
 
 

University of Birmingham

Unsupervised Hyperbolic Representation Learning
via Message Passing Auto-Encoders
Park, Jiwoong ; Cho, Junho; Chang, Hyung Jin; Choi, Jin Young

Document Version
Version created as part of publication process; publisher's layout; not normally made publicly available

Citation for published version (Harvard):
Park, J, Cho, J, Chang, HJ & Choi, JY 2021, Unsupervised Hyperbolic Representation Learning via Message
Passing Auto-Encoders. in Conference on Computer Vision and Pattern Recognition. IEEE.

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 11. May. 2021

https://research.birmingham.ac.uk/portal/en/publications/unsupervised-hyperbolic-representation-learning-via-message-passing-autoencoders(af65915e-fcda-41ec-b449-128d54515067).html


Unsupervised Hyperbolic Representation Learning
via Message Passing Auto-Encoders

Jiwoong Park*1 Junho Cho*1 Hyung Jin Chang2 Jin Young Choi1
1ASRI, Dept. of ECE., Seoul National University 2School of Computer Science, University of Birmingham

{ptywoong,junhocho,jychoi}@snu.ac.kr, h.j.chang@bham.ac.uk

Abstract

Most of the existing literature regarding hyperbolic em-
bedding concentrate upon supervised learning, whereas the
use of unsupervised hyperbolic embedding is less well ex-
plored. In this paper, we analyze how unsupervised tasks
can benefit from learned representations in hyperbolic
space. To explore how well the hierarchical structure of un-
labeled data can be represented in hyperbolic spaces, we
design a novel hyperbolic message passing auto-encoder
whose overall auto-encoding is performed in hyperbolic
space. The proposed model conducts auto-encoding the
networks via fully utilizing hyperbolic geometry in mes-
sage passing. Through extensive quantitative and qualita-
tive analyses, we validate the properties and benefits of the
unsupervised hyperbolic representations. Codes are avail-
able at https://github.com/junhocho/HGCAE.

1. Introduction
A fundamental problem of machine learning is learning

useful representations from high-dimensional data. There
are many supervised representation learning methods that
achieve good performances for downstream tasks [25, 22,
30, 60] on several data domains such as images and graphs.
In recent years, with the success of deep learning, various
large-scale real-world datasets have been collated [25, 24,
56, 49]. However, the larger these datasets and the closer
they are to the real world, the expense and effort required to
label the data increases proportionally. Thus, unsupervised
representation learning is an increasingly viable approach
to extract useful representation from real-world datasets.

Recently, many works [39, 40, 11, 16, 5, 1, 19] utilize
hyperbolic geometry [23] to learn representations by under-
standing the underlying nature of the data domains. It is well
known that complex networks contain latent hierarchies be-
tween large groups and the divided subgroups of nodes and

*equally contributed.

can be approximated as trees that grow exponentially with
their depth [23]. Based on this fact, previous works which
involve graphs [3, 38, 39, 40, 11, 36] showed the effective-
ness of learning representation using hyperbolic spaces (a
continuous version of trees) where distances increase expo-
nentially when moving away from the origin. More recently,
works [5, 27, 1] have been conducted which learn more
powerful representations via conducting message passing
(graph convolution) [12, 22, 54] in hyperbolic spaces.

In addition, it has been successfully shown that grafting
hyperbolic geometry onto computer vision tasks is promis-
ing [19]. They observed a high degree of hyperbolicity
[10] in the activations of image datasets obtained from pre-
trained convolutional networks. Also, it has been shown
that the hyperbolic distance between learned embeddings
and the origin of the Poincaré ball could be considered as a
measurement of the model’s confidence. Using these analy-
ses, [19] added a single layer of hyperbolic neural networks
[11] to deep convolutional networks and showed the bene-
fits of hyperbolic embeddings on few-shot learning and per-
son re-identification. Another work [28] also demonstrated
the suitability of hyperbolic embeddings on zero-shot learn-
ing. However, most of the existing hyperbolic representa-
tion learning works [19, 28, 5, 27, 1] mainly focus on a su-
pervised setting, and the effect of hyperbolic geometry on
unsupervised representation learning has not been explored
deeply so far [32, 15, 36].

In this paper, we explore the benefits of hyperbolic ge-
ometry to carry out unsupervised representation learning
upon various data domains. Our motivation is to learn high-
quality node embeddings of the graphs that are hierarchical
and tree-like without supervision via considering the geom-
etry of the embedding space. To do so, we present a novel
hyperbolic graph convolutional auto-encoder (HGCAE) by
combining hyperbolic geometry and message passing [12].
Every layer of HGCAE performs message passing in the hy-
perbolic space and its corresponding tangent space where
curvature values can be trained. This is primarily in con-
trast to the Poincaré variational auto-encoder (P-VAE) [32]
whose latent space is the Poincaré ball and conducts mes-



sage passing in Euclidean space. The HGCAE conducts
auto-encoding the graphs from diverse data domains, such
as images or social networks, in the hyperbolic space such
as the Poincaré ball and hyperboloid. To fully utilize hy-
perbolic geometry for representation learning, we adopt a
geometry-aware attention mechanism [16] when conduct-
ing message passing. Through extensive experiments and
analyses using the learned representation in the hyperbolic
latent spaces, we present the following observations on hi-
erarchically structured data:

• The proposed auto-encoder, which combines message
passing based on geometry-aware attention and hyper-
bolic spaces, can learn useful representations for down-
stream tasks. On various networks, the proposed method
achieves state-of-the-art results on node clustering and
link prediction tasks.

• Image clustering tasks can benefit from embeddings in
hyperbolic latent spaces. We achieve comparable results
to state-of-the-art image clustering results by learning
representations from the activations of neural networks.

• Hyperbolic embeddings of images, the results of unsuper-
vised learning, can recognize the underlying data struc-
tures such as a class hierarchy without any supervision of
ground-truth class hierarchy.

• We show that the sample’s hyperbolic distance from the
origin in hyperbolic space can be utilized as a criterion to
choose samples, therefore improving the generalization
ability of a model for a given dataset.

2. Related Works
Hyperbolic embedding of images. Khrulkov et al. [19]
validated hyperbolic embeddings of images via measur-
ing the degree of hyperbolicity of image datasets. Many
datasets such as CIFAR10/100 [24], CUB [56] and MiniIm-
ageNet [45] showed high degrees of hyperbolicity. In par-
ticular, the ImageNet dataset [47] is organized by following
the hierarchical structure of WordNet [35]. These observa-
tions suggest that hyperbolic geometry can be beneficial in
analyzing image manifolds by capturing not only semantic
similarities but also hierarchical relationships between im-
ages. Furthermore, Khrulkov et al. [19] empirically showed
that the distance between the origin and the image embed-
dings in the Poincaré ball can be regarded as the measure
of the model’s confidence. They observed that the samples
which are easily classified are located near the boundary,
while those more ambiguous samples lie near the origin
of the hyperbolic space. Recent works of hyperbolic image
embeddings [19, 28] add one or two layers of hyperbolic
layers [11] after Euclidean convolutional networks.
Graph auto-encoding via hyperbolic geometry. Some re-
cent works [15, 32, 51] attempted to auto-encode graphs

in hyperbolic space. Their models attempted to learn latent
representations in the hyperbolic space via grafting hyper-
bolic geometry onto a variational auto-encoder model [20].
[15, 32] encoded the node representation via message pass-
ing [22] in Euclidean space, then the encoded representation
was projected onto the hyperbolic space. Similar to these
concurrent models, our auto-encoder framework learns la-
tent node representations of the graph in hyperbolic latent
spaces. Differing from these models, our work considers
hyperbolic geometry throughout the auto-encoding process.
Each encoder and decoder layer of the proposed model con-
ducts message passing by utilizing geometry-aware atten-
tion in the hyperbolic space and its tangent space.

3. Hyperbolic Geometry
A real, smooth manifold M is a set of points x, that

is locally similar to linear space. At each point x ∈ M,
the tangent space at x, TxM, is a real vector space whose
dimensionality is same as M. A Riemannian manifold is
defined as a tuple (M, g) that is possessing metric tensor
gx : TxM × TxM → R on the tangent space TxM at
each point x ∈ M [43]. The metric tensor provides geo-
metric notions such as geodesic, angle and volume. There
exist mapping between the manifold and the tangent space:
exponential map and logarithmic map. The exponential map
expx : TxM→M projects the vector on the tangent space
TxM back to the manifoldM, while the logarithmic map
logx :M→ TxM is the inverse mapping of the exponen-
tial map as logx(expx(v)) = v.

The hyperbolic space is a Riemannian manifold with
constant negative sectional curvature equipped with hy-
perbolic geometry. This paper deals with two hyperbolic
spaces; ‘Poincaré ball’ and ‘hyperboloid’. The Poincaré
ball P is highly effective for visualizing and analyzing the
hyperbolic latent space. Meanwhile, the hyperboloid H can
provide stable optimization since, unlike distance function
of Poincaré ball, there is no division in the distance func-
tion [40]. A review of Riemannian geometry and details of
the hyperboloid model are presented in the supplementary
material.
Poincaré ball. The n-dimensional Poincaré ball with con-
stant negative curvature K(K < 0) (Pn

K , g
PK
x ) is defined:

Pn
K = {x ∈ Rn : ‖x‖2 < −1/K}, (1)

where ‖ · ‖ denotes Euclidean norm. The metric tensor is
gPK
x = (λKx )2gEx , where λKx = 2

1+K‖x‖2 is the conformal
factor and gEx = diag([1, 1, . . . 1]) denotes Euclidean met-
ric tensor. The origin of Pn

K is o = (0, . . . , 0) ∈ Rn. The
distance between two points x, y ∈ Pn

K is defined as

dPn
K
(x, y) =

1√
−K

arcosh

(
1− 2K‖x− y‖2

(1 +K‖x‖2)(1 +K‖y‖2)

)
.

(2)



Figure 1: The overall architecture of HGCAE in a two-layer auto-encoder (i.e. the encoder and decoder have two layers each)
whose hyperbolic space is hyperboloid. This figure describes three things: 1) how the node of the graph (red dot) conducts
message passing (Eq. (8) and (11)) with its neighbors (yellow dot), 2) the process of embedding the output of encoder in
hyperboloid latent space (blue-purple space), and 3) reconstruction of Euclidean node attributes at the end of the decoder.

For points x ∈ Pn
K , tangent vector v ∈ TxPn

K , and y 6= 0,
the exponential map expx : TxPn

K → Pn
K and the logarith-

mic map logx : Pn
K → TxPn

K are defined as:

expK
x (v) = x⊕K

(
tanh(

√
−KλK

x ‖v‖
2

)
v√
−K‖v‖

)
, (3)

logKx (y) =
2√
−KλK

x

arctanh
(√
−K‖u‖

) u

‖u‖ , (4)

where u = −x⊕K y and⊕K denotes Möbius addition [53]
for x, y ∈ Pn

K as

x⊕K y =
(1− 2K〈x, y〉 −K‖y‖2)x+ (1 +K‖x‖2)y

1− 2K〈x, y〉+K2‖x‖2‖y‖2 . (5)

Mapping between two models. Two hyperbolic models,
Poincaré ball and hyperboloid, are equivalent and transfor-
mations between two models retain many geometric proper-
ties including isometry. There exist diffeomorphisms pH→P
and pP→H between the two models, Poincaré ball Pn

K and
hyperboloid Hn

K [27, 5], as follows:

pH→P(x0, x1, . . . , xn) =
(x1, . . . , xn)√
|K|x0 + 1

, (6)

pP→H(x1, . . . , xn) =

( 1√
|K|

(1−K‖x‖2), 2x1, . . . , 2xn)

1 +K‖x‖2 .

(7)

4. Methodology
HGCAE is designed to fully utilize hyperbolic geome-

try in the auto-encoding process along with leveraging the
power of graph convolutions via a geometry-aware attention
mechanism. Each layer conducts message passing in hyper-
bolic space whose curvature value is trainable. Before con-
ducting message passing, we need to map the given input
data points, xEuc, defined in Euclidean space to the hyper-
bolic manifold. We map the Euclidean feature into hyper-
bolic manifold via h1i = expK1

o (xEuc
i ), where K1 and h1i

denote a trainable curvature value and the i-th node’s repre-
sentation of the first layer respectively. When the hyperbolic

space is hyperboloid model, we use (0, xEuc) ∈ Rn+1 as an
input of an exponential map as [5] did. The overall architec-
ture of HGCAE is presented in Fig. 1.

4.1. Geometry-Aware Message Passing

Linear transformation. Message passing in the HGCAE
consists of two steps: the linear transformation of a message
and aggregating messages from neighbors. The i-th node’s
message passing result at the l-th layer zli is as follows:

zli = expKl
o

 ∑
j∈N (i)

αl
ij

(
W l logKl

o (hlj) + bl
) , (8)

where W l, bl, N (i), and αl
ij denote a weight matrix, a bias

term, the set of direct neighbors of node i including itself,
and the relative importance (attention score) of the neigh-
bor node j to the node i at the l-th layer respectively. Based
on [11], we map the points in the hyperbolic manifold to
the tangent space via the logarithmic map since the linear
transformation cannot be performed directly in hyperbolic
spaces. Then, the messages are linearly transformed on the
tangent space of the origin in which inherits many proper-
ties of the ambient Euclidean space.
Aggregation. After performing linear transformation, we
aggregate messages from neighbors via an attention mecha-
nism. The majority of message passing algorithms that use
attention mechanisms learn the relative importance of each
node’s neighbors based on node feature not only in Eu-
clidean space [54] but also in hyperbolic space [5]. How-
ever, only considering node features for learning their rel-
ative importance does not take into account the geometry
of the space, and this might result in an imprecise atten-
tion score. To make full use of the Riemannian metric of
the hyperbolic manifolds, we adopt a geometry-aware at-
tention mechanism [16] by utilizing the distance between
linearly transformed node features on the hyperbolic space.
Let yli = W l logKl

o (hli) + bl, then the attention score at the



l-th layer in Eq. (8) is:

αl
ij =

exp(−βld2MKl
(yli, y

l
j)− γl)∑

p∈N (i) exp(−βld2MKl
(yli, y

l
p)− γl)

, (9)

where dMKl
(·, ·), βl, and γl denote the distance on the hy-

perbolic space with curvature value Kl, and trainable pa-
rameters of the l-th layer respectively. After every step of
message passing, we map the representation on the tangent
space to the hyperbolic manifold via the exponential map.

4.2. Nonlinear Activation

The nonlinear activations, σ, such as ReLU can be di-
rectly applied to the points in the Poincaré ball, in contrast
to the points on the hyperboloid [27]. Thus, when the hy-
perboloid model is used, we map the points to the Poincaré
ball using Eq. (6) first. Next, we apply the nonlinear acti-
vation in the Poincaré ball and then return the result to the
hyperboloid using the Eq. (7).

Since the curvature value of each layer in HGCAE is
trainable, each layer can have different curvature values
from other layers. Thus, a step for locating the result of the
nonlinear activation in the hyperbolic space having a curva-
ture value of the next layer is required. First, we map the
results of the nonlinear activation to the tangent space of
the current layer, ToMKl

, using logarithmic map, logKl
o .

Next, the points in the tangent space are mapped to the next
layer’s hyperbolic space via an exponential map of the next
layer expKl+1

o . The equations for performing such nonlin-
ear activation and mapping to the hyperbolic space of the
next layer in the cases of Poincaré ball and hyperboloid are
as follows respectively:

hl+1
i = exp

Kl+1
o

(
logKl

o
(
σ(zli)

))
, (10)

hl+1
i = exp

Kl+1
o

(
logKl

o
(
pP→H(σ(pH→P(z

l
i)))
))
. (11)

4.3. Loss Function

Our HGCAE reconstructs both the affinity matrix (graph
structure) A and the Euclidean node attributes XEuc at the
end of the encoder and the decoder, respectively. To recon-
struct the Euclidean node attributes X̂Euc, the aggregated
representations in the hyperbolic space of the decoder’s
last layer are mapped to the tangent space of the origin
ToM. Then, the loss of representations LREC−X is de-
fined as the mean square error between XEuc and X̂Euc:
1
N ‖X

Euc − X̂Euc‖2. For reconstructing the structure of
the graph, the hyperbolic distance between the latent rep-
resentations (the output of the encoder) of two nodes is uti-
lized. To calculate the probability score of an edge which
links between two nodes, we adopt the Fermi-Dirac distri-
bution [23, 39], Âij = [e(d

2
MK

(hi,hj)−r)/t + 1]−1, where
hi, Â, r, and t denote the latent representation of node i,

Table 1: Dataset statistics.

Dataset Node Edge Attribute Class

Phylogenetic [17, 48] 344 343 - -
CS PhDs [9] 1,025 1,043 - -
Diseases [13, 46] 516 1,188 - -
Cora [49] 2,708 5,429 1,433 7
Citeseer [49] 3,312 4,552 3,703 6
Wiki [61] 2,405 17,981 4,973 17
Pubmed [49] 19,717 44,338 500 3
BlogCatalog [52] 5,196 171,743 8,189 6
Amazon Photo [33] 7,650 119,081 745 8
ImageNet-10 [7] 13,000 - 27,648 10
ImageNet-Dogs [7] 19,500 - 27,648 15
ImageNet-BNCR 11,700 - 27,648 9

the reconstructed affinity matrix, and hyperparameters re-
spectively. The loss function for the affinity matrix is de-
fined by the cross entropy loss with negative sampling:
LREC−A = Eq(H|X,A)[log p(Â|H)], where q(H|X,A) =∏N

i=1 q(hi|X,A). The overall loss function of HGCAE is

L = LREC−A + λLREC−X , (12)

where λ is a regularization parameter. λ serves to control
the relative importance between the attributes and structure.

5. Experiments
This section explores the effectiveness of unsupervised

hyperbolic embeddings on various data domains via quan-
titative and qualitative analyses. We use 9 real-world com-
plex network datasets and 3 image datasets. The statistics
of the datasets are summarized in Table 1. The details of
the datasets, the compared methods, and the experimen-
tal details are described in the supplementary material. For
node clustering and link prediction tasks on the 9 network
datasets, we evaluate HGCAE-P and HGCAE-H, which de-
note HGCAE models whose latent spaces are Poincaré ball
and hyperboloid, respectively. For the tasks of image clus-
tering and visual data analysis, we use HGCAE-P because
Poincaré ball is a powerful tool for visualizing and analyz-
ing properties of hyperbolic visual embeddings.

5.1. Node Clustering and Link Prediction

Comparison to embeddings in Euclidean latent space.
We evaluated the usefulness of hyperbolic representations
by the performances of downstream tasks on citation [49,
61], social [52], and co-purchase [33] networks. We com-
pared against the state-of-the-art unsupervised message
passing models [21, 41, 57, 42, 66] which mainly conduct in
Euclidean space. Similar to evaluation metrics used in [42],
we used area under curve (AUC) and average precision (AP)
to evaluate the performance of the link prediction task while
using accuracy (ACC) and normalized mutual information
(NMI) for evaluating the node clustering task.

The results of link prediction and node clustering are pre-
sented in Tables 2 and 3 respectively. From the results, we



Table 2: Link prediction performances.
Cora Citeseer Wiki Pubmed BlogCatalog Amazon Photo

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

GAE [21] 0.910 0.920 0.895 0.899 0.930 0.948 0.964 0.965 0.840 0.841 0.956 0.948
VGAE [21] 0.914 0.926 0.908 0.920 0.936 0.950 0.944 0.947 0.844 0.846 0.971 0.966
ARGA [41] 0.924 0.932 0.919 0.930 0.934 0.947 0.968 0.971 0.857 0.850 0.961 0.954
ARVGA [41] 0.924 0.926 0.924 0.930 0.947 0.948 0.965 0.968 0.837 0.828 0.927 0.909
GALA [42] 0.929 0.937 0.944 0.948 0.936 0.931 0.915 0.897 0.774 0.765 0.918 0.910
DBGAN [66] 0.945 0.951 0.945 0.958 - - 0.968 0.973 - - - -

HGCAE-P 0.948 0.947 0.960 0.963 0.955 0.962 0.962 0.960 0.896 0.886 0.982 0.976
HGCAE-H 0.956 0.955 0.967 0.970 0.952 0.958 0.962 0.960 0.857 0.850 0.972 0.966

Table 3: Node clustering performances.
Cora Citeseer Wiki Pubmed BlogCatalog Amazon Photo

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

Kmeans [29] 0.492 0.321 0.540 0.305 0.417 0.440 0.595 0.315 0.180 0.007 0.267 0.122
GAE [21] 0.532 0.434 0.505 0.246 0.460 0.468 0.686 0.295 0.284 0.112 0.390 0.337
VGAE [21] 0.595 0.446 0.467 0.260 0.450 0.467 0.688 0.310 0.269 0.097 0.418 0.376
MGAE [57] 0.684 0.511 0.660 0.412 0.514 0.485 0.593 0.282 0.423 0.202 0.594 0.475
ARGA [41] 0.640 0.449 0.573 0.350 0.458 0.437 0.680 0.275 0.464 0.270 0.577 0.499
ARVGA [41] 0.638 0.450 0.544 0.261 0.386 0.338 0.513 0.116 0.450 0.250 0.455 0.395
GALA [42] 0.745 0.576 0.693 0.441 0.544 0.503 0.693 0.327 0.400 0.251 0.512 0.485
DBGAN [66] 0.748 0.560 0.670 0.407 - - 0.694 0.324 - - - -

HGCAE-P 0.746 0.572 0.693 0.422 0.459 0.467 0.748 0.377 0.550 0.325 0.781 0.696
HGCAE-H 0.767 0.599 0.715 0.453 0.530 0.435 0.711 0.347 0.741 0.578 0.817 0.722

Table 4: Link prediction task compared with P-VAE.
Phylogenetic CS PhDs Diseases

AUC AP AUC AP AUC AP

VGAE [21] 0.542 0.540 0.565 0.564 0.898 0.918
P-VAE [32] 0.590 0.555 0.598 0.567 0.923 0.936

HGCAE-P 0.688 0.712 0.673 0.640 0.926 0.914

can see that our HGCAE, with the representations of hy-
perbolic latent spaces, outperforms the existing methods,
which use Euclidean latent spaces. Our superior results over
their Euclidean counterparts support the fact that unsuper-
vised learning with message passing benefit from the geom-
etry of hyperbolic spaces. Due to space constraints, further
analysis of the ablation study on the proposed architecture
and the effectiveness of low-dimensional hyperbolic latent
space are reported in the supplementary material.
Comparison to embeddings of hyperbolic graph auto-
encoder. To validate the architecture of HGCAE, we com-
pared its performance with the Poincaré variational auto-
encoder (P-VAE) [32], whose latent space is the Poincaré
ball and conducts its message passing in Euclidean space.
Three networks, phylogenetic tree [17, 48], Ph.D. advisor-
student relationships [9], and disease relationships [13, 46],
were used for evaluating performance on link prediction.
The latent space of both P-VAE and HGCAE-P is a 5-
dimensional Poincaré ball. We report the results in Table
4. The proposed HGCAE-P outperforms P-VAE for most
cases of the datasets since HGCAE-P considers hyperbolic
geometry in the whole auto-encoding processes.
Visualization of citation network. We explored the la-
tent representations of GAE [21] and our models on the
Cora dataset [49] by constraining the latent space as a 2-

GAE HGCAE-P HGCAE-H

Figure 2: 2-dimensional embeddings in Euclidean, Poincaré
ball, and hyperboloid latent space on Cora dataset. Same
color indicates same class. On hyperbolic latent spaces,
most of the nodes are located on the boundary and well-
clustered with the nodes in the same class.

dimensional hyperbolic or Euclidean space. The result is
given in Fig. 2. On the results of HGCAE, most of the nodes
are located on the boundary of hyperbolic spaces and well-
clustered with the nodes in the same class. Further visual-
ization of the network datasets is presented in the supple-
mentary material.

5.2. Image Clustering

In this experiment, we illustrate that image clustering
can benefit from hyperbolic geometry. The training sets of
ImageNet-10 and ImageNet-Dogs [7], which are subsets of
ImageNet [25], are used for evaluation. In the manner of the
researches [11, 16, 19] which impose hyperbolic geometry
on the activations of neural networks, we used the activa-
tions of PICA [18], one of the most recent models devel-
oped for deep image clustering. After obtaining activations
from the pre-trained networks of PICA, we built the graph
by mutual k nearest neighbors between activations. Then,
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Figure 3: Class hierarchy of ImageNet-10 and ImageNet-BNCR1.

Table 5: Image clustering performances.
ImageNet-10 ImageNet-Dogs

ACC NMI ARI ACC NMI ARI

Kmeans [29] 0.241 0.119 0.057 0.105 0.055 0.020
SC [64] 0.274 0.151 0.076 0.111 0.038 0.013
AC [14] 0.242 0.138 0.067 0.139 0.037 0.021
NMF [4] 0.230 0.132 0.065 0.118 0.044 0.016
AE [2] 0.317 0.210 0.152 0.185 0.104 0.073
CAE [31] 0.253 0.134 0.068 0.134 0.059 0.022
SAE [37] 0.325 0.212 0.174 0.183 0.112 0.072
DAE [55] 0.304 0.206 0.138 0.190 0.104 0.078
DCGAN [44] 0.346 0.225 0.157 0.174 0.121 0.078
DeCNN [63] 0.313 0.186 0.142 0.175 0.098 0.073
SWWAE [65] 0.323 0.176 0.160 0.158 0.093 0.076
VAE [20] 0.334 0.193 0.168 0.179 0.107 0.079
JULE [62] 0.300 0.175 0.138 0.138 0.054 0.028
DEC [59] 0.381 0.282 0.203 0.195 0.122 0.079
DAC [7] 0.527 0.394 0.302 0.275 0.219 0.111
DDC [6] 0.577 0.433 0.345 - - -
DCCM [58] 0.710 0.608 0.555 0.383 0.321 0.182
PICA†[18] 0.850 0.782 0.733 0.324 0.336 0.179
PICA‡[18] 0.828 0.763 0.692 0.352 0.353 0.201

PICA‡[18]+HAE 0.821 0.759 0.686 0.338 0.347 0.200
PICA‡[18]+GAE [21] 0.854 0.792 0.737 0.344 0.350 0.199

PICA‡[18]+HGCAE-P 0.855 0.790 0.741 0.387 0.360 0.226
† Numbers from literature.
‡ Numbers from our experiments on the official pre-trained networks2.

both the activations and the graph were used as inputs of
HGCAE-P. Extensive baselines and state-of-the-art image
clustering methods [29, 64, 14, 4, 2, 31, 37, 55, 44, 63,
65, 20, 62, 59, 7, 6, 58, 18] were compared. Furthermore,
we also trained two auto-encoder models, GAE [21], and
hyperbolic auto-encoder (HAE) whose layers are hyper-
bolic feed-forward layers [11]. The image clustering results
are reported in Table 5. The metrics, ACC, NMI and Ad-
justed Rand Index (ARI), were used for evaluation. The re-
sults demonstrate that applying hyperbolic geometry along
with using additional information of the approximated im-
age manifold via nearest neighbor graphs can achieve better
results than the Euclidean counterparts. We can also observe
that HAE, the auto-encoder which naively applies hyper-
bolic geometry, does not work well, while our model per-

1http://image-net.org/index
2https://github.com/Raymond-sci/PICA

forms better via the message passing fully utilizing hyper-
bolic geometry.

5.3. Structure-Aware Unsupervised Embeddings

In this experiment, we observe the unsupervised hy-
perbolic image embeddings’ ability to recognize the la-
tent structure of visual datasets that have hierarchical struc-
tures. ImageNet [25] is constructed following the hierar-
chy of WordNet [35], therefore, its classes of ImageNet-
10 [7] also have hierarchical structures. However, it is diffi-
cult to explore the effectiveness of hyperbolic embeddings
since the classes of ImageNet-10 are biased to a certain
root. Thus, we have constructed a new dataset, ImageNet-
BNCR, that has a Balanced Number of Classes across Roots.
For ImageNet-BNCR, we have chosen three roots, Artifact,
Natural objects, and Animal, which have a large number
of leaf classes. Each root contains balanced child nodes
of {Ambulance, Dogsled, School bus}, {Lemon, Jackfruit,
Granny Smith}, and {Flamingo, Bald eagle, Lionfish}, re-
spectively. On the leaf classes of ImageNet-10, {Container
ship, Airliner, Airship, Sports car, Trailer truck, Soccer
ball}, {Orange}, and {Maltese dog, Snow leopard, King
penguin} are the child nodes of the roots Artifact, Natural
objects, and Animal, respectively. The class hierarchies of
ImageNet-10 and ImageNet-BNCR are shown in Fig. 3.

We extracted 1000-dimensional features by training a
convolutional auto-encoder (CAE) [31] on the ImageNet-
10 and ImageNet-BNCR datasets. Then, after building the
graph using mutual k nearest neighbors between extracted
features, we trained three auto-encoder models (HGCAE-P,
GAE [21], and HAE) whose latent space is 2-dimensional
without the ground truth hierarchy structure of labels. The
embedding results of the 1000-dimensional CAE features
via UMAP [34] and three auto-encoders are presented in
Fig. 4. We can observe that the embeddings of HGCAE-
P are better clustered than others, according to the classes
of each root in Fig. 3. On the ImageNet-10, in the same
root Artifact, the embeddings of descendants of Craft and
Wheeled vehicle are clustered respectively. The embeddings
of the ImageNet-BNCR are clustered more distinctly ac-
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Figure 4: 2-dimensional embeddings of CAE, GAE, HAE,
and HGCAE-P on ImageNet-10 and ImageNet-BNCR. Hy-
perbolic representations belonging to the same root are
close to each other near the boundary of the space.

cording to the root of class hierarchy than with ImageNet-
10. On the other hand, the embeddings of the root Natu-
ral objects, {Lemon, Jackfruit, Granny Smith}, are located
closer to each other since the geodesic distance between
each leaf label is small. Our distinction from HAE implies
that the additional information on image manifolds approx-
imated by nearest neighbor graphs is helpful. In contrast
to the representations of CAE and GAE, we can see that
the hyperbolic representations belonging to the same root
are located near the boundary of the space. In addition, to
quantitatively validate the ability to recognize the latent hi-
erarchical structure of the data without direct learning of
label hierarchy, we cluster 2-dimensional embeddings of
the three auto-encoders with three ground truth label set-
tings according to the class hierarchy in Fig. 3: I. Root
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Figure 5: Clustering accuracy (%) according to the hierar-
chy of classes on ImageNet-10 and ImageNet-BNCR.

nodes, II. Internal nodes, and III. Leaf nodes. The quan-
titative results (clustering accuracy) on ImageNet-10 and
ImageNet-BNCR are reported in Fig. 5. HGCAE-P outper-
forms GAE and HAE in every label hierarchy settings. This
might be because the leaf classes whose parent is the same
are closely embedded with each other. This analysis em-
pirically demonstrates that unsupervised hyperbolic image
embeddings can recognize the latent structure of the visual
data that has a hierarchical structure.

5.4. Hyperbolic Distance to Filter Training Samples

In this experiment, we show that hyperbolic distance can
help to choose training samples beneficial to the general-
ization ability of neural networks. To this end, we obtained
the latent embeddings of ImageNet-10 [7] and ImageNet-
BNCR via HGCAE-P model. Then, the hyperbolic distance
(Eq. (2)) of each embedding from the origin was computed.
Fig. 6 shows some samples near the boundary or near the
origin in the histogram of the hyperbolic distance from em-
beddings to the origin. We can see that the samples near the
boundary can be easily classified, whereas those near the
origin are harder to classify. In general, the easy samples
are not influential to learn an exact decision boundary. On
the other hand, the hard samples make the decision bound-
ary over-fitted, i.e., they work like noises located at the soft
margin region near the decision boundary [8]. This illustra-
tion intuitively shows that the Hyperbolic Distance from the
Origin (HDO) of a sample could give a clue which samples
are influential or beneficial to learn the decision boundary
crucial for the generalization ability of a classifier.

To verify this intuition, we conducted an experiment
on the image classification task. On ImageNet-10 and
ImageNet-BNCR, we trained the VGG-11 [50] classifier by
adding further samples near the boundary/median of the dis-
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Figure 6: Histogram and images according to the hyper-
bolic distance from the origin (HDO) on ImageNet-10 and
ImageNet-BNCR. The feature of images inside red (blue)
color box have high (low) HDO, so are located near the
boundary (origin) of hyperbolic space.

tance histogram/origin to the original dataset in every train-
ing epoch and evaluated the network via each class’ valida-
tion set in ImageNet [25]. We compared our results with six
settings: I. Baseline: original data with cross-entropy loss,
II. BaselineFL: original data with focal loss (FL) [26]3, III.
Baseline + Random data adding, IV. Baseline + High HDO
data adding, V. Baseline + Low HDO data adding, and VI.
Baseline + Middle HDO data adding.

The image classification results are given in Fig. 7. As
expected, the case V of adding low HDO data in the his-
togram show similar performances with the baseline. The
case IV of adding high HDO data contributes the per-
formance improvements, but the case VI of adding mid-
dle HDO data demonstrates the best performance among

3The focal loss tries to focus gradient updates on the samples that the
classifier hard to classify.

I. Baseline.
II. BaselineFL.

IV. Baseline + High HDO data.
V. Baseline + Low HDO data.
VI. Baseline + Middle HDO data.III. Baseline + Random data.
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Figure 7: Top-1 classification error (%) on ImageNet-10 and
ImageNet-BNCR.

the compared settings. This result empirically verifies that
the middle HDO samples are beneficial to learn a reason-
able decision boundary which increases the generalization
ability of a neural network. Since the supporting samples
marginally apart from the decision boundary are crucial for
the generalization performance [8], the HDO related with
the generalization performance can be interpreted as a mea-
sure proportional to the distance of a sample from the deci-
sion boundary for a given classification task. In conclusion,
we can utilize HDO as a criterion to choose samples for
improving the generalization ability of a model for a given
dataset.

6. Conclusion
In this paper, we explored the properties of unsuper-

vised hyperbolic representations. We derived the repre-
sentations from geometry-aware message passing auto-
encoders whose whole operations were conducted in hy-
perbolic spaces. Then, we conducted extensive experiments
and analyses on the low-dimensional latent representations
in hyperbolic spaces. The experimental results support the
conclusion that taking advantage of hyperbolic geometry
can improve the performances of unsupervised tasks; node
clustering, link prediction, and image clustering. We ob-
served that the proposed method could yield unsupervised
hyperbolic image embeddings reflecting the latent struc-
ture of the visual datasets that have a hierarchical structure.
Lastly, we demonstrated that the hyperbolic distance from
origin for a sample could be utilized to determine the addi-
tional data crucial for a classifier’s generalisation ability.
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Leskovec. Hyperbolic graph convolutional neural networks.
In Advances in Neural Information Processing Systems,
pages 4869–4880, 2019. 1, 3

[6] Jianlong Chang, Yiwen Guo, Lingfeng Wang, Gaofeng
Meng, Shiming Xiang, and Chunhong Pan. Deep discrimi-
native clustering analysis. arXiv preprint arXiv:1905.01681,
2019. 6

[7] Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shiming
Xiang, and Chunhong Pan. Deep adaptive image cluster-
ing. In Proceedings of the IEEE International Conference
on Computer Vision, pages 5879–5887, 2017. 4, 5, 6, 7

[8] Corinna Cortes and Vladimir Vapnik. Support-vector net-
works. Machine Learning, 20(3):273–297, 1995. 7, 8

[9] Wouter De Nooy, Andrej Mrvar, and Vladimir Batagelj. Ex-
ploratory social network analysis with Pajek: Revised and
expanded edition for updated software, volume 46. Cam-
bridge University Press, 2018. 4, 5
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