12 research outputs found

    License Plate Recognition Technology Development Research and Improvement

    Get PDF
    License plate recognition technology is an important part of an intelligent transport system, widely used in highway tolls, unregistered vehicle monitoring, vehicle parking management, and other important occasions. Typical of the license plate recognition, algorithm is divided into three components, license plate localization, character segmentation, and character recognition. This paper summarizes the key technology of license plate recognition algorithm, and analyses the difficulties of improving the recognition rate. According to features of license plates, license plate character recognition methods in recent years were summarized and put forward, on the basis of the existing methods, improving system performance and accuracy

    Simulation for RFID-Based Red Light Violation Detection: Violation Detection and Flow Prediction

    Full text link

    Picture processing for enhancement and recognition

    Get PDF
    Recent years have been characterized by an incredible growth in computing power and storage capabilities, communication speed and bandwidth availability, either for desktop platform or mobile device. The combination of these factors have led to a new era of multimedia applications: browsing of huge image archives, consultation of online video databases, location based services and many other. Multimedia is almost everywhere and requires high quality data, easy retrieval of multimedia contents, increase in network access capacity and bandwidth per user. To meet all the mentioned requirements many efforts have to be made in various research areas, ranging from signal processing, image and video analysis, communication protocols, etc. The research activity developed during these three years concerns the field of multimedia signal processing, with particular attention to image and video analysis and processing. Two main topics have been faced: the first is relating to image and video reconstruction/restoration (using super resolution techniques) in web based application for multimedia contents' fruition; the second is relating to image analysis for location based systems in indoor scenario. The first topic is relating to image and video processing, in particular the focus has been put on the development of algorithm for super resolution reconstruction of image and video sequences in order to make easier the fruition of multimedia data over the web. On one hand, latest years have been characterized by an incredible proliferation and surprising success of user generated multimedia contents, and also distributed and collaborative multimedia database over the web. This brought to serious issues related to their management and maintenance: bandwidth limitation and service costs are important factors when dealing with mobile multimedia contents’ fruition. On the other hand, the current multimedia consumer market has been characterized by the advent of cheap but rather high-quality high definition displays. However, this trend is only partially supported by the deployment of high-resolution multimedia services, thus the resulting disparity between content and display formats have to be addressed and older productions need to be either re-mastered or postprocessed in order to be broadcasted for HD exploitation. In the presented scenario, superresolution reconstruction represents a major solution. Image or video super resolution techniques allow restoring the original spatial resolution from low-resolution compressed data. In this way, both content and service providers, not to tell the final users, are relieved from the burden of providing and supporting large multimedia data transfer. The second topic addressed during my Phd research activity is related to the implementation of an image based positioning system for an indoor navigator. As modern mobile device become faster, classical signal processing is suggested to be used for new applications, such location based service. The exponential growth of wearable devices, such as smartphone and PDA in general, equipped with embedded motion (accelerometers) and rotation (gyroscopes) sensors, Internet connection and high-resolution cameras makes it ideal for INS (Inertial Navigation System) applications aiming to support the localization/navigation of objects and/or users in an indoor environment where common localization systems, such as GPS (Global Positioning System), fail. Thus the need to use alternative positioning techniques. A series of intensive tests have been carried out, showing how modern signal processing techniques can be successfully applied in different scenarios, from image and video enhancement up to image recognition for localization purpose, providing low costs solutions and ensuring real-time performance

    Super-resolução em vídeos de baixa qualidade para aplicações forenses, de vigilância e móveis

    Get PDF
    Orientadores: Siome Klein Goldenstein, Anderson de Rezende RochaTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Algoritmos de super-resolução (SR) são métodos para obter um aumento da resolução de imagens compostas por pixels. Na super-resolução por múltiplas imagens, um conjunto de imagens de baixa resolução de uma cena é combinado para construir uma imagem de resolução superior. Super-resolução é uma solução barata para superar as limitações dos sistemas de aquisição de imagens, e pode ser útil em diversos casos em que o dispositivo não pode ser melhorado ou substituído - mas em que é possível obter diversas capturas da mesma cena. Neste trabalho, é explorada a super-resolução por múltiplas imagens para imagens naturais, em cenários nos quais é possível obter diversas imagens de uma cena. São propostas cinco variações de um método que explora propriedades geométricas de múltiplas imagens de baixa resolução para combiná-las em uma imagem de resolução superior; duas variações de um método que combina técnicas de inpainting e super-resolução; e mais três variações de um método que utiliza filtros adaptativos e regularização para resolver um problema de mínimos quadrados. Super-resolução por múltiplas imagens é possível quando existe movimento e informações não redundantes entre as imagens de baixa resolução. Entretanto, combiná-las em uma imagem de resolução superior pode não ser computacionalmente viável por técnicas complexas de super-resolução. A primeira aplicação dos métodos propostos é para um conjunto de imagens capturadas pelos dispositivos móveis mais recentes. Este tipo de ambiente requer algoritmos eficazes que sejam executados rapidamente e utilizando baixo consumo de memória. A segunda aplicação é na Ciência Forense. Câmeras de vigilância espalhadas pelas cidades poderiam fornecer dicas importantes para identificar um suspeito, por exemplo, em uma cena de crime. Entretanto, o reconhecimento dos caracteres de placas veiculares é especialmente difícil quando a resolução das imagens é baixa. Por isso, este trabalho também propõe um arcabouço que realiza a super-resolução de placas veiculares em vídeos reais de vigilância, capturados por câmeras de baixa qualidade e não projetadas especificamente para esta tarefa, ajudando o especialista forense a compreender um evento de interesse. O arcabouço realiza todas as etapas necessárias para rastrear, alinhar, reconstruir e reconhecer automaticamente os caracteres de uma placa suspeita. O usuário recebe, como saída, a imagem de alta resolução reconstruída, mais rica em detalhes, e também a sequência de caracteres reconhecida automaticamente nesta imagem. São apresentadas validações quantitativas e qualitativas dos algoritmos propostos e de suas aplicações. Os experimentos mostram, por exemplo, que é possível aumentar o número de caracteres reconhecidos corretamente, colocando o arcabouço proposto como uma ferramenta importante para fornecer aos peritos uma solução para o reconhecimento de placas veiculares sob condições adversas de aquisição. Por fim, também é sugerido o número mínimo de imagens a ser utilizada como entrada em cada aplicaçãoAbstract: Super-resolution (SR) algorithms are methods for achieving high-resolution (HR) enlargements of pixel-based images. In multi-frame super resolution, a set of low-resolution (LR) images of a scene are combined to construct an image with higher resolution. Super resolution is an inexpensive solution to overcome the limitations of image acquisition hardware systems, and can be useful in several cases in which the device cannot be upgraded or replaced, but multiple frames of the same scene can be obtained. In this work, we explore SR possibilities for natural images, in scenarios wherein we have multiple frames of a same scene. We design and develop five variations of an algorithm which rely on exploring geometric properties in order to combine pixels from LR observations into an HR grid; two variations of a method that combines inpainting techniques to multi-frame super resolution; and three variations of an algorithm that uses adaptive filtering and Tikhonov regularization to solve a least-square problem. Multi-frame super resolution is possible when there is motion and non-redundant information from LR observations. However, combining a large number of frames into a higher resolution image may not be computationally feasible by complex super-resolution techniques. The first application of the proposed methods is in consumer-grade photography with a setup in which several low-resolution images gathered by recent mobile devices can be combined to create a much higher resolution image. Such always-on low-power environment requires effective high-performance algorithms, that run fastly and with a low-memory footprint. The second application is in Digital Forensic, with a setup in which low-quality surveillance cameras throughout the cities could provide important cues to identify a suspect vehicle, for example, in a crime scene. However, license-plate recognition is especially difficult under poor image resolutions. Hence, we design and develop a novel, free and open-source framework underpinned by SR and Automatic License-Plate Recognition (ALPR) techniques to identify license-plate characters in low-quality real-world traffic videos, captured by cameras not designed for the ALPR task, aiding forensic analysts in understanding an event of interest. The framework handles the necessary conditions to identify a target license plate, using a novel methodology to locate, track, align, super resolve, and recognize its alphanumerics. The user receives as outputs the rectified and super-resolved license-plate, richer in details, and also the sequence of license-plates characters that have been automatically recognized in the super-resolved image. We present quantitative and qualitative validations of the proposed algorithms and its applications. Our experiments show, for example, that SR can increase the number of correctly recognized characters posing the framework as an important step toward providing forensic experts and practitioners with a solution for the license-plate recognition problem under difficult acquisition conditions. Finally, we also suggest a minimum number of images to use as input in each applicationDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação1197478,146886153996/3-2015CAPESCNP

    3D object reconstruction using computer vision : reconstruction and characterization applications for external human anatomical structures

    Get PDF
    Tese de doutoramento. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto. 201

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore