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Abstract

We extend the results of arXiv:1401.1645 on the generalized conformal Sp(2n)-structure of infinite 
multiplets of higher-spin fields, formulated in spaces with extra tensorial directions (hyperspaces), to the 
description of OSp(1|2n)-invariant infinite-dimensional higher-spin supermultiplets formulated in terms of 
scalar superfields on flat hyper-superspaces and on OSp(1|n) supergroup manifolds. We find generalized su-
perconformal transformations relating the superfields and their equations of motion in flat hyper-superspace 
with those on the OSp(1|n) supermanifold. We then use these transformations to relate the two-, three-
and four-point correlation functions of the scalar superfields on flat hyperspace, derived by requiring the 
OSp(1|2n) invariance of the correlators, to correlation functions on the OSp(1|n) group manifold. As a 
byproduct, for the simplest particular case of a conventional N = 1, D = 3 superconformal theory of scalar 
superfields, we also derive correlation functions of component fields of the scalar supermultiplet including 
those of auxiliary fields.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

* Corresponding author.
E-mail addresses: ioannis.florakis@cern.ch (I. Florakis), dmitri.sorokin@pd.infn.it (D. Sorokin), 

mirian.tsulaia@canberra.edu.au (M. Tsulaia).
http://dx.doi.org/10.1016/j.nuclphysb.2014.11.017
0550-3213/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

https://core.ac.uk/display/82328984?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.nuclphysb.2014.11.017
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/3.0/
mailto:ioannis.florakis@cern.ch
mailto:dmitri.sorokin@pd.infn.it
mailto:mirian.tsulaia@canberra.edu.au
http://dx.doi.org/10.1016/j.nuclphysb.2014.11.017
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2014.11.017&domain=pdf


280 I. Florakis et al. / Nuclear Physics B 890 (2015) 279–301
1. Introduction

In [1] we have studied some aspects of the description of infinite sets of integer and half-
integer massless higher-spin fields in flat and anti-de-Sitter (AdS) spaces in terms of scalar and 
spinor ‘hyperfields’ propagating in hyperspaces. In addition to a conventional space–time as a 
subspace, hyperspaces are endowed with extra tensorial coordinates encoding the spin degrees of 
freedom of conventional space–time fields. This formulation, which was originally put forward 
by Fronsdal as an alternative to the Kaluza–Klein theory [2], has been extensively developed by 
several authors [3–22].

The theories on tensorially extended (super)spaces, which we will henceforth refer to as 
hyper-(super)spaces, offer many interesting and challenging problems regarding higher-spin 
fields, one of them being the further development and study of generalized (super)conformal the-
ories on these spaces. This motivated our recent work [1] in which, using generalized conformal 
transformations, we established an explicit relation between the equations of motion of hyper-
fields on flat hyperspace and on Sp(n) group-manifolds, the latter being tensorial generalizations1

of AdS spaces. This relation was then employed in order to explicitly derive the Sp(2n)-invariant 
two-, three- and four-point correlation functions for fields on Sp(n) group manifolds, from the 
known Sp(2n)-invariant correlation functions on flat hyperspaces, thus generalizing the results 
obtained in [5,10,23].

In this paper we further extend the results of [1] to the description of supersymmetric systems 
of higher-spin fields in hyper-superspaces, which were previously studied, e.g. in [3,4,6–8,11,14,
20,24]. In particular, by means of a generalized superconformal transformation, we establish an 
explicit relation between the superfield equations of motion [11] on flat hyper-superspace and on 
an OSp(1|n) supergroup manifold. Furthermore, the explicit solution of the generalized super-
conformal Ward identities allows us to derive the OSp(1|2n)-invariant two-, three- and four-point 
superfield correlation functions on flat hyper-superspace and, consequently, using the general-
ized superconformal transformations, we obtain the corresponding correlation functions on the 
OSp(1|n) group manifolds. Our results, therefore, generalize the superfield description and com-
putation of superfield correlators in conventional superconformal field theories, considered, e.g.
in [25–28], to superconformal higher-spin theories. A byproduct of our analysis is the derivation 
of correlation functions involving the component fields of the scalar supermultiplet, including 
the auxiliary fields, for the simple special case of a three-dimensional N = 1 superconformal 
theory of scalar superfields.

As in the case of the N = 1, D = 3 superconformal theory, the fact that 3- and 4-point corre-
lation functions are non-zero for hyperfields of an anomalous conformal weight may indicate the 
existence of interacting conformal higher-spin fields which involve higher orders of their field 
strengths.

It should be noted that in the literature [29–49] various supersymmetric higher-spin systems 
have been considered in either irreducible or reducible representations of the Poincaré and AdS 
groups (see,e.g. [50,51] for a discussion of reducible higher-spin multiplets in the “metric-like” 
approach). As we will see, the systems of integer and half-integer higher-spin fields considered 
in [3,4,6–8,11,14,20] and in this paper form irreducible infinite-dimensional supermultiplets of 
space–time supersymmetry. These supersymmetric higher-spin systems are therefore different 

1 Here Sp(n) stands for the real non-compact form Sp(n, R) of Sp(n, C), where R will be omitted for brevity.
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from finite-dimensional higher-spin supermultiplets considered in [29–49]. We will provide the 
algebraic reasoning for this in Section 2.4.

The paper is organized as follows. Section 2 begins with a review of some basic known results 
about hyper-superspaces. We describe in detail the generalized superconformal algebra, the real-
ization of the generalized superconformal group OSp(1|2n) on hyper-superspace and the precise 
connection between generalized and conventional conformal weights for scalar superfields and 
their components in various dimensions. Finally, we demonstrate how an infinite-dimensional
N = 1 supersymmetry multiplet is formed by the component fields of the hyper-superfield in the 
case of four-dimensional flat space–time.

In Section 3 we provide a description of the geometric structure of OSp(1|n) manifolds. 
These manifolds exhibit the property of generalized superconformal flatness (or GL-flatness) 
observed earlier in [7,8], which is similar to the superconformal flatness property of certain con-
ventional AdS superspaces and superspheres [52–56]. We then consider the relation between the 
OSp(1|2n)-invariant field equations for scalar superfields on flat hyper-superspace and those on 
the OSp(1|n) group manifold derived in [11]. We show that, similarly to the non-supersymmetric 
case [1], the supersymmetric field equations on flat hyper-superspace and on OSp(1|n) group 
manifolds are related to each other via a generalized superconformal transformation of the scalar 
hyper-superfield and its derivatives.

In Section 4, as a preparation for the computation of correlation functions on flat hyper-
superspace and on OSp(1|n) supergroup manifolds, we consider the simplest example of an 
OSp(1|4)-invariant superconformal theory of a conventional N = 1, D = 3 massless scalar su-
perfield. Even though higher-spin fields are absent in this case, it is a simple setup in which one 
can illustrate the salient features of our approach. To this end, we present the OSp(1|4)-invariant 
two-, three- and four-point correlation functions of scalar superfields, as well as the correlators 
of the component fields of the scalar supermultiplet, including those of auxiliary fields.

Finally, in Section 5 we use the requirement of OSp(1|2n) invariance to derive the expres-
sions for two-, three- and four-point correlation functions of the scalar hyper-superfields. Again, 
in a complete analogy with the non-supersymmetric systems [1], the correlation functions on flat 
hyper-superspaces and OSp(1|n) supergroup manifolds are related via generalized superconfor-
mal Weyl rescaling. Thus, our basic result is that the GL-flatness is a key property of Sp(n) and 
OSp(1|n) manifolds that renders them amenable to the same type of analysis as for the case of 
flat hyper (super) spaces.

We conclude with a discussion on open problems and perspectives for further development of 
the hyperspace formulation of higher-spin fields.

2. Scalar superfields in flat hyper-superspace, equations of motion and correlators

2.1. Flat hyper-superspace and its symmetries

The flat hyper-superspace (see, e.g. [3,4,11]) is parametrized by n(n+1)
2 bosonic matrix coor-

dinates Xμν = Xνμ and n real Grassmann-odd ‘spinor’ coordinates θμ (μ = 1, . . . , n). We call 
θμ ‘spinors’, since they are indeed so from the perspective of conventional space–time, which is 
a subspace of hyperspace.

For instance, when n = 4, we can decompose the ten bosonic coordinates Xμν using the 
Majorana (real) representation of the gamma-matrices of a D = 4 space–time as follows

Xμν = Xνμ = 1
xm(γm)μν + 1

ymn(γmn)
μν, μ, ν = 1,2,3,4, m,n = 0,1,2,3, (2.1)
2 4
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where (γm)μν = (γm)νμ ≡ Cμτ (γm)τ
ν , (γmn)

μν = (γmn)
νμ ≡ Cμτ (γmn)τ

ν , with CT = −C be-
ing the charge conjugation matrix and the gamma-matrices (γm)μ

ν satisfy the Clifford algebra 
{γm, γn} = 2ηmn. The space–time metric signature is chosen to be mostly plus (−, +, · · · , +).

The four coordinates xm parametrize the conventional flat space–time which is extended to 
flat hyperspace by adding six extra dimensions, parametrized by ymn = −ynm. This bosonic 
hyperspace is then further extended to the hyper-superspace by adding four Grassmann-odd di-
rections parametrized by θμ, which transform in the spinor representation of the D = 4 Lorentz 
group SO(1, 3).

The supersymmetry variation of the coordinates

δθμ = εμ, δXμν = −iε(μθν), (2.2)

leaves invariant the Volkov–Akulov-type one-form

Πμν = dXμν + iθ (μdθν). (2.3)

The round brackets denote symmetrization of indices with the standard normalization

Y (μ1...μk) = 1

k!
(
Yμ1...μk + all permutations of indices

)
. (2.4)

The supersymmetry transformations form a generalized super-translation algebra

{Qμ,Qν} = 2Pμν, [Qμ,Pνρ] = 0, [Pμν,Pρλ] = 0, (2.5)

with Pμν generating translations along Xμν . Namely, δXμν = iaρλPρλ · Xμν = aμν , with aμν

being constant parameters.
The realization of Pμν and Qμ as differential operators is given by

Pμν = −i
∂

∂Xμν
≡ −i∂μν, Qμ = ∂μ − iθν∂νμ, ∂μ ≡ ∂

∂θμ
, (2.6)

where, by definition,

∂μνX
ρλ = δ(ρ

μ δλ)
ν . (2.7)

Furthermore, in the case n = 4, D = 4, the partial derivative associated with (2.1) takes the form

∂μν = 1

2

(
γ m

)
μν

∂

∂xm
+ 1

2

(
γ mn

)
μν

∂

∂ymn
. (2.8)

The algebra (2.5) is invariant under rigid GL(n) transformations

Q′
μ = gμ

νQν, P ′
μν = gμ

ρgν
λPρλ, (2.9)

generated by

Lμ
ν = −2i

(
Xνρ + i

2
θνθρ

)
∂ρμ − iθνQμ, (2.10)

which act on Pμν and Qμ as[
Pμν,Lλ

ρ
] = −i

(
δρ
μPνλ + δρ

ν Pμλ

)
,

[
Qμ,Lν

ρ
] = −iδρ

μQν, (2.11)

and close into the gl(n) algebra[
Lν

μ,Lλ
ρ
] = i

(
δ
μ
Lν

ρ − δρLλ
μ
)
. (2.12)
λ ν



I. Florakis et al. / Nuclear Physics B 890 (2015) 279–301 283
The algebra (2.5), (2.11) and (2.12) is the hyperspace counterpart of the conventional super-
Poincaré algebra enlarged by dilatations. That this is so can be most easily seen by considering, 
e.g. n = 2 (i.e. μ = 1, 2), in which case this algebra is recognized as the D = 3 super-Poincaré al-
gebra with Lμ

ν − 1
2δν

μLρ
ρ = Mm(γ m)μ

ν generating the SL(2, R) ∼ SO(1, 2) Lorentz rotations 
(note that m = 0, 1, 2) and D = 1

2Lρ
ρ being the dilatation generator. Note that the factor 1

2 in 
the definition of the dilatation generator is required in order to have the canonical scaling of the 
momentum generator Pμν with weight 1 and the supercharge Qμ with weight 1

2 , as follows from 
Eq. (2.11).

This algebra may be further extended to the OSp(1|2n) algebra, generating generalized su-
perconformal transformations of the flat hyper-superspace, by adding the additional set of super-
symmetry generators

Sμ = −
(

Xμν + i

2
θμθν

)
Qν, (2.13)

together with the generalized conformal boosts

Kμν = i

(
Xμρ + i

2
θμθρ

)(
Xνλ + i

2
θνθλ

)
∂ρλ − iθ (μSν). (2.14)

The generators Sμ and Kμν form a superalgebra similar to (2.5)
{
Sμ,Sν

} = −2Kμν,
[
Sμ,Kνρ

] = 0,
[
Kμν,Kρλ

] = 0, (2.15)

while the non-zero (anti)commutators of Sμ and Kμν with Qμ, Pμν and Lμ
ν read

{
Qμ,Sν

} = −Lμ
ν,

[
Sμ,Pνρ

] = iδ
μ

(νQρ),
[
Qμ,Kνρ

] = −iδ(ν
μ Sρ),[

Sμ,Lν
ρ
] = iδμ

ν Sρ. (2.16)

2.2. Generalized superconformal algebra OSp(1|2n)

We now collect together all the non-zero (anti)commutation relations among the generators 
of the OSp(1|2n) algebra

{Qμ,Qν} = 2Pμν, [Qμ,Pνρ] = 0, [Pμν,Pρλ] = 0,{
Sμ,Sν

} = −2Kμν,
[
Sμ,Kνρ

] = 0,
[
Kμν,Kρλ

] = 0,{
Qμ,Sν

} = −Lμ
ν,

[
Sμ,Pνρ

] = iδ
μ

(ν
Qρ),

[
Qμ,Kνρ

] = −iδ(ν
μ Sρ),[

Pμν,Lλ
ρ
] = −i

(
δρ
μPνλ + δρ

ν Pμλ

)
,

[
Qμ,Lν

ρ
] = −iδρ

μQν[
Sμ,Lν

ρ
] = iδμ

ν Sρ,
[
Lν

μ,Lλ
ρ
] = i

(
δ
μ
λ Lν

ρ − δρ
ν Lλ

μ
)
,[

Kμν,Lλ
ρ
] = i

(
δ
μ
λ Kνρ + δν

λKμρ
)
,

[
Pμν,K

λρ
] = i

4

(
δρ
μLν

λ + δρ
ν Lμ

λ + δλ
μLν

ρ + δλ
ν Lμ

ρ
)
. (2.17)

Let us note that in the case n = 4, in which the physical space–time is four-dimensional (see 
Eq. (2.1)) the generalized superconformal group OSp(1|8) contains the D = 4 conformal sym-
metry group SO(2, 4) ∼ SU(2, 2) as a subgroup, but not the superconformal group SU(2, 2|1). 
The reason being that, although OSp(1|8) and SU(2, 2|1) contain the same number of (eight) 
generators, the anticommutators of the former close on the generators of the whole Sp(8), while 
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those of the latter only close on an U(2, 2) subgroup of Sp(8), and the same supersymmetry 
generators cannot satisfy the different anti-commutation relations simultaneously. In fact, the 
minimal OSp-supergroup containing SU(2, 2|1) as a subgroup is OSp(2|8).

2.3. Scalar superfields and their OSp(1|2n)-invariant equations of motion

Let us now consider a superfield Φ(X, θ) transforming as a scalar under the super-translations 
given in Eq. (2.6)

δΦ = −(
εαQα + iaμνPμν

)
Φ. (2.18)

To construct equations of motion for Φ(X, θ) which are invariant under (2.18) and comprise the 
equations of motion of an infinite tower of integer and half-integer higher-spin fields with respect 
to conventional space–time, we introduce the spinorial covariant derivatives

Dμ = ∂μ + iθν∂νμ, {Dμ,Dν} = 2i∂μν, (2.19)

which (anti)commute with Qμ and Pμν .
The Φ-superfield equations then take the form [11]

D[μDν]Φ = 0, (2.20)

where the brackets denote the anti-symmetrization of indices with unit overall strength similarly 
to (2.4). As was shown in [11], these superfield equations imply that all components of Φ(X, θ)

except for the first and the second one in the θμ-expansion of Φ(X, θ) should vanish

Φ(X,θ) = b(X) + iθμfμ(X) + iθμθνAμν + · · · , (2.21)

(i.e. Aμ1...νk
= 0 for k > 1) while the scalar and spinor fields b(X) and fμ(X) satisfy the equa-

tions first derived in [4]

(∂μν∂ρλ − ∂μρ∂νλ)b(X) = 0, (2.22)

∂μνfρ(X) − ∂μρfν(X) = 0. (2.23)

For n = 4, 8 and 16 these equations encode the Bianchi identity and equations of motion for the 
curvatures of infinite towers of conformally invariant, massless higher-spin fields in 4-, 6- and 
10-dimensional flat space–time, respectively (see [4,12]).

The superfield equations (2.20) are invariant under the generalized superconformal OSp(1|2n)

symmetry, provided that Φ(X, θ) transforms as a scalar superfield with the ‘canonical’ general-
ized scaling weight 1

2 , i.e.

δΦ = −(
εμQμ + ξμSμ + iaμνPμν + ikμνK

μν + igμ
νLν

μ
)
Φ

− 1

2

(
gμ

μ − kμν

(
Xμν + i

2
θμθν

)
+ ξμθμ

)
Φ, (2.24)

where the factor 1
2 in the second line is the generalized conformal weight and εμ, ξμ, aμν , kμν

and gμ
ν are the rigid parameters of the OSp(1|2n) transformations.

Scalar superfields with anomalous generalized conformal dimension � transform under 
OSp(1|2n) as
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δΦ = −(
εμQμ + ξμSμ + iaμνPμν + ikμνK

μν + igμ
νLν

μ
)
Φ

− �

(
gμ

μ − kμν

(
Xμν + i

2
θμθν

)
+ ξμθμ

)
Φ. (2.25)

It is instructive to demonstrate how the generalized conformal dimension �, which is defined 
to be the same for all values of n in OSp(1|2n), is related to the conventional conformal weight 
of scalar superfields in various space–time dimensions. As we have already mentioned in Sec-
tion 2.1, the dilatation operator should be identified with D = 1

2Lμ
μ. Therefore, considering a 

GL(n) transformation (2.25) with parameter gμ
ν

δΦ = −igμ
νLν

μΦ,

the part of the transformation corresponding to the dilatation reads

δDΦ = − i

n
gμ

μLν
νΦ = −2i

n
gμ

μDΦ = −ig̃DΦ, (2.26)

where g̃ = 2
n
gμ

μ is the genuine dilatation parameter. From (2.25) it then follows that the con-
ventional conformal weight �D of the scalar superfield is related to the generalized one � via

�D = n

2
�. (2.27)

In the n = 2 case corresponding to the N = 1, D = 3 scalar superfield theory the two conformal 
dimensions coincide, whereas in the case n = 4 describing conformal higher-spin fields in D = 4
one finds �4 = 2�. Relation (2.27) indeed provides the correct conformal dimensions of scalar 
superfields (and consequently of their components) in the corresponding space–time dimensions. 
For instance, when � = 1

2 , in D = 3 one finds 1
2 as the canonical conformal dimension of the 

scalar superfield, while in the cases D = 4 and D = 6, n = 8 it is found to be equal to one and 
two, respectively. For convenience, we shall henceforth associate the scaling properties of the 
fields to the universal D- and n-independent generalized conformal weight �.

2.4. Infinite-dimensional higher-spin representation of N = 1, D = 4 supersymmetry

Using the example of n = 4 in D = 4 we will now show that in four space–time dimensions, 
the fields of integer and half-integer spin s = 0, 12 , 1, . . . , ∞ encoded in b(X) and fμ(X) form 
an irreducible infinite-dimensional supermultiplet with respect to the supersymmetry transfor-
mations generated by the generalized super-Poincaré algebra (2.5)–(2.8). The hyperfields b(X)

and fμ(X), satisfying (2.23), transform under the supertranslations (2.18) as follows

δb(X) = −iεμfμ(X), δfμ(X) = −εν∂νμb(X). (2.28)

The D = 4 higher-spin field curvatures are contained in b(X) and fμ(X) as the components of 
the series expansion in the powers of the tensorial coordinates ymn of the flat hyperspace (2.1)

b
(
xl, ymn

)

= φ(x) + ym1n1Fm1n1(x) + ym1n1ym2n2

[
Rm1n1,m2n2(x) − 1

2
ηm1m2∂n1∂n2φ(x)

]

+
∞∑

ym1n1 · · ·ymsns
[
Rm1n1,...,msns (x) + · · ·],
s=3
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f ρ
(
xl, ymn

) ≡ Cρμfμ = ψρ(x) + ym1n1

[
Rρ

m1n1
(x) − 1

2
∂m1(γn1ψ)ρ

]

+
∞∑

s= 5
2

ym1n1 · · ·ym
s− 1

2
n

s− 1
2
[
Rρ

m1n1,...,ms− 1
2
n

s− 1
2

(x) + · · ·]. (2.29)

Remember that in (2.29), Cρμ = −Cμρ is the charge conjugation matrix used to raise spinor 
indices, φ(x) and ψρ(x) are a D = 4 scalar and a spinor field, respectively, Fm1n1(x) is the 
Maxwell field strength, Rm1n1,m2n2(x) is the curvature tensor of linearized gravity, Rρ

m1n1(x) is 
the Rarita–Schwinger field strength and other terms in the series stand for generalized Riemann 
curvatures of spin-s fields2 that also contain contributions of derivatives of the fields of lower 
spin denoted by dots, as in the case of the Rarita–Schwinger and gravity fields (see [12] for 
further details).

The fact that the higher-spin fields should form an infinite-dimensional representation of the 
generalized N = 1, D = 4 supersymmetry (2.5) is prompted by the observation that the spectrum 
of bosonic fields contains a single real scalar field φ(x), which alone cannot have a fermionic 
superpartner, while each field with s > 0 has two helicities ±s. Indeed, from (2.28) we obtain an 
infinite entangled chain of supersymmetry transformations for the D = 4 fields

δφ(x) = −iεμψμ(x), δψμ = −1

2
εν

(
γ m
νμ∂mφ + γ mn

νμ Fmn

)
,

δFmn = −iεμ

(
Rμmn(x) − 1

2
∂[m(γn]ψ)μ

)
,

δRμmn(x) = 1

2
∂[m(γn]δψ)μ − 1

2
ενγ p

νμ∂pFmn

− ενγ pq
νμ

(
Rpq,mn(x) − 1

2
∂qηp[m∂n]φ(x)

)
, (2.30)

and so on.
The algebraic reason behind the appearance of the infinite-dimensional supermultiplet of the 

D = 4 higher-spin fields is related to the following fact. In the n = 4, D = 4 case the superalgebra 
(2.5) takes the following form

{Qμ,Qν} = (
γ m

)
μν

Pm + (
γ mn

)
μν

Zmn, (2.31)

where Pm is the momentum along the four-dimensional space–time and Zmn = −Znm are the 
tensorial charges associated with the momenta along the extra coordinates ymn.

On the other hand, the conventional N = 1, D = 4 super-Poincaré algebra is

{Qμ,Qν} = (
γ m

)
μν

Pm. (2.32)

Though the both algebras have the same number of the supercharges Qμ, their anti-commutator 
closes on different sets of bosonic generators. So the super-Poincaré algebra (2.32) is not a 
subalgebra of (2.31). Hence the representations of (2.31) do not split into (finite-dimensional) 
representations of the standard super-Poincaré algebra. In this sense the supersymmetric higher-
spin systems under consideration differ from the most of supersymmetric models of finite-
dimensional super-Poincaré or AdS higher-spin supermultiplets considered in the literature (see, 
e.g. [29–49]).

2 The pairs of the indices separated by the commas are antisymmetrized.
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It will be of interest to study which higher-spin superalgebra, associated with the enveloping 
algebra of osp(1|2n), underlies the super-hyperspace system under consideration. In particular, 
one should understand whether and how this superalgebra can be embedded into the higher-
spin superalgebra hu(1, 1|2n) considered in [34] and, in the context of hyperspace constructions, 
in [4]. For instance, in the D = 4 case the superalgebra hu(1, 1|8) contains osp(2|8) as a fi-
nite-dimensional subalgebra [4], the latter contains the D = 4 superconformal algebra su(1, 1|4)

and, hence, the usual N = 1, D = 4 super-Poincaré algebra as sub-superalgebras, thus allowing 
for an hu(1, 1|8)-invariant higher-spin system to split into the conventional finite-dimensional 
N = 1, D = 4 supermultiplets. As we have argued above (see also the comment in the end of Sec-
tion 2.2), this is not so for the osp(1|8)-invariant higher-spin model under consideration. In this 
respect let us also note that, as has been pointed out, e.g. in [57], although higher-spin superalge-
bras exist in any space–time dimension D they admit usual finite-dimensional sub-superalgebras 
only in space–times of lower dimensions3 such as D = 3, 4, 5 and 7. In other words, higher-spin 
supersymmetry does not necessarily imply conventional supersymmetry.

3. Scalar superfields on OSp(1|n) group manifolds and their equations of motion

3.1. Geometric structure of the OSp(1|n) group manifolds

The geometric structure of the OSp(1|n) group manifolds in the form we shall review be-
low and use extensively in this paper for the description of higher-spin fields in the associated 
AdS spaces has been discussed in [3,7,8,11,24]. The OSp(1|n) superalgebra is formed by n anti-
commuting supercharges Qα and n(n+1)

2 generators Mαβ = Mβα of Sp(n)

{Qα,Qβ} = 2Mαβ, [Qα,Mβγ ] = iξ

2
Cα(βQγ ),

[Mαβ,Mγδ] = − iξ

2
(Cγ (αMβ)δ + Cδ(αMβ)γ ), (3.1)

where Cαβ = −Cβα is the Sp(n) invariant symplectic metric and ξ is a parameter of inverse 
dimension of length related to the AdS radius via r = 2/ξ (see also [1]). The OSp(1|n) algebra 
(3.1) is recognized as a subalgebra of (2.17) with the identifications

Qα =
(

Qα + ξ

4
Sα

)
, Mαβ = Pαβ − ξ2

16
Kαβ − ξ

4
L(αβ), (3.2)

where Sα = SβCβα , Lαβ = Lα
γ Cγβ and Kαβ = KγδCγαCδβ .

The OSp(1|n) manifold is parametrized by the coordinates (Xμν, θμ) and its geometry is 
described by the Cartan forms

Ω =O−1dO(X, θ) = −iΩαβMαβ + iEαQα, (3.3)

where O(X, θ) is an OSp(1|n) supergroup element. The Cartan forms satisfy the Maurer–Cartan 
equations associated with the OSp(1|n) superalgebra (3.1)

dΩαβ + ξ

2
Ωαγ ∧ Ωγ

β = −iEα ∧ Eβ, dEα + ξ

2
Eγ ∧ Ωγ

α = 0, (3.4)

with the external differential acting from the right.

3 The case of D = 6 still has to be analyzed. We thank Mikhail Vasiliev for comments on this issue.
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The Maurer–Cartan equations (3.4) are then solved by the following forms

Ωαβ = dXμνGμ
αGν

β(X) + i

2

(
ΘαDΘβ + ΘβDΘα

) = ΠμνGμ
αGν

β(X,Θ), (3.5)

Eα = P
(
Θ2)DΘα − ΘαDP

(
Θ2), (3.6)

where Θ is related to θ through

θα = ΘβG−1α
β P −1(Θ2), Θ2 = ΘαΘα, P 2(Θ2) = 1 + iξ

8
Θ2, (3.7)

while the covariant derivative

DΘα = dΘα + ξ

4
Θβωβ

α(X), (3.8)

contains the Cartan form of the Sp(n) group manifold

ωαβ(X) = dXμνGμ
α(X)Gν

β(X), (3.9)

and

Gα
β(X,Θ) = Gα

β(X) − iξ

8

(
Θα − 2Gα

γ Θγ

)
Θβ, G−1β

α = δα
β + ξ

4
Xα

β. (3.10)

Note also the relations

θαGα
β = ΘβP

(
Θ2), θα = ΘβG−1α

β P
(
Θ2), (3.11)

and the fact that the inverse matrix of (3.10) is given by

G−1β
α (X,Θ) = G−1β

α (X) − iξ

8

(
ΘδG−1

δα

)(
ΘδG

−1β
δ

)
P −2(Θ2)

= G−1β
α (X) − iξ

8
θαθβ = δβ

α + ξ

4

(
Xα

β − i

2
θαθβ

)
. (3.12)

The form of the bosonic Cartan form (3.5) prompts us that the latter is related to the super-
invariant form (2.3) in flat hyper superspace via the GL(n) transformation with matrix element 
(3.10). This property was revealed in [7] and called GL-flatness of the OSp(1|n) supermanifold. 
It will allow us to generalize the results of [1] and relate the scalar superfield Φ(X, θ) and its 
field equation (2.20) in flat superspace to a scalar superfield and its equation of motion on the 
supergroup manifold OSp(1|n).

3.2. Scalar superfield on OSp(1|n) and its OSp(1|2n) invariant equation of motion

The scalar superfield equation on OSp(1|n) takes the form [11](
∇[α∇β] − iξ

8
Cαβ

)
ΦOSp(X, θ) = 0, (3.13)

where the Grassmann-odd covariant derivatives ∇α and their bosonic counterparts ∇αβ satisfy 
the OSp(1|n) superalgebra similar to (3.1), namely

{∇α,∇β} = 2i∇αβ (3.14)

[∇γ ,∇αβ ] = ξ

2
Cγ(α∇β), (3.15)

[∇αβ,∇γ δ] = ξ
(Cα(γ ∇δ)β + Cβ(γ ∇δ)α). (3.16)
2
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A somewhat tedious but straightforward algebra then shows that the superfield ΦOSp(X, θ) satis-
fying (3.13) is related to the superfield Φ(X, θ) satisfying the flat superspace equation (2.20) by 
the super-Weyl transformation

ΦOSp(1|n)(X,Θ) = (detG)−
1
2 Φflat(X, θ) = (detG)−

1
2 P

(
Θ2)Φflat(X, θ), (3.17)

while the OSp(1|n) covariant derivatives are obtained from the flat superspace ones by the fol-
lowing GL (‘generalized superconformal’) transformations

∇α = G−1μ
α Dμ,

∇αβ = G−1μ
α G−1ν

β

(
∂μν + 2iD(μ ln

(
(detG)

1
2 P −1(Θ2))Dν)

)
. (3.18)

Substituting (2.21) into (3.17) and using the definition (3.7), together with the fact that on the 
mass shell all higher components in (2.21) vanish, we find

ΦOSp(n)(X,Θ)

= (detG)−
1
2 b(X) + Θα(detG)−

1
2 G−1μ

α (X)fμ(X) + O
(
Θ2, b(X)

)
, (3.19)

where the first two terms are the fields

B(X) = (detG)−
1
2 b(X), Fα(X) = (detG)−

1
2 G−1μ

α (X)fμ(X) (3.20)

propagating on the Sp(n) group manifold, and O(Θ2, b(x)) stands for higher order terms in Θ2

which only depend on b(X). The fields (3.20) satisfy the equations of motion

(∇αβ∇γ δ − ∇αγ ∇βδ)B

− ξ

8
(Cαγ ∇βδ − Cαβ∇γ δ + Cβδ∇αγ − Cγδ∇αβ + 2Cβγ ∇αδ)B

−
(

ξ

8

)2

(Cαγ Cβδ − CαβCγδ + 2Cβγ Cαδ)B = 0, (3.21)

∇αβFγ − ∇αγ Fβ + ξ

8
(CγαFβ − CβαFγ + 2CγβFα) = 0, (3.22)

discussed in detail in [1]. Note that in (3.21) and (3.22) the covariant derivatives are restricted to 
the bosonic group manifold Sp(n), i.e. ∇αβ = G

−1μ
α (X)G−1ν

β (X)∂μν .
Since the flat superspace field equation is invariant under the generalized superconformal 

OSp(1|2n) transformations (2.24), the above relation leads us to conclude that also the OSp(1|n)

superspace equations (3.13) are invariant under the OSp(1|2n) transformations, under which the 
superfield ΦOSp(X, θ) varies as

δΦOSp = −(
εμQμ + ξμSμ + iaμνPμν + ikμνKμν + igμ

νLν
μ
)
ΦOSp

− 1

2

(
gμ

μ − kμν

(
Xμν + i

2
θμθν

)
+ ξμθμ

)
ΦOSp. (3.23)

Here

Pμν = −iDμν = −i

(
∂μν + ξ

8
G(αβ)

)
, (3.24)

and

Qμ = Qμ − iξ
ΘμP (Θ). (3.25)
8
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Using the relations

QβΘα = P −1(Θ2)(Gβ
α + iξ

8
ΘβΘα + iξ

8
Gβ

σ Θσ Θα +
(

iξ

8

)2

Θ2ΘβΘα

)
, (3.26)

(
QβΘα

)
Θα = P

(
Θ2)(Gβ

σ + iξ

8
ΘβΘσ

)
Θσ , (3.27)

∂αβΘγ = ξ

4
Θ(αGβ)

δ

(
δ
γ
δ + iξ

8
ΘδΘ

γ

)
, (3.28)

DβGα
γ = iξ

4
P

(
Θ2)(Θα − 2Gα

ρΘρ

)
Gβ

γ (3.29)

∂αβGγ
δ = ξ

4
Gγ (αGβ)

δ, (3.30)

and

QαGμν = − iξ

4
P

(
Θ2)ΘνGμα, (3.31)

one may check that the operators (3.24) and (3.25) obey the flat hyperspace supersymmetry 
algebra

[Pμν,Pρσ ] = 0, {Qμ,Qν} = −2Pμν, [Pμν,Qρ] = 0. (3.32)

The other generators of the OSp(1|2n) are

Sμ = −
(

Xμν + i

2
θμθν

)
Qν, Lμ

ν = −2i

(
Xνρ + i

2
θνθρ

)
Dρμ − iθνQμ, (3.33)

and

Kμν = i

(
Xμρ + i

2
θμθρ

)(
Xνλ + i

2
θνθλ

)
Dρλ − iθ (μSν). (3.34)

Taking into account the commutation relations (3.32) we see that the operators Qμ, Sμ, Pμν , 
Lμ

ν , Kμν obey the same OSp(1|2n) algebra (2.17) as the operators Qμ, Sμ, Pμν, Lμ
ν and Kμν .

4. Correlation functions in N = 1, D = 3 superconformal models

Before considering correlation functions for superfields in hyper superspaces, it is instructive 
to discuss in detail analogous structures arising in the superconformal theory of a real scalar 
superfield in a conventional N = 1, D = 3 superspace. The reason being that this model is 
the simplest example (with n = 1) of the OSp(1|2n) invariant systems considered above. The 
physical content of this system is a real scalar and a D = 3 Majorana spinor field whereas the 
massless higher-spin fields are absent.

The superconformally invariant two- and three-point correlation functions of the N = 1, D =
3 model have been constructed in [26] with the use of a slightly different notation. Below we 
shall discuss properties of the two- and three-point functions for the D = 3 scalar superfield and 
its components using a formalism which straightforwardly generalizes to higher-dimensional 
hyperspaces.

Let us use the spinor–tensor representation for the description of the three-dimensional space–
time coordinates
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xαβ = xβα = xm(γm)αβ, (4.1)

where α, β = 1, 2 are D = 3 spinorial indices and m = 0, 1, 2 is the vectorial one. Since (4.1)
provides a representation of the symmetric 2 × 2 matrices xαβ , no extra coordinates, like ymn, 
are present and, hence, no higher-spin fields.

The inverse matrix of (4.1), x−1
αβ

xαβx−1
βγ = δγ

α , (4.2)

takes the simple form

x−1
αβ = − 1

xmxm

xn(γn)αβ = − 1

x2
xαβ. (4.3)

We may now consider a real scalar superfield in D = 3

Φ(x, θ) = φ(x) + iθαfα(x) + θαθαF (x), (4.4)

with φ(x) being a physical scalar, fα(x) a physical fermion and F(x) an auxiliary field.
If (4.4) satisfies the free equation of motion (2.20), which in the D = 3 case reduces to

DαDαΦ = 0, (4.5)

the auxiliary field F(x) vanishes, the scalar field φ(x) satisfies the massless Klein–Gordon equa-
tion and fα(x) satisfies the massless Dirac equation.

Let us consider a superconformal transformation of (4.4). The Poincaré supersymmetry trans-
formations read

δΦ(x, θ) = εα

(
∂

∂θα
− iθβ ∂

∂xαβ

)
Φ(x, θ) = εαQαΦ(x, θ), (4.6)

and imply the supersymmetry transformations of the component fields

δφ(x) = iεαfα(x), (4.7)

δfα(x) = −2iεαF (x) − εβ∂αβφ(x), (4.8)

δF (x) = 1

2
εα∂αβf β(x), (4.9)

where we have made use of the identity

θαθβ = 1

2
Cαβ

(
θγ θγ

)
. (4.10)

Moreover, under conformal supersymmetry, Φ(x, θ) transforms as

δΦ(x, θ) = ξα

(
xαβ + i

2
θαθβ

)
QβΦ(x, θ) − i

(
ξαθα

)
�Φ(x, θ), (4.11)

where � is the conformal weight of the superfield. The superconformal transformations of the 
component fields are given by

δφ(x) = iξαxαβfβ(x), (4.12)

δfα(x) = −2iξβxβ
αF (x) + ξβxβγ ∂γαφ(x) + ξα�φ(x), (4.13)

δF (x) = 1
ξαxαβ∂βγ f γ (x) − 1

ξα

(
1 − �

)
f α(x). (4.14)
2 2 2
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The conformal weights of φ, fα and F are �, � + 1
2 and � + 1, respectively.

It should be noted that the field equation (4.5) is superconformally invariant if the superfield 
Φ(x, θ) has the canonical conformal weight � = 1

2 .

4.1. Two-point functions

The form of correlation functions in superconformal theories is drastically restricted by the 
requirement of their superconformal invariance.

The two-point correlation function of the superfield Φ(x, θ) with conformal weight � is 
obtained by first solving the superconformal Ward identities which involve Q- and S-supersym-
metry transformations. The invariance under bosonic translations, rotations, conformal boosts 
and dilations then follows as a consequence of the properties of the superconformal algebra. The 
Q- and S-supersymmetry Ward identities are

εμ

(
∂

∂θ
μ
1

− iθν
1

∂

∂x
μν
1

+ ∂

∂θ
μ
2

− iθν
2

∂

∂x
μν
2

)〈
Φ(x1, θ1)Φ(x2, θ2)

〉 = 0, (4.15)

and

ξμ

[(
X

μν
1 + i

2
θ

μ
1 θν

1

)(
∂

∂θν
1

− iθ
ρ
1

∂

∂x
νρ
1

)
+

(
X

μν
2 + i

2
θ

μ
2 θν

2

)(
∂

∂θν
2

− iθ
ρ
2

∂

∂x
νρ
2

)]

· 〈Φ(x1, θ1)Φ(x2, θ2)
〉 + i�ξμ

(
θ

μ
1 + θ

μ
2

)〈
Φ(x1, θ1)Φ(x2, θ2)

〉 = 0.

The solution to these equations takes the form
〈
Φ(x1, θ1)Φ(x2, θ2)

〉 = c2
(
det |z12|

)−�
, (4.16)

where c2 is an arbitrary normalization constant and

z
μν
ij = x

μν
i − x

μν
j − i

2
θ

μ
i θν

j − i

2
θν
i θ

μ
j , (4.17)

is invariant under Q-supersymmetry. As usual, for the two-point function to be non-vanishing, 
the conformal weights of the two superfields should be equal.

Expanding the expression on the right hand side of (4.16) in powers of θ , we obtain
(
det |z12|

)−� = (
det |x12|

)−� − i∂αβ

(
det |x12|

)−�
θ

(α
1 θ

β)

2

− 1

2
∂γ δ∂αβ

(
det |x12|

)−�
θ

(α
1 θ

β)

2 θ
(γ

1 θ
δ)
2 . (4.18)

Using the identities

∂αβ

(
det |x|)−� = −�x−1

αβ det |x|−�, (4.19)

and

∂αβ∂γ δ

(
det |x|)−� = �

(
�x−1

αβ x−1
γ δ + 1

2
x−1
αγ x−1

βδ + 1

2
x−1
βγ x−1

αδ

)(
det |x|)−�

, (4.20)

one may rewrite the expression (4.18) as

(
det |z12|

)−� = (
det |x12|

)−�
(

1 − i�
xm

12(γm)αβ

x2
θα

1 θ
β

2 − (2� − 1)�

4

1

x2
θ2

1 θ2
2

)
. (4.21)
12 12
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Thus, from Eqs. (4.18) or (4.21), one may immediately read off the expressions for the correlation 
functions of the component fields of the superfield (4.4):

〈
φ(x1)φ(x2)

〉 = c2
(
det |x12|

)− 1
2 , (4.22)

〈
fα(x1)fβ(x2)

〉 = −ic2∂αβ

(
det |x12|

)− 1
2 ,

〈
φ(x1)fα(x2)

〉 = 0, (4.23)〈
F(x1)φ(x2)

〉 = 0,
〈
F(x1)fα(x2)

〉 = 0, (4.24)〈
F(x1)F (x2)

〉 = −c2

8
∂αβ∂αβ

(
det |x|)−�

. (4.25)

Let us note that when the superfield Φ(x, θ) has the canonical conformal dimension � = 1
2 , 

due to the identity

Cαγ Cβδ∂1
αβ∂1

γ δ

(
det |x12|

)− 1
2 = −1

2
ηmn ∂

∂xm
1

∂

∂xn
1

(
det |x12|

)− 1
2 (4.26)

the last term in (4.18) is proportional to the δ-function if one moves to the Euclidean signature. 
Then one has for the two-point function for the auxiliary field

〈
F(x1)F (x2)

〉 = −π

4
c2δ

(3)(x1 − x2). (4.27)

Note that the correlation functions of the auxiliary field F with the physical fields and with itself 
(for xm

1 	= xm
2 ) vanish.

On the other hand, if the conformal weight of the superfield (4.4) is anomalous, i.e. � 	= 1
2 , 

the correlators of the auxiliary field with the physical ones still vanish (in agreement with the fact 
that their conformal weights are different), but the 〈FF 〉 correlator is

〈
F(x1)F (x2)

〉 = −c2
(2� − 1)�

4

1

x2
12

(
det |x12|

)−�

= −c2
(2� − 1)�

4

(
det |x12|

)−�−1
. (4.28)

This situation may correspond to an interacting quantum N = 1 superconformal field theory [58], 
where the auxiliary field is non-zero, and fields acquire anomalous dimensions due to quantum 
corrections.

4.2. Three-point functions

We now consider three-point functions involving three real scalar superfields carrying 
scaling dimensions �i (i = 1, 2, 3). Solving the supeconformal Ward identities for Q- and 
S-supersymmetry transformations we find

〈
Φ�1(x1, θ1)Φ

�2(x2, θ2)Φ
�3(x3, θ3)

〉
= c3

(
det |z12|

)−k1
(
det |z23|

)−k2
(
det |z31|

)−k3 , (4.29)

where

k1 = 1

2
(�1 + �2 − �3), k2 = 1

2
(�2 + �3 − �1), k3 = 1

2
(�3 + �1 − �2).

(4.30)
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Using the expansion (4.21), one obtains the three-point functions of the component fields of 
Φ�1(x1, θ1), Φ�2(x2, θ2) and Φ�3(x3, θ3), whose labels of scaling dimension we skip for sim-
plicity

〈
φ(x1)φ(x2)φ(x3)

〉 = c3
(
det |x12|

)−k1
(
det |x23|

)−k2
(
det |x31|

)−k3 , (4.31)
〈
fα(x1)fβ(x2)φ(x3)

〉

= −ic3
k1x

m
12(γm)αβ

x2
12

(
det |x12|

)−k1
(
det |x23|

)−k2
(
det |x31|

)−k3

= −ic3k1x
m
12(γm)αβ

(
det |x12|

)−k1−1(
det |x23|

)−k2
(
det |x31|

)−k3 , (4.32)
〈
fα(x1)F (x2)fβ(x3)

〉

= c3
k1k2

2x2
12x

2
23

(γm)α
δ(γn)δβ

(
xm

12

)(
xn

23

)(
det |x12|

)−k1
(
det |x23|

)−k2
(
det |x31|

)−k3

= c3
k1k2

2
(γm)α

δ(γn)δβ
(
xm

12

)(
xn

23

)(
det |x12|

)−k1−1(det |x23|
)−k2−1(det |x31|

)−k3 . (4.33)
〈
F(x1)F (x2)φ(x3)

〉 = −c3

8
∂m∂m

((
det |x12|

)−k1
)(

det |x23|
)−k2

(
det |x31|

)−k3 (4.34)

The remaining three-point functions containing an odd number of fermions, as well as the 
correlator 〈Fφφ〉, vanish. Note that, dimensional arguments would allow for a non-zero 〈Fφφ〉
correlator, but supersymmetry forces it to vanish. The correlator 〈F(x1)F (x2)F (x3)〉 is zero as 
well, since it is proportional to (γmγnγp)xm

12x
n
23x

p

31 = 2iεmnpxm
12x

n
23x

p

31 = 0.
Moreover, from the above expressions we see that superconformal symmetry does not fix the 

values of the scaling dimensions �i (4.30) entering the right hand side of (4.29). This indicates 
that quantum operators may acquire anomalous dimensions and the quantum N = 1, D = 3
superconformal theory of scalar superfields can be non-trivial, in agreement, e.g. with the results 
of [58].

If the value of � were restricted by superconformal symmetry to its canonical value and no 
anomalous dimensions were allowed (for all the operators which are not protected by super-
symmetry) one would conclude that the conformal fixed point is that of the free theory. This 
is the case, for instance, for the N = 1, D = 4 Wess–Zumino model in which the chirality of 
N = 1 matter multiplets and their three-point functions restricts the scaling dimensions of the 
chiral scalar supermultiplets to be canonical. This implies that in the conformal fixed point the 
coupling constant is zero, i.e. the theory is free [59,60].

5. Correlation functions in OSp(1|2n)-invariant models

Following the example of the N = 1, D = 3 superconformally invariant model of the previ-
ous section, we now proceed to compute correlation functions on hyper superspace for generic 
OSp(1|2n) invariant models. Again, it is sufficient to require the invariance of the correlation 
functions under Q- and S-supersymmetry transformations. The invariance under the generalized 
translations, rotations and conformal transformations will then be guaranteed by the form of the 
OSp(1|2n) superalgebra. As we will see, the form of the super-correlators will be exactly the 
same as in the D = 3 case with only difference that the superinvariant intervals (4.17) are now 
n × n matrices.
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5.1. Two-point functions

Let us denote the two-point correlation function by

W(Z1,Z2) = 〈
Φ(X1, θ1)Φ(X2, θ2)

〉
. (5.1)

The invariance under Q-supersymmetry requires

εμ

(
∂

∂θ
μ
1

− iθν
1

∂

∂X
μν
1

+ ∂

∂θ
μ
2

− iθν
2

∂

∂X
μν
2

)
W(Z1,Z2) = 0, (5.2)

which implies〈
Φ(X1, θ1)Φ(X2, θ2)

〉 = W
(
det |Z12|

)
, (5.3)

where

Z
μν
12 = X

μν
1 − X

μν
2 − i

2
θ

μ
1 θν

2 − i

2
θν

1 θ
μ
2 (5.4)

is the interval between two points in hyper-superspace which is invariant under the rigid super-
symmetry transformations (2.2).

We next impose invariance of the correlator under the S-supersymmetry transformation

ξμ

[(
X

μν
1 + i

2
θ

μ
1 θν

1

)(
∂

∂θν
1

− iθ
ρ
1

∂

∂X
νρ
1

)
+

(
X

μν
2 + i

2
θ

μ
2 θν

2

)(
∂

∂θν
2

− iθ
ρ
2

∂

∂X
νρ
2

)]

× W
(
det |Z12|

) + ξμ

(
i

2
θ

μ
1 + i

2
θ

μ
2

)
W

(
det |Z12|

) = 0, (5.5)

which is solved by

W
(
det |Z12|

) = c2
(
det |Z12|

)− 1
2 ⇒ 〈

Φ(X1, θ1)Φ(X2, θ2)
〉 = c2

(
det |Z12|

)− 1
2 . (5.6)

The two-point function (5.6) reproduces the correlators of the component bosonic and fermionic 
hyperfields b(X) and fμ(X) after the expansion of the former in powers of the Grassmann coor-

dinates θ(μ
1 θ

ν)
2 . Since on the mass shell the superfield (2.21) has only two non-zero components, 

all terms in the θ -expansion of the two-point function (5.6), starting from the ones quadratic in 
θ

(μ
1 θ

ν)
2 , should vanish. This is indeed the case, as a consequence of the field equations.

To see this, let us recall that in the separated points the two-point function of the bosonic 
hyperfield of weight 1

2 satisfies the free field equation. Therefore for X1
αβ 	= X2

αβ one has4

(
∂1
μν∂

1
ρσ − ∂1

μρ∂1
νσ

)〈
b(X1)b(X2)

〉 = (
∂1
μν∂

1
ρσ − ∂1

μρ∂1
νσ

)(
det |X12|

)− 1
2 = 0. (5.7)

Similarly, for X1
αβ 	= X2

αβ the fermionic two-point function satisfies the free field equation for 
the fermionic hyperfield. Written in terms of the superfields, these equations are encoded in the 
superfield equation(

D1
μD1

ν − D1
νD

1
μ

)〈
Φ(X1, θ1)Φ(X2, θ2)

〉
= (

D1
μD1

ν − D1
νD

1
μ

)(
det |Z12|

)− 1
2 = 0 (for Z12 	= 0). (5.8)

4 When the two points coincide, one can define an analog of the Dirac delta function in the tensorial spaces, see [5] for 
the relevant discussion.
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Expanding the two-point function (det |Z12|)− 1
2 in powers of the Grassmann theta-variables

(
det |Z12|

)− 1
2 = (

det |X12|
)− 1

2 − i∂αβ

(
det |X12|

)− 1
2 θ

(α
1 θ

β)

2

− 1

2
∂γ δ∂αβ

(
det |X12|

)− 1
2 θ

(α
1 θ

β)

2 θ
(γ

1 θ
δ)
2 + · · · , (5.9)

one may see that terms in the expansion starting from (θ(μ
1 θ

ν)
2 )2 vanish due to the free field 

equation (5.7). From Eqs. (5.6), (5.9) and from the explicit form of the superfield (2.21), one 
may immediately reproduce the correlation functions for the component fields [10]

〈
b(X1)b(X2)

〉 = c2
(
det |X12|

)− 1
2 ,

〈
fμ(X1)fν(X2)

〉 = ic2

2
(X12)

−1
μν

(
det |X12|

)− 1
2 . (5.10)

Notice also that, contrary to the non-supersymmetric case, where the two-point functions for 
bosonic and fermionic hyperfields contain an independent normalization constant each, in the 
supersymmetric case the number of independent constants is reduced to one.

The two-point functions on the OSp(1|n) manifold may now be obtained from (5.6) via the 
rescaling (3.17), which relates the superfields in flat superspace and on the OSp(1|n) group man-
ifold 〈

ΦOSp(X1, θ1)ΦOSp(X2, θ2)
〉

= (
detG(X1)

)− 1
2 P

(
Θ2

1

)(
detG(X2)

)− 1
2 P

(
Θ2

2

)〈
Φ(X1, θ1)Φ(X2, θ2)

〉
. (5.11)

Finally, as in the D = 3 case, one may derive the superconformally invariant two-point func-
tion for superfields carrying an arbitrary generalized conformal weight �, which on flat hyper 
superspace has the form

〈
Φ�1(X1, θ1)Φ

�2(X2, θ2)
〉 = c2

(
det |Z12|

)−�
, �1 = �2 = �. (5.12)

In principle, in order to obtain the OSp(1|n) correlator, as in the case � = 1
2 , one may apply to 

(5.12) a Weyl rescaling similar to (5.11). However, when � 	= 1
2 the superfields no longer satisfy 

the quadratic equations (2.20) and (3.13), because the latter equations are superconformally in-

variant only for � = 1
2 . Thus, fixing the power of (detG(X))− 1

2 P(Θ2) in the Weyl transform of 
quantities carrying anomalous dimensions remains an interesting open problem.

5.2. Three-point functions

The three-point functions for the superfields with arbitrary generalized conformal dimensions 
�i (i = 1, 2, 3)

W(Z1,Z2,Z3) = 〈
Φ(X1, θ1)Φ(X2, θ2)Φ(X3, θ3)

〉
, (5.13)

may be computed in a way similar to the two-point functions using the superconformal Ward 
identities. The invariance under Q-supersymmetry implies that they depend on the superinvariant 
intervals Zij , i.e.〈

Φ(X1, θ1)Φ(X2, θ2)Φ(X3, θ3)
〉 = W(Z12,Z23,Z31), (5.14)

where
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)
, i, j = 1,2,3. (5.15)

Invariance under S-supersymmetry then fixes the form of the function W to be〈
Φ(X1, θ1)Φ(X2, θ2)Φ(X3, θ3)

〉
= c3(detZ12)

− 1
2 (�1+�2−�3)(detZ23)

− 1
2 (�2+�3−�1)(detZ31)

− 1
2 (�3+�1−�2). (5.16)

Let us note that the three-point function is not annihilated by the operator entering the free equa-
tions of motion (2.20) for generic values of the generalized conformal dimensions, including the 
case in which the values of all the generalized conformal dimensions are canonical(

D1
μD1

ν − D1
νD

1
μ

)〈
Φ(X1, θ1),Φ(X2, θ2),Φ(X2, θ2)

〉
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1
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)− 1
4
(
det |Z23|

)− 1
4
(
det |Z31|

)− 1
4
) 	= 0.

The component analysis of the superfield three-point correlation function (5.16) proceeds in the 
same way as in the N = 1, D = 3 case of Section 4.2. The difference lies, however, in the 
presence of many more auxiliary fields.

Again, the three-point functions on the supergroup manifold OSp(1|n) can be obtained via the 
Weyl rescaling (3.17), as in the case of the two-point functions, Eq. (5.11).

5.3. Four-point functions

Finally, let us consider, first in flat hyper superspace, the correlation function of four real 
scalar superfields with arbitrary generalized conformal dimensions, �i (with i = 1, 2, 3, 4)

W(Z1,Z2,Z3) = 〈
Φ(X1, θ1)Φ(X2, θ2)Φ(X3, θ3)Φ(X4, θ4)

〉
. (5.17)

Invariance under Q-supersymmetry again implies that the correlation function depends only on 
the superinvariant intervals Zμν

ij (5.15). Following the analogy with conventional conformal field 
theory we find

W(X1,X2,X3,X4) = c4

∏
ij,i<j

1

(det |Zij |)kij
W̃

(
z, z′), (5.18)

with W being an arbitrary function of the cross-ratios

z = det

( |Z12||Z34|
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)
, z′ = det

( |Z12||Z34|
|Z23||Z14|

)
, (5.19)

subject to the crossing symmetry constraints

W̃
(
z, z′) = W̃

(
1

z
,
z′

z

)
= W̃

(
z

z′ ,
1

z′

)
. (5.20)

Furthermore, the kij ’s are constrained by invariance of the four-point function under the 
S-supersymmetry to satisfy∑

j 	=i

kij = �i. (5.21)

Similarly to the case of two- and three-point functions, the four-point function of the scalar 
superfields on OSp(1|n) can be obtained from (5.18) via the Weyl rescaling (3.17).
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6. Conclusion and outlook

A detailed study of the OSp(1|2n)-invariant generalized superconformal theories is still an 
interesting open problem, which is important for better understanding the properties of con-
formally invariant higher-spin field theories (see, e.g. [61–69] for recent progress in studying 
conformal higher-spin fields). Our results are a further step in this direction. Following the pro-
gram outlined in [1], we have extended the results on the structure of Sp(2n)-invariant field 
equations to supersymmetric higher-spin systems. We constructed generalized superconformal 
transformations relating the field equation on flat hyper-superspace and on OSp(1|n) supergroup 
manifolds, which correspond to a generalization of supersymmetric AdS spaces. We computed 
the two-, three- and four-point functions of real hyper-superfields both on flat and on OSp(1|n)

supergroup manifolds and, as a simple illustration of our approach, applied this technique to the 
example of N = 1, D = 3 superconformal theory of scalar superfields.

It is important to further study possible interactions (which might be associated with non-
trivial three- and four-point correlation functions) in this type of models. Since a Lagrangian 
description of OSp(1|2n) invariant field equations is still not known even in the free case, one can 
approach the problem using non-Lagrangian methods similar to those in Conformal Field Theo-
ries (see for example [70]). Following these methods one can try to introduce OSp(1|2n) invariant 
vertexes and compute explicit expressions for anomalous dimensions for generalized conformal 
weights. Recall that according to the results of Section 5 the Ward identities for three- and four-
point functions do not necessarily require the values of the generalized conformal weights to be 
canonical, therefore one may expect interesting outcomes of this study.

The question of the existence of anomalous values for generalized conformal dimensions can 
be related to the question of a possible breaking of OSp(1|2n) symmetry down to a correspond-
ing AdSD (super)symmetry. In this respect one can also note that the hyperspace formulation 
considered in this paper does not involve higher-spin gauge field potentials, but only their field 
strengths. So far higher-spin potentials have been introduced only in an unfolded extension of the 
hyperspace formulation of D = 4 higher-spin fields in such a way that the resulting equations are 
invariant under SU(2, 2) and O(3, 3) subgroups of the original Sp(8) symmetry, motivating to 
speculate on their origin due to a mechanism of spontaneous breaking of higher-spin and Sp(8)

symmetries [13]. Further study in this direction may help in searching for interacting systems of 
fields on hyper-(super)spaces and their possible connection to Vasiliev’s interacting higher-spin 
gauge theories.

It would be also of interest to consider in detail the implication of our results in the frame-
work of higher-spin AdS/CFT correspondence. The origin of higher-spin holographic duality 
can be traced back [4] to the work of Flato and Fronsdal [71] who showed that the tensor prod-
uct of single-particle states of a 3D massless conformal scalar and spinor fields (singletons) 
produces the tower of all single-particle representations of 4D massless fields whose spectrum 
matches that of 4D higher-spin gauge theories. The hyperspace formulation provides an explicit 
field theoretical realization of the Flato–Fronsdal theorem in which higher-spin fields are also 
“packed” in a single scalar and spinor fields, though propagating in hyperspace. The relevance 
of the hyperspace formulation to holography has been pointed out in [4,72]. In this interpre-
tation, holographically dual theories share the same unfolded formulation in extended spaces 
which contains twistor-like (or oscillator) variables and each of these theories corresponds to a 
different reduction, or “visualization”, of the same “master” theory. For instance, the higher-spin 
field equations in either ordinary space–time or hyperspace can be obtained from the same set of 
unfolded equations [4,6–8]. Depending on the number of twistorial coordinates of the unfolded 
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formulation, one can obtain hyperfields of different ranks which can be fundamental fields, bi-
fundamental fields (currents) etc. [9]. A connection between these fields in different dimensions 
can be established via embedding of lower-dimensional hyperspaces into higher-dimensional
ones [19]. Thus, one can conclude that the hyperspace formulation provides an extra and poten-
tially powerful tool for studying higher-spin AdS/CFT correspondence.

A detailed study of the higher-spin content of field equations on higher-dimensional curved 
hyper-superspaces, as well as their underlying higher-spin superalgebras containing OSp(1|n), is 
yet another interesting issue. We hope to address these problems in future work.
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