10,233 research outputs found

    Mass-Gaps and Spin Chains for (Super) Membranes

    Get PDF
    We present a method for computing the non-perturbative mass-gap in the theory of Bosonic membranes in flat background spacetimes with or without background fluxes. The computation of mass-gaps is carried out using a matrix regularization of the membrane Hamiltonians. The mass gap is shown to be naturally organized as an expansion in a 'hidden' parameter, which turns out to be 1d\frac{1}{d}: d being the related to the dimensionality of the background space. We then proceed to develop a large NN perturbation theory for the membrane/matrix-model Hamiltonians around the quantum/mass corrected effective potential. The same parameter that controls the perturbation theory for the mass gap is also shown to control the Hamiltonian perturbation theory around the effective potential. The large NN perturbation theory is then translated into the language of quantum spin chains and the one loop spectra of various Bosonic matrix models are computed by applying the Bethe ansatz to the one-loop effective Hamiltonians for membranes in flat space times. Apart from membranes in flat spacetimes, the recently proposed matrix models (hep-th/0607005) for non-critical membranes in plane wave type spacetimes are also analyzed within the paradigm of quantum spin chains and the Bosonic sectors of all the models proposed in (hep-th/0607005) are diagonalized at the one-loop level.Comment: 36 Page

    Extended Supersymmetries and the Dirac Operator

    Full text link
    We consider supersymmetric quantum mechanical systems in arbitrary dimensions on curved spaces with nontrivial gauge fields. The square of the Dirac operator serves as Hamiltonian. We derive a relation between the number of supercharges that exist and restrictions on the geometry of the underlying spaces as well as the admissible gauge field configurations. From the superalgebra with two or more real supercharges we infer the existence of integrability conditions and obtain a corresponding superpotential. This potential can be used to deform the supercharges and to determine zero modes of the Dirac operator. The general results are applied to the Kahler spaces CP^n.Comment: 22 pages, no figure

    Higher Spins in Hyper-Superspace

    Get PDF
    We extend the results of arXiv:1401.1645 on the generalized conformal Sp(2n)-structure of infinite multiplets of higher spin fields, formulated in spaces with extra tensorial directions (hyperspaces), to the description of OSp(1|2n)-invariant infinite-dimensional higher-spin supermultiplets formulated in terms of scalar superfields on flat hyper-superspaces and on OSp(1|n) supergroup manifolds. We find generalized superconformal transformations relating the superfields and their equations of motion in flat hyper-superspace with those on the OSp(1|n) supermanifold. We then use these transformations to relate the two-, three- and four-point correlation functions of the scalar superfields on flat hyperspace, derived by requiring the OSp(1|2n) invariance of the correlators, to correlation functions on the OSp(1|n) group manifold. As a byproduct, for the simplest particular case of a conventional N=1, D=3 superconformal theory of scalar superfields, we also derive correlation functions of component fields of the scalar supermultiplet including those of auxiliary fields.Comment: 25 pages, discussion in section 4.1 improved, references added; subsection 2.4 and conclusions expanded, typos corrected, references added, published versio

    M-theory moduli spaces and torsion-free structures

    Get PDF
    Motivated by the description of N=1\mathcal{N}=1 M-theory compactifications to four-dimensions given by Exceptional Generalized Geometry, we propose a way to geometrize the M-theory fluxes by appropriately relating the compactification space to a higher-dimensional manifold equipped with a torsion-free structure. As a non-trivial example of this proposal, we construct a bijection from the set of Spin(7)Spin(7)-structures on an eight-dimensional S1S^{1}-bundle to the set of G2G_{2}-structures on the base space, fully characterizing the G2G_{2}-torsion clases when the total space is equipped with a torsion-free Spin(7)Spin(7)-structure. Finally, we elaborate on how the higher-dimensional manifold and its moduli space of torsion-free structures can be used to obtain information about the moduli space of M-theory compactifications.Comment: 24 pages. Typos fixed. Minor clarifications adde

    Supersymmetric Higher Spin Theories

    Full text link
    We revisit the higher spin extensions of the anti de Sitter algebra in four dimensions that incorporate internal symmetries and admit representations that contain fermions, classified long ago by Konstein and Vasiliev. We construct the dS4dS_4, Euclidean and Kleinian version of these algebras, as well as the corresponding fully nonlinear Vasiliev type higher spin theories, in which the reality conditions we impose on the master fields play a crucial role. The N=2{\cal N}=2 supersymmetric higher spin theory in dS4dS_4, on which we elaborate further, is included in this class of models. A subset of Konstein-Vasiliev algebras are the higher spin extensions of the AdS4AdS_4 superalgebras osp(4∣N)osp(4|{\cal N}) for N=1,2,4{\cal N}=1,2,4 mod 4 and can be realized using fermionic oscillators. We tensor the higher superalgebras of the latter kind with appropriate internal symmetry groups and show that the N=3{\cal N}=3 mod 4 higher spin algebras are isomorphic to those with N=4{\cal N}=4 mod 4. We describe the fully nonlinear higher spin theories based on these algebras as well, and we elaborate further on the N=6{\cal N}=6 supersymmetric theory, providing two equivalent descriptions one of which exhibits manifestly its relation to the N=8{\cal N}=8 supersymmetric higher spin theory.Comment: 30 pages. Contribution to J. Phys. A special volume on "Higher Spin Theories and AdS/CFT" edited by M. R. Gaberdiel and M. Vasilie

    Grassmannians,Calibrations and Five-Brane Intersections

    Get PDF
    We present a geometric construction of a new class of hyper-Kahler manifolds with torsion. This involves the superposition of the four-dimensional hyper-Kahler geometry with torsion associated with the NS-5-brane along quaternionic planes in quaternionic k-space, \bH^k. We find the moduli space of these geometries and show that it can be constructed using the bundle space of the canonical quaternionic line bundle over a quaternionic projective space. We also investigate several special cases which are associated with certain classes of quaternionic planes in \bH^k. We then show that the eight-dimensional geometries we have found can be constructed using quaternionic calibrations. We generalize our construction to superpose the same four-dimensional hyper-Kahler geometry with torsion along complex planes in \bC^{2k}. We find that the resulting geometry is Kahler with torsion. The moduli space of these geometries is also investigated. In addition, the applications of these new geometries to M-theory and sigma models are presented. In particular, we find new solutions of IIA supergravity with the interpretation of intersecting NS-5-branes at Sp(2)-angles on a string and show that they preserve 3/32, 1/8, 5/32 and 3/16 of supersymmetry. We also show that two-dimensional sigma models with target spaces the above manifolds have (p,q) extended supersymmetry.Comment: 39 pages, phyzzx; a previously undetermined fraction of supersymmetry has now been fixed; a table has been replaced; version submitted for publication in CM

    Hamiltonian reduction and supersymmetric mechanics with Dirac monopole

    Full text link
    We apply the technique of Hamiltonian reduction for the construction of three-dimensional N=4{\cal N}=4 supersymmetric mechanics specified by the presence of a Dirac monopole. For this purpose we take the conventional N=4{\cal N}=4 supersymmetric mechanics on the four-dimensional conformally-flat spaces and perform its Hamiltonian reduction to three-dimensional system. We formulate the final system in the canonical coordinates, and present, in these terms, the explicit expressions of the Hamiltonian and supercharges. We show that, besides a magnetic monopole field, the resulting system is specified by the presence of a spin-orbit coupling term. A comparison with previous work is also carried out.Comment: 9 pages, LaTeX file, PACS numbers: 11.30.Pb, 03.65.-w, accepted for publication in PRD; minor changes in the Conclusion, the Bibliography and the Acknowledgemen

    Towards an M5-Brane Model I: A 6d Superconformal Field Theory

    Full text link
    We present an action for a six-dimensional superconformal field theory containing a non-abelian tensor multiplet. All of the ingredients of this action have been available in the literature. We bring these pieces together by choosing the string Lie 2-algebra as a gauge structure, which we motivated in previous work. The kinematical data contains a connection on a categorified principal bundle, which is the appropriate mathematical description of the parallel transport of self-dual strings. Our action can be written down for each of the simply laced Dynkin diagrams, and each case reduces to a four-dimensional supersymmetric Yang--Mills theory with corresponding gauge Lie algebra. Our action also reduces nicely to an M2-brane model which is a deformation of the ABJM model. While this action is certainly not the desired M5-brane model, we regard it as a key stepping stone towards a potential construction of the (2,0)-theory.Comment: 1+39 pages, v3: minor improvements, published versio
    • …
    corecore