16 research outputs found

    Supervised nonlinear spectral unmixing using a post-nonlinear mixing model for hyperspectral imagery

    Get PDF
    This paper presents a nonlinear mixing model for hyperspectral image unmixing. The proposed model assumes that the pixel reflectances are nonlinear functions of pure spectral components contaminated by an additive white Gaussian noise. These nonlinear functions are approximated using polynomial functions leading to a polynomial postnonlinear mixing model. A Bayesian algorithm and optimization methods are proposed to estimate the parameters involved in the model. The performance of the unmixing strategies is evaluated by simulations conducted on synthetic and real data

    Correntropy Maximization via ADMM - Application to Robust Hyperspectral Unmixing

    Full text link
    In hyperspectral images, some spectral bands suffer from low signal-to-noise ratio due to noisy acquisition and atmospheric effects, thus requiring robust techniques for the unmixing problem. This paper presents a robust supervised spectral unmixing approach for hyperspectral images. The robustness is achieved by writing the unmixing problem as the maximization of the correntropy criterion subject to the most commonly used constraints. Two unmixing problems are derived: the first problem considers the fully-constrained unmixing, with both the non-negativity and sum-to-one constraints, while the second one deals with the non-negativity and the sparsity-promoting of the abundances. The corresponding optimization problems are solved efficiently using an alternating direction method of multipliers (ADMM) approach. Experiments on synthetic and real hyperspectral images validate the performance of the proposed algorithms for different scenarios, demonstrating that the correntropy-based unmixing is robust to outlier bands.Comment: 23 page

    Spectral unmixing of Multispectral Lidar signals

    Get PDF
    In this paper, we present a Bayesian approach for spectral unmixing of multispectral Lidar (MSL) data associated with surface reflection from targeted surfaces composed of several known materials. The problem addressed is the estimation of the positions and area distribution of each material. In the Bayesian framework, appropriate prior distributions are assigned to the unknown model parameters and a Markov chain Monte Carlo method is used to sample the resulting posterior distribution. The performance of the proposed algorithm is evaluated using synthetic MSL signals, for which single and multi-layered models are derived. To evaluate the expected estimation performance associated with MSL signal analysis, a Cramer-Rao lower bound associated with model considered is also derived, and compared with the experimental data. Both the theoretical lower bound and the experimental analysis will be of primary assistance in future instrument design

    Nonlinear spectral unmixing of hyperspectral images using Gaussian processes

    Get PDF
    This paper presents an unsupervised algorithm for nonlinear unmixing of hyperspectral images. The proposed model assumes that the pixel reflectances result from a nonlinear function of the abundance vectors associated with the pure spectral components. We assume that the spectral signatures of the pure components and the nonlinear function are unknown. The first step of the proposed method consists of the Bayesian estimation of the abundance vectors for all the image pixels and the nonlinear function relating the abundance vectors to the observations. The endmembers are subsequently estimated using Gaussian process regression. The performance of the unmixing strategy is evaluated with simulations conducted on synthetic and real data

    Bayesian nonlinear hyperspectral unmixing with spatial residual component analysis

    Get PDF
    This paper presents a new Bayesian model and algorithm for nonlinear unmixing of hyperspectral images. The model proposed represents the pixel reflectances as linear combinations of the endmembers, corrupted by nonlinear (with respect to the endmembers) terms and additive Gaussian noise. Prior knowledge about the problem is embedded in a hierarchical model that describes the dependence structure between the model parameters and their constraints. In particular, a gamma Markov random field is used to model the joint distribution of the nonlinear terms, which are expected to exhibit significant spatial correlations. An adaptive Markov chain Monte Carlo algorithm is then proposed to compute the Bayesian estimates of interest and perform Bayesian inference. This algorithm is equipped with a stochastic optimisation adaptation mechanism that automatically adjusts the parameters of the gamma Markov random field by maximum marginal likelihood estimation. Finally, the proposed methodology is demonstrated through a series of experiments with comparisons using synthetic and real data and with competing state-of-the-art approaches
    corecore