC of “good” models: the assumed area under the curve (AUC) or

predictive power of effective models. A major assumption includes that all of

the “good” models predict with a specific accuracy.

• fraction “good”: the percent of models predicting with the accuracy of

the AUC, and all others have no predictive power (AUC = .5). If all of the

models are “good”, the average (avg) aggregator suffices. The min aggregator

is more robust against these powerless classifiers. This is simply by favoring

smaller ranks which statistically tend to be members of the positive class for

good models classifying in an imbalanced environment (positive minority).

The avg aggregator considers all of the models equally, and therefore becomes

susceptible to meaningless ranks created by the “poor” models.

103

Table 6.3: Design of Experiments
balance AUC of fraction number

good models good of models
min 500 0.8 0.4 2
value
max 980 0.95 1 8
value
step 160 0.05 0.2 2

• number of models: the number of models fused. This has an important but

subtle effect on the outcome that will be discussed later in the chapter.

There were 4 levels explored for each factor creating 44 = 256 design points

(dp). Each design point consisted of 30 repetitions, each repetition utilizing 1000

observations for each experiment. Three different fusion strategies were employed

at each design point: min, (min +avg)/2, and avg.

Table 6.3 illustrates the values of the parameters considered in the DOE. The

balance of the class ranges from 500 negative instances (completely balanced) to

980 negative instances (severely imbalanced) with a step of 160 between levels. The

’balance’ parameter is not explored for a minority negative class. This is because the

exact same property observed with the min aggregator for the minority positive class

can be observed for the max aggregator if a minority negative class is considered. It

is a symmetrical property that will not be shown for the sake of limiting redundancy.

The AUC of the “good” models ranges from .8 to .95 with a step of .05 between

levels. There was definitely a bias to explore the higher end of AUC values; further

experimentation should consider exploring the lower range of AUC values. The

fraction of “good” models replicates the unknown sensors or models in the ensemble

which predict well, assuming that the others predict randomly (AUC = .5). This

fraction ranges between .4 and 1 with a .2 step, exploring a slight minority of “good”

models to observing a majority of “good” models. Brief experimentation indicated

that having a fraction of “good” models less than .4 created poor and inconsistent

performance across the board. The number of models ranged from 2 to 8 with

a step of 2. Larger numbers of models severely favor the avg aggregator. Central

104

limit theorem becomes stronger as the number of models increases therefore favoring

the avg aggregator. The min aggregator works based upon the simple premise

that positive instances are more likely to rank as a low number when considering

imbalanced (positive minority) problems. Given an imbalanced problem (minority

positive class) with a small number of models to fuse, the min aggregator is less

likely than the avg aggregator to be affected by a random model.

Tables 6.4, 6.5, and 6.6 illustrate the results of the DOE. Every experimental

result is shown in this table for the sake of complete transparency of this experiment.

An interested reader may want to inspect various design points, and all are present

to inspect. The sorted order of the design points is intentional. The design points

are ordered from the balanced case (500 negative instance) to the imbalanced case

(980 negative instances). Inspection of the tables will reveal that the min aggregator

performs better as imbalance increases. The (min +avg)/2 aggregator continues to

present the best performance for higher imbalance. This is a heuristic, no doubt,

but it is a heuristic that is supported with theoretical discussion and close ties to

fuzzy logic. The discriminating power of the central limit theorem surfaces from the

avg aggregator, and the min aggregator provides robustness against random models

for imbalanced scenarios.

105

Figure 6.6 compares the performance of the avg aggregator and the (min +avg)/2

aggregator. The min aggregator is not plotted or discussed as it is inferior as a stand

alone aggregator. The balance factor is the critical factor. Scatter plots exploring

the spectrum of the other factors is entirely possible and has been explored, however

these factors have no effect, plotting a scatter plot which essentially straddles the

diagonal.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
U

C
 o

f
(m

in
 +

 a
vg

)/
2

ag
g

re
g

at
o

r

AUC of avg aggregator

balance = 500
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
U

C
 o

f
(m

in
 +

 a
vg

)/
2

ag
g

re
g

at
o

r

AUC of avg aggregator

balance = 660

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
U

C
 o

f
(m

in
 +

 a
vg

)/
2

ag
g

re
g

at
o

r

AUC of avg aggregator

balance = 820
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
U

C
 o

f
(m

in
 +

 a
vg

)/
2

ag
g

re
g

at
o

r

AUC of avg aggregator

balance = 980

Figure 6.6: These plots compare the AUC achieved when fusing with the
avg aggregator versus the (min +avg)/2 aggregator. Every plot
contains the full spectrum of design points with the exception
of the balance factor which is held constant for each plot. No-
tice that as imbalance increases, the (min +avg)/2 aggregator
becomes more dominant.

Several test statistics can serve to illuminate this experiment. One of the

most interesting statistical tests is an analysis of variance (ANOVA) for the four

106

Table 6.4: Experimental results and full factorial table - part 1.
balance AUC of fraction number min min+avg avg

good models good of models AUC AUC AUC
dp1 500 0.8 0.4 2 0.6787 0.701 0.7084
dp2 500 0.85 0.4 2 0.7121 0.7366 0.7502
dp3 500 0.9 0.4 2 0.7376 0.7703 0.7837
dp4 500 0.95 0.4 2 0.766 0.8042 0.8192
dp5 500 0.8 0.6 2 0.6816 0.7025 0.7074
dp6 500 0.85 0.6 2 0.708 0.7354 0.7458
dp7 500 0.9 0.6 2 0.7414 0.7677 0.7777
dp8 500 0.95 0.6 2 0.764 0.8014 0.8164
dp9 500 0.8 0.8 2 0.848 0.8725 0.8789
dp10 500 0.85 0.8 2 0.8972 0.9178 0.9258
dp11 500 0.9 0.8 2 0.9406 0.9596 0.9639
dp12 500 0.95 0.8 2 0.9771 0.9871 0.9897
dp13 500 0.8 1 2 0.8458 0.872 0.8797
dp14 500 0.85 1 2 0.8965 0.9206 0.9265
dp15 500 0.9 1 2 0.9413 0.9591 0.9646
dp16 500 0.95 1 2 0.9768 0.9865 0.9894
dp17 500 0.8 0.4 4 0.6981 0.7661 0.7841
dp18 500 0.85 0.4 4 0.7256 0.8013 0.825
dp19 500 0.9 0.4 4 0.7463 0.8368 0.8683
dp20 500 0.95 0.4 4 0.7607 0.8639 0.9025
dp21 500 0.8 0.6 4 0.6971 0.7631 0.7853
dp22 500 0.85 0.6 4 0.7303 0.7981 0.8269
dp23 500 0.9 0.6 4 0.7471 0.834 0.8674
dp24 500 0.95 0.6 4 0.7582 0.8625 0.9027
dp25 500 0.8 0.8 4 0.7938 0.8641 0.8884
dp26 500 0.85 0.8 4 0.8271 0.9081 0.9322
dp27 500 0.9 0.8 4 0.8592 0.9403 0.9636
dp28 500 0.95 0.8 4 0.8775 0.9644 0.9858
dp29 500 0.8 1 4 0.8888 0.9379 0.9514
dp30 500 0.85 1 4 0.9324 0.9722 0.98
dp31 500 0.9 1 4 0.9669 0.9906 0.9949
dp32 500 0.95 1 4 0.9896 0.9986 0.9995
dp33 500 0.8 0.4 6 0.6402 0.7126 0.7318
dp34 500 0.85 0.4 6 0.6553 0.7475 0.7673
dp35 500 0.9 0.4 6 0.6699 0.7722 0.8076
dp36 500 0.95 0.4 6 0.6795 0.7989 0.8404
dp37 500 0.8 0.6 6 0.7719 0.8813 0.9043
dp38 500 0.85 0.6 6 0.8022 0.9196 0.9444
dp39 500 0.9 0.6 6 0.8261 0.9472 0.971
dp40 500 0.95 0.6 6 0.8361 0.966 0.99
dp41 500 0.8 0.8 6 0.8387 0.9341 0.9524
dp42 500 0.85 0.8 6 0.8796 0.9657 0.9788
dp43 500 0.9 0.8 6 0.9036 0.9834 0.9941
dp44 500 0.95 0.8 6 0.9173 0.9926 0.999
dp45 500 0.8 1 6 0.9042 0.9679 0.9791
dp46 500 0.85 1 6 0.9468 0.9889 0.9945
dp47 500 0.9 1 6 0.9767 0.9976 0.9991
dp48 500 0.95 1 6 0.9942 0.9997 1
dp49 500 0.8 0.4 8 0.6611 0.767 0.795
dp50 500 0.85 0.4 8 0.674 0.8016 0.8355
dp51 500 0.9 0.4 8 0.6897 0.8341 0.876
dp52 500 0.95 0.4 8 0.6945 0.8644 0.9063
dp53 500 0.8 0.6 8 0.7642 0.8973 0.9194
dp54 500 0.85 0.6 8 0.7959 0.9331 0.9557
dp55 500 0.9 0.6 8 0.8095 0.9574 0.9787
dp56 500 0.95 0.6 8 0.8191 0.9727 0.9932
dp57 500 0.8 0.8 8 0.8188 0.9378 0.9579
dp58 500 0.85 0.8 8 0.8461 0.9656 0.9817
dp59 500 0.9 0.8 8 0.8646 0.9831 0.9949
dp60 500 0.95 0.8 8 0.8755 0.9919 0.9991
dp61 500 0.8 1 8 0.9167 0.9829 0.991
dp62 500 0.85 1 8 0.9548 0.9953 0.9982
dp63 500 0.9 1 8 0.9815 0.9992 0.9999
dp64 500 0.95 1 8 0.9957 1 1
dp65 660 0.8 0.4 2 0.6965 0.7116 0.7162
dp66 660 0.85 0.4 2 0.7323 0.7515 0.7503
dp67 660 0.9 0.4 2 0.7755 0.7943 0.7843
dp68 660 0.95 0.4 2 0.8093 0.8263 0.815
dp69 660 0.8 0.6 2 0.6975 0.7156 0.7105
dp70 660 0.85 0.6 2 0.7345 0.755 0.7413
dp71 660 0.9 0.6 2 0.7754 0.7909 0.7805
dp72 660 0.95 0.6 2 0.8103 0.8285 0.8143
dp73 660 0.8 0.8 2 0.8446 0.8734 0.8801
dp74 660 0.85 0.8 2 0.8941 0.9214 0.9274
dp75 660 0.9 0.8 2 0.9429 0.9621 0.9648
dp76 660 0.95 0.8 2 0.9771 0.9878 0.9883
dp77 660 0.8 1 2 0.8459 0.876 0.8788
dp78 660 0.85 1 2 0.8955 0.9218 0.9274
dp79 660 0.9 1 2 0.9407 0.9624 0.9646
dp80 660 0.95 1 2 0.9766 0.9885 0.989
dp81 660 0.8 0.4 4 0.7208 0.7746 0.7891
dp82 660 0.85 0.4 4 0.7568 0.8192 0.8289
dp83 660 0.9 0.4 4 0.786 0.8603 0.8651
dp84 660 0.95 0.4 4 0.8123 0.8914 0.9032
dp85 660 0.8 0.6 4 0.7225 0.7792 0.7841

107

Table 6.5: Experimental results and full factorial table - part 2.
balance AUC of fraction number min min+avg avg

good models good of models AUC AUC AUC
dp86 660 0.85 0.6 4 0.7585 0.82 0.8256
dp87 660 0.9 0.6 4 0.7878 0.8576 0.8701
dp88 660 0.95 0.6 4 0.8085 0.8912 0.9027
dp89 660 0.8 0.8 4 0.808 0.8758 0.8839
dp90 660 0.85 0.8 4 0.8517 0.92 0.9312
dp91 660 0.9 0.8 4 0.8866 0.9563 0.9651
dp92 660 0.95 0.8 4 0.9101 0.9772 0.985
dp93 660 0.8 1 4 0.8866 0.943 0.9518
dp94 660 0.85 1 4 0.9321 0.9758 0.9786
dp95 660 0.9 1 4 0.9673 0.9932 0.9945
dp96 660 0.95 1 4 0.9902 0.9991 0.9994
dp97 660 0.8 0.4 6 0.6674 0.7295 0.7337
dp98 660 0.85 0.4 6 0.6909 0.7681 0.7708
dp99 660 0.9 0.4 6 0.7122 0.797 0.8091
dp100 660 0.95 0.4 6 0.7271 0.8274 0.8369
dp101 660 0.8 0.6 6 0.7932 0.8971 0.9029
dp102 660 0.85 0.6 6 0.8285 0.9322 0.9424
dp103 660 0.9 0.6 6 0.8642 0.9628 0.9725
dp104 660 0.95 0.6 6 0.8769 0.9791 0.9896
dp105 660 0.8 0.8 6 0.8537 0.9417 0.953
dp106 660 0.85 0.8 6 0.8925 0.9739 0.9788
dp107 660 0.9 0.8 6 0.9217 0.9901 0.994
dp108 660 0.95 0.8 6 0.94 0.9969 0.9991
dp109 660 0.8 1 6 0.9041 0.9738 0.9785
dp110 660 0.85 1 6 0.9473 0.9916 0.9944
dp111 660 0.9 1 6 0.9764 0.9982 0.9992
dp112 660 0.95 1 6 0.9939 0.9999 1
dp113 660 0.8 0.4 8 0.6852 0.7851 0.7959
dp114 660 0.85 0.4 8 0.7134 0.8232 0.8349
dp115 660 0.9 0.4 8 0.7353 0.8588 0.8756
dp116 660 0.95 0.4 8 0.7479 0.8853 0.9084
dp117 660 0.8 0.6 8 0.7909 0.91 0.9219
dp118 660 0.85 0.6 8 0.8235 0.9436 0.9568
dp119 660 0.9 0.6 8 0.8495 0.9704 0.9801
dp120 660 0.95 0.6 8 0.8609 0.986 0.9926
dp121 660 0.8 0.8 8 0.8357 0.9458 0.9548
dp122 660 0.85 0.8 8 0.8687 0.9752 0.981
dp123 660 0.9 0.8 8 0.8965 0.9901 0.994
dp124 660 0.95 0.8 8 0.9117 0.9967 0.9991
dp125 660 0.8 1 8 0.9141 0.9871 0.9901
dp126 660 0.85 1 8 0.956 0.9967 0.9979
dp127 660 0.9 1 8 0.9812 0.9996 0.9999
dp128 660 0.95 1 8 0.9958 1 1
dp129 820 0.8 0.4 2 0.7165 0.7232 0.7048
dp130 820 0.85 0.4 2 0.7669 0.7634 0.7475
dp131 820 0.9 0.4 2 0.8102 0.8102 0.781
dp132 820 0.95 0.4 2 0.8562 0.8524 0.8105
dp133 820 0.8 0.6 2 0.7195 0.7233 0.7183
dp134 820 0.85 0.6 2 0.7666 0.7664 0.746
dp135 820 0.9 0.6 2 0.8104 0.8008 0.7817
dp136 820 0.95 0.6 2 0.8574 0.856 0.8098
dp137 820 0.8 0.8 2 0.8484 0.8756 0.8768
dp138 820 0.85 0.8 2 0.8965 0.9242 0.9231
dp139 820 0.9 0.8 2 0.9415 0.9623 0.9637
dp140 820 0.95 0.8 2 0.9769 0.9893 0.9885
dp141 820 0.8 1 2 0.8431 0.8751 0.8766
dp142 820 0.85 1 2 0.8928 0.9262 0.9269
dp143 820 0.9 1 2 0.9424 0.9637 0.9643
dp144 820 0.95 1 2 0.9762 0.9889 0.9885
dp145 820 0.8 0.4 4 0.7479 0.7912 0.778
dp146 820 0.85 0.4 4 0.7948 0.8378 0.825
dp147 820 0.9 0.4 4 0.8384 0.8804 0.8629
dp148 820 0.95 0.4 4 0.8725 0.919 0.8989
dp149 820 0.8 0.6 4 0.7482 0.7942 0.7782
dp150 820 0.85 0.6 4 0.7944 0.8368 0.823
dp151 820 0.9 0.6 4 0.8358 0.8847 0.8655
dp152 820 0.95 0.6 4 0.8742 0.9197 0.9024
dp153 820 0.8 0.8 4 0.8214 0.8867 0.8859
dp154 820 0.85 0.8 4 0.8736 0.9321 0.9275
dp155 820 0.9 0.8 4 0.9118 0.9642 0.9624
dp156 820 0.95 0.8 4 0.9415 0.9863 0.9835
dp157 820 0.8 1 4 0.8856 0.9492 0.9483
dp158 820 0.85 1 4 0.9306 0.9785 0.9791
dp159 820 0.9 1 4 0.9661 0.9941 0.9934
dp160 820 0.95 1 4 0.9902 0.9993 0.999
dp161 820 0.8 0.4 6 0.7031 0.745 0.7282
dp162 820 0.85 0.4 6 0.7371 0.7888 0.77
dp163 820 0.9 0.4 6 0.7761 0.8274 0.8048
dp164 820 0.95 0.4 6 0.8024 0.8615 0.8355
dp165 820 0.8 0.6 6 0.8216 0.9075 0.9044
dp166 820 0.85 0.6 6 0.8674 0.9471 0.9415
dp167 820 0.9 0.6 6 0.8993 0.9735 0.9701
dp168 820 0.95 0.6 6 0.9241 0.9897 0.9873
dp169 820 0.8 0.8 6 0.8664 0.951 0.95
dp170 820 0.85 0.8 6 0.9093 0.979 0.9781

108

Table 6.6: Experimental results and full factorial table - part 3.
balance AUC of fraction number min min+avg avg

good models good of models AUC AUC AUC
dp171 820 0.9 0.8 6 0.9432 0.9935 0.9926
dp172 820 0.95 0.8 6 0.9631 0.9989 0.9987
dp173 820 0.8 1 6 0.9055 0.9771 0.9787
dp174 820 0.85 1 6 0.944 0.9935 0.9937
dp175 820 0.9 1 6 0.9765 0.9988 0.9989
dp176 820 0.95 1 6 0.9944 1 1
dp177 820 0.8 0.4 8 0.7262 0.8029 0.7892
dp178 820 0.85 0.4 8 0.7668 0.8505 0.8324
dp179 820 0.9 0.4 8 0.8024 0.8881 0.8724
dp180 820 0.95 0.4 8 0.8264 0.9159 0.9013
dp181 820 0.8 0.6 8 0.8251 0.9225 0.9186
dp182 820 0.85 0.6 8 0.8631 0.9575 0.9545
dp183 820 0.9 0.6 8 0.8948 0.9809 0.9779
dp184 820 0.95 0.6 8 0.9155 0.9927 0.9915
dp185 820 0.8 0.8 8 0.8559 0.9557 0.9535
dp186 820 0.85 0.8 8 0.9015 0.9825 0.981
dp187 820 0.9 0.8 8 0.9287 0.9946 0.9938
dp188 820 0.95 0.8 8 0.9468 0.9988 0.999
dp189 820 0.8 1 8 0.915 0.99 0.9893
dp190 820 0.85 1 8 0.9562 0.998 0.998
dp191 820 0.9 1 8 0.9812 0.9998 0.9998
dp192 820 0.95 1 8 0.9954 1 1
dp193 980 0.8 0.4 2 0.728 0.7265 0.7133
dp194 980 0.85 0.4 2 0.7938 0.7497 0.7466
dp195 980 0.9 0.4 2 0.857 0.82 0.7837
dp196 980 0.95 0.4 2 0.9124 0.8583 0.8047
dp197 980 0.8 0.6 2 0.7288 0.7275 0.7128
dp198 980 0.85 0.6 2 0.7895 0.7851 0.7556
dp199 980 0.9 0.6 2 0.8462 0.8127 0.7651
dp200 980 0.95 0.6 2 0.9169 0.8697 0.8019
dp201 980 0.8 0.8 2 0.8525 0.874 0.869
dp202 980 0.85 0.8 2 0.8927 0.9153 0.9256
dp203 980 0.9 0.8 2 0.9473 0.96 0.9598
dp204 980 0.95 0.8 2 0.9729 0.9893 0.986
dp205 980 0.8 1 2 0.8451 0.8775 0.8802
dp206 980 0.85 1 2 0.8946 0.9193 0.9271
dp207 980 0.9 1 2 0.9383 0.9595 0.9558
dp208 980 0.95 1 2 0.9734 0.9883 0.9868
dp209 980 0.8 0.4 4 0.7815 0.802 0.771
dp210 980 0.85 0.4 4 0.8349 0.851 0.8175
dp211 980 0.9 0.4 4 0.895 0.8909 0.8601
dp212 980 0.95 0.4 4 0.9538 0.9391 0.8969
dp213 980 0.8 0.6 4 0.7745 0.7981 0.7821
dp214 980 0.85 0.6 4 0.8396 0.8684 0.817
dp215 980 0.9 0.6 4 0.8981 0.9 0.8601
dp216 980 0.95 0.6 4 0.9499 0.9318 0.8889
dp217 980 0.8 0.8 4 0.8529 0.8939 0.8898
dp218 980 0.85 0.8 4 0.9007 0.9343 0.9285
dp219 980 0.9 0.8 4 0.9479 0.9699 0.9568
dp220 980 0.95 0.8 4 0.9764 0.9873 0.9782
dp221 980 0.8 1 4 0.89 0.9497 0.9494
dp222 980 0.85 1 4 0.928 0.9786 0.9812
dp223 980 0.9 1 4 0.9637 0.9936 0.993
dp224 980 0.95 1 4 0.9916 0.9992 0.9988
dp225 980 0.8 0.4 6 0.7416 0.7525 0.7137
dp226 980 0.85 0.4 6 0.8015 0.803 0.7767
dp227 980 0.9 0.4 6 0.8753 0.8578 0.8084
dp228 980 0.95 0.4 6 0.921 0.8986 0.8353
dp229 980 0.8 0.6 6 0.8559 0.9068 0.8947
dp230 980 0.85 0.6 6 0.9109 0.9549 0.935
dp231 980 0.9 0.6 6 0.9474 0.9812 0.9631
dp232 980 0.95 0.6 6 0.9788 0.9912 0.9853
dp233 980 0.8 0.8 6 0.8823 0.9567 0.9494
dp234 980 0.85 0.8 6 0.9268 0.9786 0.9716
dp235 980 0.9 0.8 6 0.9669 0.9946 0.9928
dp236 980 0.95 0.8 6 0.9862 0.9993 0.9986
dp237 980 0.8 1 6 0.9059 0.9782 0.9678
dp238 980 0.85 1 6 0.9453 0.9951 0.9911
dp239 980 0.9 1 6 0.9762 0.9991 0.9981
dp240 980 0.95 1 6 0.9935 0.9999 0.9997
dp241 980 0.8 0.4 8 0.7723 0.8194 0.7865
dp242 980 0.85 0.4 8 0.8461 0.8769 0.8396
dp243 980 0.9 0.4 8 0.9014 0.9046 0.865
dp244 980 0.95 0.4 8 0.9515 0.9388 0.8945
dp245 980 0.8 0.6 8 0.8556 0.9297 0.92
dp246 980 0.85 0.6 8 0.9076 0.96 0.9552
dp247 980 0.9 0.6 8 0.9547 0.983 0.9714
dp248 980 0.95 0.6 8 0.9785 0.9952 0.9911
dp249 980 0.8 0.8 8 0.8872 0.9654 0.9532
dp250 980 0.85 0.8 8 0.9254 0.9837 0.9781
dp251 980 0.9 0.8 8 0.9677 0.9963 0.992
dp252 980 0.95 0.8 8 0.9879 0.9993 0.9978
dp253 980 0.8 1 8 0.921 0.9886 0.9879
dp254 980 0.85 1 8 0.9542 0.9981 0.9979
dp255 980 0.9 1 8 0.9834 0.9998 0.9996
dp256 980 0.95 1 8 0.9958 1 1

109

factor experiment. The primary reference for this analysis was [118]. Multi-factor

ANOVA is a compact method to analyze the effect of each individual factors as well

as the interaction between factors. As factors in an experiment grow, complexity

grows quickly as well. Furthermore, a large number of factors creates challenges in

explaining multifactor interaction with many factors [118]. The statistic, or yield

as it often is called in DOE, analyzed in table 6.7 is the difference between the avg

aggregator and the (min + avg)/2 aggregator. The purpose of the analysis is to

determine whether or not additional evidence exists supporting the hypothesis that

the (min + avg)/2 aggregator works well. It is necessary to define a few terms and

statistics used in this experiment. Detailed discussion of the statistics can be found

in [118]. The long list of formulas has been included below to show the complexity

and potential for explosive growth if one wanted to analyze more factors with this

type of DOE analysis. Using the conventions and methods shown by Peterson

in [118], the following terms support the ANOVA summary for this experiment:

yijkl =
min+avg

2
− avg

The subscripts represent the ith level of ’balance’ (factor A), jth level of ’AUC of

good models’ (factor B), kth level of ’fraction good’ (factor C), lth level of ’number of

models’ (factor D). The
min+avg

2
and avg are the average result of thirty repetitions

conducted for that design point. Furthermore, (i, j, k, l) ∈ (1, 2, 3, 4).

G =
∑

i

∑
j

∑
k

∑
l yijkl

C = G2

rabc

SSTot =
∑

i

∑
j

∑
k

∑
l y

2
ijkl − C

SSA =
∑

i(1/64)(
∑

j

∑
k

∑
l yijkl)

2 − C

SSB =
∑

j(1/64)(
∑

i

∑
k

∑
l yijkl)

2 − C

SSC =
∑

k(1/64)(
∑

i

∑
j

∑
l yijkl)

2 − C

SSD =
∑

l(1/64)(
∑

i

∑
j

∑
k yijkl)

2 − C

SSAB =
∑

i

∑
j(1/16)(

∑
k

∑
l y

2
ijkl) − C − SSA − SSB

SSAC =
∑

i

∑
k(1/16)(

∑
j

∑
l y

2
ijkl) − C − SSA − SSC

SSAD =
∑

i

∑
l(1/16)(

∑
j

∑
k y2

ijkl) − C − SSA − SSD

SSBC =
∑

j

∑
k(1/16)(

∑
i

∑
l y

2
ijkl) − C − SSA − SSD

SSBD =
∑

j

∑
l(1/16)(

∑
i

∑
k y2

ijkl) − C − SSB − SSD

110

SSCD =
∑

k

∑
l(1/16)(

∑
i

∑
j y2

ijkl) − C − SSC − SSD

SSABC =
∑

i

∑
j

∑
k(1/4)(

∑
l y

2
ijkl)−C − SSA− SSB− SSC− SSAB− SSBC

SSABD =
∑

i

∑
j

∑
l(1/4)(

∑
k y2

ijkl)−C −SSA−SSB−SSD−SSAB−SSBD

SSACD =
∑

i

∑
k

∑
l(1/4)(

∑
j y2

ijkl)−C −SSA−SSC−SSD−SSAC−SSCD

SSBCD =
∑

j

∑
k

∑
l(1/4)(

∑
i y

2
ijkl)−C −SSB−SSC−SSD−SSBC−SSCD

SSABCD =
∑

i

∑
j

∑
k

∑
l y

2
ijkl − C − SSA − SSB − SSC − SSD − SSAB −

SSAC− SSAD− SSBC− SSBD− SSCD− SSABC− SSABD− SSACD−−SSBCD

SSE = SSTot− SSA− SSB− SSC− SSD− SSAB− SSAC− SSAD− SSBC−
SSBD − SSCD − SSABC − SSABD − SSACD −−SSBCD

Table 6.7: ANOVA summary table for factorial experiment.
d.f. SS MS F p value

A 3 406.04 135.35 223.10 1.00
B 3 5.36 1.79 2.95 0.95
C 3 32.27 10.76 17.73 0.99
D 3 21.36 7.12 11.74 0.99

AB 9 6.37 0.71 1.17 0.65
AC 9 189.97 21.11 34.79 0.99
AD 9 15.18 1.69 2.78 0.98
BC 9 1.27 0.14 0.23 0.01
BD 9 10.78 1.20 1.97 0.91
CD 9 35.78 3.98 6.55 0.99

ABC 27 28.19 1.04 1.72 0.91
ABD 27 10.57 0.39 0.65 0.13
ACD 27 33.58 1.24 2.05 0.96
BCD 27 10.49 0.39 0.64 0.13
error 26 15.77 0.61

The MS can be calculated by dividing the SS by the degrees of freedom (d.f.).

The F statistic is the mean square statistic divided by the MSE, which is .61 in

our experiment. The ’balance’ factor, shown first and represented as A in the table,

clearly has a strong influence on the yield in our model (recall that we defined the

yield as the difference between (min + avg)/2 and avg. This strong relationship is

expected based on the plots shown in figure 6.6. It is also interesting to note that the

’fraction good’ and ’number of models’ have a strong impact on the yield. This makes

111

sense. As the number of models increases, the average becomes a much stronger

aggregator. If more than eight models are to be fused, the average will perform the

best. This relationship with the yield is evident in the correlations shown in table

6.8. Some of the strong interactions revealed in the experiment deserve discussion

as well. The ANOVA table shows where interactions exist, however coupled with

the correlations the direction of the relationship becomes more apparent. If the

fraction of good models is large, the average aggregator again will dominate. The

purpose of the min aggregator is to provide robustness against week or completely

useless classifiers which the decision make does not have the ability to identify or

eliminate. It is interesting to note that the AUC of the good models seems to have

a minimal effect. Part of this reason could be that the span of the AUCs examined

was not very large. I would expect a larger span to effect overall performance

more significantly. The correlation between the (min +avg)/2 aggregator and the

balance of the model is undeniably strong. Every statistic examined, and the graphs

plotted, clearly indicate that this fusion method strongly relates to the balance of

the problem. At a minimum, this evidence should encourage modelers to consider

fusion methods beyond the average when solving unbalanced classification problems.

Hopefully it inspires some to look further into this relationship and further develop

the underlying theory.

Table 6.8: Correlations between factors and yield.
balance AUC of fraction number

good models good of models
(min+avg)/2 - avg 0.70 0.08 -0.17 -0.14

min - avg 0.58 0.16 0.06 -0.46

Paired t tests were also conducted for the differences between the (min +

avg)/2 and the avg aggregator. This could also be viewed as a paired t between the

x and y axis for each of the plots in figure 6.6. Each paired t test returned highly

significant values (∼ 1E-10 for each test). For ’balance’ equal to 500 and 660, the

average aggregator tested as superior. For the more highly imbalanced levels where

’balance’ was 820 and 980, the (min + avg)/2 was undoubtedly superior.

112

6.7 Experimental Results with Several Datasets

This section includes empirical evidence for the previous discussion of syn-

ergistic classifier fusion. In addition to detailing results, this section also presents

a method to create ensembles that will be referred to as the leave-l -features out

ensemble method.

6.7.1 The leave-l-features-out Ensemble Method

Common problems in the security classification domain involve a large number

of features and difficulty in feature selection. Feature selection is difficult because

selecting salient features for a classification problem typically requires an adequate

labeled sample of the positive and negative classes in training data. In the security

classification domain, the positive class is a minority and often may not exist or

may exist very sparsely in the training data. In either case, feature selection quickly

becomes problematic. The solution proposed in this research involves using a subset

of features in multiple models and then fusing these features to create a final decision

value.

Consider the subspace creation technique for the security classification prob-

lem in this section as a proposed method for creating an ensemble. This is the

same technique utilized in chapter 5. This section explicitly shows the technique

in pseudo-code. Furthermore, considering again the practitioner, illustrating this

technique shows how to bridge the gap between theory and application.

Feature selection is difficult in unbalanced problems, and this is a technique

to reduce the effect of noisy features without identifying them. Explanation of

underlying theory for the fusion technique used in this section will follow in later

sections of this chapter, however the experimental results are presented first to create

interest and perhaps some questions in the mind of the reader.

Again working in our security classification problem framework, it is assumed

that a dataset, X ∈ R
N×m, exists. X contains N instances or observations, x1,x2, ...,xN ,

where xi ∈ R
1×m. There are m variables to represent every instance. For every in-

stance there is a label or class, yi ∈ {−1, +1}. The unbalanced nature of this

problem indicates a prevailing negative or healthy class and minimal instances of

113

the positive or unhealthy class.

The fusion method proposed first shuffles the ordering of the features in order

to preserve randomness, and the next step builds a model from a subset of features.

This method of building the ensemble is very similar in method to the leave one

out model validation technique, except features instead of instances are left out and

rather than leaving out one item, typically a small percentage (less than half) of

the features is removed for each model in the ensemble. For example, if the leave

out quantity (l) chosen is 10%, there will be ten models created, and each subset of

features left out will be mutually exclusive however the features used to build each

model will have significant overlap.

For example, suppose ten features, {a, b, c, d, e, f, g, h, i, j} existed in a dataset.

m = 10, and suppose we choose a leave out quantity of l = 2. The first step is to

randomly order the features: {g, j, a, b, i, d, c, e, f, h}. Next, create m/l = F = 5

models with the following features:

{a, b, i, d, c, e, f, h}
{g, j, i, d, c, e, f, h}
{g, j, a, b, c, e, f, h}
{g, j, a, b, i, d, f, h}
{g, j, a, b, i, d, c, e}

These models would all be trained with the same data observations, each model

built with the aforementioned leave out strategy. This leave out strategy creates

F = 5 models each with different performance, and typically several of the models

predict well and several are likely to perform poorly. Next, introduce the test data

to each model and collect the results (decision values for each model). For each

observation within each subspace, the classifier will produce a decision value, Dij ,

where Dij represents the decision value from the jth classifier for the ith observation.

oij represents the ordinal position, or rank, of Dij (for the same classifier, meaning

j remains constant). For example, if D71 is the smallest value for the 1st classifier,

o71 = 1. The purpose of using the rank rather than the actual value, or scaled value,

of the decision value hinges on the issue of fusing models. When fusing models it

114

is important that the variables which are being fused represent a similar unit of

scale and magnitude. Essentially it is important to ensure that the fusion combines

apples and apples rather than apples and oranges. The problem with decision values

involves the underlying (and unknown) distributions of these values. It is possible

to normalize the decision values from each model, however even then there is still

influence from the parametrics of the underlying distribution. In order to get away

from this “apples to oranges” problem, ranks are fused. Ranks eliminate parametric

influence.

The algorithm describing this fusion method follows:

Algorithm 8 Fusing SCP Models

1: Select a number of features, l, to leave out from every model
2: Build F = (m/l) (rounding up if m is not divisible by l) models
3: Map Dij → oij

4: for i = 1 to N do
5: fuse oij for j = 1..F
6: end for

6.7.2 Experimental Results

Initial experimental results with this fusion method explored a range of fusion

methods, primarily focused on the max, avg, and min, and the spectrum spanning

these functions. Four datasets were examined in this experiment. The Sick dataset

was used twice with a different leave out value.

Dataset m N p∗ l comment
P300 100 4200 2100 10 Courtesy of Wadsworth Lab,

www.wadsworth.org
Ionosphere 34 351 126 5 UCI Repository
Schonlau 26 5000 231 5 www.schonlau.net, [48–50]

Sick 137 5393 250 10 see ([76])
Sick 137 5393 250 50 see ([76])

Table 6.9: Datasets examined; m represents dimensionality, N represents
no. of observations, l represents the leave out quantity. (∗ p
represents the number of positive instances in the dataset.)

The learning model used for each dataset was the one-class SVM. Seven

different fusion techniques were examined to include the algebraic product, min,

115

(min +avg)/2, avg, (max +avg)/2, max, algebraic sum. When fusing models with

fuzzy logic aggregators (especially the algebraic sum and algebraic product), it is

necessary to map the rank values into a range between 0 and 1. This is a simple

scaling which can be done without the loss of any information. In order to measure

the benefit of these fusion methods, the experiment involved 30 iterations of each

fusion method, each with a different random training and test sample. The bench-

mark comparison for each fusion method was a one class SVM model built from

all available variables in the dataset. This is referred to as the base model in the

plots. Essentially the comparison involved whether the ensemble created with the

fusion method improved performance over the benchmark model with all variables

considered in one lump sum. The plots in figure 6.7 indicate performance of the

fusion methods for each of these datasets.

Dataset algebraic min (min+avg)/2 avg (max+avg)/2 max algebraic
product sum

Ionosphere NS 0.000000 0.000026 NS NS NS NS
Schonlau 0.002224 0.038938 0.003518 0.009601 0.267514 NS 0.148508

Sick, l = 50 0.042059 NS 0.043812 0.629893 NS NS NS
Sick, l = 10 0.000065 0.279550 0.015050 0.004289 NS NS NS

P300 0.000000 0.004074 0.000000 0.000000 0.000000 0.000001 0.000000

Table 6.10: paired t-test values for the comparisons illustrated in Figure
6.7.

This experiment provided strong indications that certain fusion methods per-

form best. The paired t-test values in Table 6.7.2 indicate that the min fusion

methods work best, with the function of (min+avg)/2 being the only function which

illustrated a significant difference (improvement with fusion) for every dataset. A

t-test value of ’NS’ indicates that there was a difference in the mean of the exper-

iments, however the direction of the difference was inverted. It indicated that the

base model performed better. In order to eliminate confusion, an ’NS’ indicates that

the fused method was Not Significantly better than the base model.

Figure 6.7 provides insight into the behavior of various fusion methods. For

each dataset, 30 different experiments were conducted. Each of these experiments

consisted of a different random split of the data (typically a 50 / 50 split between

training and test data for each dataset), and a different random shuffling of the

116

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

A
U

C
 f

o
r

fu
se

d
 m

o
d

el

AUC for base model

algebraic product
min

(min+avg)/2
avg

(max+avg)/2
max

algebraic sum

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

A
U

C
 f

o
r

fu
se

d
 m

o
d

el

AUC for base model

algebraic product
min

(min+avg)/2
avg

(max+avg)/2
max

algebraic sum

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
U

C
 f

o
r

fu
se

d
 m

o
d

el

AUC for base model

algebraic product
min

(min+avg)/2
avg

(max+avg)/2
max

algebraic sum

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
U

C
 f

o
r

fu
se

d
 m

o
d

el

AUC for base model

algebraic product
min

(min+avg)/2
avg

(max+avg)/2
max

algebraic sum

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74

A
U

C
 f

o
r

fu
se

d
 m

o
d

el

AUC for base model

algebraic product
min

(min+avg)/2
avg

(max+avg)/2
max

algebraic sum

Ionosphere Schonlau

Sick (leave out 50) Sick (leave out 10)

P300

Figure 6.7: Synergistic fusion results for actual data

features in order to achieve different leave out ensembles (as per algorithm 8). The

base model performance, shown on the horizontal axis, represents the performance

of the one-class SVM with a linear kernel utilizing all variables. The vertical axis

represents the performance of the fused models. Points plotted above the diagonal

represent superior fused model performance. Points along the diagonal represent

negligible differences in performance, and points below the diagonal illustrate supe-

117

rior performance of the base model. For every model except for the P300 data, the

test data contained no more than 50% positive instances. The balance of positive in-

stances contained within the data has a significant effect upon which fusion method

works best. This will be explained in detail in the next section. Furthermore, it is

apparent that the (min + avg) / 2 aggregator worked well for every model.

This experiment presents strong indications that certain fusion methods work

best. The experiment alone cannot justify this claim, however coupled with the

previous analysis of rank distributions and the effect of balance when fusing ranks,

the argument for including the min when fusing ranks for unbalanced classification

becomes convincing.

6.8 Conclusion

This chapter present several novel thrusts which present opportunities for im-

proved ensembles as well as future directions for research with ensemble techniques.

Simulating rank distributions and creating pseudo ROC curves provide in-

sight into the non-parametric statistics behind ROC curves and create number of

analytical advantages. The insight provided by possessing control of the several

parameters to include prediction power, balance of classes, and number of models

enables analysis which is not possible when analyzing fusion metrics and ROC curves

created from actual data. Analysis with actual data limits a researchers control of

the parameters.

A critical advantage of this simulation analysis involves the convincing evi-

dence created through simulation. Since the rank distributions and ROC curves

are created from first principles and model generic, there is no concern of bias due

to the characteristics of the data or behavior of a particular model. Results are

general, and the general results of the simulation analysis provide a broader range

of applicability for the research included in this chapter.

The final and perhaps most important finding in this chapter involves consid-

eration of the min and max aggregators when fusing models. The avg aggregator

has long been considered the best aggregator for fusion [18, 19, 74]. When compar-

ing decision values or non-binary classification systems, the avg is essentially the

118

only metric considered. However, it is well known that there is a flaw of averages,

including bias from outliers. The rank distributions studied in this chapter clearly

illustrate that there are different likelihoods associated with balanced classification

problems as opposed to unbalanced classification problems. The min or max aggre-

gator capitalize on this difference in likelihoods and create improved results.

Intersections(T-Norms) Unions(T-Conorms)Averages

0 max (0, x + y – 1) x x y min(x,y) max (x,y) x + y - x x y min(1, x + y) 1
(algebraic
product)

(bounded
product)

(algebraic
sum)

(bounded
sum)

Figure 6.8: Spectrum of fuzzy aggregators.

Much opportunity for future research exists from the research proposed in

this chapter. An analytical solution for the rank distributions would be a signif-

icant contribution. Additionally, this research only explores fusion metrics from

one part of the aggregation spectrum. The fuzzy logic aggregation spectrum (see

figure 6.8) encompasses the aggregators included in classic fuzzy logic, such as the

the aggregators to the left of min and to the right of max, however it also includes

the aggregation possibilities between the min and max. Fusion with (min +avg)/2

is simply a heuristic that works well based upon theoretical understanding of the

min and avg aggregators. However, it is possible that the midpoint between these

aggregators is not appropriate. Perhaps it changes based upon the balance of the

problem. Future research should consider these possibilities.

CHAPTER 7

SOME STATISTICAL PROPERTIES OF THE

GAUSSIAN KERNEL MATRIX

Kernel-based pattern recognition has gained much popularity in machine learning

and data mining because of proven performance and broad applicability [130]. Clus-

tering, anomaly detection, classification, regression, and kernel based principal com-

ponent analysis are just a few of the techniques that use kernels for some type of

pattern recognition. The kernel is a critical component of these algorithms - ar-

guably the most important component. There are many different kernels, however

one of the most popular is the gaussian kernel. Machine learning researchers clearly

favor the gaussian kernel as a top choice from all of the available kernels, and this is

largely a result of the gaussian kernel’s unique properties and detection of nonlinear

patterns.

Before proceeding too far, let us clarify some notation. Let us assume that

there is a given data set X ∈ R
N×m. X contains N instances or observations,

x1,x2, ...,xN , where xi ∈ R
1×m. There are m variables to represent each instance i.

For every instance there is a label or class, yi ∈ {−1, +1}. Equation 7.1 illustrates

the formula to calculate a gaussian kernel.

κ(i, j) = e
−‖xi−xj‖2

2σ2 (7.1)

A significant disadvantage for this kernel is the need to tune for the proper

value of σ. This can be accomplished manually, through trial and error. An au-

tomated technique could involve stepping through a range of values for σ, perhaps

in a gradient ascent optimization, seeking optimal performance of a model with

training data. Regardless of the method utilized to find a proper value for σ, this

type of model validation is common and necessary when using the gaussian kernel.

Although this approach is feasible with supervised learning, it is much more diffi-

cult to tune σ for unsupervised learning methods. The one-class SVM, originally

119

120

proposed by Tax and Duin in [137] and also detailed by Scholkopf et. al. in [127],

is a good example of an unsupervised learning algorithm where training validation

is difficult due to the lack of positive instances. The one-class SVM trains with all

negative instances or observations, and based upon the estimated support of the

negative instances, new observations are classified as either inside the support (pre-

dicted negative instance) or outside of the support (predicted positive instance). It

is quite possible, however, that there are very few or no positive instances available.

This poses a validation problem.

The supervised learning approaches use validation based upon the availability

of positive and negative classes of data. This validation requires the solving of mul-

tiple models, however it is also possible to explore direct kernel tuning for supervised

learning as well. Direct tuning for supervised learning is briefly discussed in section

7.4.

There are several significant advantages of using an algorithm which automates

the tuning of the gaussian kernel. The first advantage is the elimination of manual

tuning, a tedious and often erroneous (due to the common mistake of overfitting)

process. Another advantage is the potential for this algorithm to expand the use of

gaussian kernels to many more models. Both [137] and [127] state that tuning the

gaussian kernel for the one-class SVM is an open problem. The described automated

tuning also introduces a fast method to include gaussian kernels within learning

ensembles.

7.1 Recent Work

Tax and Duin [137] and Scholkopf et. al. [127] performed the groundbreaking

work with the one-class SVM. Stolfo and Wang [132] successfully apply the one-class

SVM to the intrusion data set that we use in this paper. Chen et. al. [27] uses the

one-class SVM for image retrieval. Shawe-Taylor and Cristianini [130] provide the

theoretical background for this method.

Tax and Duin [138] discuss selection of the σ parameter for the one-class

SVM, selecting σ based upon a predefined error rate and desired fraction of support

vectors. This requires solving the one-class SVM for various values of σ and the

121

parameter C, referred to in this paper as 1/νN = C. This method relies on the

fraction of support vectors as an indicator of future generalization. Tuning of the

parameter C does not significantly impact the ordering of the decision values created

by the one-class SVM; tuning of σ influences the shape of the decision function and

profoundly impacts the ordering of the decision values. When seeking to maximize

the area under the ROC curve (AUC), the ordering of the decision values is all

that matters. The technique in this paper is very different from the one which is

mentioned in [138]. We use the kernel matrix directly, therefore the one-class SVM

does not need to be solved for each change in value of σ. Furthermore, tuning the

kernel matrix directly requires the tuning of only one parameter.

The other outcome of this research involves further insight into the statistics of

this kernel. The gaussian kernel has special properties, and the squared coefficient

of variance, introduced in this chapter, illustrates some of these special properties.

Improved understanding of the statistical behavior of this kernel opens possibilities

to improved applications and better insight into how and why this kernel performs

well.

7.2 The One-Class SVM

The one-class SVM is an anomaly detection model solved by the following

optimization problem:

min
R∈R,ζ∈RN ,c∈F

R2 +
1

vN

∑
i

ζi (7.2)

subject to ‖ Φ(xi) − c ‖2≤ R2 + ζi and ζi ≥ 0 for i = 1, ..., N

The lagrangian dual is shown below in equation 7.3.

max
α

∑
i

αiκ(xi,xi) −
∑
i,j

αiαjκ(xi,xj) (7.3)

122

subject to 0 ≤ αi ≤ 1

vN
and

∑
i

αi = 1

Scholkopf et. al. point out the following reduction of the dual formulation

when modeling with gaussian kernels:

min
α

∑
i,j

αiαjκ(xi,xj) (7.4)

subject to 0 ≤ αi ≤ 1

vN
and

∑
i

αi = 1

This reduction occurs since we know that κ(xi,xi) = 1 and
∑

i αi = 1. Equa-

tion 7.4 can also be written as min α′Kα. Shawe-Taylor and Cristianini [130] explain

that α′Kα is the weight vector norm, and controlling the size of this value improves

the statistical stability, or regularization of the model.

All training examples with αi > 0 are support vectors, and the examples which

also have a strict inequality of αi < 1
vN

are considered non-bounded support vectors.

In order to classify a new test instance, v, we would evaluate the following

decision function:

f(v) = κ(v,v) − 2
∑

j

αjκ(v,xj) +
∑
j,k

αkαjκ(xk,xj) − R2

Before evaluating for a new point, R2 must be found. This is done by finding

a non-bounded support vector training example and setting the decision function

equal to 0 as detailed by Bennett and Campbell in [8]. If the decision function is

negative for a new test instance, this indicates a negative or healthy prediction. A

positive evaluation is an unhealthy or positive prediction, and the magnitude of the

decision function in either direction is an indication of the model’s confidence.

7.3 Method

The behavior of the gaussian kernel is apparent when examined in detail. The

values lie within the (0,1) interval. A gaussian kernel matrix will have ones along

the diagonal (because ‖ xi−xi ‖= 0). Additionally, a value too small for σ will force

the matrix entries towards 0, and a value too large for σ will force matrix entries

123

towards 1.

There is also a property of all kernels, which we will refer to as the fundamental

premise of pattern recognition, which simply indicates that for good models, the

following relationship consistently holds true:

(κ(i, j)|(yi = yj)) > (κ(i, j)|(yi �= yj)) (7.5)

Consistent performance and generalization of the fundamental premise of pat-

tern recognition is the goal of all kernel based learning. Given a supervised dataset, a

training and validation split of the data is often used to tune a model which seems to

consistently observe the fundamental premise. However, in an unsupervised learning

scenario positive labeled data is limited or non-existent, and furthermore, models

such as the one-class SVM have no use for positive labeled data in the training data.

A first approach towards tuning a kernel matrix for the one-class SVM might

lead one to believe that the matrix should take on very high values, indicating that

all of the kernel entries for the training data is of one class and therefore should

take on high values. Although this approach would first seem to be consistent with

the fundamental premise in equation 7.5, this approach would be misguided. The

magnitude of the values within the kernel matrix is not an important attribute. The

important attribute is actually the spread or the variance of the entries in the kernel

matrix. At first this may seem to be anomalous with equation 7.5, however a closer

examination of the statistics of a kernel matrix illustrates why the variance of the

kernel matrix is such a critical element in model performance.

Shawe-Taylor and Cristianini point out that small values of σ allow classifiers

to fit any set of labels, and therefore overfitting occurs [130]. This phenomenon is

shown later in figures 7.4 and 7.5. They also state that large values for σ impede a

classifiers ability to detect non-trivial patterns because the kernel gradually reduces

to a constant function. The following mathematical discussion supports these com-

ments for the one-class SVM. Considering again the one-class SVM optimization

problem, posed as min α′Kα. Assuming use of the gaussian kernel, if the sigma

parameter is too small and κ(i, j) → 0, the optimal solution is αi = 1/N . Equa-

tion 7.4, the objective function, will equate to 1/N (since
∑

i(1/N)2 = 1/N). If

124

the sigma parameter is too large and κ(i, j) → 1, the optimal solution is the entire

feasible set for α. Given these values for the variables and parameters, the objective

function will now equate to 1. The brief derivation for the case when κ(i, j) → 1

follows:

α′Kα =
N∑

i=1

α2
i +

N∑
i=1

N∑
j=i+1

2αiαjκ(i, j)

=
N∑

i=1

α2
i +

N∑
i=1

αi

∑
j=1...i−1,i+1...N

αj

=
N∑

i=1

α2
i +

N∑
i=1

αi(1 − αi) =
N∑

i=1

α2
i +

N∑
i=1

αi −
N∑

i=1

α2
i =

N∑
i=1

αi = 1

The objective function bounds are (1/N, 1), and the choice of σ greatly influ-

ences where in this bound the solution lies.

7.3.1 The Squared Coefficient of Variance

In order to find the best value for σ, a heuristic is employed. This heuristic

takes advantage of the behavior of the one-class SVM when using the gaussian

kernel. The mean and the variance of the non-diagonal kernel entries, κ(i, j)|i �= j,

play a crucial role in this heuristic. We will refer to the mean as κ̄ and the variance

as s2. For any kernel matrix where i, j ∈ {1, ..., N}, there are N2 − N off diagonal

kernel entries. Furthermore, since all kernel matrices are symmetrical, either the

upper or lower diagonal entries only need to be stored in memory, of which there

are l = (N2 − N)/2. From here forward, the number of unique off diagonal kernel

entries will be referred to as l.

It is first necessary to understand the statistic used in this heuristic, the coef-

ficient of variance. The coefficient of variance is commonly referred to as 100 times

the sample standard deviation divided by its mean, or 100s
x̄

. This statistic describes

the relative spread of a distribution, regardless of the unit of scale. Due to the

scale and behavior of κ̄ and s, this coefficient of variance monotonically increases

for gaussian kernels as σ ranges from 0 to ∞. Using the sample variance rather

than the standard deviation, different behavior occurs. The monotonic increase of

125

the coefficient of variance occurs because when σ is small, s > κ̄; however, as σ

increases, there is a cross-over point and then s < κ̄. However, the variance of

κ(i, j)|i �= j is always smaller than the mean of κ(i, j)|i �= j. This property is what

makes the variance of a kernel matrix such a critical component for the direct tuning

method. The proof follows. For the sake of notation simplicity, xk ∈ (0, 1), k ∈ [l],

will represent off diagonal kernel entries, that is entries κ(i, j)|i �= j.

V AR(xk) ≤ x̄ =⇒
∑

k x2
k − 2x̄

∑
k xk + lx̄2

l − 1
≤ (l − 1)x̄

l − 1

=⇒ lx̄2 − 2lx̄2 − (l − 1)x̄ +
∑

k xk
2

l − 1
≤ 0

=⇒
∑

k

x2
k − lx̄2 − (l − 1)x̄ ≤ 0 =⇒

∑
k

x2
k −

∑
k

xk +

∑
k xk

l
(1 −

∑
k

xk) ≤ 0

=⇒ l
∑

k

x2
k −

∑
k

xk(l − 1) − (
∑

k

xk)
2 ≤ 0

=⇒
∑

k

x2
k − (

∑
k

xk)
2 + (l − 1)

∑
k

x2
k − (l − 1)

∑
k

xk ≤ 0

=⇒
∑

k

x2
k − (

∑
k

xk)
2

︸ ︷︷ ︸
always ≤0

+(l − 1)

(∑
k

x2
k −

∑
k

xk

)
︸ ︷︷ ︸
always ≤0 for 0≤xk≤1

≤ 0

The fact that the variance of κ(i, j)|i �= j is always smaller than the mean of

κ(i, j)|i �= j indicates that the squared coefficient of variance, s2/κ̄, is a fraction.

Furthermore, as σ ranges from 0 to ∞, this fraction ascends to a global max. In

order to protect against division by zero and round off error, a small value, ε, can

be added to the denominator.

The results in the following objective function for optimization which can be

solved quickly with a gradient ascent algorithm. Solving the optimization problem

in equation 7.6 leads to the best choice for σ.

126

max
σ

s2

κ̄ + ε
∀(i �= j) (7.6)

such that

κ(i, j) = e
−‖xi−xj‖2

2σ2 , κ̄ =

∑N
i=1

∑N
j=i+1 κ(i, j)

l
, s2 =

∑N
i=1

∑N
j=i+1(κ(i, j) − κ̄)2

l − 1

Figure 7.1: Color visualization of a kernel matrix with various values for
σ. This visualization involves 100 observations where kernel
entries close to 0 are light; darker entries represent values
closer to unity.

Figure 7.1 illustrates the impact of sigma on the kernel matrix. The dataset

used to create figure 7.1 was the ionosphere data which is available from the UCI

repository. These data are all of the negative class, and it is evident that both the

kernel element values and the dispersion of these values changes as σ changes. The

127

optimal value for σ for this dataset is 1, and the color visualization of the kernel

matrix when σ = 1 clearly indicates that there is dispersion in the kernel matrix.

However, it is also noticeable that the central tendency of the kernel entries for this

optimal σ is a small value, closer to zero than one. This is consistent for all of the

datasets. This is why it is important to use a metric that detects relative dispersion

and is not biased by the magnitude of the kernel entries.

7.3.2 Visualization of the One-Class SVM

It is useful to visualize the decision function of the one class SVM with a small

two dimensional dataset. The dataset utilized for this experiment is a toy dataset

created by the author and shown in figure 7.2. The points were generated from a

uniform distribution and manipulated to stay close to the horizontal and vertical

axis.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 7.2: Toy two dimensional dataset - the cross data

Figure 7.3 illustrates the behavior of the gaussian kernel for the two dimen-

sional cross data. Notice that the squared coefficient of variance, s2/(κ̄ + ε) peaks

for σ = .1. This will prove meaningful after reading the next section of this chapter.

Figures 7.4 and 7.5 illustrate how the decision function of the one class SVM

changes as σ increases across the same spectrum as many of the plots in this chapter.

These plots were created with the PM3D function in gnuplot 4.0 [140].

The plots corresponding to a small σ value clearly illustrate that overtraining

is occurring, with the decision function wrapped tightly around the data points. On

128

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100 1000 10000
σ

two dimensional cross data

s2/(κ̄ + ε)

♦

♦
♦♦♦♦

♦
♦♦♦♦♦♦♦♦♦♦♦♦♦

♦
s2

++++++++++++++++++++

+
κ̄×××××

×
×

×
××××××××××××

×

Figure 7.3: Gaussian kernel statistics for the two dimensional cross data

the other hand, large values of sigma simply draw a tight oval around the points

without defining the shape or pattern. The best value for sigma lies somewhere in

between. This chapter is an effort to better define where that somewhere in between

lies.

129

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

σ = 0.01

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.55
-0.5
-0.45
-0.4
-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05
 0

σ = 0.02

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

σ = 0.04

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

σ = 0.08

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
 0
 0.1

σ = 0.16

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1.6
-1.4
-1.2
-1
-0.8
-0.6
-0.4
-0.2
 0
 0.2

σ = 0.32

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

σ = 0.64

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-5

-4

-3

-2

-1

 0

 1

σ = 1.28

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-4
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
 0
 0.5

σ = 2.56

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

σ = 5.12

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.4
-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05
 0
 0.05

σ = 10.24

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

σ = 20.48

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

Figure 7.4: Visualization of one class SVM for smaller values of σ

7.3.3 Why Direct Tuning of the Kernel Matrix Works

As mentioned previously, it is desirable to minimize α′Kα. α is sparse when

there are few support vectors, and this sparseness is typically desirable to minimize

complexity and improve regularization. However, meaningless sparse solutions for

α can occur as all κ(i, j) → 0. Meaningful sparse solutions for α occur when the

kernel matrix entries are not concentrated either towards 0 or 1, but are showing

good dispersion and there is payoff in the optimization to select the few instances

130

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

σ = 40.96

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

 0

 0.001

σ = 81.92

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.0016
-0.0014
-0.0012
-0.001
-0.0008
-0.0006
-0.0004
-0.0002
 0
 0.0002

σ = 163.84

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.0004
-0.00035
-0.0003
-0.00025
-0.0002
-0.00015
-0.0001
-5e-05
 0
 5e-05

σ = 327.68

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.0001

-8e-05

-6e-05

-4e-05

-2e-05

 0

 2e-05

σ = 655.36

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2e-05

-1.5e-05

-1e-05

-5e-06

 0

 5e-06

 1e-05

σ = 1310.72

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-7e-06

-6e-06

-5e-06

-4e-06

-3e-06

-2e-06

-1e-06

σ = 2621.44

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2e-06
-1.8e-06
-1.6e-06
-1.4e-06
-1.2e-06
-1e-06
-8e-07
-6e-07
-4e-07
-2e-07
 0

σ = 5242.88

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

Figure 7.5: Visualization of one class SVM for larger values of σ

which clearly define the margin of the density approximated by the one-class SVM.

Although the variance, s2, is a good indicator of the dispersion in the kernel matrix,

it is biased towards a larger σ since variance is affected by unit of scale or magnitude.

s2/(κ̄+ ε) is robust against unit of scale. This statistic illustrates the dispersion of a

distribution regardless of scale. For the one-class SVM, the optimal value for σ and

maximum value for s2/(κ̄ + ε) typically occurs as σ increases from 0 and the kernel

entries first begin to illustrate dispersion. When there is maximal dispersion in the

kernel matrix, the values assigned to α will reflect the behavior and relationships

of observations, which is the purpose of the statistical learning. Maximal dispersion

of the kernel matrix also supports the fundamental premise of pattern recognition.

When σ is not properly tuned, the values assigned to α will be erroneously based

upon the behavior of the optimization problem or the optimization algorithm used

to solve the problem.

131

7.4 Comments on Supervised Learning

A similar approach can be taken for the supervised binary classification prob-

lem. Recall that the fundamental premise of pattern recognition states that for all

good models, (κ(i, j)|(yi = yj)) > (κ(i, j)|(yi �= yj)). Therefore, if we can achieve

maximum clarity on the distribution of (κ(i, j)|(yi = yj)) − (κ(i, j)|(yi �= yj)), op-

timal model performance should occur. This maximal clarity occurs when there

is dispersion in this distribution, again by examining a metric inspired from the

coefficient of variance and the unsupervised direct tuning method.

max
s2

yi=yj
+ s2

yi �=yj

κ̄yi=yj
− κ̄yi �=yj

+ ε

This optimization only considers the case when κ̄yi=yj
− κ̄yi �=yj

> 0, meaning

that the two extremes of the kernel tuning spectrum are simply eliminated. This

method focuses on the difference between similar kernel elements and dissimilar

kernel elements. This is essentially the margin, or the boundary that defines the

separation of the two classes. Achieving clarity on this margin is the key to tuning

for supervised learning. Unlike unsupervised learning, validation is possible with

supervised learning. It is entirely possible to automate tuning in a supervised setting

using validation to tune the kernel. If validation is possible, it should be performed.

The heuristic shown above could be an additional measure used to check the behavior

of the kernel for supervised learning, however it is always prudent to use model

validation if it is possible.

7.5 Experimental Results

In order to evaluate the performance of the direct tuning heuristic, several

experiments were conducted. The data included three benchmark sets: banana,

chessboard, and ionosphere (from UCI repository). Additionally, two computer

intrusion datasets named Schonlau and Sick, after their respective creators, are also

examined. The Schonlau data involves determining authenticity of a user based on

UNIX commands. This data was originally discussed in [41, 42, 129] and the actual

data used in this paper was also discussed in [48–50]. The Sick data was originally

132

examined in [76]. The parameter ν is set to .5 for every experiment.

Dataset dimensions positive negative comment

Banana 2 50 50 see [62]
Chessboard 2 50 50 www.cs.wisc.edu/

∼olvi/data/check1.txt
Ionosphere 34 126 225 UCI Repository
Schonlau 26 231 4769 www.schonlau.net

Sick 137 250 5143 see [76]

For each dataset, one half of the negative class was used for training the

one-class SVM and the test data comprised of the other half of the negative class

and all members of the positive class. The same split remained consistent for all

experiments for the purposes of control and consistency. The performance measure

utilized is the area under the receiver operating characteristic curve (AUC).

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100 1000 10000
σ

Chessboard

AUC
s2/(κ̄ + ε)

♦
♦

♦
♦♦♦♦

♦
♦♦♦♦♦♦♦♦♦♦♦♦

♦
s2

++++++++
++++++++++++

+
κ̄××××××

×
×

×
×××××××××××

×
0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100 1000 10000
σ

Banana

AUC
s2/(κ̄ + ε)

♦
♦

♦♦
♦♦

♦
♦

♦♦♦♦♦♦♦♦♦♦♦♦

♦
s2

++++++++
++++++++++++

+
κ̄××××××

×
×

×
×××××××××××

×

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100 1000 10000
σ

Ionosphere

AUC
s2/(κ̄ + ε)

♦♦♦♦
♦

♦
♦♦♦

♦
♦♦♦♦♦♦♦♦♦♦

♦
s2

++++++++++
++++++++++

+
κ̄××××××××

×

×

×
×××××××××

×

Figure 7.6: Experimental results for three benchmark datasets

133

The three benchmark datasets clearly illustrated optimal performance when

s2/(κ̄ + ε) is optimal. For each of the benchmark solutions, a gradient ascent algo-

rithm was tested and converged on the optimal σ within 4-6 iterations depending

on the initial values and dataset. An initial value of 1 for σ seemed to work well

since most of the optimal values for σ ranged between .1 and 10.

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100 1000 10000
σ

Schonlau

AUC
s2/(κ̄ + ε)

♦♦♦♦
♦

♦
♦♦♦

♦
♦♦♦♦♦♦♦♦♦♦

♦
s2

++++++++++
++++++++++

+
κ̄××××××××

×

×

×
×××××××××

×
0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100 1000 10000
σ

Sick

AUC
s2/(κ̄ + ε)

♦

♦♦♦♦♦♦♦♦
♦

♦
♦♦♦♦♦♦♦♦♦

♦
s2

++++++++++++++++++++

+
κ̄×××××××××

×

×
×
××××××××

×

Figure 7.7: Experimental results of two computer intrusion datasets

The two computer intrusion datasets did not clearly indicate this same type of

ideal performance. The Schonlau dataset performed the worst by far, and the Sick

dataset did indicate a region of good performance. The value of σ seemed indifferent

for the Sick data. σ tuning will always be a data dependent heuristic, and it is quite

possible that sigma tuning with these datasets requires robust validation in order

to discover the sensitive σ window where optimal performance occurs. However,

anytime that the dataset requires such robust validation to uncover a sensitive σ

window, researchers should exercise caution. This is an indication that overtraining

is taking place, meaning that the function to classify this data has potentially found

a spurious pattern within the data that may not generalize.

This can be explained by taking a closer look at the behavior of the squared

coefficient of variance as dimensionality increases. Dimensionality is a fundamen-

tal problem with the security classification problem. Chapter 1 briefly introduces

the problem of dimensionality with kernel based learning, specifically illustrating

the impact of dimensionality on the gaussian kernel assuming normality of the un-

derlying variables. The gaussian kernel, κ(i, j) = e
−‖xi−xj‖2

2σ2 , compares two vectors

134

or observations utilizing the euclidean distance squared, ‖ xi − xj ‖2. It is well

known that as dimensionality grows, points within the space approach becoming

equidistant [93]. This indicates that it becomes more difficult distinguish similar

from dissimilar points utilizing a distance metric such as the euclidean distance.

The gaussian kernel transforms this distance in a non-linear fashion, however this

distinguishability problem manifests itself through the sensitivity of the kernel to

variations in σ. The squared coefficient of variance exposes this sensitivity.

s2/κ̄ = .09

s2/κ̄ = 1

s2/κ̄ = .01

s2/κ̄ = .4

Figure 7.8: Four normal distributions with different squared coefficients
of variance

Consider the following example. Figure 7.8 illustrates four different normal

distributions with various squared coefficients of variance. An initial observation

of these plots could lead one to question whether or not there is a difference be-

tween the coefficient of variance and the variance of the distribution. However, it

is entirely possible that the variances of each one of those distributions are equal.

Variance is relative, however the coefficient of variance is not. The gaussian kernel

distribution is an excellent distribution to analyze with the squared coefficient of

variance. It is a non-zero distribution, preventing false conclusions that could occur

with a distribution centered on or near zero. Notice that the axis are not labeled in

Figure 7.8. This is intentional. There is a difference that seems subtle at first, how-

ever when considered in the context of the gaussian kernel it becomes more obvious.

135

The squared coefficient of variance is a ratio and therefore not influenced by the

magnitude of the random variable. Variance is influenced by the magnitude of the

random variable. The squared coefficient of variance (or the coefficient of variance)

is an overall indicator of the dispersion of a distribution, regardless of the magnitude

of the values the random variable assumes. This indifference to magnitude is critical

with the gaussian kernel since κ(i, j) ∈ (0, 1), with values typically clustering at the

extremes for most values of σ. The experiments in this chapter indicate that the

best values for σ often occur when the kernel values are small. The actual variance

of the kernel for these values of σ would be a small number, however the squared

coefficient of variance is largest in this region illustrating a large dispersion of kernel

values.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.01 0.1 1 10 100 1000 10000

κ̄

σ

Mean value of κ

m = 1
m = 5

m = 10
m = 20
m = 50

× × × × × × × × ×
×

×

× × × × × × × × ×

×
m = 100
m = 500

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦

♦
♦ ♦ ♦ ♦ ♦ ♦ ♦

♦

Figure 7.9: Mean value for gaussian kernels with various values of σ

Figures 7.9 and 7.10 illustrate the behavior of the kernel as σ changes. Figure

7.10 illustrates the behavior of the squared coefficient of variance of the gaussian

kernel as σ changes for dimensionalities (m) ranging from 1 to 500. The squared

coefficient of variance is a smaller value as dimensionality grows. The kernel is more

likely to cluster at the extremes, and there is a small range of σ where transition

occurs between the extremes.

The distance between points in a large dimensional space will be a random

variable with a small squared coefficient of variance, indicating that in a large di-

mensional space points become equidistant. This problem with dimensionality could

136

explain why the Schonlau and Sick datasets did not perform well. The ionosphere

data also contains quite a few dimensions, however many of these dimensions con-

tain very little variance. Some of the features are highly imbalanced and binary,

contributing very little to a dimensionality problem.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.01 0.1 1 10 100 1000 10000

s2

κ̄+ε

σ

Squared coefficient of variance

m = 1
m = 5

m = 10
m = 20
m = 50

××××××××××××××××××××

×
m = 100
m = 500

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦

1e-20

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0.01 0.1 1 10 100 1000 10000
σ

Squared coefficient of variance

×

××××××××××××

♦

♦♦♦♦
♦
♦
♦
♦
♦
♦

Figure 7.10: Squarred coefficient of variance for gaussian kernels with var-
ious values of σ

Figure 7.10 illustrates the behavior of the squared coefficient of variance of

the gaussian kernel as σ changes for dimensionalities (m) ranging from 1 to 500.

The squared coefficient of variance is a smaller value as dimensionality grows. The

kernel is more likely to cluster at the extremes, and there is a small range of σ

where transition occurs between the extremes. This behavior of the gaussian kernel

for high dimensional spaces explains why the gaussian kernel tends to be sensitive

with only a small viable range for σ.

The final experiment of this chapter involved exploring whether or not reducing

dimensionality for the Schonlau and Sick datasets would improve the performance

of the squared coefficient of variance heuristic. Figures 7.11 and 7.12 illustrate

the performance of the squared coefficient of variance heuristic as dimensionality

reduced through principal components. The AUC of both datasets degrade very

little, if at all, as fewer principal components are utilized to represent the data. It

137

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100 1000 10000
σ

Schonlau

AUC
s2/(κ̄ + ε)

♦♦♦♦
♦

♦
♦♦♦

♦
♦♦♦♦♦♦♦♦♦♦

♦
s2

++++++++++
++++++++++

+
κ̄××××××××

×

×

×
×××××××××

×

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100 1000 10000
σ

Schonlau (20 principal components)

AUC
s2/(κ̄ + ε)

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦
s2

++++++++++++++++++++

+
κ̄×××××××××

×

×
×××××××××

×
-0.2

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100 1000 10000
σ

Schonlau (10 principal components)

AUC
s2/(κ̄ + ε)

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦

s2
+++++++++++++++++++++

κ̄××××××××
×

×
××××××××××

×

Figure 7.11: Schonlau results after principal component reduction

is well known that principal components reduce noise and capture the essence of

a multidimensional space, and it is quite possible that this dimensionality reduc-

tion serves to stabilize the classifier across the spectrum of σ values and reduce the

likelihood of overtraining or finding spurious patterns. This statement, however, is

simply an unsupported hypothesis that requires further investigation. The purpose

of the experiments summarized in figures 7.11 and 7.12 involved supporting the pre-

vious discussion which indicated that the squared coefficient of variance coefficient

performs well in a smaller dimensional space.

7.6 Conclusions

Direct tuning of the gaussian kernel matrix is a novel and promising approach.

The squared coefficient of variance heuristic proposed is grounded and supported

with underlying theory. The study of this statistic enhances understanding of the

138

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100 1000 10000
σ

Sick

AUC
s2/(κ̄ + ε)

♦

♦♦♦♦♦♦♦♦
♦

♦
♦♦♦♦♦♦♦♦♦

♦
s2

++++++++++++++++++++

+
κ̄×××××××××

×

×
×
××××××××

×

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100 1000 10000
σ

Sick (20 principal components)

AUC
s2/(κ̄ + ε)

♦♦♦♦♦♦♦♦
♦♦

♦♦♦♦♦♦♦♦♦♦

♦
s2

++++++++++++++++++++

+
κ̄×××××××××

×

×
××

×××××××

×
0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100 1000 10000
σ

Sick (10 principal components)

AUC
s2/(κ̄ + ε)

♦♦♦♦♦♦♦
♦

♦♦
♦♦♦♦♦♦♦♦♦♦

♦
s2

++++++++++++++++++++

+
κ̄×××××××××

×

×
××

×××××××

×

Figure 7.12: Sick results after principal component reduction

gaussian kernel, exposing special properties of this kernel and linking these special

properties to classifier performance.

The significance of tuning the gaussian kernel for unsupervised learning applies

directly to ensemble methods. Techniques such as bagging [18], random subspace

selection [74], and fuzzy aggregation techniques [48, 49] can be employed for unsu-

pervised learning with the gaussian kernel.

Future research could involve automated tuning approaches for supervised

learning, however this approach will clearly have to outperform the traditional tech-

nique of validation. Direct tuning for supervised learning would be faster, but first

it needs to be shown that it is also just as accurate as validation.

CHAPTER 8

THREE APPLIED CASES

8.1 Introduction

During the course of the research discussed in this dissertation, several datasets

have been used to illustrate theory and heuristics. Additionally, there were three

different case studies explored that demonstrate security classification problem ap-

plications. The typical classification problem framework requires instances repre-

sented as vectors, with each instance classified in a positive or negative class. The

security classification problem (SCP) introduced in this dissertation requires further

that the instances are unbalanced, a typical characteristic of security environments.

All three case studies discussed in this chapter represent SCPs. During the course of

discussing each case, practical comments will be included which highlight the pro-

cess behind converting the data from its raw format to a usable machine learning

format. This preprocessing is often the most difficult aspect of this type of work.

Efficient and meaningful preprocessing is largely a product of experience, and this

chapter aims to share some of that experience. The three case studies explored in

this chapter, all SCPs, consist of two military applications and one network security

application.

• Skaion Dataset. The Skaion Corporation donated a sample of simulated net-

work data for the sake of the research in this dissertation. This network data

consisted of TCPdump data (approximately 28,000 connections). The data

contains numerous automated attacks, all of which have been identified with

Snort [2]. This case illustrates that machine learning applications easily repli-

cate the performance of signature based detection, leading us to the argument

that machine learning applications could replace or minimally augment signa-

ture based detection based upon their ability to detect new attacks which are

slight variations of previous attacks. Signature based detections cannot detect

these types of subtle changes whereas machine learning applications provide

potential to detect similar signatures or patterns.

139

140

• Geospatial Datamining for Threat Templating. This application involves pre-

diction modeling of military threat incidents based upon geospatial statistics.

The geospatial statistics measure the distance from the incident location to

specific terrain features with the underlying assumption that incidents occur

with a similar terrain feature proximity pattern. It is possible that this pattern

exists beneath even the awareness of the threat.

• Insights into Insurgent Response to Traffic Flow Strategies. This effort in-

volved simulating the effect of different traffic control point (TCP) strategies

on a vehicle born improvised explosive device (VBIED). The SCP application

involved with this application included a data farming exercise which explored

a broad parameter space in an attempt to discover patterns which consistently

succeeded or failed. This was a particularly ground breaking effort which in-

volved a novel application (effect of TCP strategies versus VBIED success),

unique computing techniques, and finally assessment which applied techniques

which are a novel product of this dissertation. A detailed account of this work

has been published in [66].

8.2 Skaion Dataset

The Skaion dataset provided an opportunity to analyze TCPdump data con-

taining labeled attacks previously identified with Snort signatures. The purpose

of this case study involved validating previously discussed network data connection

quantification (utilizing TCPtrace and Perl programs) and exploring the feasibil-

ity of using machine learning applications to learn and detect attacks identified by

signature based detection schemes.

This study exposed several useful insights:

1. Quantification of network traffic and labeling of network traffic connections

for the purpose of machine learning is possible and relevant for network security.

2. Color visualization of large, high dimensional datasets is a useful and newly

viable method to illustrate linear patterns within the data.

3. Machine learning applications closely replicate signature based detection

and present potential to detect new security vulnerabilities which may be detected

141

due to their similarity to recognized signatures.

In a simple yet exploratory effort, quantification of network traffic connections

utilizing TCPtrace [116] provided a platform to build a bridge between network

data and machine learning. TCPtrace quantifies and aggregates network traffic

based upon connections. TCPtrace provides a summary which can be parsed for

further processing. The Skaion data contained unique IP addresses for the attacks

identified by Snort, and therefore labeling connections based upon IP addresses was

a straight forward match and parse operation with Perl. Figure 8.1 illustrates this

process as well as providing an example of TCPdump and TCPtrace output.

5 network packets

TCPtrace connection summary
(12 packet connection)

var 3var 2var 1 … ID #label (yi)var m

Figure 8.1: Conversion of TCPdump traffic to vector summaries of con-
nections

Once the preprocessing depicted in figure 8.1 this network security problem

becomes a machine learning problem. TCPtrace creates over 60 variables for sta-

tistical learning. This particular application contained two types of attacks: back-

ground scanners and background attackers. Table 8.1 is a description of the attacks

142

contained in the Skaion dataset.

Table 8.1: Skaion Data

Exploit Name Short description Rate observed
(attacks/day)

loopback web Malformed loopback packet web server scan 275.5
openssl too open OpenSSL KEY-ARG overflow exploit 24
opensslapache bug Apache OpenSSL bug exploit 112
ssh crc32 OpenSSH CRC32 overflow exploit 21.5
iis50 webdav IIS 5.0 WebDav attacks 3
apache chunked Apache Chunked Encoding overflow exploit 31
iis idq IIS ”IDQ” exploit 38.5
iis50 printer overflow IIS 5.0 printer overflow exploit 137
frontpage fp30reg chunked MS Frontpage buffer overflow exploit 20.5
ddk iis ”ddk” IIS overflow attack 32
iis asp overflow IIS ”.asp” overflow exploit 75
wvftpd Wvtftp-0.9 Buffer Overflow 32
iis40 htr IIS 4.0 .HTR Buffer Overflow 70.5
iis w3who overflow IIS w3who.dll ISAPI Overflow 23
squid ntlm authenticate Squid NTLM Authenticate Overflow 5.5
webstar ftp user Stack overflow in OS X WebSTAR FTP server 64
blackice pam icq UDP overflow targeted at ISS BlackIce program 91
windows ssl pct Microsoft SSL PCT MS04-011 Overflow 9.5
windows nsiislog post IIS nsiislog.dll ISAPI POST Overflow 4

(The information in this table was provided courtesy of the Skaion corporation.)

Scanning attacks are typically probing efforts with an attempt to find an un-

protected port or an effort to map the network. The background attacks primarily

consist of buffer overflow or known bug exploitations. It is not particularly critical

to know the specifics of the attacks and scanning efforts for the purpose of this

research. The critical aspect for this research is the ability to label connections

either as benign or as the type of attack that they represent. If labeled attacks do

not exist in the dataset under consideration, it is possible to simply run Snort and

label as necessary. A very useful contribution to this research field would be a util-

ity that accepts TCPdump as input and outputs vector summaries of connections

with signature based alerts labeled on the flagged connections. This is a capabil-

ity gap that currently exists between the networking community and the machine

learning community. The technique proposed in this dissertation addresses this gap

143

however the computing solution is not sophisticated enough to fully overcome the

aforementioned gap.

After representing this dataset as labeled connections, it was apparent that

learning signature based detection schemes would be relatively trivial. Most of these

detection schemes measure the same statistics created by TCPtrace, which is shown

in figure 8.2.

benign

connections

scanning

attacks

background

attacks

Figure 8.2: Color visualization of Skaion data

This color visualization offers much information. This plot is a color visualiza-

tion plot using a new feature available with gnuplot 4.0, the PM3D plot [140]. An

astute initial observation challenges the possibility of displaying 28,000 observations

when this is more pixels than a computer screen contains. PM3D overcomes this

problem with an elegant algorithm which fuses pixels based upon the desired color

of adjacent colors, allowing for visualization of such a large dataset. The value of

visualizing a dataset in this manner involves identifying obvious linear breaks in the

data. The three types of connections include benign, scanning attacks, and back-

ground attacks. The last feature in this plot is the label, and therefore it should

display clean linear breaks for each class. However, all other features are simply

statistics from the data. Notice the clean breaks which occur in the latter half of

the feature space. These features primarily involve the segment size and the window

144

size. The segment size involves the amount of non-header raw data transmitted in

a packet, and the window size involves the ability of the receiving host to receive

certain size segments. A network engineer would be interested in explaining why

these are the most important features involved in identifying an attack which can

be identified with signature based methods, however consider the machine learn-

ing approach to this problem. With minimal background knowledge in computer

networks, the critical features used in Snort attacks have been identified. Exploita-

tion of these features for the purpose of learning Snort signatures is now possible.

What is more interesting involves the potential to identify future attacks which

can be slight modifications of the attacks currently identifiable by Snort signatures.

Machine learning applications are likely to identify slight modifications, associat-

ing these modifications with similar patterns. However, signature based detection

schemes will not identify these patterns modifications. This key weakness in sig-

nature based detection, an inability to generalize due to the need to identify exact

signatures, opens the door for machine learning applications.

Experimental results with this particular dataset indicated near perfection

with KPLS pattern recognition, achieving an AUC of .99 or 1 with each experiment.

This result is not surprising due to the obvious linear separation evident in figure

8.2.

8.3 Geospatial Datamining for Threat Templating

Much interest exists in the fields of predicting crime and threat or enemy

activity. Many American cities employ data analysis experts in crime labs for the sole

purpose of tracking and predicting crime patterns based upon geospatial statistics.

This chapter discusses a geospatial prediction modeling application which could

easily be characterized as a security classification problem.

8.3.1 Recent Work

Using geographical information to solve problems has been applied throughout

history. Chawla et. al. use several historical examples in [26] to illustrate the legacy

of geographical problem solving. One example included an Asiatic cholera break out

145

in London in 1855. Officials used a map to identify locations of the outbreak, and

they identified a water pump in the middle of the locations. After turning off the

water pump, the outbreak stopped. Scientists have since shown Asiatic cholera as a

water borne disease. Another example included a 1909 observation that linked the

healthy teeth of Colorado Springs residents to a higher than normal concentration

of fluoride in drinking water for the residents. This was before scientists confirmed

the importance of fluoride in fostering healthy teeth. I have personally witnessed

geospatial statistics applied to common military tactics. While training at the Joint

Readiness Training Center in Louisiana, a training center designed to tax light

infantry units in hot, jungle environment, it is common to encounter mine strikes

and mortar attacks clustered in specific areas. Intelligence officers draw equal sized

circles around the locations of these mine strikes and attacks, and commanders

target locations where these circles appear to meet. The circles represent the radius

of a potential cache. These targeting actions typically involve ambushes and search

and destroy missions looking for enemy caches. Crime research with geospatial data

is a very popular field of study. Often referred to as crime mapping, applications

became very wide spread across police districts in the last two decades [79]. Spatial

analysis also manifests in econometrics, such as the work in [4] by Anselin.

Stephen Riese’s threatmapper is a recent military application which seeks to

find threat incident patterns by characterizing incidents as a vector of proximity

measurements to specific terrain features, such as a bridge, four lane highway, large

metropolitan center, etc. Stated plainly, threatmapper strives to find the “hotspots”,

areas likely to contain enemy activity, in a tactical scenario. The application is a

kernel based method, considering two incidents as similar if surrounding terrain is

similar however the actual distance between the two points could be quite significant.

The algorithm used by Riese, known as kernel density with spatial preference, [122]

follows:

dg(xg) =
I∏

i=1

1

N

N∑
n=1

1√
2πh2

i

e
−(xig−xin)2

2h2
i

xg ≡ gth test instance

146

n = (1, 2, ..., N) positive instances for training

i = (1, 2, ..., I) feautures

hi ≡ standard deviation of the feature

An initial inspection of the method reveals that threatmapper builds models

solely based upon positive incidents, or the incidents which involved an attack. It

builds models from a single class, similar to the one class SVM. However, examples

from the other class are available. Excluding an entire class from a model limits

the information available to a model for no known reason. Haykin indicates in [72]

that one of the fundamentals in every classification or pattern recognition problems

involves ensuring the inclusion of all available information. Excluding an entire class

from the model violates this fundamental. Another questionable aspect involves

inclusion of the standard deviation of the features rather than the more common

practice in machine learning which is to assume scaled features. It is a relatively

small observation, however inclusion of the standard deviation adds complexity to

the model and computational complexity which is not necessary.

8.3.2 Experimental Design

The purpose of examining the threatmapper application was to determine

whether or not the algorithm (kernel density with spatial preference) in use could be

improved or replaced by another algorithm. An initial assessment of the threatmap-

per system revealed a very robust and creative geospatial method. Much of this sys-

tem included sophisticated Geographic Information System (GIS) interaction with

map databases and incident databases which create the eventual dataset for predic-

tion. However, the algorithm seemed to provide room for improvement.

Five other prediction models were compared against the kernel density with

spatial preference model. The experimental design divided the dataset into three

groups - a training set, test set, and validation set. The training and testing set

contained points from the same geographical region. The difference in the two sets

simply involved a temporal change. The training set occurred during one year, and

the test set occurred during the following year. This explored how well we could

147

predict in an area where we observed threat behavior.

Table 8.2: Experimental design for threatmapper experiment.

data set number of number of number of
observations positive incidents (p) negative incidents (b)

training 7450 420 7030
buffer zone 3155 unknown unknown

testing 7450 200 7250
validation 7425 240 7185

positive cases

(contain attack)

negative cases

(no attack)

Figure 8.3: Color visualization of geospatial data

A buffer zone divided validation set from the training data and the test data.

The validation set included events that occurred both during the same time as

the training set and the next year. Figure 8.4 illustrates this design. Figure 8.4

represents a map, showing a cartoon depiction of the buffer zone and the relationship

between the training, testing, and validation groups. Table 8.2 details the specifics

of the these groups.

Figure 8.3 illustrates the data explored in this experiment. Again utilizing

the power of PM3D [140] to visualize a matrix with more elements than pixels on a

computer screen, this visualization clearly shows that the incident data will not be a

148

trivial dataset to predict. Although there seems to be a fuzzy line of separation, it is

certainly not as crisp as the line of separation shown in figure 8.2. Later experiments

will show that this pessimistic observation regarding the predictability of this data,

strictly based thus far on data visualization, proves accurate.

Buffer Zone

• Terrain overlayed by
200m x 200m squares
(18000+ squares)

• Each square represents
an observation

• Each observation
characterized by geo-
spatial variables

• Train () and test () in
same geographical area

• Validate () in different
geographical area

Figure 8.4: Experimental design for geospatial learning

Subtle challenges exist with geospatial data. One of these subtle challenges

involves the independent and identically distributed (i.i.d.) assumptions necessary

in many statistical models. This assumption is not valid with geospatial data [26].

There is inherent similarity based upon geographical proximity, which boils down to

the distance between two points. Regardless of what variables a model utilizes, this

underlying factor cannot be overlooked and will affect the outcome. This problem

manifested itself as a significant difference in prediction performance between the

test dataset and the validation dataset. Figure 8.5 illstrates the performance of six

different models on the test dataset. The SVM models performed markedly better

than the regression models with the test data.

149

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AUC: 0.6909
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AUC: 0.672

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AUC: 0.6344

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AUC: 0.6524

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AUC: 0.7304
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AUC: 0.6712

Poisson Regression Linear Regression Spatial Density

1 Class SVM Binary SVM KPLS

Figure 8.5: Comparison of models on the geospatial test data

Figure 8.6 illustrates the performance of six different models on the validation

dataset. None of the models performed well on this data. The regression models

were the better of the six however, and it is interesting to notice that the SVM

models performed very poorly. The binary SVM was almost a perfectly random

model.

The reason for this performance relates to the i.i.d. discussion from the pre-

vious paragraphs. Consider SVM models. SVM models are solely based upon the

similarity of an evaluated point against the support vectors, or defining points, of

training dataset. Regression models are built from the independent variables of the

data.

Recall the one class SVM decision function where mathbfxi is an m dimen-

sional vector, i = 1, 2, ..., N . In order to classify a new instance, v, we would evaluate

the following decision function:

150

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AUC: 0.6269
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AUC: 0.5924

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AUC: 0.5645

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AUC: 0.5415

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AUC: 0.4979

Poisson Regression Linear Regression Spatial Density

1 Class SVM Binary SVM KPLS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

FALSE POSITIVE RATE

AUC: 0.6048

Figure 8.6: Comparison of models on the geospatial validation data

f(v) = κ(v,v) − 2
∑

j

αjκ(v,xj) +
∑
j,k

αkαjκ(xk,xj) − R2

The decision function of the binary SVM is somewhat simpler, however it is

again defined with the α vector and kernel similarities between instances as shown

by Bennett and Campbell in [8]:

f(v) =
∑

i

yiαiκ(v,xi)

α is a sparse N dimensional vector, αi ∈ (0, 1). If αi is greater than zero, this

means that the ith instance is a support vector. This means that this particular

instance, or vector, helps define the margin of separation in the case of the binary

SVM or the enclosing hypersphere in the case of the one class SVM. SVMs create

decision functions based upon specific instances from the training set. This is fun-

damentally different from regression models. Regression models create a function

151

from the independent variables, or features. This fundamental difference does help

explain why the SVM models perform well in the same terrain (test dataset) but

poorly on a different set of terrain (validation dataset). With geospatial data, two

points that are adjacent on the terrain will have unavoidable similarities. SVM

models will detect this type of similarity and always have a bias to measure geo-

graphically proximate points as similar. Many of the threat incidents occurred in the

same proximity, forming clusters of incidents in the data (see figure 8.7). The poor

performance of the SVMs in validation data is likely due to the models attempting

to classify points based on their geographic similarity to the training data, which

is a doomed effort since none of the points have geographic proximity. Regression

models attempt to find the independent variables which best describe the classifica-

tion function. Geographic proximity is not the critical factor in these models, thus

potentially explaining why regression models performed better with the validation

data.

-1

0

1

2

3

4

5

6

20 40 60 80 100 120 140

10

20

30

40

50

0 e+00

2 e-04

4 e-04

6 e-04

8 e-04

20 40 60 80 100 120 140

10

20

30

40

50

0

2

4

6

8

1 0

2 0 4 0 60 80 10 0 1 20 1 40

10

20

30

40

50

Figure 8.7: Color visualization of geospatial function

Figure 8.7 is a color map visualization of actual incident data (bottom red-

colored map) and two attempted predictions of these incidents (top two maps).

The purpose of this illustration is to show that many incidents did occur in clusters.

Furthermore, the top two maps show how different two different prediction functions

152

can be with this type of data. The top left map is the kernel spatial method, and the

top right is the binary SVM. The models trained on the training data (not shown)

and the test data which these functions attempt to predict is the red color map on

the bottom.

Prediction modeling of geospatial data has tremendous application potential.

Many techniques have been created to model and visualize geospatial patterns. How-

ever, evaluation of the performance of various prediction models for geospatial data

is a gap in the research. Furthermore, gaps exist involving how to create a model

for one piece of terrain based upon behavior in another piece of terrain. These gaps

offer opportunities for future research. The gap addressing modeling and application

in separate pieces of terrain offers particular opportunity for military applications

where this type of problem occurs every time a unit changes its area of responsibility.

8.4 Insights into Insurgent Response to Traffic Flow Strate-

gies

Suicide vehicle borne improvised explosive devices (SVBIEDs) create devas-

tating results. SVBIEDs are an intimidation tool, and the terrorists who employ

these tactics hope to instill fear and uncertainty. The behavior of SVBIEDs is poorly

understood and sparse. In an attempt to improve understanding of SVBIEDs and

their environment, a simulation exercise with map aware non-uniform automata

(MANA) ensued. The complete experiment is documented in [66]. Several of the

concepts discussed in this thesis were employed in this experiment. This section will

highlight the related applications from the experiment.

MANA is an agent based simulation platform. For this experiment, a VBIED

released into a road network with an overall goal of detonating at an entry control

point (ECP) which was located somewhere in the center of the terrain. As the

VBIED progressed through the road network, the VBIED passed several TCPs.

Each TCP could potentially identify and engage the VBIED, and the likelihood of

this engagement was controlled by several factors which affected identification and

the TCP strategy which affected VBIED exposure to TCPs.

The fundamental objective of this project involved identification and assess-

153

ment of key factors in determining VBIED success. Soldiers with recent experience

in theatre provided information during surveys and interviews, enabling identifica-

tion of the factors. Eleven important factors emerged, and these factors are shown

in table 8.3. The TCP strategy deserves additional explanation. There were five

different traffic control point (TCP) strategies analyzed, and each strategy involved

a slightly different arrangement of TCPs on the terrain.

Table 8.3: Description of factors and measure of effectiveness

Factor Name Min Max Description
TCP strat 1 5 TCP strategy, numbered 1-5, representing vignettes base, filter,

grid, open
CD TCP 5 5029 Communications distance (in meters) of the traffic control point

(TCP) spotters
CL TCP 0 1824 Communications latency (in seconds) of the traffic control point

(TCP) spotters
CD ECP 5 5029 Communications distance (in meters) of the entry control point

(ECP) spotters
CL ECP 0 1824 Communications latency (in seconds) of the entry control point

(ECP) spotters
Stealth 67 99 Stealth of the insurgent, measured as in index in MANA - a larger

number implies better concealment
OrgRepulse -99 61 insurgent tendency to avoid blue forces observed with organic in-

telligence, measured as an index in MANA - a larger value implies
increased repulsion

InorgRepulse -99 61 insurgent tendency to avoid blue forces observed with inorganic
intelligence, measured as an index in MANA - a larger value implies
increased repulsion

Vspeed 10 74 Speed of the insurgent after making visual contact with the entry
control point (ECP), measured in kmph

b detect 5 517 Detection range (observes an entity) in meters of blue forces
b classify 5 517 Classification range (classifies an entity) in meters of blue forces

insurgent y 0 1 Not a factor - primary measure of effectiveness - defined as insur-
gent reaching target and detonating

The max and min shown in table 8.3 spanned 33 levels in the design of experi-

ments(DOE). The DOE utilized allowed for the analysis of 11 different factors with

only 33 design points. This is a special DOE known as the nearly-orthogonal Latin

hypercubes (NOLH) developed by Cioppa in [29]. Designs were readily evolved from

those used in the initial study and are complimentary for comparison.

154

The factor descriptions and ranges are given in table 8.3. Utilizing eleven

factors, 33 design points emerged. The NOLH designs require many fewer runs than

more traditionally employed designs, are more efficient, and sample the interior of

the factor levels hypercube [126]. After conducting 30 simulation iterations for each

design point, analysis of the primary measure of effectiveness, insurgent success,

followed.

Creating the 33 design points with eleven different factor values requires 341

adjustments assuming that each factor could be adjusted in one location in MANA.

This was not the case. Several of the factors spanned multiple states in MANA,

nearly quadrupling the total number of adjustments required for the design of ex-

periments (DOE).

In order to support simulation validation efforts and create an agile framework

for integrating the DOE, several programs were created to perform special tasks.

The programs were all written in Perl and exploited MANAs underlying xml model

files. Model files contain unique branch paths to every parameter (some of which

were the factors), represented in a tree structure. The program built to implement

the DOE followed these steps:

1. Create file vars.txt containing branch path to the m factors in the DOE.

2. Mark factors in base MANA xml file based on variables read from vars.txt..

3. Read DOE matrix and for i = 1...n design points in DOE, assign j = 1...m

factor levels to marked variables for each design point.

This method creates n xml files, each of which runs 30 iterations. The final

analysis involves aggregating 30 x n simulation output files to assess the measures

of effectiveness. A key lesson learned involved building a program and file manage-

ment framework robust enough to tolerate changes in the DOE and base scenario,

an inevitable event. Robustness enables regeneration of results with minimal man-

ual intervention. Another goal should also include scalability; a well constructed

framework will step from one scenario and DOE to another relatively seamlessly.

155

8.4.1 Results and Discussion

The data generated in the MANA vignettes enabled a search for insights re-

garding insurgent success or failure based on factors shown in Table 8.3. These

factors were identified based on feedback from participants at the Armor Officer

Captains Career Course and from the literature. The data exploration involved

determining significant factors and combinations of factors and building models to

classify insurgents outcomes as a function of the factors.

NOLH assumes near-orthogonality of the factors. The factors displayed very

little correlation, supporting this assumption as shown in figure 8.8. Examining

the correlations prior to the simulation helps support this assumption; however the

correlation matrix provides insight when examined with the measures of effectiveness

after the simulation.

Figure 8.8 illustrates the correlation matrix on a color map, an intuitive rep-

resentation which is especially useful with high dimensional datasets. Variables one

through 11 in this plot respectively follow the variables listed in Table 8.3; variable

twelve represents insurgent success. This plot aids analysts in discovering obvious

linear relationships in the data in addition to validating data behavior. Another

useful plot that enables validation and identification of obvious linear relationships

is the color (grey scale) map of the actual data shown in figure 8.9.

Figure 8.8: Correlation matrix of eleven factors and insurgent success

Sorted on the insurgent success measure of effectiveness (last column), the

156

color map provides a summary of the entire dataset. This figure illustrates relative

distributions, balance of the data, and potential patterns. It provides the same type

of utility for multi-dimensional data that a scatter plot provides for two dimensional

data, primarily enabling validation and human understanding.

Figure 8.9: Matrix plot of data

8.4.2 Predictive modeling with MANA data farming

The data created from 990 simulation runs creates a platform for prediction

modeling. Exploring simulation data for predictability potentially provides decision

makers with a tool to shape their environment. The overall goal of this study aims to

mitigate insurgent threat, and predictive models fill a vital gap in this effort. Since

this study examined a binary measure of effectiveness (insurgent success), evaluation

of the prediction models was possible with receiver-operator-characteristic (ROC)

curves. It is also possible to supplement ROC curves with a decision ROC chart,

a novel plot introduced in this dissertation which supplements the ROC curve by

bridging the gap between the false positive rate and the decision values (see figure

8.10.

Data farming has been casually mentioned a few times and deserves expla-

nation. Data farming involves a search of the parameter space, often involving a

brute force search across many design points or a robust method for searching a

large parameter space (such as in this application) with fewer design points. Barry

and Koehler [7] and Horne and Meyer [77] provide much of the background for data

157

Figure 8.10: Decision ROC chart illustrating binary SVM performance
for MANA data farming data

farming in their Winter Simulation Conference papers. The purpose of data farming

is to detect previously unknown relationships and explore a broad range of hypothe-

ses [77]. The strongest relationship observed in this experiment was between the

TCP strategy and VBIED success. This is shown in figure 8.8.

This experiment was as much of an academic exercise as an applied effort. As

an academic exercise, this experiment provides a framework for data farming with

MANA and a methodology for the type of experimental design necessary to utilize

machine learning and prediction modeling. It is also an applied effort, seeking to

improve our understanding of a poorly understood threat. The simplest way to cri-

tique this modeling effort would be to point out that validation is not possible simply

due to our lack of understanding of VBIEDs. This is undoubtedly true. However,

158

the methodology and framework is valid. When we do improve our understand-

ing of this VBIED threat or realize the need for this type of modeling framework

for another application, researchers can potentially capitalize on the progress and

methodology set forth in this experiment.

CHAPTER 9

CONCLUSION AND FUTURE DIRECTIONS

This dissertation aims to improve the modeling of security classification problems.

There are two major thrusts of the contributions. One thrust involves advances in

the theory and methodology that tackles unbalanced classification. The other thrust

addresses applications, illustrating techniques and methods to solve specific types

of security classification problems. This conclusion includes comments on both of

those major thrusts as well as some final remarks regarding future directions for this

research.

9.1 Contributions to Theory and Methodology

Security classification problems, and unbalanced classification in general, are

a special type of classification problem. The typical modeling and evaluation efforts

used for balanced problems are often inadequate for unbalanced cases. Balanced

classification modeling implicitly or explicitly makes a number of assumptions which

are not always appropriate for unbalanced problems. For that reason, unbalanced

classification deserves to be considered a special case by its own. The research

contributions in this dissertation stem from the fact that these assumptions do not

consistently hold for unbalanced classification. When these assumptions hold true,

models perform adequately. However, when these assumptions do not hold true,

implications and alternative methods must be considered to improve model accuracy.

Unbalanced classification offers a special case when these assumptions do not hold,

presenting a gap in the methods available. This dissertation has largely been an

exploration of these gaps. The following itemized list includes the theoretical and

methodological contributions of this work. These contributions have been associated

with an assumption from balanced classification that does not hold with unbalanced

classification. This provides illustration of the gaps that exist and the efforts and

progress made to fill the gaps.

• Balanced classification assumption 1: Feature reduction is possible. This dis-

159

160

sertation clearly shows the impact of increased dimensionality (shown in sec-

tions 1.5.6, 1.6, and 2.2.3.3). More is not necessarily better when considering

dimensions, or features. In its most simple form, feature reduction for balanced

classification involves measuring a feature’s behavior with one class, compar-

ing that behavior with the other class, and discarding features which do not

demonstrate a different behavior. There are much more advanced methods for

feature reduction, many of which involve iterative model evaluation such as

in [91]. Modeling in subspaces and aggregating the output of subspace mod-

els (shown in chapters 5 and 6) creates a platform to reduce dimensionality

without the loss of information.

• Balanced classification assumption 2: When aggregating the decision values

from an ensemble of models, the average works best. Bagging, an ensemble

method introduced by Breiman in [18], is one of the most popular and suc-

cessful ensemble methods in the literature. The aggregation method utilized

is the average, and the use of the average for combining numeric model out-

put has essentially become the assumed norm. Chapter 6 clearly illustrates

a case for considering alternate aggregation methods, especially when fusing

unbalanced problems. Moreover, chapter 6 shows that as the severity of im-

balance increases, the value of including the min aggregator as part of the

fusion method increases. An important aspect of this property requires that

the fused values are ranks, eliminating the parametric influence of actual de-

cision values. The analysis of rank distributions, pseudo ROC curves, and the

behavior of these ranks when considering an imbalanced classification problem

(shown in chapter 6) comprise what I consider the most valuable findings of

this research.

• Balanced classification assumption 3: Model tuning is possible through itera-

tive training and testing. Model validation with actual positive instances may

be possible with some unbalanced classification problems, however many prob-

lems include very little or no examples of the positive class. When the latter is

the case, model tuning with iterative training and testing may not be possible.

161

Chapter 7 introduces an approach to overcome manual tuning and validation

for the gaussian kernel. The most important contributions of that chapter

involve insights into the statistical properties of the gaussian kernel and the

gaussian kernel matrix. Improved understanding of this kernel could lead to

automated tuning methods. Chapter 7 included one heuristic for automated

tuning that is based on the statistical properties presented in the chapter.

• Balanced classification assumption 4: ROC curves and the area under the

curve provide sufficient evaluation of model performance. Evaluation of models

is an open area of research. Good evaluation metrics provide model assessment

that decision makers understand, evaluate without bias across a broad spec-

trum of model performance, and communicate complete information. ROC

curves and the area under the curve are excellent performance measures for

binary classification, however they are not complete. A small but important

contribution of this research involves the decision ROC chart, a novel method

(shown in chapter 3) that augments the ROC curve with a graph depicting

the relationship between decision values and the false positive rate. Further-

more, the chart communicates the balance of the problem. This contribution

presents a more complete picture of model performance than the ROC curve

alone.

9.2 Contributions to Applications

There are two primary application domains addressed in this dissertation.

Military tactical applications and computer intrusion detection applications. These

domains are riddled with security considerations. These considerations motivated

coining of the term “security classification problem”, an environment characterized

with severe or nearly complete imbalance. This is a very common environment in

security scenarios.

Chapter 4 and chapter 8 address methods utilized to model military tactical

classification problems and computer intrusion detection classification problems.

Including these applications and describing the models utilized shares knowledge

explaining how to measure these two types of scenarios. The most difficult aspect

162

of modeling is quite often simply getting started. Determining what and how to

measure often creates unexpected challenges. Preprocessing unruly, alphanumeric

data creates challenges as well.

Chapter 4 describes the text mining techniques used to measure host based

intrusion detection data. This chapter also illustrated methods to measure network

based intrusion detection. Much of today’s network intrusion detection involves

strict rule-based methods designed to detect signatures of known attacks. Utilizing

existing and freely available tools, chapters 4 and 8 show how to measure network

traffic and use machine learning techniques to learn from these signature based

methods. The value of this work involves the potential to detect previously unseen

attacks which may slightly vary from previously known signatures. Slightly modified

malicious events can evade signature based detection, however machine learning

methods provide a means to potentially recognize these attacks.

Chapter 8 also includes two military scenarios modeled and preprocessed to

harness the predictive power of machine learning methods. One scenario involves

geospatial models, and the other scenario is a simulation scenario which explores a

relatively large parameter spectrum for a simulation model. Both of these scenarios

illustrate the applicability of framing military scenarios, which easily extend to

other physical security scenarios such as crime prevention, as security classification

problems.

A crucial lesson learned from these applied cases involves computing tools (see

Appendix A). The majority of the work included in this dissertation would not

have been possible without the use of Perl, a high level programming language, and

the UNIX computing environment. Perl enables rapid prototype development and

handles messy data extremely well. Understanding how to compute in the UNIX

environment provides opportunity to batch large experiments. These tools provide

the freedom and power to build and run experiments seeking to illustrate theoretical

results or simply provide proof of principle.

163

9.3 Future Directions

Tremendous opportunity for future work exists in many different areas that

this research explores. Several major research domains have been touched in this

dissertation, and this section will be organized in accordance with these domains.

9.3.1 Computer Intrusion Detection

As long as computer technology continues to grow, computer intrusion will

always be a research rich field. This is largely due to the parallel growth of malicious

efforts. The term intrusion detection has actually grown somewhat outdated and

out of vogue with most of the commercial detection efforts, replaced by intrusion

prevention systems. The argument claims that detection is too late. Prevention

stops malicious activity before it starts. Stopping new malicious acts before the

security community officially recognizes the signatures, typically after an exploit, is

a promising direction. Part of the analysis discussed in chapter 8 directly relates

to this direction, and machine learning and pattern recognition techniques offer

potential to capitalize on this future research direction. Pattern recognition exists

to identify similarity - perhaps not exact matches, but similar. New malicious acts

often grow or mutate from existing successful malicious acts. Identification of these

malicious acts could result from pattern recognition that identifies similarity.

Host-based intrusion detection also offers opportunity for future research.

Many intranets that serve to facilitate communications within organizations attempt

to maintain user and administrator security. The typical security measures taken

involve a user ID / password and compartmentalized privileges. However, user

identification could be much more sophisticated than this. Just as the Schonlau

data explores techniques to measure a user’s vocabulary and command behavior,

measurement of other computer behaviors is possible. Measurement of keystroke

behavior, mouse movement and clicking behavior, and program usage offer similar

behavior matching opportunities. Profiling a user’s computer behavior then cre-

ates the potential to monitor the user for extreme changes in behavior, indicating a

potential breach in security or fraudulent login.

164

9.3.2 Tuning of the Gaussian Kernel

Improving the automation of any part of machine learning helps accomplish an

overarching goal of the field - building intelligent machines. The unique statistical

properties of the gaussian kernel provide opportunity to automate tuning. It is

undoubtedly true that there is a range for σ that exists for every classification

problem which creates a stable kernel matrix that generalizes well for the data. The

gap that exists in this effort involves theoretical proof, perhaps as a bound, that

relates the statistics of the kernel to the generalization of the model.

9.3.3 Ensemble Methods

Ensemble methods are a relatively new and exciting field in machine learning.

One future direction that could be identified relates directly to the above subsection.

This effort would pursue automation of ensembles in general. The analysis of data

and identification of the best type of model and ensemble is largely a human task

today. Automation of this task would be a valued contribution.

An additional potential direction which relates to chapter 6 involves finding

an analytical solution for rank distributions. The rank distributions described in

chapter 6 include parameters which describe the accuracy of rankings and the bal-

ance of the classes. In order to overcome not knowing the analytical solution of the

distributions, simulation was utilized. An analytical solution to these distributions

would contribute immensely to improve understanding of ensembles and the ranks

which create ROC curves.

9.3.4 Intelligent Selection of Subspaces and Dimensionality Reduction

with ICA

Chapter 5 discusses several proposed methods for intelligent subspace cre-

ation. There is no theoretical proof that shows the creation of intelligent subspaces

improves performance beyond simply randomly selecting subspaces. This disserta-

tion includes much exploratory effort which addresses intelligent subspace selection,

to include several proposed methods, however underlying theoretical investigation is

lacking. The contribution of this future direction would not only include improved

165

ensembles but could also be considered a means for dimensionality reduction for

unsupervised learning.

Independent Component Analysis (ICA) as a means for feature reduction is

another avenue for exploration. The application of ICA typically involves signal

detection and noise reduction. ICA creates a linear transformation of data, similar

to PCA. However, there is no current method to identify the information content of

independent components. For every principal component, an eigen value represents

the amount of information contained in the principal component (via the related

loading vector or eigen vector, see section 2.2.1.1). No such measure exists for

independent components. This type of measure could render ICA as a feasible

feature reduction method.

9.3.5 Geospatial Prediction Modeling

Geospatial prediction modeling are often applications of security classification

problems. Geospatial prediction and geospatial statistics contain subtle challenges.

Correlation will always exist between two points with geographical proximity, and

models which train and test on the same terrain will always contain this bias. This

bias creates challenges when validating or attempting to apply models to a different

piece of terrain. The application of this problem manifests often in military scenar-

ios. Units may analyze the enemy behavior within a certain set of terrain and expect

this behavior to generalize to another set of terrain when the unit moves for a future

operation. Crime analysis may also encounter this challenge when analyzing similar

crimes or the same criminal on two separate pieces of terrain. Furthermore, since

geospatial analysis always summarizes two a two dimensional map representation,

opportunity exists with visualization techniques. Geospatial prediction modeling

and geospatial pattern analysis have become very popular amongst the military and

crime enforcement, however it is a young field with opportunity for growth.

9.4 Concluding Remarks

The applicability of the security classification problem is extensive today, and

the domains include information security, physical security, and infrastructure se-

166

curity. It is a ubiquitous problem that impacts our way of life. Unbalanced bi-

nary classification problems exist in medicine, the military, computer networks, and

homeland security. Significant decisions must be made that boil down to a simple

yes or no answer. The research in this document aimed to improve our ability to

provide the correct response to important decisions.

REFERENCES

[1] Charu C. Aggarwal and Philip S. Yu. Outlier Detection for High
Dimensional Data. Santa Barbara, California, 2001. Proceedings of the 2001
ACM SIGMOD International Conference on Management of Data.

[2] Raven Alder, Jacob Babbin, Adam Doxtater, James C. Foster, Toby
Kohlenberg, and Michael Rash. Snort 2.1: Intrusion Detection. Syngress
Publishing, second edition, 2004.

[3] Kamal Ali and Michael J. Pazzani. Error Reduction through Learning
Multiple Descriptions. Machine Learning, 24(3):173–202, 1996.

[4] Luc Anselin. Spatial Econometrics: Methods and Models. Kluwer Academic
Publishers, 1988.

[5] Y. Alp Aslandogan and Gauri A. Mahajani. Evidence Combination in
Medical Data Mining. Las Vegas, Nevada, 2004. IEEE International
Conference on Information Technology, Coding and Computing.

[6] Lee J. Bain and Max Engelhardt. Introduction to Probability and
Mathematical Statistics. Duxbury, second edition, 1991.

[7] Philip Barry and Matthew Koehler. Simulation in Context: Using Data
Farming for Decision Support. In Proceedings of the 2004 Winter Simulation
Conference, Washington, D.C., December 2004.

[8] Kristin P. Bennett and Colin Campbell. Support Vector Machines: Hype or
Hallelujah. SIGKDD Explorations, 2(2), 2001.

[9] Kristin P. Bennett and Mark J. Embrechts. An Optimization Perspective on
Partial Least Squares. In Johan Suykens and Gabor Horvath, editors,
Advances in Learning Theory: Methods, Models and Applications, NATO
Science Series III: Computer & Systems Sciences, Volume 190, pages
227–250. IOS Press Amsterdam, 2003.

[10] Dimitri P. Bertsekas and John N. Tsitsiklis. Introduction to Probability.
Athena Scientific, 2002.

[11] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft.
When Is “Nearest Neighbor” Meaningful? Lecture Notes in Computer
Science, 1540:217–235, 1999.

167

168

[12] Jinbo Bi and Kristin P. Bennett. Regression Error Characteristic Curves.
Washington, D.C., 2003. Proceedings of the Twentieth International
Conference on Machine Learning.

[13] Ella Bingham. Advances in Independent Component Analysis with
Applications to Data Mining. PhD thesis, Helsinki University of Technology,
2003.

[14] Eric Bloedorn, Alan D. Christiansen, William Hill, Clement Skorupka,
Lisa M. Talbot, and Johathan Tivel. Data Mining for Network Intrusion
Detection: How to Get Started. MITRE Technical Report, August 2001.

[15] Piero Bonissone, Kai Goebel, and Weizhong Yan. Classifier Fusion using
Triangular Norms. pages 154–163, Cagliari, Italy, June 2004. Proceedings of
Multiple Classifier Systems (MCS) 2004.

[16] Joan Fisher Box. R.A. Fisher and the Design of Experiments, 1922-1926.
The American Statistician, 34(1):1–7, February 1980.

[17] Andrew P. Bradley. The Use of the Area Under the ROC Curve in the
Evaluation of Machine Learning Algorithms. Pattern Recognition, Volume 30
(7):1145–1159, 1997.

[18] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[19] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[20] Bernard Buxton, William Langdon, and S.J. Barrett. Data Fusion by
Intelligent Classifier Combination. Measurement and Control, 34(8):229–234,
2001.

[21] Colin Campbell and Kristin P. Bennett. A Linear Programming Approach to
Novelty Detection. volume 14. Advances in Neural Information Processing
Systems, 2001.

[22] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes.
Ensemble Selection from Libraries of Models. Banff, Canada, 2004.
Proceedings of the 21st International Conference on Machine Learning.

[23] Huseyin Cavusoglu, Birendra Mishra, and Srinivasan Raghunathan.
Configuration of Intrusion Detection Systems. Seattle, December 2003.
International Conference on Information Systems (ICIS).

[24] Chih Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support
Vector Machines. http://www.scie.ntu.edu.tw/ cjlin/libsvm, Accessed 5
September, 2004.

169

[25] Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee.
Choosing Multiple Parameters for Support Vector Machines. Machine
Learning, 46(1-3):131–159, 2002.

[26] Sanjay Chawla, Shashi Shekhar, Weili Wu, and Uygar Ozesmi. Modeling
Spatial Dependencies for Mining Geospatial Data. In Proceedings of the First
SIAM International Conference on Data Mining, Chicago, IL, April 2001.

[27] Yunqiang Chen, Xiang Zhou, and Thomas S. Huang. One-Class SVM for
Learning in Image Retrieval. Thessaloniki, Greece, 2001. Proceedings of
IEEE International Conference on Image Processing.

[28] Calvin S. Chu, Ivor W. Tsang, and James T. Kwok. Scaling up Support
Vector Data Description by Using Core-Sets. In Proceedings of the
International Joint Conference on Neural Networks, pages 422–430,
Budapest, Hungary, July 2004.

[29] Thomas M. Cioppa. Efficient Nearly Orthogonal and Space-filling
experimental designs for High-Dimensional Complex Models. PhD thesis,
Naval Postgraduate School, 2002.

[30] Scott Coull, Joel Branch, Eric Breimer, and Boleslaw K. Szymanski.
Intrusion Detection: A Bioinformatics Approach. pages 24–33, Las Vegas,
Nevada, December 2003. Proceedings of the 19th Annual Computer Security
Applications Conference.

[31] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector
Machines and Other Kernel Based Learning Methods. Cambridge University
Press, 2003.

[32] Tim Crothers. Implementing Intrusion Detection Systems. Wiley Publishing,
Inc., 2003.

[33] Jesse Davis and Mark Goadrich. The Relationship Between Precision-Recall
and ROC curves. In ICML ’06: Proceedings of the 23rd International
Conference on Machine Learning, pages 233–240. ACM Press, 2006.

[34] James M. DeLeo. Measuring Classifier Intelligence. pages 694–699.
Proceedings of the 2002 PerMIS Workshop, 2001.

[35] James M. DeLeo and Gregory Campbell. Fundamentals of Fuzzy Receiver
Operating Characteristic (ROC) Functions. pages 543–548. Proceedings of
the 21st Symposium Interface, 1989.

[36] James M. DeLeo and Gregory Campbell. The Fuzzy Receiver Operating
Characteristic Function and Medical Decisions with Uncertainty. pages
694–699. Proceedings of the First International Symposium on Uncertainty
Modeling and Analysis, 1991.

170

[37] Dorothy Denning and Peter J. Denning, editors. Internet Besieged. ACM
Press, 1998.

[38] Dorothy E. Denning. An Intrusion Detection Model. pages 222–232,
Oakland, CA, 2003. Proceedings of the IEEE Symposium on Security and
Privacy.

[39] Lori E. Dodd and Margaret S. Pepe. Partial AUC Estimation and
Regression. University of Washington Biostatistics Working Paper Series,
Working Paper 181, January 13 2003.

[40] Robert P. W. Duin and David M. J. Tax. Classifier Conditional Posterior
Probabilities. In SSPR ’98/SPR ’98: Proceedings of the Joint IAPR
International Workshops on Advances in Pattern Recognition, 1998.

[41] William DuMouchel, Wen Hua Ju, Alan F. Karr, Matthius Schonlau, Martin
Theus, and Yehuda Vardi. Computer Intrusion: Detecting Masquerades.
Statistical Science, 16(1):1–17, 2001.

[42] William DuMouchel and Matthius Schonlau. A Fast Computer Intrusion
Detection Algorithm Based on Hypothesis Testing of Command Transition
Probabilities. pages 189–193. The Fourth International Conference of
Knowledge Discovery and Data Mining, August 1998.

[43] William DuMouchel and Matthius Schonlau. A Comparison of Test
Statistics for Computer Intrusion Detection Based on Principal Components
Regression of Transition Probabilities. pages 404–413. Proceedings of the
30th Symposium on the Interface: Computing Science and Statistics, 1999.

[44] Margaret H. Dunham. Data Mining: Introductory and Advanced Topics.
Prentice Hall, 2003.

[45] James P. Egan. Signal Detection Theory and ROC Analysis. Academic
Press, Inc., 2003.

[46] Mark J. Embrechts. AnalyzeTM , Version 6.86, Rensselaer Polytechnic
Institute. http://www.drugmining.com, Accessed 4 June, 2004.

[47] Levent Ertoz, Eric Eilertson, Aleksandar Lazarevic, and Pang-Ning Tan.
Detection of Novel Network Attacks Using Data Mining. In Proceedings of
the ICDM Workshop on Datamining for Computer Security (DMSEC).
Melbourne, Florida, 2003.

[48] Paul F. Evangelista, Piero Bonissone, Mark J. Embrechts, and Boleslaw K.
Szymanski. Fuzzy ROC Curves for the One Class SVM: Application to
Intrusion Detection. In Proceedings of the International Joint Conference on
Neural Networks, Montreal, Canada, August 2005.

171

[49] Paul F. Evangelista, Piero Bonissone, Mark J. Embrechts, and Boleslaw K.
Szymanski. Unsupervised Fuzzy Ensembles and Their Use in Intrusion
Detection. In Proceedings of the European Symposium on Artificial Neural
Networks, Bruges, Belgium, April 2005.

[50] Paul F. Evangelista, Mark J. Embrechts, and Boleslaw K. Szymanski.
Computer Intrusion Detection Through Predictive Models. pages 489–494,
St. Louis, Missouri, November 2004. Smart Engineering System Design:
Neural Networks, Fuzzy Logic, Evolutionary Programming, Data Mining and
Complex Systems.

[51] Paul F. Evangelista, Mark J. Embrechts, and Boleslaw K. Szymanski. Data
Fusion for Outlier Detection through Pseudo ROC Curves and Rank
Distributions. In Proceedings of the International Joint Conference on
Neural Networks, Vancouver, Canada, July 2006.

[52] Paul F. Evangelista, Mark J. Embrechts, and Boleslaw K. Szymanski.
Taming the Curse of Dimensionality in Kernels and Novelty Detection. In
Ajith Abraham, Bernard de Baets, Mario Köppen, and Bertam Nickolay,
editors, Applied Soft Computing Technologies: The Challenge of Complexity,
pages 431–444. Springer Verlag, 2006.

[53] Jerome Fan, Suneel Upadhye, and Andrew Worster. Understanding Receiver
Operating Characteristic (ROC) Curves. Canadian Journal of Emergency
Medicine, 8(1):19–20, 2005.

[54] Tom Fawcett. Using Rule Sets to Maximize ROC Performance. San Jose,
CA, 2001. IEEE International Conference on Data Mining.

[55] Tom Fawcett. ROC Graphs: Notes and Practical Considerations for Data
Mining Researchers. Palo Alto, CA, 2003. Technical Report HPL-2003-4,
Hewlett Packard.

[56] Tom Fawcett and Foster Provost. Combining Data Mining and Machine
Learning for Effective User Profiling. pages 55–62. Proceedings on the Second
International Conference on Knowledge Discovery and Data Mining, 1996.

[57] Tom Fawcett and Foster Provost. Robust Classification for Imprecise
Environments. Machine Learning Journal, 42(3):203–231, 2001.

[58] Ronald Aylmer Fisher. The Use of Multiple Measurements in Taxonomic
Problems. Annals of Eugenics, 7(2):179–188, 1936.

[59] Ronald Aylmer Fisher. Collected Papers of R.A. Fisher (5 vols.). Adelaide:
University of Adelaide, 1974.

172

[60] Jeremy Frank. Artificial Intelligence and Intrusion Detection: Current and
Future Directions. In Proceedings of the 17th National Computer Security
Conference, Baltimore, MD, 1994.

[61] Ana L.N. Fred and Anil K. Jain. Robust Data Clustering. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
volume 2, pages 128–133, Madison, Wisconsin, 2003.

[62] D. Frossyniotis, A. Likas, and A. Stafylopatis. A Clustering Method Based
on Boosting. Pattern Recognition Letters, 25:641–654, 2004.

[63] Miguel Angel Garcia and Domenec Puig. Robust Aggregation of Expert
Opinions Based on Conflict Analysis and Resolution. In R. Conejo,
M. Urretavizcaya, and J.L. Perez de la Cruz, editors, Lecture Notes in
Artificial Intelligence 3040, Current Topics in Artificial Intelligence, 10th
CAEPIA 2003 and 5th TTIA 2003, Revised Selected Papers, pages 488–497.
Springer-Verlag, 2004.

[64] Giorgio Giacinto, Fabio Roli, and Luca Didaci. Fusion of Multiple Classifiers
for Intrusion Detection in Computer Networks. Pattern Recognition Letters,
24(12):1795–1803, 2003.

[65] Andrew G. Glen, Lawrence M. Leemis, and John H. Drew. Computing the
Distribution of the Product of Two Continuous Random Variables.
Computational Statistics and Data Analysis, 44(3):451–464, 2004.

[66] Greg Griffin, Paul F. Evangelista, Simon R. Goerger, Niki C. Goerger, and
Paul W. Richmond. Insights into Insurgent Decisioning and Response to
Traffic Flow Strategies. Orlando, FL, September 2006. 2006 Fall Simulation
Interoperability Workshop.

[67] Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lofti Zadeh, editors.
Feature Extraction, Foundations, and Applications. Springer, 2006.

[68] J.W. Haines, R.P. Lippmann, D.J. Fried, M.A. Zissman, E. Tran, and S.B.
Boswell. 1999 DARPA Intrusion Detection Evaluation: Design and
Procedures. Cambridge, Massachusetts, 2001. Massachusetts Institute of
Technology Lincoln Laboratory, Technical Report 1062.

[69] Frederic M. Ham and Ivica Kostanic. Principles of Neurocomputing for
Science and Engineering. John Wiley and Sons, Inc., 2001.

[70] Thomas M. Hamill. Interpretation of Rank Histograms for Verifying
Ensemble Forecasts. Monthly Weather Review, 129(3):550–560, 2000.

[71] James A. Hanley and Barbara J. McNeil. The Meaning and Use of the Area
Under the Receiver Operating Characteristic Curve. Radiology, 143(1):
29–36, 1982.

173

[72] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice
Hall, second edition, 1999.

[73] Katherine Heller, Krysta Svore, Angelos Keromytis, and Salvatore Stolfo.
One Class Support Vector Machines for Detecting Anomalous Windows
Registry Accesses. In Proceedings of the ICDM Workshop on Datamining for
Computer Security (DMSEC). Melbourne, Florida, 2003.

[74] Tin Kam Ho. The Random Subspace Method for Constructing Decision
Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(8):832–844, 1998.

[75] Tin Kam Ho, Jonathan J. Hull, and Sargur N. Srihari. Decision
Combination in Multiple Classifier Systems. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 16:66–75, 1994.

[76] Alexander Hofmann, Timo Horeis, and Bernhard Sick. Feature Selection for
Intrusion Detection: An Evolutionary Wrapper Approach. Budapest,
Hungary, July 2004. International Joint Conference on Neural Networks.

[77] Gary E. Horne and Ted E. Meyer. Data Farming: Discovering Surprise. In
Proceedings of the 2004 Winter Simulation Conference, Washington, D.C.,
December 2004.

[78] Harold Hotelling. Relations Between Two Sets of Variates. Biometrika, 28
(3/4):321–377, 1937.

[79] Tianming Hu and Sam Yuan Sung. Spatial Similarity Measures in Location
Prediction. Journal of Geographic Information and Decision Analysis, 7(2):
93–104, 2003.

[80] Aapo Hyvarinen. Survey on Independent Component Analysis. Neural
Computing Surveys, 2:94–128, 1999.

[81] Aapo Hyvarinen, Juha Karhunen, and Erkki Oja. Independent Component
Analysis. John Wiley and Sons, Inc., 2001.

[82] Sushil Jajodia, Peng Ning, and X. Sean Wang. Intrusion Detection in
Distributed Systems: An Abstraction Based Approach. Kluwer Academic
Publishers, 2004.

[83] Jyh-Shing Roger Jang, Chuen-Tsai Sun, and Eiji Mizutani. Neuro-Fuzzy and
Soft Computing: A Computational Approach to Learning and Machine
Intelligence. Prentice Hall, 1997.

[84] Yulei Jiang, Charles E. Metz, and Robert M. Nishikawa. A Receiver
Operating Characteristic Partial Area Index for Highly Sensitive Diagnostic
Tests. Radiology, 201:745–750, 1996.

174

[85] Richard A. Johnson and Dean W. Wichern. Applied Multivariate Statistical
Analysis. Prentice Hall, fifth edition, 2002.

[86] Stephen L. Johnston. The Aircraft Warning Service, Hawaii and The Signal
Company, Aircraft Warning, Hawaii. Aerospace and Electronic Systems
Magazine, IEEE, 6(12):3–7, December 1991.

[87] S. Sathiya Keerthi. Efficient Tuning of SVM Hyperparameters Using
Radius/Margin Bound and Iterative Algorithms. IEEE Transactions on
Neural Networks, 13(5):1225–1229, September 2002.

[88] S. Sathiya Keerthi and Chih-Jen Lin. Asymptotic Behaviors of Support
Vector Machines with Gaussian Kernel. Neural Computation, 15:1667–1689,
2003.

[89] M.G. Kendall. Rank Correlation Methods. Charles Griffin, London, 1948.

[90] Eamonn Keogh, Stefano Lonardi, and Chotirat Ann Ratanamahatana.
Towards Parameter-Free Data Mining. Seattle, WA, August 2004. Tenth
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining.

[91] Robert H. Kewley, Mark J. Embrechts, and Curt Breneman. Data Strip
Mining for the Virtual Design of Pharmaceuticals with Neural Networks.
IEEE Transactions on Neural Networks, 11(3):668–679, May 2000.

[92] Ron Kohavi and Foster Provost. Glossary of Terms. Machine Learning, 30
(2-3):271–274, February 1998.

[93] Mario Köppen. The Curse of Dimensionality. (held on the internet),
September 4-18 2000. 5th Online World Conference on Soft Computing in
Industrial Applications (WSC5).

[94] Christopher Krügel, Thomas Toth, and Engin Kirda. Service Specific
Anomaly Detection for Network Intrusion Detection. In SAC ’02:
Proceedings of the 2002 ACM symposium on Applied computing, pages
201–208, New York, NY, USA, 2002. ACM Press.

[95] Ludmila I. Kuncheva. A Theoretical Study on Six Classifier Fusion
Strategies. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(2):729–741, February 2003.

[96] Ludmila I. Kuncheva. ’Fuzzy’ vs. ’Non-fuzzy’ in Combining Classifiers
Designed by Boosting. IEEE Transactions on Fuzzy Systems, 11(3):729–741,
2003.

175

[97] Ludmila I. Kuncheva. That Elusive Diversity in Classifier Ensembles.
Mallorca, Spain, 2003. Proceedings of 1st Iberian Conference on Pattern
Recognition and Image Analysis.

[98] Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and
Algorithms. John Wiley and Sons, Inc., 2004.

[99] Ludmila I. Kuncheva and C.J. Whitaker. Measures of Diversity in Classifier
Ensembles. Machine Learning, 51:181–207, 2003.

[100] Aleksandar Lazarevic, Levent Ertoz, Vipin Kumar, Aysel Ozgur, and
Jaideep Srivastava. A Comparative Study of Anomaly Detection Schemes in
Network Intrusion Detection. In Proceedings of Third SIAM Conference on
Data Mining, San Francisco, May 2003.

[101] Wenke Lee and Salvatore J. Stolfo. A Framework for Constructing Features
and Models for Intrusion Detection Systems. ACM Transactions on
Information and System Security (TISSEC), 3(4):227–261, 2000.

[102] Erich L. Lehmann. Nonparametrics: Statistical Methods Based on Ranks.
Holden-Day, Inc., San Francisco, CA, 1975.

[103] F.W. Loomis. Problems of Air Defense: Final Report of Project Charles.
MIT Report, August 1951.

[104] Pete Loshin. TCP/IP: Clearly Explained. Morgan Kaufman, third edition,
1999.

[105] Junshui Ma and Simon Perkins. Time-series Novelty Detection Using
One-class Support Vector Machines. Portland, Oregon, July 2003.
International Joint Conference on Neural Networks.

[106] Larry M. Manevitz and Malik Yousef. One-Class SVMs for Document
Classification. Journal of Machine Learning Research 2, 2:139–154, 2001.

[107] H.B. Mann and D.R. Whitney. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. The Annals of
Mathematical Statistics, 18(1):50–60, 1947.

[108] David J. Marchette. Computer Intrusion Detection and Network Monitoring:
A Statistical Viewpoint. Springer-Verlag, 2001.

[109] S.J. Mason and N.E. Graham. Areas Beneath the Relative Operating
Characteristics (ROC) and relative operating levels (ROC) curves: Statistical
Significance and Interpretation. Quarterly Journal of the Royal
Meteorological Society, 128:2145–2166, 2002.

176

[110] Roy A. Maxion. Masquerade Detection Using Enriched Command Lines.
San Francisco, CA, June 2003. International Conference on Dependable
Systems and Networks.

[111] Roy A. Maxion and Tahlia N. Townsend. Masquerade Detection Using
Truncated Command Lines. Washington, D.C., June 2002. International
Conference on Dependable Systems and Networks.

[112] Donna Katzman McClish. Analyzing a Portion of the ROC Curve. Medical
Decision Making, 9:190–195, 1989.

[113] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution
Programs (2nd, extended ed.). Springer-Verlag New York, Inc., 1994.

[114] Thomas W. Miller. Data and Text Mining. Prentice Hall, 2005.

[115] F. Robert Naka and William W. Ward. Distant Early Warning Line Radars:
The Quest for Automatic Signal Detection. Lincoln Laboratory Journal, 12
(2):181–204, 2000.

[116] Shawn D. Ostermann. TCPtrace, Ohio University.
http://jarok.cs.ohiou.edu/software/tcptrace/index.html, Accessed 28 March
2005.

[117] Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace Clustering for
High Dimensional Data: A Review. SIGKDD Explorations, Newsletter of the
ACM Special Interest Group on Knowledge Discovery and Data Mining,
2004.

[118] Roger G. Petersen. Design and Analysis of Experiments. Marcell Dekker,
Inc., 1985.

[119] John C. Platt. Probabilities for Support Vector Machines. In Alexander J.
Smola, Peter Bartlett, Bernhard Schölkopf, and Dale Schuurmans, editors,
Advances in Large Margin Classifiers, pages 61–74. MIT Press, 1999.

[120] J.R. Quinlan. Bagging, Boosting, and C4.5. pages 97–123. Proceedings of the
Thirteenth National Conference on Artificial Intelligence (AAAI-96), 1996.

[121] Alain Rakotomamonjy. Optimizing Area Under ROC Curve with SVMs. In
Proceedings of European Conference on Artificial Intelligence Workshop on
ROC Curve and Artificial Intelligence, Valencia, Spain, 2004.

[122] Stephen R. Riese. Templating an Adaptive Threat: Spatial Forecasting in
Operations Enduring Freedom and Iraqi Freedom. Engineer: The
Professional Bulletin for Army Engineers, pages 42–43, January-March 2006.

177

[123] Vijay K. Rohatgi and A.K.Md. Ehsanes Saleh. An Introduction to
Probability and Statistics. Wiley, second edition, 2001.

[124] Roman Rosipal and Leonard J. Trejo. Kernel Partial Least Squares
Regression in Reproducing Kernel Hilbert Space. Journal of Machine
Learning Research, 2:97–123, 2001.

[125] Sam Roweis. One Microphone Source Separation. pages 793–799, Denver,
Colorado, 2000. Neural Information Processing Systems 13 (NIPS’00).

[126] Susan M. Sanchez and Thomas W. Lucas. Exploring the World of
Agent-based Simulations: Simple Models, Complex Analyses. In Proceedings
of the 2002 Winter Simulation Conference, Piscataway, New Jersey, 2002.

[127] Bernhard Schölkopf, John C. Platt, John Shawe Taylor, Alex J. Smola, and
Robert C. Williamson. Estimating the Support of a High Dimensional
Distribution. Neural Computation, 13:1443–1471, 2001.

[128] Matthius Schonlau and Martin Theus. Intrusion Detection Based on
Structural Zeroes. Statistical Computing and Graphics Newsletter, 9(1):
12–17, 1998.

[129] Matthius Schonlau and Martin Theus. Detecting Masquerades in Intrusion
Detection Based on Unpopular Commands. Information Processing Letters,
76(1-2):33–38, 2000.

[130] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern
Analysis. Cambridge University Press, 2004.

[131] Ingo Steinwart, Don Hush, and Clint Scovel. A Classification Framework for
Anomaly Detection. Journal of Machine Learning Research, 6:211–232,
March 2005.

[132] Salvatore Stolfo and Ke Wang. One Class Training for Masquerade
Detection. Florida, 19 November 2003. 3rd IEEE Conference Data Mining
Workshop on Data Mining for Computer Security.

[133] Alexander Strehl and Joydeep Ghosh. Cluster Ensembles - A Knowledge
Reuse Framework for Combining Multiple Partitions. Journal of Machine
Learning Research, 3:583–617, December 2002.

[134] John A. Swets, Robyn M. Dawes, and John Monahan. Better Decisions
through Science. Scientific American, 284(4):83–87, October 2001.

[135] Boleslaw K. Szymanski and Yongqiang Zhang. Recursive Data Mining for
Masquerade Detection and Author Identification. West Point, NY, 9-11 June
2004. 3rd Annual IEEE Information Assurance Workshop.

178

[136] David M.J. Tax. One-class Classification. PhD thesis, Delft University of
Technology, 2001.

[137] David M.J. Tax and Robert P.W. Duin. Support Vector Domain
Description. Pattern Recognition Letters, 20:1191–1199, 1999.

[138] David M.J. Tax and Robert P.W. Duin. Support Vector Data Description.
Machine Learning, 54:45–66, 2004.

[139] J.D. Tubbs and W.O. Alltop. Measures of Confidence Associated with
Combining Classification Results. IEEE Transactions on Systems, Man, and
Cybernetics, 21:690–692, 1991.

[140] unknown. gnuplot, Version 4.0. http://www.gnuplot.org, Accessed 1 August,
2006.

[141] Runar Unnthorsson, Thomas Philip Runarsson, and Magnus Thor Jonsson.
Model Selection in One-Class ν-SVMs using RBF Kernels. In Proceedings of
16th International Congress and Exhibition on Condition Monitoring And
Diagnostic Engineering Management (COMADEM 2003), Sweden, 2003.

[142] Ke Wang and Salvatore Stolfo. One Class Training for Masquerade
Detection. In Proceedings of the ICDM Workshop on Datamining for
Computer Security (DMSEC). Melbourne, Florida, 2003.

[143] Ke Wang and Salvatore J. Stolfo. Anomalous Payload-based Network
Intrusion Detection. In Proceedings of Recent Advances in Intrusion
Detection: 7th International Symposium, RAID 2004, pages 203–222, Sophia
Antipolis, France, 2004.

[144] Geoffrey I. Webb and Zijan Zheng. Multi-Strategy Ensemble Learning:
Reducing Error by Combining Ensemble Learning Techniques. IEEE
Transactions on Knowledge and Data Engineering, 16(8):980–991, 2004.

[145] Frank Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics
Bulletin, 1(6):80–83, 1945.

[146] Herman Wold. Estimation of Principal Components and Related Models by
Iterative Least Squares. In P. R. Krishnaiah, editor, Multivariate Analysis,
pages 391–420. Academic Press, NY, 1966.

[147] Herman Wold. Path Models with Latent Variables. In H.M. Ballock, editor,
Quantitative Sociology: International Perspectives on Mathematical and
Statistical Model Building, pages 307–357. Academic Press, NY, 1975.

[148] Svante Wold. Personal Memories of the Early PLS Development.
Chemometrics and Intelligent Laboratory Systems, 58:83–84, 2001.

179

[149] Svante Wold, Michael Sjöström, and Lennart Erikson. PLS Regression: A
Basic Tool of Chemometrics. Chemometrics and Intelligent Laboratory
Systems, 58:109–130, 2001.

[150] Jiong Yang, Wei Wang, Haixun Wang, and Philip Yu. δ-clusters: Capturing
Subspace Correlation in a Large Data Set. pages 517–528. 18th International
Conference on Data Engineering, 2004.

[151] Nong Ye and Qiang Chen. An Anomaly Detection Technique Based on a
Chi-Square Statistic for Detecting Intrusions into Information Systems.
Quality and Reliability Engineering International, 17:105–112, 2001.

[152] Dong D. Zhang, Xia-Hua Zhou, Daniel H. Freeman Jr., and Jean L.
Freeman. A Non-parametric Method for the Comparison of Partial Areas
Under ROC Curves and Its Application to Large Health Care Data Sets.
Statistics in Medicine, 21:701–715, 2002.

[153] Jian Zhang, Yiming Yang, and Jaime Carbonell. New Event Detection with
Nearest Neighbor, Support Vector Machines, and Kernel Regression.
Pittsburgh, PA, April 2004. Technical Report CMU-CS-04-118, Carnegie
Mellon University.

APPENDIX A

Comments on Computing

A.1 Some of the Technology Utilized

There are several computing techniques and programs that enabled the re-

search contained in this thesis. The numerical experiments detailed in the previous

chapters are a result of programs written by others, programs written by me, and

the availability of some useful computing platforms. Some of the techniques and

programs utilized are worth discussing. The purpose of this discussion is to share

tools that worked well and comment on the context of their use.

Most of the numerical computing was completed in a UNIX environment.

Some of this occurred on entirely UNIX based systems, however much of the devel-

opment and analysis occurred on my PC with a program that replicates a UNIX

environment, cygwin. cygwin enabled the development of scripts that were eventu-

ally transferred to a remote UNIX machine which then ran the necessary number of

experimental iterations. The remote computing program utilized was SSH Secure

Shell, a useful application which includes both a remote terminal window and a

remote ftp window.

A.2 The Computing Processes

Figure A.1 represents the computing and data processing for the security prob-

lem applied to either host based or network based computer intrusion detection.

This data flow assumes subspace modeling is preferred. Each of these processes

represents computing that often consists of Perl programs that I wrote to analyze

and manipulate data and state of the art prediction modeling software written by

others. A brief description of each of these processes follows.

• 1.0 Capture Raw Data. This is the mechanism that captures either user com-

mands or network packets depending upon the type of activity. This process

180

181

1.0
Capture Raw Data

2.0
Generate TCP

Connection
Summaries

Network Activity

User Activity 4.0
Generate Data
Dictionary and

Command
Popularity Profiles

3.0
Create Variables

from TCP
Connection
Summaries

5.0
Create Variables

based on command
usage

Network Packets TCPdump data

User Commands
User log data

TCP Connection
Data

6.0
Intelligent

Subspace Modeling

User commands and
command profiles

7.0
Prediction

Modeling (Analyze,
LIBSVM)

8.0
Model Fusion

(Fuzzy ROC Curve)

9.0
Output Evaluation
(Generate ROC

curve / AUC)

Numerical Flat
Files

Subspace
Numerical Flat

Files

Subspace
Decision Values

Aggregate
Decision Values

Decision Maker

ROC curve / AUC

Numerical Flat
Files

Figure A.1: Data flow diagram (DFD) of security classification applied to
computer intrusion detection

will require the greatest disk storage of any process due to the raw and un-

compressed nature of captured data.

The following processes apply only to network based intrusion detection.

• 2.0 Generate TCP Connection Summaries. TCPtrace generates the connec-

tion summaries from the TCPdump data. This process can reduce the size of

the data down to one tenth and represents a significant abstraction of infor-

mation.

• 3.0 Create Variables from TCP Connection Summaries. I wrote several Perl

programs to parse the TCPtrace output into a numerical flat file format which

is compatible with either LIBSVM or AnalyzeTM . This process again reduces

the size of the data to about one tenth of the size of the TCPtrace connection

182

summaries.

The following processes apply only to host based intrusion detection.

• 4.0 Generate Data Dictionary and Command Popularity Profiles. User log

data will consist of repetitive commands and activities which reflect the be-

havior of a user. In order to create statistics such as frequencies and average

command popularity, a data dictionary and command popularity profile must

be created. These will be created for the entire population and each user.

• 5.0 Create Variables Based on Command Usage. User activity must be divided

into sessions. Each session can be measured for consistency of activity based

upon the data dictionary and command popularity profiles.

• 6.0 Intelligent Subspace Modeling. If the variables that represent user or net-

work activity are many (which is usually the case, especially with network

data) and the models will be unsupervised, subspace modeling is preferred.

Intelligent subspace modeling could include a genetic algorithm which seeks

to optimize a fitness function serving as a metric for good subspaces or an

analytical solution based upon the behavior of the variables.

• 7.0 Prediction Modeling. AnalyzeTM serves as the primary software package

for multivariate statistical analysis and supervised prediction modeling [46],

and LIBSVM provides modeling with the one-class SVM [24]. These software

packages provide a soft decision value (R1) which represents the model’s degree

of confidence towards one class or the other.

• 8.0 Model Fusion. The Fuzzy ROC curve is the model fusion technique ex-

plained in this proposal, however many different fusion methods exist. The

fusion method simply must aggregate the subspace decision values and create

one decision value for ever observation.

• 9.0 Output Evaluation. The output evaluation for binary classification will

consist of ROC curve and AUC analysis. If it is not possible to create ROC

curves, the decision maker must select a threshold value for classification.

183

Feedback of classified instances can serve as a tuning mechanism for the thresh-

old value.

APPENDIX B

COMBINING DATA MINING TECHNIQUES WITH

SCHONLAU’S DATA

B.1 Determining Optimal Variable Combinations for K-PLS

Prediction

The analysis of the text mining variables described in chapter 4 provides in-

sight into the relationship between the variables and the predictive power of these

variables. Exploring fundamental properties of the variables is an important first

step.

The AnalyzeTM software package is the primary vehicle for analysis from this

point forward for the text mining variables. Previous analysis and preprocessing

utilized Perl programs and some simple spreadsheet calculations, however now that

all of the variables have been produced and represented in the MetaNeural [46]

format required by AnalyzeTM , the predictive modeling power of AnalyzeTM can

be harnessed.

The choice of learning machines is often complicated and data dependent.

This analysis utilizes one learning machine for the sake of consistency - Rosipal’s

kernel partial least squares [124]. This learning machine provided good results and

remaining with one learning machine provides a consistent measure of comparison

between preprocessing techniques and combinations of variables.

Our original set of variables did not contain variable 1 (new) or variable 8

(user). Therefore, our original model contained seven variables. The most obvious

method for prediction modeling given the set of variables described is to simply

represent each tuple of data with a combination of these seven variables. Let us call

this the seven feature model. This is the initial approach. The file to be processed by

the learning machine contained 5000 tuples of data, each containing 7 variables, the

outcome (-1 for non intrusion, 1 for intrusion), and an identification number. The

identification number is a six digit number that uniquely identifies each tuple. The

184

185

first three digits represent the user, and these digits range from 101 to 150. We use

three digits to eliminate the confusion of any leading zeroes and create identification

numbers with same number of digits.

One final crucial step in data preprocessing consisted of the scaling of the data.

Previously in this discussion we indicated that the relationship between variables is

much more meaningful with scaled data. Learning machines also require scaled data

to extract meaning and accurately learn and predict. Each variable, to include the

response, was Mahalanobis scaled. After scaling the variables, the final step involved

splitting the data into a training and testing set (4000 tuples were used for training,

1000 tuples for testing), and then the learning machines processed the information.

Once the raw data is in MetaNeural format, AnalyzeTM operators perform and

provide the scaling, splitting, and predictive modeling, and all necessary analytical

results. This seven feature model achieved exceptional results, with an AUC of .907.

The technique tested next expands the details of the features in an attempt

to improve the prediction. Each of the first six variables in the seven feature model

is an average or percentage for the entire tuple of 100 commands considered. The

seventh variable, xu, represents the value which is a measure of the entire tuple.

Therefore, each command can be represented by six different values, each value

representing variables one through six. The result of this approach is a tuple of 601

features (the extra feature is Schonlau’s xu value). The results of this 601 feature

model were surprisingly not better than the seven feature model. The 601 feature

model was cumbersome because of its size, required much longer processing time,

and did not predict as well. The best AUC achieved with the 601 feature model was

.77.

The evaluation of several more preprocessing techniques further supported

the idea of poor performance with expanded variables that could be represented as

some type of average or summation for an entire tuple. Additional preprocessing

techniques evaluated eliminated Schonlau’s xu value in an effort to eliminate the

effect of this index-type feature. These additional preprocessing techniques are

described in the below table.

It is intentional that the predictive modeling with the text mining variables

186

Table B.1: Preprocessing Techniques and Results

Preprocessing
Technique

Description of Variables σ AUC

no xu value Six variables without Schonlau’s xu value 1 .829
Enhanced Fea-
tures (a)

Includes six variables plus an indicator for com-
mands never seen from particular user

3 .87

Enhanced Fea-
tures (b)

Same as (a) except user number (integer between
1 and 50) included as a variable

1 .917

Centralized Fea-
tures I

Each tuple of test data contains 100 commands.
This technique will examine only the center 32
commands of the tuple, and utilizing the six vari-
ables this will create 192 features for each tuple.

3 .714

Centralized Fea-
tures II

Examine center 32 commands as discussed above,
however produce aggregated six variables for every
tuple.

1 .79

Rank Order There are 635 distinct commands. Rank order
from 1-635 based upon frequency. Now the tuple
can be represented by a vector of 100 variables,
with each feature being the number that repre-
sents the rank order of the command. The num-
ber 636 will represent any commands not seen in
the training data.

1 .683

636feature Utilize a vector of 636 variables for each tuple of
data. Each position in the vector corresponds to
the tuple’s frequency of a distinct command, and
position 636 will correspond to the frequency of
foreign /never seen commands.

all
val-
ues

.5

shown in Table B.1 are not compared against Schonlau’s techniques. Schonlau builds

the statistics for his models from the first 5,000 authentic commands from each user;

this is an unsupervised approach. He tests his techniques with the subsequent 10,000

commands. The text mining techniques discussed in this paper focus solely on the

subsequent 10,000 commands for each user and generally utilize a supervised ap-

proach. The text mining techniques are not comparable with Schonlau’s techniques;

they are fundamentally different.

The absence of Schonlau’s xu value created degraded performance as expected.

Since the xu value is an overall indicator of whether or not an intruder is present,

it is a powerful predictor and hampers our clarity in determining the effectiveness

of other variables. The best performance of the aforementioned predictive modeling

occurred with Enhanced Features (b) with an AUC of .917 at σ = 1. The two

187

variables added to this preprocessing technique, commands never seen from the

particular user (simply a 0 or 1 value) and the user number (integer between 1 and

50) provide an immense impact on the predictive power. It is likely that these two

variables provide a personalization of each tuple, effectively providing a signature of

each user that the learning machine identifies and uses to improve performance.

The other interesting thread of these results involves the continued poor per-

formance of expanded preprocessing techniques that provide the learning machine

with the raw data of each command as opposed to a summation or average. It is

difficult to ascertain exactly why this phenomena occurs. During the discussion of

the 601 feature model, we hypothesize that this degraded performance occurs be-

cause summations and averages are likely functions of sufficient statistics, and these

sufficient statistics provide as much information as possible regarding the variable.

The poor performance could also be an indicator that much noise and irrelevant

data is digested by the learning machine, creating convoluted results.

B.2 Results of Combining Data Mining Techniques

During this research project, another student at Rensselaer Polytechnic Insti-

tute also designed variables for predictive modeling of Schonlau’s data set. Yongqiang

Zhang developed a method named recursive data mining (RDM) that is based on

the simple but powerful model of cognition called a conceptor [135]. RDM recur-

sively mines a string of symbols by finding frequent patterns, encoding them with

unique symbols, and rewriting the string using this new coding. He used recursive

data mining to characterize the structure and high-level symbols in user signatures

and the monitored sessions.

In recursive data mining method, the input is encoded into symbols and then

mined for dominant patterns. Dominant patterns are then assigned new codes that

are then used to generate the data representation of a higher level. The input is

thus recursively mined until no new dominant pattern exists. During the recursive

mining, we generate several features that will be used to form the user’s signature

profile and will be compared to the features of monitored string. The result of this

RDM technique was sixteen variables that could be merged with the text mining

188

variables.

In addition to the 9 text mining variables, we also utilized the first 16 variable

from the Communal Intrusion Detection Technique of RDM. Figure B.1 illustrates

the scaled values of these variables with respect to the output; this is the same

analysis that we performed with the text mining variables in Figure 4.2. The output

is again shown in the last column, and variables 1-25 are shown in th preceding

columns. The first 9 variables are the text mining variables, and the remaining 16

variables are the RDM variables.

Figure B.1: Matrix plot of combined variables

The first variable in particular demonstrates predictive power, illustrating a

clear direct correlation with the output. This is a text mining variable, “new”,

which is a 0 for any tuples that do not contain a new command never seen from

a particular user and 1 if a new command is seen. A more descriptive method

for representing this characteristic is to count the number of new commands. For

example, in a tuple of 100 commands, it is probably not unusual to see one or two

new commands, however some of the tuples contained 100 new commands! This

is obviously a function of how the dataset was created (by inserting another user’s

data and not attempting to mimic and intruder). Using this variable alone as a

prediction measure actually performs comparably with Schonlau’s xu value from

the uniqueness algorithm. The xu variable can be seen as the 9th column in Figure

189

B.1.

It is also of value to analyze the correlation that exists between variables,

often identifying some of the “cousin” features that may be redundant. Within the

text mining variables there is almost a perfect correlation that exists between the

second and seventh variables; both of these variables involve the presence of unusual

commands. Variable 2, “%Unix”, captures the percentage of commands that are

Unix. Variable 7, “foreign”, captures the number of commands never seen before

from the entire population of users. These are often non-Unix commands, resulting

in the correlation.

Figure B.2: Correlation of combined variables

The most valuable analysis that is evident from Figure B.2 is the minimal cor-

relation between the text mining variables and the RDM variables. This minimal

correlation indicates that combining these two preprocessing techniques should re-

sult in a synergistic effect, essentially outperforming the ROC convex hull (ROCCH)

[56]. The ROCCH is the best operating point when considering the same False

Positive tolerance for two classification systems. The goal is to combine systems

somehow to exceed this ROCCH. Figure B.5 illustrates exactly this in a cartoon

diagram.

After analyzing the fundamental statistics of the combined set of variables,

we explored the predictive power of each variable set and the combined set. The

learning machine utilized was Rosipal’s Kernel Partial Least Squares (K-PLS) [124].

190

Utilizing a gaussian kernel element, choosing an appropriate value for σ was neces-

sary. Through trial and error we found σ values of 1,2,or 3 typically worked best.

Similar to the text mining analysis discussed in section 4.5, the data was split

into 4000 training tuples and 1000 testing tuples. The nine text mining variables

(variables 1-9) achieve an area under the curve (AUC) of .944 utilizing the KPLS

method. The sixteen RDM variables achieved and AUC of .915 (variables 10-25).

Combining these two techniques achieves an AUC of .979. These results are shown

in Figure B.3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

FALSE POSITIVE

T
R

U
E

 P
O

S
IT

IV
E

Vars 1-9, AUC =.944 Vars 10-25, AUC=.915 combined, AUC=.979

Figure B.3: ROC curve illustrating synergy from combination

The ROCCH of the subordinate curves would set almost directly on the curve

of the text mining variables. There is obvious information that the learning machine

gleans when combining these sets of variables that is not apparent from either of

the sets when considered independently.

Combining sets of variates is a field that has been explored for many years,

with much of the original work performed by Hotelling almost 75 years ago [78]. In

the advent of learning machines, combinations of multiple classifiers is a term often

mentioned. However, exploring the underlying statistics and illustrating the power

of the combination through synergistic ROC curves is a novel concept. Future work

in this field involves exploring the theoretical roots of what creates synergy when

191

combining two sets of variables.

B.3 Defining and Striving for Synergy

These next sections involve developing techniques in creating synergistic com-

binations of variables from Schonlau’s dataset. It is the preprocessing of the data

that sets the stage for a good or bad prediction model. During initial work with this

data, our goal involved building combinations of classification systems that when

combined exceeded the capabilities of either system alone - creating synergy. The

measure of synergy comes from the analysis of each system’s Receiver Operating

Characteristic (ROC) curve and the ROC curve of the combined system. Fawcett

and Provost explored combining multiple classification systems through the analysis

of the ROC curves. Their research emphasized achieving optimality by operating

on the convex hull produced by the ROC curves of the component systems, referred

to as the ROCCH [56]. This research proposes that there is an optimum beyond the

convex hull. By combining orthogonal sets of variables, synergy occurs.

A common yardstick to measure a binary classification system is the area un-

der the ROC curve. The ROCCH of several classification systems is simply the

curve representing the points of the greatest true positive ratings (from the compo-

nent systems) for every possible false positive rating. If a combined classification

system exceeds the ROCCH, it will inherently have a greater AUC and represent a

synergistic classification system.

The below illustration is a cartoon sketch of a superior ROC curve that gains

synergy from component systems.

One approach towards solving the optimal classification technique of the car-

toon in Figure 1 is to determine simply where on the convex hull of the component

systems there is an acceptable operating point. If cost prohibits multiple prepro-

cessing techniques, this could perhaps be the best solution. However, when multiple

preprocessing techniques are available, the prediction modeling discussed here apply.

The relevance of this work involves managing the selection of multiple pre-

processing techniques or multiple sets of variables. This discussion is not about

sensitivity analysis of individual variables; this discussion involves determining the

192

1

1

An overall
combined
classification
system that
generates a
synergistic curve
from component
systems.

T
R

U
E

 P
O

S
IT

IV
E

FALSE POSITIVE

Convex hull of
component
systems.

Figure B.4: Cartoon example of synergistic ROC curve

significance of a set of variables. There could be an instance when an organiza-

tion must decide amongst several preprocessing systems or sets of variables. Cost,

often measured in memory space or processing speed, may constrain the number

of variable sets that an IDS can manage. These techniques provide quantitative

and graphical techniques to illustrate the value of a set of variables. Decision mak-

ers who utilize these techniques in analyzing variable sets will provide themselves

with improved opportunity for a successful IDS that operates as a superior binary

classification system.

B.4 Orthogonal Preprocessing

The first step in any prediction modeling effort is determining how to prepro-

cess the raw data. Since data preprocessing is often subjective and involves the data

mining creativity of the researchers, it is difficult to quantify how to capture two

or more orthogonal preprocessing techniques from the same set of data. From a se-

mantic point of view, orthogonal preprocessing techniques occur by mining the same

data set with different intentions. For example, there are two orthogonal prepro-

cessing techniques explained in this report: text mining and recursive data mining.

The underlying intentions behind the text mining involved describing a user’s be-

havior by collecting statistics based upon both individual user and group command

frequency, type, and popularity in many different manners and combinations. The

underlying intentions of the recursive data mining involved detecting patterns of

command usage for the purpose of identifying intruders and author identification

193

from the same data set [135]. These two preprocessing techniques significantly differ

with regard to intended use, however they provide a measurement for common data.

These two preprocessing techniques also demonstrate orthogonality, which will be

shown later.

B.4.1 Analyzing The Text Mining Variables and RDM Variables

The text mining variables and RDM variables capture very different behavior

involving the same data. The text mining variables focus on command types and

the presence or absence of commands typically used by a particular user. The

RDM variables represent patterns that exist within the data, and these patterns are

relatively unique for each user, providing a measure of authenticity.

We observed good prediction modeling from both of these preprocessing tech-

niques utilizing Rosipal’s KPLS as a learning machine [124]. In an effort to maintain

consistency and a basis for comparison, we conducted all of our prediction model-

ing with this learning machine. Since both techniques performed well for the same

dataset, combining these variable sets seemed logical. Utilizing the area under the

ROC curve (AUC) as a measure of performance, the combination of these variable

sets achieved a noticeable improvement, shown in Figure B.5. The ROC curve of

the combined variables exceeds the ROCCH of the component systems, illustrating

synergy.

This synergy further encouraged the hypothesis that the two preprocessing

techniques utilized possessed orthogonality. However, finding a measure of orthog-

onality would be necessary. There are two techniques utilized to determine this

measure of orthogonality: the first technique involves analyzing the correlation that

exists between the associated principal components of each set (ie, calculate the

correlation of the text mining 1st principal component against the RDM 1st princi-

pal component, and the 2nd principal components, etc.) and the second technique

exercised canonical correlation analysis.

B.4.1.1 Principal Components Analysis for Orthogonality

Principal components are a linear combination of the variables such that the

1st linear combination, or 1st principal component, possesses the maximum amount

194

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

FALSE POSITIVE

T
R

U
E

 P
O

S
IT

IV
E

Vars 1-9, AUC =.944 Vars 10-25, AUC=.915 combined, AUC=.979

Figure B.5: Experimental results illustrating synergistic combination

of variance while remaining uncorrelated with the remaining principal components.

Principal components analysis involves the decomposition of the correlation matrix;

see [85] for a more detailed explanation.

Let ρi,j represent the correlation between the ith principal component of the

text mining variables and the jth principal component of the recursive data mining

variables. If the respective principal components of these variable sets presented

a low correlation (| ρi,j |< .5), especially for principal components that represent

greater that 10% of the variance, then we consider these variable sets orthogonal

and expect synergy from the combination of the variables. The color correlation

plot of the first three text mining principal components and the first three RDM

principal components is shown in Figure B.6.

In an effort to create a non-synergistic combination, we compared the principal

components of a subset of variables from the text mining variables against the

principal components from the entire set of text mining variables. As one could

expect based upon this experiment, the principal components demonstrated a high

correlation, where | ρi,j |> .8 in some cases. For this example, the ROC curve of

the combination sat almost directly on top of the ROCCH of the two component

systems.

195

Figure B.6: Color correlation of first 3 principal components between text
mining variables and RDM variables

Although lower correlations between principal components of different variable

sets provided an indication for orthogonality, it is possible that high correlations

could result from two data sets that create synergy when combined. If there are

rogue variables that create a high degree of variance within a data set but provide

minimal predictive power, these variables will carry a strong weight in the principal

components. If both sets of variables have such a rogue variable, and these rogue

variables correlate for some reason, high correlation could result between principal

components of orthogonal variable sets. For this reason, it is important to always

Mahalanobis scale (normalize data, subtracting the sample mean and dividing by

the sample standard deviation) data first and compare the weights (coefficients)

that exist in the linear combinations that represent the scores for the principal com-

ponents. If these weights strongly favor these rogue type variables, further analysis

of the orthogonality is necessary. Another technique to examine orthogonality is

canonical correlation analysis.

B.4.1.2 Canonical Correlation Analysis for Orthogonality

Canonical correlation analysis is multivariate statistical technique designed for

comparing two sets of variables. The background for this technique is discussed in

196

section 2.2.1.2.

Similar to principal components analysis, the first several canonical corre-

lations provide the most significant information. We observed the 1st canonical

correlation between the text mining variables and the RDM variables to be .699,

which would be high when considering two variables. However, we observed synergy

through this combination. Through our experimental results, we observed synergy

for when the absolute value of the first canonical correlations was generally lower

than .8.

B.5 Experimental Results for Orthogonal Analysis

There were three cases examined in the experiment performed with the prin-

cipal components. In regard to the numbering of the variables, recall that variables

1-9 are the text mining variables and variables 10-25 are the RDM variables. We

created three different cases: Case 1 compared variables 1,7,8,9 against variables

1-9. This is an instance where one of the variable sets is a subset of the other vari-

able set. High correlation between the principal components of each variable set is

expected, and this is what occurred.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

FALSE POSITIVE

T
R

U
E

 P
O

S
IT

IV
E

Vars 1-9, AUC=.881

Vars 1,7,8,9, AUC=.898

combined, AUC=.914

Figure B.7: ROC curves and correlation matrix from Case 1

The ROC curves in Figure B.7 illustrate the performance of Rosipal’s KPLS

197

when the features are the principal components of the variables indicated in the

legend. For example, for the line representing variables 1,7,8,9, this ROC curve

is a result of using the first three principal components of these four variables as

features. For the ROC curve representing the combined model, this simply involved

concatenating the three principle components from each variable set to create a

prediction model with six features. The purpose of analyzing the combined model

is to determine if the combination creates synergy. The idea with Case 1 is to

show that if the principle components between two sets of variables show a high

correlation, the combination of these variable sets will not produce a synergistic

ROC curve. As a matter of fact, this combination produced an ROC curve that sat

almost directly on the ROCCH.

Case 2 compared variables 1,7,8,9 against variables 2-6. This case involved all

text mining variables, but the variable sets were mutually exclusive (ie, the same

variable was not in both sets). The results of this case are shown in Figure B.8.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

FALSE POSITIVE

TR
U

E
 P

O
S

IT
IV

E

Vars 1,7,8,9, AUC=.898

Vars 2,3,4,5,6, AUC=.760

combined, AUC=.931

Figure B.8: ROC curves and correlation matrix from Case 2

Case 2 is beginning to show synergy. Notice that the correlation of the variables

is lower, and the ROC curve of the combined principle components lie noticeably

outside of the ROCCH.

Case 3 compared the text mining variables versus the RDM variables, or vari-

198

ables 1-9 against variables 10-25. Figure B.9 illustrates the results from this case.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

FALSE POSITIVE

T
R

U
E

 P
O

S
IT

IV
E

Vars 1-9, AU =.881

Vars 10-25, AUC=.879

combined, AUC=.9209

Figure B.9: ROC curves and correlation matrix from Case 3

This case illustrates a noticeable increase in the ROC curve for the combined

principal components. The correlations between the principal components from each

set of variables is low; the highest correlation is .34.

The canonical correlation analysis also provided encouraging results. Since

the 1st canonical correlation always has the largest correlation value, a low value for

this 1st canonical correlation represents orthogonal sets of variables which should

produce a synergistic combination. Analyzing the canonical correlation for each

of the same three cases considered for principal components analysis provided the

following results:

Table B.2: Canonical Correlation Analysis Results

1st Canon-
ical Corre-
lation

2nd
Canonical
Correla-
tion

3rd
Canonical
Correla-
tion

Case 1 .6999 .5597 .4536
Case 2 1 1 1
Case 3 .3941 .2971 .1537

199

Both case 1 and case 3 demonstrated synergy when combined. Case 2 did not

demonstrate synergy, as expected, because one set of variables was simply a subset

of the other set of variables. Given two sets of variables that predict reasonably

well (AUC ¿ .7), combining these sets of variables prior to prediction modeling will

create synergistic improvement given a low canonical correlation between the sets

of variables.

The analysis of synergy between sets of variables provides a method to evaluate

the contribution that a set of variables provides to a prediction machine. This

research directly relates to sensitivity analysis and provides a platform to summarize

results when multiple sets of variables exist.

Much of today’s research in intrusion detection systems involves examining

multiple intrusion detection systems, hybrid systems, and ensemble methods. When

collecting and considering a combination of agents that will provide intrusion de-

tection or prevention, analyzing the synergy of the variable sets provides a platform

for deciding which agents provide redundant performance. In addition to providing

a higher level of analysis for combinations of multiple classifiers involving intrusion

detection, the techniques previously discussed could extend to almost any classi-

fication problem involving multiple sets of variables. The ROC curve analysis is

particularly applicable to binary classifications problems. Security problems in gen-

eral can always be modeled as a binary classification problem, and the improvement

of our society’s security posture is an endeavor worthy of continued pursuit.

APPENDIX C

IMPLEMENTATION OF GENETIC ALGORITHM IN

PERL

###

Genetic Algorithm written by

Paul F. Evangelista

DEC 04

#

This program utilizes a genetic algorithm

to find uncorrelated subspaces by measuring

their principal component correlation (across

subspaces)

##

sub shuffle #Randomly shuffle any given array

{

my $array = shift;

my $i;

for ($i=@$array;--$i;)

{

my $j = int rand ($i+1);

next if $i == $j;

@$array[$i,$j] = @$array[$j,$i];

}

}

sub fitness { #Calculates fitness of each member utilizing Analyze

my @rand_chrom = @_;

our $gen_size;

my ($i,$k,@array,@subset_1,@subset_2,@subset_3,$call,@fitness);

for ($k=0;$k<$gen_size;$k++) {

@array = split /\t/,$rand_chrom[$k];

200

201

#print "chrom$k: @array\n";

for ($i=0;$i<9;$i++) {

#creates subsets and eventually writes them to file

$subset_1[$i] = $array[$i];

$subset_2[$i] = $array[$i+9];

if ($i<8) {

$subset_3[$i]=$array[$i+18];

}

}

@subset_1 = sort{$a<=>$b} @subset_1;

@subset_2 = sort{$a<=>$b} @subset_2;

@subset_3 = sort{$a<=>$b} @subset_3;

open(set_1,">set_1.txt");

open(set_2,">set_2.txt");

open(set_3,">set_3.txt");

for ($i=0;$i<9;$i++) {

print set_1 "$subset_1[$i]\n";

print set_2 "$subset_2[$i]\n";

$subset_2[$i] = $array[$i+9];

if ($i<8) {

print set_3 "$subset_3[$i]\n";

}

}

#$call = "sh W_SVM.bashrc > details.txt";

$call = "sh W_distance.bashrc > details.txt";

system $call;

open(fit,"W.txt");

$fitness[$k] = <fit>;

$fitness[$k] = -1*$fitness[$k]; ################## FOR MAX W

}

return @fitness;

}

sub sel_breed { #receives array of fitness values

202

my @input = @_;

my $length = @input;

my ($i,@prob,$rn,$j,@sel_gen,$comp,@sort_input,@new_input);

my $cum_prob =0;

my $sum = 0;

my @new_input = sort{$a<=>$b} @input;

$new_input[$length] = $new_input[$length-1] + 1;

for ($i=0;$i<$length;$i++) {

#creates sort input which is an index array to original input in sorted order

$comp = 0;

for ($j=0;$j<$length;$j++) {

if ($input[$j] == $new_input[$i]) {

$sort_input[$i] = $j;

}

}

}

my $maxer = 0;

for ($i=0;$i<$length;$i++) { #find max fitness of current generation

if ($new_input[$i] > $maxer) {

$maxer = $new_input[$i];

}

}

$maxer = $maxer+.1;

for ($i=0;$i<$length;$i++) { #Create probabilities for selection

$sum = $sum + ($maxer - $new_input[$i]);

}

for ($i=0;$i<$length;$i++) { #Create probabilities for selection

$prob[$i] = ($maxer-$new_input[$i])/$sum;

#adjusts probability for minimization problem

$cum_prob = $cum_prob + $prob[$i];

$prob[$i] = $cum_prob;

print "$sort_input[$i] $new_input[$i] $prob[$i]\n";

}

for ($i=0;$i<$length-1;$i++) { #Select next generation

$rn = rand;

203

$prob[$length] = 1.1;

for ($j=0;$j<$length;$j++) {

if ($j==0) {

if ($rn > 0 && $rn <= $prob[$j]) {

$sel_gen[$i] = $sort_input[$j];

last;

}

}

if ($j>0) {

if ($rn > $prob[$j-1] && $rn <= $prob[$j]) {

$sel_gen[$i] = $sort_input[$j];

last;

}

}

}

#print "rand#: $rn index: $sel_gen[$i]\n";

}

$sel_gen[$length-1] = $sort_input[0]; #elitist selection

print "Elite member: $sort_input[0] fitness: $input[$sort_input[0]]\n";

return @sel_gen;

}

our @ordered_array;

for ($i=0;$i<26;$i++) {

$ordered_array[$i] = $i+1;

}

for ($i=0;$i<50;$i++) { #create a random number of initial members

@array = @ordered_array;

shuffle(\@array);

$rand_chrom[$i] = join "\t",@array;

}

##

our $no_gens = 30; #Experimental Control parameters

204

our $gen_size = 30;

$worst_fitness = 0;

##

@current_chrom = @rand_chrom;

for ($zz=0;$zz<$no_gens;$zz++) {

@pop_fitness = fitness(@current_chrom);

$best_fitness = 1;

#best fitness will range from 0 to 1, where 0 is best

print "fitness of generation:\n";

for ($i=0;$i<$gen_size;$i++) {

print " $pop_fitness[$i]\n";

#print "$current_chrom[$i]\n";

if ($pop_fitness[$i] < $best_fitness) {

$best_fitness = $pop_fitness[$i];

$fittest = $current_chrom[$i];

}

if ($pop_fitness[$i] > $worst_fitness) {

$worst_fitness = $pop_fitness[$i];

$worst = $current_chrom[$i];

}

}

print "CURRENT BEST FITNESS: $best_fitness\nFITTEST CHROMOSOME: $fittest\n";

print "\n";

@breeders = sel_breed(@pop_fitness);

@array = @ordered_array;

shuffle(\@array); #insert two immigrants for worst performers

$curr_chrom[$breeders[$gen_size-3]] = join "\t",@array;

shuffle(\@array);

$curr_chrom[$breeders[$gen_size-2]] = join "\t",@array;

print "the breeders (elitist is last one):\n @breeders\n";

$elitist = $breeders[$gen_size-1];

205

$elite_chrom = $current_chrom[$elitist];

print "elite at 158: $elite_chrom\n";

pop(@breeders);

shuffle(\@breeders);

$k=0;

$l=0;

for ($i=0;$i<($gen_size-1);$i++) {

$rn = rand;

if ($rn > .4) {

$crossover[$k] = $i;

$k++;

}

if ($rn <= .4) {

$new_chrom[$l] = $current_chrom[$breeder[$i]];

$l++;

}

}

shuffle(\@crossover);

$x_over_pu = $l;

$no_xover = $k;

for ($i=0;$i<$no_xover;$i=$i+2) {

#print "creating offspring from parents $crossover[$i] and $crossover[$i+1]\n";

@parent_1 = split /\t/,$current_chrom[$crossover[$i]];

@parent_2 = split /\t/,$current_chrom[$crossover[$i+1]];

$length = @array;

$c_over_point = int(@array/2);

for ($j=0;$j<$c_over_point;$j++) {

$child_1[$j] = $parent_1[$j];

$child_2[$j] = $parent_2[$j];

}

for ($j=$c_over_point;$j<$length;$j++) {

206

$child_1[$j] = $parent_2[$j];

$child_2[$j] = $parent_1[$j];

}

$m=0;

$n=0;

for ($j=0;$j<$length;$j++) {

$dup_1[$j] = 0;

$dup_1[$j] = 0;

$used_1 = 0;

$used_2 = 0;

for ($l=0;$l<$length;$l++) {

#checks to see what integers went unused and assigns them to an "avail" array

if ($child_1[$l] == $j+1) {

$used_1 = 1;

}

if ($child_2[$l] == $j+1) {

$used_2 = 1;

}

}

if ($used_1 == 0) {

$avail_1[$m] = $j+1;

$m++;

}

if ($used_2 == 0) {

$avail_2[$n] = $j+1;

$n++;

}

}

$m=0;

$n=0;

for ($j=0;$j<$c_over_point;$j++) {

for ($l=$c_over_point;$l<$length;$l++) {

if ($child_1[$j] == $child_1[$l]) {

$child_1[$j] = $avail_1[$m];

$m++;

}

if ($child_2[$j] == $child_2[$l]) {

$child_2[$j] = $avail_2[$n];

207

$n++;

}

}

}

@check1 = sort{$a<=>$b} @child_1;

@check2 = sort{$a<=>$b} @child_2;

#print "child_1 sorted after check:\n @check1\n";

#print "child_2 sorted after check:\n @check2\n";

$new_chrom[$x_over_pu] = join "\t", @child_1;

$x_over_pu++;

$new_chrom[$x_over_pu] = join "\t", @child_2;

$x_over_pu++;

}

print "\n\n";

$size = @new_chrom;

print "size should be gen_size: $size\n";

for ($l=0;$l<$gen_size-1;$l++) { #MUTATION

for ($k=0;$k<$length;$k++) {

$rn = rand;

if ($rn < .01) {

#print "chrom before mutation:\n $new_chrom[$l]\n";

@array = split /\t/, $new_chrom[$l];

$mute = $array[$k];

$mute_a = $array[$length-$k];

$array[$k] = $mute_a;

$array[$length-$k] = $mute;

$new_chrom[$l] = join "\t", @array;

#print "chrom after mutation:\n $new_chrom[$l]\n";

}

}

#print "$new_chrom[$l]\n\n";

$current_chrom[$l] = $new_chrom[$l];

}

$current_chrom[$gen_size-1] = $elite_chrom;

208

print "elitist at end of program: \n $current_chrom[$gen_size-1]\n";

}

print "Worst fitness is: $worst_fitness\n\n$worst\n\n";

print "Best fitness is : $best_fitness\n\nFittest chromosome:\n$fittest\n";

open (worst_set1,">worst_set1.txt");

open (worst_set2,">worst_set2.txt");

open (worst_set3,">worst_set3.txt");

open (best_set1,">best_set1.txt");

open (best_set2,">best_set2.txt");

open (best_set3,">best_set3.txt");

@worst_sets = split /\t/,$worst;

@best_sets = split /\t/,$fittest;

@length = @worst_sets;

for ($i=0;$i<$length;$i++) {

if ($i<9) {

print worst_set1 "$worst_sets[$i]\n";

print best_set1 "$best_sets[$i]\n";

}

if ($i<18 && $i>=9) {

print worst_set2 "$worst_sets[$i]\n";

print best_set2 "$best_sets[$i]\n";

}

if ($i>=18) {

print worst_set3 "$worst_sets[$i]\n";

print best_set3 "$best_sets[$i]\n";

}

}

open (GAout, ">GAout.txt");

print GAout "Worst fitness is: $worst_fitness\n\n$worst\n\n";

209

print GAout "Best fitness is : $best_fitness\n\nFittest chromosome:\n$fittest\n";

########## END OF MAIN LOOP ###################################

print "Worst fitness is: $worst_fitness\n\n$worst\n\n";

print "Best fitness is : $best_fitness\n\nFittest chromosome:\n$fittest\n";

@array = split /\t/,$fittest;

for ($i=0;$i<9;$i++) { #creates subsets and eventually writes them to file

$subset_1[$i] = $array[$i];

$subset_2[$i] = $array[$i+9];

if ($i<8) {

$subset_3[$i]=$array[$i+18];

}

}

@subset_1 = sort{$a<=>$b} @subset_1;

@subset_2 = sort{$a<=>$b} @subset_2;

@subset_3 = sort{$a<=>$b} @subset_3;

open(set_1,">set_1.txt");

open(set_2,">set_2.txt");

open(set_3,">set_3.txt");

for ($i=0;$i<9;$i++) {

print set_1 "$subset_1[$i]\n";

print set_2 "$subset_2[$i]\n";

$subset_2[$i] = $array[$i+9];

if ($i<8) {

print set_3 "$subset_3[$i]\n";

}

}

	United States Military Academy
	USMA Digital Commons
	Winter 12-29-2006

	The Unbalanced Classification Problem: Detecting Breaches in Security
	Paul Evangelista
	Recommended Citation

	dis_root.dvi

