142 research outputs found

    Efficient MRF Energy Propagation for Video Segmentation via Bilateral Filters

    Get PDF
    Segmentation of an object from a video is a challenging task in multimedia applications. Depending on the application, automatic or interactive methods are desired; however, regardless of the application type, efficient computation of video object segmentation is crucial for time-critical applications; specifically, mobile and interactive applications require near real-time efficiencies. In this paper, we address the problem of video segmentation from the perspective of efficiency. We initially redefine the problem of video object segmentation as the propagation of MRF energies along the temporal domain. For this purpose, a novel and efficient method is proposed to propagate MRF energies throughout the frames via bilateral filters without using any global texture, color or shape model. Recently presented bi-exponential filter is utilized for efficiency, whereas a novel technique is also developed to dynamically solve graph-cuts for varying, non-lattice graphs in general linear filtering scenario. These improvements are experimented for both automatic and interactive video segmentation scenarios. Moreover, in addition to the efficiency, segmentation quality is also tested both quantitatively and qualitatively. Indeed, for some challenging examples, significant time efficiency is observed without loss of segmentation quality.Comment: Multimedia, IEEE Transactions on (Volume:16, Issue: 5, Aug. 2014

    Multigranularity Representations for Human Inter-Actions: Pose, Motion and Intention

    Get PDF
    Tracking people and their body pose in videos is a central problem in computer vision. Standard tracking representations reason about temporal coherence of detected people and body parts. They have difficulty tracking targets under partial occlusions or rare body poses, where detectors often fail, since the number of training examples is often too small to deal with the exponential variability of such configurations. We propose tracking representations that track and segment people and their body pose in videos by exploiting information at multiple detection and segmentation granularities when available, whole body, parts or point trajectories. Detections and motion estimates provide contradictory information in case of false alarm detections or leaking motion affinities. We consolidate contradictory information via graph steering, an algorithm for simultaneous detection and co-clustering in a two-granularity graph of motion trajectories and detections, that corrects motion leakage between correctly detected objects, while being robust to false alarms or spatially inaccurate detections. We first present a motion segmentation framework that exploits long range motion of point trajectories and large spatial support of image regions. We show resulting video segments adapt to targets under partial occlusions and deformations. Second, we augment motion-based representations with object detection for dealing with motion leakage. We demonstrate how to combine dense optical flow trajectory affinities with repulsions from confident detections to reach a global consensus of detection and tracking in crowded scenes. Third, we study human motion and pose estimation. We segment hard to detect, fast moving body limbs from their surrounding clutter and match them against pose exemplars to detect body pose under fast motion. We employ on-the-fly human body kinematics to improve tracking of body joints under wide deformations. We use motion segmentability of body parts for re-ranking a set of body joint candidate trajectories and jointly infer multi-frame body pose and video segmentation. We show empirically that such multi-granularity tracking representation is worthwhile, obtaining significantly more accurate multi-object tracking and detailed body pose estimation in popular datasets

    Hidden Markov Models for Analysis of Multimodal Biomedical Images

    Get PDF
    Modern advances in imaging technology have enabled the collection of huge amounts of multimodal imagery of complex biological systems. The extraction of information from this data and subsequent analysis are essential in understanding the architecture and dynamics of these systems. Due to the sheer volume of the data, manual annotation and analysis is usually infeasible, and robust automated techniques are the need of the hour. In this dissertation, we present three hidden Markov model (HMM)-based methods for automated analysis of multimodal biomedical images. First, we outline a novel approach to simultaneously classify and segment multiple cells of different classes in multi-biomarker images. A 2D HMM is set up on the superpixel lattice obtained from the input image. Parameters ensuring spatial consistency of labels and high confidence in local class selection are embedded in the HMM framework, and learnt with the objective of maximizing discrimination between classes. Optimal labels are inferred using the HMM, and are aggregated to obtain global multiple object segmentation. We then address the problem of automated spatial alignment of images from different modalities. We propose a probabilistic framework, constructed using a 2D HMM, for deformable registration of multimodal images. The HMM is tailored to capture deformation via state transitions, and modality-specific representation via class-conditional emission probabilities. The latter aspect is premised on the realization that different modalities may provide very different representation for a given class of objects. Parameters of the HMM are learned from data, and hence the method is applicable to a wide array of datasets. In the final part of the dissertation, we describe a method for automated segmentation and subsequent tracking of cells in a challenging target image modality, wherein useful information from a complementary (source) modality is effectively utilized to assist segmentation. Labels are estimated in the source domain, and then transferred to generate preliminary segmentations in the target domain. A 1D HMM-based algorithm is used to refine segmentation boundaries in the target image, and subsequently track cells through a 3D image stack. This dissertation details techniques for classification, segmentation and registration, that together form a comprehensive system for automated analysis of multimodal biomedical datasets

    Rich probabilistic models for semantic labeling

    Get PDF
    Das Ziel dieser Monographie ist es die Methoden und Anwendungen des semantischen Labelings zu erforschen. Unsere Beiträge zu diesem sich rasch entwickelten Thema sind bestimmte Aspekte der Modellierung und der Inferenz in probabilistischen Modellen und ihre Anwendungen in den interdisziplinären Bereichen der Computer Vision sowie medizinischer Bildverarbeitung und Fernerkundung

    Audiovisual Saliency Prediction in Uncategorized Video Sequences based on Audio-Video Correlation

    Full text link
    Substantial research has been done in saliency modeling to develop intelligent machines that can perceive and interpret their surroundings. But existing models treat videos as merely image sequences excluding any audio information, unable to cope with inherently varying content. Based on the hypothesis that an audiovisual saliency model will be an improvement over traditional saliency models for natural uncategorized videos, this work aims to provide a generic audio/video saliency model augmenting a visual saliency map with an audio saliency map computed by synchronizing low-level audio and visual features. The proposed model was evaluated using different criteria against eye fixations data for a publicly available DIEM video dataset. The results show that the model outperformed two state-of-the-art visual saliency models.Comment: 9 pages, 2 figures, 4 table
    • …
    corecore