1,496 research outputs found

    Analysis on Leaf Disease Identification using Classification Models

    Get PDF
    The Researchers have all been aware of the rising food demand brought on by the population's rapid growth and the high mortality rates caused by medical developments. One of the many farming practises where computerization in agriculture has made significant progress is the identification of numerous plant diseases. The focus of almost every nation has shifted towards mechanising agriculture in order to achieve accuracy and precision and to meet the continually increasing demand for food. Identification of plant diseases is one of the most difficult tasks in agriculture and has a significant effect on crop yield. Artificial intelligence has recently begun to concentrate on smart agriculture science.Ground-breaking methods in plant science through deep learning and hyperspectral imaging to locate and recognise plant diseases has been addressed in this study

    Implementation Strategy of Tomato Plant Disease Detection using Optimized Feature Extraction Method

    Get PDF
    Tomato plants normally have a single growing season, during which they develop, bear fruit, and then perish. The species first appeared in Western South America, Mexico, and Central America. In the sixteenth century, they were brought to various regions. They produce self-pollinating yellow blooms. After being pollinated, the blooms turn into fruits, which, depending on the type, might be red, yellow, green, or even purple. Tomatoes are a well-liked element in many recipes, including salads, sauces, and soups. They are high in vitamins A and C, potassium, and antioxidants. They are afflicted by several illnesses that can seriously harm the plant and lower crop output. These illnesses were brought on by a variety of minor inadequacies in the soil, air, and the major. These diseases are produced by a range of mineral deficiencies in the soil, and the air, and their primary causes include insects and fungi. We discovered that machine learning is a potential avenue for detecting these diseases before they spread to the plant. As a result, we thought about using Feature Extraction Methods to optimize the dat

    Simple but Effective Unsupervised Classification for Specified Domain Images: A Case Study on Fungi Images

    Full text link
    High-quality labeled datasets are essential for deep learning. Traditional manual annotation methods are not only costly and inefficient but also pose challenges in specialized domains where expert knowledge is needed. Self-supervised methods, despite leveraging unlabeled data for feature extraction, still require hundreds or thousands of labeled instances to guide the model for effective specialized image classification. Current unsupervised learning methods offer automatic classification without prior annotation but often compromise on accuracy. As a result, efficiently procuring high-quality labeled datasets remains a pressing challenge for specialized domain images devoid of annotated data. Addressing this, an unsupervised classification method with three key ideas is introduced: 1) dual-step feature dimensionality reduction using a pre-trained model and manifold learning, 2) a voting mechanism from multiple clustering algorithms, and 3) post-hoc instead of prior manual annotation. This approach outperforms supervised methods in classification accuracy, as demonstrated with fungal image data, achieving 94.1% and 96.7% on public and private datasets respectively. The proposed unsupervised classification method reduces dependency on pre-annotated datasets, enabling a closed-loop for data classification. The simplicity and ease of use of this method will also bring convenience to researchers in various fields in building datasets, promoting AI applications for images in specialized domains

    Weakly Supervised Localization using Deep Feature Maps

    Full text link
    Object localization is an important computer vision problem with a variety of applications. The lack of large scale object-level annotations and the relative abundance of image-level labels makes a compelling case for weak supervision in the object localization task. Deep Convolutional Neural Networks are a class of state-of-the-art methods for the related problem of object recognition. In this paper, we describe a novel object localization algorithm which uses classification networks trained on only image labels. This weakly supervised method leverages local spatial and semantic patterns captured in the convolutional layers of classification networks. We propose an efficient beam search based approach to detect and localize multiple objects in images. The proposed method significantly outperforms the state-of-the-art in standard object localization data-sets with a 8 point increase in mAP scores

    Advances in Hyperspectral Image Classification Methods for Vegetation and Agricultural Cropland Studies

    Get PDF
    Hyperspectral data are becoming more widely available via sensors on airborne and unmanned aerial vehicle (UAV) platforms, as well as proximal platforms. While space-based hyperspectral data continue to be limited in availability, multiple spaceborne Earth-observing missions on traditional platforms are scheduled for launch, and companies are experimenting with small satellites for constellations to observe the Earth, as well as for planetary missions. Land cover mapping via classification is one of the most important applications of hyperspectral remote sensing and will increase in significance as time series of imagery are more readily available. However, while the narrow bands of hyperspectral data provide new opportunities for chemistry-based modeling and mapping, challenges remain. Hyperspectral data are high dimensional, and many bands are highly correlated or irrelevant for a given classification problem. For supervised classification methods, the quantity of training data is typically limited relative to the dimension of the input space. The resulting Hughes phenomenon, often referred to as the curse of dimensionality, increases potential for unstable parameter estimates, overfitting, and poor generalization of classifiers. This is particularly problematic for parametric approaches such as Gaussian maximum likelihoodbased classifiers that have been the backbone of pixel-based multispectral classification methods. This issue has motivated investigation of alternatives, including regularization of the class covariance matrices, ensembles of weak classifiers, development of feature selection and extraction methods, adoption of nonparametric classifiers, and exploration of methods to exploit unlabeled samples via semi-supervised and active learning. Data sets are also quite large, motivating computationally efficient algorithms and implementations. This chapter provides an overview of the recent advances in classification methods for mapping vegetation using hyperspectral data. Three data sets that are used in the hyperspectral classification literature (e.g., Botswana Hyperion satellite data and AVIRIS airborne data over both Kennedy Space Center and Indian Pines) are described in Section 3.2 and used to illustrate methods described in the chapter. An additional high-resolution hyperspectral data set acquired by a SpecTIR sensor on an airborne platform over the Indian Pines area is included to exemplify the use of new deep learning approaches, and a multiplatform example of airborne hyperspectral data is provided to demonstrate transfer learning in hyperspectral image classification. Classical approaches for supervised and unsupervised feature selection and extraction are reviewed in Section 3.3. In particular, nonlinearities exhibited in hyperspectral imagery have motivated development of nonlinear feature extraction methods in manifold learning, which are outlined in Section 3.3.1.4. Spatial context is also important in classification of both natural vegetation with complex textural patterns and large agricultural fields with significant local variability within fields. Approaches to exploit spatial features at both the pixel level (e.g., co-occurrencebased texture and extended morphological attribute profiles [EMAPs]) and integration of segmentation approaches (e.g., HSeg) are discussed in this context in Section 3.3.2. Recently, classification methods that leverage nonparametric methods originating in the machine learning community have grown in popularity. An overview of both widely used and newly emerging approaches, including support vector machines (SVMs), Gaussian mixture models, and deep learning based on convolutional neural networks is provided in Section 3.4. Strategies to exploit unlabeled samples, including active learning and metric learning, which combine feature extraction and augmentation of the pool of training samples in an active learning framework, are outlined in Section 3.5. Integration of image segmentation with classification to accommodate spatial coherence typically observed in vegetation is also explored, including as an integrated active learning system. Exploitation of multisensor strategies for augmenting the pool of training samples is investigated via a transfer learning framework in Section 3.5.1.2. Finally, we look to the future, considering opportunities soon to be provided by new paradigms, as hyperspectral sensing is becoming common at multiple scales from ground-based and airborne autonomous vehicles to manned aircraft and space-based platforms

    Unsupervised Hyperbolic Representation Learning via Message Passing Auto-Encoders

    Get PDF
    Most of the existing literature regarding hyperbolic embedding concentrate upon supervised learning, whereas the use of unsupervised hyperbolic embedding is less well explored. In this paper, we analyze how unsupervised tasks can benefit from learned representations in hyperbolic space. To explore how well the hierarchical structure of unlabeled data can be represented in hyperbolic spaces, we design a novel hyperbolic message passing auto-encoder whose overall auto-encoding is performed in hyperbolic space. The proposed model conducts auto-encoding the networks via fully utilizing hyperbolic geometry in message passing. Through extensive quantitative and qualitative analyses, we validate the properties and benefits of the unsupervised hyperbolic representations. Codes are available at https://github.com/junhocho/HGCAE

    The ImageCLEF 2013 Plant Identification Task

    Get PDF
    International audienceThe ImageCLEF's plant identification task provides a testbed for a system-oriented evaluation of plant identification about 250 species trees and herbaceous plants based on detailed views of leaves, flowers, fruits, stems and bark or some entire views of the plants. Two types of image content are considered: SheetAsBackgroud which contains only leaves in a front of a generally white uniform background, and NaturalBackground which contains the 5 kinds of detailed views with unconstrained conditions, directly photographed on the plant. The main originality of this data is that it was specifically built through a citizen sciences initiative conducted by Tela Botanica, a French social network of amateur and expert botanists. This makes the task closer to the conditions of a real-world application. This overview presents more precisely the resources and assessments of task, summarizes the retrieval approaches employed by the participating groups, and provides an analysis of the main evaluation results. With a total of twelve groups from nine countries and with a total of thirty three runs submitted, involving distinct and original methods, this third year task confirms Image Retrieval community interest for biodiversity and botany, and highlights further challenging studies in plant identification
    • …
    corecore