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Multigranularity Representations for Human Inter-Actions: Pose, Motion
and Intention

Abstract
Tracking people and their body pose in videos is a central problem in computer vision. Standard tracking
representations reason about temporal coherence of detected people and body parts. They have difficulty
tracking targets under partial occlusions or rare body poses, where detectors often fail, since the number of
training examples is often too small to deal with the exponential variability of such configurations.

We propose tracking representations that track and segment people and their body pose in videos by
exploiting information at multiple detection and segmentation granularities when available, whole body, parts
or point trajectories.

Detections and motion estimates provide contradictory information in case of false alarm detections or
leaking motion affinities. We consolidate contradictory information via graph steering, an algorithm for
simultaneous detection and co-clustering in a two-granularity graph of motion trajectories and detections,
that corrects motion leakage between correctly detected objects, while being robust to false alarms or spatially
inaccurate detections.

We first present a motion segmentation framework that exploits long range motion of point trajectories and
large spatial support of image regions.

We show resulting video segments adapt to targets under partial occlusions and deformations.

Second, we augment motion-based representations with object detection for dealing with motion leakage. We
demonstrate how to combine dense optical flow trajectory affinities with repulsions from confident detections
to reach a global consensus of detection and tracking in crowded scenes.

Third, we study human motion and pose estimation.

We segment hard to detect, fast moving body limbs from their surrounding clutter and match them against
pose exemplars to detect body pose under fast motion. We employ on-the-fly human body kinematics to
improve tracking of body joints under wide deformations.

We use motion segmentability of body parts for re-ranking a set of body joint candidate trajectories and
jointly infer multi-frame body pose and video segmentation.

We show empirically that such multi-granularity tracking representation is worthwhile, obtaining significantly
more accurate multi-object tracking and detailed body pose estimation in popular datasets.
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ABSTRACT

MULTI-GRANULARITY REPRESENTATIONS FOR HUMAN INTER-ACTIONS:

POSE, MOTION AND INTENTION

Aikaterini Ioannou Fragkiadaki

Jianbo Shi

Tracking people and their body pose in videos is a central problem in computer vision.

Standard tracking representations reason about temporal coherence of detected people and

body parts. They have difficulty tracking targets under partial occlusions or rare body

poses, where detectors often fail, since the number of training examples is often too small

to deal with the exponential variability of such configurations.

We propose tracking representations that track and segment people and their body

pose in videos by exploiting information at multiple detection and segmentation granu-

larities when available, whole body, parts or point trajectories. Detections and motion

estimates provide contradictory information in case of false alarm detections or leaking

motion affinities. We consolidate contradictory information via graph steering, an algo-

rithm for simultaneous detection and co-clustering in a two-granularity graph of motion

trajectories and detections, that corrects motion leakage between correctly detected ob-

jects, while being robust to false alarms or spatially inaccurate detections.

We first present a motion segmentation framework that exploits long range motion of

point trajectories and large spatial support of image regions. We show resulting video

segments adapt to targets under partial occlusions and deformations. Second, we augment

motion-based representations with object detection for dealing with motion leakage. We

demonstrate how to combine dense optical flow trajectory affinities with repulsions from

confident detections to reach a global consensus of detection and tracking in crowded

scenes. Third, we study human motion and pose estimation. We segment hard to detect,

fast moving body limbs from their surrounding clutter and match them against pose exem-

plars to detect body pose under fast motion. We employ on-the-fly human body kinematics
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to improve tracking of body joints under wide deformations. We use motion segmentabil-

ity of body parts for re-ranking a set of body joint candidate trajectories and jointly infer

multi-frame body pose and video segmentation.

We show empirically that such multi-granularity tracking representation is worthwhile,

obtaining significantly more accurate multi-object tracking and detailed body pose estima-

tion in popular datasets.
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Chapter 1

Introduction

The only thing worse than being blind is having sight but no vision.

— Hellen Keller

Visual sensors on cellphones, tablets, glasses, clothes, computers, produce large amounts

of video footage daily. Progress on robotic automation and human-computer interaction

depends on how well we can understand and predict the visual world captured from these

sensors. Understanding what the people are doing, how they interact with their environ-

ment, and what they want to do next in the video footage is important for applications in

entertainment, safety, health care, education. This thesis is about estimating people’s body

motion in unconstrained videos from various sensors, as a step towards understanding their

activities.

The fact that human body motion aids recognition of human activity dates back to the

experiments of Johansson (1973): Johansson showed that image sequences of point-lights

attached to the limbs of a moving actor could be identified as depicting actions, although

they did not define a form when stationary. In other words, a set of point light trajectories

were enough to create the perception of complex human actions, such as ballet pirouettes.
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Obtaining automatically long temporal correspondences of moving body joints, simi-

lar to those perceived by the human subjects in Johansson’s experiments, is challenging.

Body motion estimation is a difficult problem on its own and has received a lot of atten-

tion in Computer Vision community. In fact, estimating pixel motion is often ambiguous

without appropriate object specific or object independent, smoothness driven, priors. We

will explore representations that combine imperfect motion estimates with detectors for

segmenting and tracking people and their body pose in videos.

We propose multi-granularity representations for detection, segmentation and tempo-

ral association in videos.

• Detectors reliably recognize image parts well captured in their training sets. Usually

such image parts come at a coarse granularity since too small templates are ambigu-

ous to recognize. This is the case also for part based representations, where a set

of parts are scored together to disambiguate the small image support of each one of

them.

• Video segmentors partition fine-grain entities such as pixels or point trajectories into

a potentially exponential number of groups, guided by object independent grouping

principles, such as motion coherence. These groups may correspond to very small

or very large image parts, that can or cannot be reliably recognized by detectors.

• Trackers associate image parts from one frame to another, by learning a model for

the image part against its surroundings, or by exploiting smoothness of correspon-

dence and global optimization, or both. They may incorporate object specific kine-

matic constraints.

Our goal is to obtain detections at any granularity needed in the video (e.g., body

parts of a half occluded person) and segmentation at the right semantic granularity (e.g.,

segments do not fragment torso from legs or leak across similarly moving people). We

will show that jointly reasoning over segmentation and detection in videos can achieve this

goal. Specifically, we propose segmentation of fine-grain point trajectories guided by both

2



Figure 1.1: Multi-granularity representations for people and body pose tracking. 1st Row:

Detection responses of Bourdev et al. (2010) (left) and body pose estimates of Yang and

Ramanan (2011), retrained on pedestrian poses of Andriluka et al. (2008) (right). Detec-

tors reliably recognize configurations captured in their training sets, such as the distinctive

wide leg walking pose. They often fail at partial occlusions where detection responses

span across closeby people. 2nd Row: Our proposed two-granularity tracking for whole

object (left) and detailed body pose tracking (right). We track heavily occluded people

and recognize partially visible body poses by combining detections with spatio-temporal

grouping of trajectories.

object independent, motion based grouping relationships and object specific, detection

based repulsive ones. We will use the term “tracking” to refer to parsing of people and/or

their body pose in videos, although the term may be overloaded.

1.1 Previous literature

There is a tremendous previous Computer Vision literature on tracking people and their

body pose in monocular or multi-view videos. To understand the connections between

previous methods and their contributions, we decompose the tracking problem into two

3



Figure 1.2: We explore

the interplay between asso-

ciation, motion segmentation

and detection for tracking

under partial occlusions and

body deformations, where

standard detectors and data

association often fail.
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tasks: detection and association. Determining the state of a target at a given frame can be

done both by corresponding to a training exemplar (detection) or by corresponding to the

target state in the previous (or next) frames (association). Detection is by definition object

specific. Association can be object specific using object tailored kinematic constraints,

or object independent, using general smoothness driven assumptions in matching pixel

appearance from frame to frame.

We place previous works in a 2D diagram that has detection and association as its

main axes, shown in Figure 1.2. In the bottom right part of the diagram we have optical

flow methods that estimate pixel motion in an object independent way, without using any

information about the content of the video scene. Kinematic tracking methods track an

initialized template in time using object specific kinematic constraints. Recent progress of

object detectors has shifted attention towards tracking-by-detection approaches that track

by linking detections across consecutive frames, such as works of Brendel et al. (2011);

Huang et al. (2008b); Park and Ramanan (2011). Tracking works of Breitenstein et al.

(2009); Grabner et al. (2008); Okuma et al. (2004); Yang and Nevatia (2012) use along

with pre-trained object models target specific models ones, which they update online.
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1.2 Remaining challenges

Partial occlusions, unusual object configurations and fast body motion are the three chal-

lenges we identify, still hard to deal with state-of-the-art tracking methods.

Partial occlusions People interactions result in partial occlusions, a challenge for both

detection and data association:

1. Detectors often fail under partial occlusions. Object like features are erroneously

aggregated from both the occluder and the occludee, resulting in either a spatially

inaccurate detection, spanning across the two closeby objects, or a miss detection

due to mismatched or missing template information, as depicted in Figure 1.1. In

essence, partial occlusions ask for a large number of different detection models to

be checked against the visual input for matching, each one representing a different

occlusion scenario. Learning and calibrating different occlusion models is not easy

from current size of training sets.

2. Tracking objects under partial occlusions is difficult due to the continuous change

of object visibility masks. Committing to a fixed bounding box shaped object state

often misses objects under occlusions and cannot keep good track of target’s visi-

bility.

Unusual object configurations Unusual object configurations are captured by few train-

ing examples and are hard to detect reliably with current detectors. The distribution of

visual data is often characterized by few, frequently re-occurring templates and a large

collection of rare ones, forming the long tails of the distribution. This is particularly the

case for the human body. People take a wide range of body poses, with few re-occurring

ones, depicted at the upper right part of Figure 1.3, and lots of rare ones, depicted at the

lower left. While each one of them is rare, collectively they comprise a big chunk of

the body pose distribution. This fact is not a result of dataset bias but rather reflects the

unbalanced frequency of body poses in actors’ pose repertoires.
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Unusual object configurations are hard to harvest training exemplars for. One solution

is to use graphics simulations and rendering techniques to collect training exemplars for

the desired rare configurations, as proposed in Shotton et al. (2013). Though this may be

a promising direction, we expect the realism of such exemplars to be low for simulating

human motion.

Figure 1.3: Human body pose manifold computed from the pose training exemplars of

Sapp and Taskar (2013). We visualize body pose training exemplars using the top two

spectral eigenvectors of their affinities, that depend on body pose similarity. Point color in-

dicates number of close neighbors, red corresponds to large number of neighbors. Widely

deformed poses are outliers in the dataset. Notice the large number of dark blue points.

They correspond to rare body poses. Each one of them is rare but collectively they com-

prise a large chunk of the body pose distribution.

Fast body motion Fast body motion is hard to track with state-of-the-art coarse-to-fine

gradient-based motion estimation schemes such as Brox et al. (2004); Lucas and Kanade

(1981): body parts are small and thus are often lost in the coarse levels of the image pyra-

mid. Their large displacements are hard to recover from the finer pyramid levels. On the

other hand, descriptor matches often slide along body part axes due to aperture problems.

6



As a result, descriptor augmented optical flow methods, such as Brox and Malik (2010a),

often fail to track fast body motion. Kinematically constrained tracking introduced in Bre-

gler and Malik (1998) exploits human body connectivity along articulated chains, and may

outperform bottom-up motion estimation methods, such as optical flow or point tracking,

when the human skeleton is initialized. However, it still fails under frequent self occlu-

sions from large body deformations, as noted in Datta et al. (2008).

1.3 Contributions of this thesis

This thesis contributes to the tracking literature with representations and inference frame-

works that employ multi-granularity detection and association for tracking people and

their body pose under partial occlusions and unusual pose configurations.

We start by presenting a spatio-temporal perceptual organization method in Chapter 3

that segments a video using long range motion of trajectories and large spatial support of

image regions. Pixel trajectories are computed bottom-up, independent to the video con-

tent. They encode strong grouping relationships in their long range motion (and disparity

in case of multi-view video) based similarities.

The success of the video segmentation framework in tracking entangled objects in

monocular videos shows there is rich information in the video signal and its motion even

without any model matching. Resulting segments accurately capture partially occluded

objects and objects under unusual configuration, which are challenges for object detec-

tors. However, we identify two problems with our video segmentation method, which

characterize any object independent motion segmentation method in general:

1. Model selection. For general non-rigid object motion, grouping cost functions have

multiple optima corresponding to coarser of finer partitioning of the objects and

the scene. Since in general object motion is not uniform, such partitionings may

capture the whole object or object parts. Object independent segmentation is an ill
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posed problem in that sense since all partitionings are equally good. The one corre-

sponding to the desired semantic segmentation is not easy to pick without additional

information.

2. Leakage under lack of distinct motion across objects. In case of no motion or ac-

cidental long range motion similarity across objects, motion affinities and resulting

clusters leak across objects.

To recover from those problems, in Chapters 4 and 5 we combine video segmentation with

detector responses. We ask for alignment between segments and detections, which selects

the right segmentation granularity and addresses the model selection problem. Further, we

introduce graph steering where motion affinities are changed (steered) from repulsions in-

duced between trajectories associated with incompatible detections. We show robustness

of our framework against spatially inaccurate or false alarm detections and their wrongly

induced repulsions. Graph steering addresses the problem of motion leakage in case of

accidental motion similarity across objects. Trajectories propagate detections across miss-

detection gaps, where detections are whole objects in Chapter 4 and body joints in Chapter

5.

Object independent point trajectories though have limitations: they fail to track fast

body motion. Their frequent fragmentations under body self occlusions and deformations,

limit their usefulness. In Chapter 6 we explore ways of using on-the-fly body pose detec-

tion to inject kinematic constraints in computing motion trajectories. Such constraints

help deal with the untexturedness and aperture problems of human body limbs and their

fast motion.

We summarize our technical contributions below.
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1.3.1 Models for spatio-temporal perceptual organization (Chapter

3)

We cast video segmentation as partitioning of point trajectories and image regions. We

have the following contributions:

• Multiscale trajectory partitioning for video segmentation. We introduce a discon-

tinuity detector that estimates a probability of boundary between spatially adjacent

trajectories. It detects sudden drops or peaks of spectral embedding affinities be-

tween neighboring trajectories. Thresholding such probability of boundary in var-

ious cutoff values provides trajectory partitions in different levels of granularity.

Each trajectory cluster corresponds to an object hypothesis in space and time.

• Random walkers on multiscale region graphs for mapping point trajectory clus-

ters to image regions. Regions that overlap well with trajectory clusters are the

designated seeds. Seed labels are propagated efficiently to regions that fall on tra-

jectory gaps using multiscale appearance based region affinities.

• Object connectedness constraints from foreground topology as repulsive weights

between point trajectories. Motion is insufficient for segmenting articulated bodies:

articulated parts move distinctly while distinct objects may move similarly. We

show object connectedness constraints can help video segmentation under motion

ambiguities.

1.3.2 Two-granularity tracking for concurrent multi-object tracking

and segmentation (Chapter 4)

Tracking objects in crowds is a joint detection and segmentation problem, due to the con-

tinuously changing spatial support of the objects, while interacting with each other. Mo-

tivated by this observation, we propose two-granularity tracking, a graph theoretic frame-

work that classifies and clusters object detections and point trajectories. Two-granularity
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tracklets are comprised of detection responses, under good object visibility, and trajec-

tory clusters, under object partial occlusions or deformations. Miss-detection gaps are

“bridged” by trajectory clusters instead of utilizing motion smoothness assumptions or

lowering the detection confidence threshold. Our goal is to improve tracking robust-

ness, diminishing drifts caused by interpolation across miss detection gaps, rather than

the segmentation itself. Point trajectories are independent of object categories. Thus,

two-granularity tracking can easily be used for tracking any object category with the ap-

propriate replacement of the object detector.

1.3.3 Graph steering for inferring classification-clustering in two -

granularity graphs (Section 4.4)

Graph steering is our tool for inference in two-granularity representations. It is a cluster-

ing with bias algorithm that computes spectral clustering in a graph of motion/appearance

based node affinities and detection-driven repulsions. The detection input may contain

false alarms. Clustering in the steered graph is robust to wrong (false alarm) or spatially

inaccurate detections, as analyzed in Section 4.4.3. Previous clustering with bias algo-

rithms such as random walkers of Grady (2006) or pixel labeling works of Boykov et al.

(2001); Komodakis et al. (2011) assume a label set known. Graph steering does not as-

sume a known label set, but rather uses soft not-group constraints from pairs of detections,

for discovering the grouping of graph nodes into objects. Graph nodes may be trajectories

or image regions.

1.3.4 Motion for body pose detection (Chapters 5,6)

Motion is a strong cue for body pose detection. We have the following contributions:

• Body joint temporal binding for body pose inference under temporal correspon-

dences. (Section 5.3.2). We bind body joint candidates on multiframe trajecto-

ries and estimate their unary scores from motion voting. Approximate inference on
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loopy space-time Markov Random Fields (MRFs) for human body pose often omits

temporal edges for efficiency of inference in a simplified tree structured graph. In-

ference under temporal binding of the state candidates is less vulnerable to such

MRF graph decompositions.

• Pose specific motion segmentability classifiers for re-ranking body joint candidate

based on the agreement with the underlying video segmentation (Section 5.3.5). Pre-

vious approaches use optical flow boundaries as a feature for body part detection.

They suffer from contradictions between poses under large or no motion, where

flow boundaries are strong or nonexistent respectively. Pose specific motion seg-

mentability can recover from such contradictions.

• Articulated optical flow for tracking fast body part motion (Section 6.4) We use

detected articulated joints to impose kinematic constraints in optical flow estima-

tion, for tracking arm kinematic chains through deformations. Standard optical flow

estimates without kinematic constraints frequently drift to surroundings under fast

body part motion.

1.4 Published work supporting this thesis

Part of our video segmentation work in Chapter 3 first appeared in Fragkiadaki and Shi

(2011); Fragkiadaki et al. (2012a). The two-granularity tracking framework discussed in

Chapter 4 was introduced in Fragkiadaki et al. (2012c). The articulated flow work and

pose segmentation in Chapter 6 appears in Fragkiadaki et al. (2013). Work of Chapter

5 is under review. While not discussed in this thesis, the video segmentation framework

of Chapter 3 found application in 3D cell segmentation presented in Fragkiadaki et al.

(2012b).
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Chapter 2

Preliminaries

Graph partitioning algorithms can be categorized according to their apriori information on

the number and properties of a label set for the graph nodes. Apriori label information

often allows to establish per node label probabilities, independent of inter-node relation-

ships. In cases a label set is given apriori, graph partitioning is often referred to as node

labeling. We call this a ”closed world“ partitioning framework.

In this chapter we review “open” and “closed” world graph partitioning or graph la-

beling formulations. We will use the term open world to refer to graph partitioning frame-

works that do not assume apriori information on the number or properties of node labels,

e.g. bottom-up segmentation methods of Cheng (1995); Shi and Malik (2000). We will

use the term closed world to refer to graph partitioning frameworks that assume apriori

information on the number and properties of different labels (or classes), e.g. in the form

of seed nodes or training exemplars. Notably, such apriori information often allows to

establish per node label probabilities, independent of inter-node relationships (unary label

scores). The more closed the assumption about the world, the more emphasis the algo-

rithms put on per node label probabilities as opposed to node cross-associations.

Section 2.1 reviews spectral clustering, a popular open world clustering framework

with many variants in image and video segmentation. Section 2.2 reviews some closed

or semi-closed world clustering formulations, with main stress on graph cuts of Boykov

12



et al. (2001) and random walkers of Grady (2006).

2.1 Spectral Partitioning

Let G(V,W) be a weighted graph over a node set V. Let n denote the cardinality of

V. Matrix W is assumed symmetric and non-negative. Partitioning the node set V in

K clusters is finding disjoint sets V1 · · ·VK so that ∪Ki=1Vk = V. Let ΓKV F denote the

partitioning.

Normalized Cut Partitioning Criterion Given node sets A, B, we define links(A,B)

to be the total weighted connections from A to set B:

links(A,B) =
∑

i∈A,j∈B

W(i, j). (2.1)

The degree of a set is defined as the total links of its nodes to all the nodes in V:

degree(A) = links(A,V). (2.2)

The cut of a node set A is defined as the total links from A to its complement:

cut(A) = links(A,V/A). (2.3)

The normalized cut of a node set A is defined as the fraction of its cut and its degree:

ncut(A) =
cut(A)

degree(A)
. (2.4)

The criterion for K-way graph partitioning proposed in Shi and Malik (2000); Yu and

Shi (2003) minimizes the normalized cuts of the clusters in the partitioning ΓKV :

kncuts(ΓKV ) =
K∑
k=1

cut(Vk)

degree(Vk)
. (2.5)

Since

links(Vk,V/Vk) = degree(Vk)− links(Vk,Vk), (2.6)
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minimizing ncuts is equivalent to maximizing intra-cluster normalized associations:

knassoc(ΓKV ) =
K∑
k=1

links(Vk,Vk)

degree(Vk)
. (2.7)

We consider the partition matrix X = [X1 · · ·XK ] ∈ {0, 1}n×K . Let DW ∈ Rn×n

denote the diagonal degree matrix of the affinity matrix W:

DW = Diag(W1n). (2.8)

Then the K-way normalized association criterion can be re-written as:

knassoc(X) =
K∑
k=1

XT
k WXk

XT
k DWXk

(2.9)

and results in the following maximization problem:

max .
X

ε(X) =
∑K

k=1

XT
k WXk

XT
k DWXk

subject to X ∈ {0, 1}n×K , ∑K
k=1XK = 1n.

(2.10)

The problem above has been shown in Shi and Malik (2000) to be NP-complete even for

K = 2. Below we will show the spectral relaxation that is typically used to obtain a near

global optimum.

Spectral relaxation We relax the problem in Eq. 2.10 by ignoring its constraints. We

do the following change of variables: we divide each indicator vector Xk with the square

root of the degree (XT
KDWXk) of the corresponding cluster:

Zk = Xk(X
T
k DWXk)

− 1
2 , Z = X(XTDWX)−

1
2 . (2.11)

Then, it is easy to see that

ZTDWZ = (XTDWX)−
1
2XTDWX(XTDWX)−

1
2 = IK , (2.12)

and we obtain the following maximization problem:

max .
Z

ε(Z) = tr(ZTWZ)

subject to ZTDWZ = IK .
(2.13)

14



If we do a last change of variables:

Y = D
1
2
WZ, Z = D

− 1
2

W Y (2.14)

we obtain:
max .
Y

ε(Y ) = tr(Y TD
− 1

2
W WD

− 1
2

W Y )

subject to Y TY = IK .
(2.15)

Above we recognize a Rayleigh quotient optimization problem. We consider the La-

grangian relaxation:

tr(Y TD
− 1

2
W WD

− 1
2

W Y )− λ(Y TY − IK). (2.16)

We differentiate with respect to Y and obtain:

D
− 1

2
W WD

− 1
2

W Y + (D
− 1

2
W WD

− 1
2

W )TX − 2λY = 0⇔ D
− 1

2
W WD

− 1
2

W Y = λY, (2.17)

which shows that columns of Y are eigenvectors of the symmetric normalized affinity

matrix Wnsym = D
− 1

2
W WD

− 1
2

W . We obtain the Y that maximizes tr(Y TWnsymY ) by the

top K eigenvectors V̄ of Wnsym. We convert back to Z using Eq. 2.14 and obtain V =

D
− 1

2
W V̄ . Given that each node has a positive degree and matrix DW is invertible, (x, λ) is

an eigenvector, eigenvalue pair of Wnsym if and only if (D
− 1

2
W x, λ) is an eigenvector and

eigenvalue pair of the random walk matrix D−1
WW. Thus, we can obtain Z directly by

computing the rank K eigen decomposition of D−1
WW, as noted in Meila and Shi (2001).

Discretizing the spectral embedding We obtain the node partitioning by discretizing

the solution of the spectral relaxation. There are two popular ways of discretizing the

continuous eigenvectors V :

1. K-means on the node embedding coordinates, proposed in Ng et al. (2001).

2. eigenvector rotation, proposed in Yu and Shi (2003). The authors exploit the fact

that the maximizer of Eq. 2.13 is not unique, but rather is arbitrary up to an or-

thogonal transformation R,RTR = I . Their algorithm alternates between finding a
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discrete solution by assigning each node to the cluster is has the largest value in the

corresponding row of the continuous matrix V , and finding a rotation matrix R that

brings closer V to the discretized solution.

Both discretization algorithms often break coherent regions. Regularizations are needed

to find a stable discrete partitioning. In Section 3.3.1 we present our discretization algo-

rithm where discontinuities of embedding affinities are used to detect and fix artificial

fragmentations.

2.2 Clustering with Bias

Many works have addressed clustering with some type of bias, in the form of seed nodes in

Duchenne et al. (2008); Grady (2006); Joachims (2003), multi-node relationships in Maire

et al. (2011); Yu et al. (2002), not-group (repulsion) constraints in Yu and Shi (2001),

training exemplars for different labels in Munoz et al. (2010) or any general per node label

bias in Boykov et al. (2001) and general Markov Random Fields. The stronger the per

node label bias (or label potentials) the less critical are the cross-node associations.

We are going to take a closer look into random walkers of Grady (2006) as a rep-

resentative of seeded graph partitioning methods. Furthermore, we will use the random

walker framework for mapping trajectory clusters to image regions for video segmentation

in Section 3.3.2.

Seeded segmentation with random walkers Let G(V,W) be a weighted graph over a

node set V of cardinality n, same as in the previous section. Let L = {1 · · ·K} denote a

label set. Let the label be known in a set of nodes VM (marked or seeds). We want to find

the node labels in VU = V/VM . For now we will assume K = 2. For ease of notation

let VF , VB denote the corresponding two seed node sets (F,B stand for foreground and

background).
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It has been established in Kakutani (1945) that the probability a random walker initial-

ized at a graph node first reaches a seed node exactly equals the solution to the Dirichlet

problem with boundary conditions at the location of the seed nodes and the seed node in

question fixed to unity while the others set to 0. Random walkers introduced in Grady

(2006) consider the combinatorial Dirichlet problem on an arbitrary graph and compute

analytically the probability xka that a random walker starting at node va first reaches a seed

node with label k.

Let x ∈ Rn×1 denote node potentials in our graph G. Then a combinatorial formulation

of the Dirichlet integral, using the discrete Laplace operator, is:

D(x) =
1

2

∑
i,j

Wij(xi − xj)2. (2.18)

Observe that D(x) = 1
2
xTLx, where L = DW−W is the unnormalized Laplacian of W.

We have the following optimization problem:

min .
x

D(x) = 1
2
xTLx

subject to xB = 0, xF = 1.
(2.19)

Assuming without loss of generality that nodes are ordered into marked (seeds) and un-

marked (non seeds), the previous equation can be decomposed as:

D(xU) =
1

2

[
xTM xTU

] LM LMU

LTMU LU

xM
xU

 =
1

2

(
xTMLMxM + 2xTUL

T
MUxM + xTULUxU

)
,

(2.20)

where xM =

xF
xB

 , xU correspond to potentials of marked and unmarked nodes respec-

tively. Since L is positive semi-definite, critical points of Eq. 2.20 will be minima. Dif-

ferentiating D(xU) with respect to xU yields:

LUxU = −LTMUxM . (2.21)

Solving the system of linear equations results in potentials for each unlabeled node. We

solve Eq. 2.21 for each label l ∈ L and assign each unmarked node to the label for which

it has the highest potential.
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Note that random walkers use the unnormalized graph Laplacian L while spectral clus-

tering uses the spectrum of the normalized Laplacian Lnsym = D
− 1

2
W LD

− 1
2

W (it is easy to

show that the top K eigenvectors of the symmetric normalized affinity matrix Wnsym cor-

respond to the bottom K eigenvectors of Lnsym). Under seed guidance, normalization

with respect to cluster size is not needed.

Min-cuts Another popular graph partitioning with bias criteria is min-cut. Under the

same graph setup, min-cut minimizes the following objective:

min .
x

1
2

∑
i,j Wij|xi − xj|

subject to xB = 0, xF = 1.
(2.22)

It can be shown that the dual of the problem in Eq. 2.22 is a max-flow problem (Klein-

berg and Tardos (2005)). As such, min-cut can be computed efficiently and has found wide

applicability in any image or video labeling problem in which reliable per node class prob-

abilities can be obtained, e.g., in Boykov and Funka-Lea (2006); Xiao and Shah (2005).

Note that such per node probabilities (unary label scores) can be incorporated in Eq. 2.22

by adding edges from each node to phantom foreground or background nodes. Work of

Boykov et al. (2001) extends the binary labeling formulation to multiple labels.
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Chapter 3

Spatio-temporal Perceptual

Organization

We see in order to move, we move in order to see.

— William Gibson The Perception of the Visual World

Perceptual organization is the process of structuring visual information into coherent

units. Coherence may be measured in terms of uniformity in color, texture, motion, or

contour curvature continuity. Gestalts philosophy advocates a set of principles underlying

perceptual organization in animals’ visual perception, such as the principle of proximity,

similarity, closure, good continuation, figure-ground, as described in Wertheimer (1938).

Gestaltic principles have inspired numerous computer vision algorithms that aim at seg-

menting images and videos into coherent groups and delineating their boundaries, without

the use of any model matching.

In the era of model-driven image parsing, the question is what perceptual organization

has to offer to visual recognition. In contrast to model-driven approaches, perceptual or-

ganization methods can process pixels/voxels occupied by rare or unseen concepts. The
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visual distribution is known to have few re-occurring configurations (frequent objects un-

der canonical pose or viewpoint) and many rare ones, it has long tails as noted in Hoiem

et al. (2012). Thus, there will always be cases where model-driven visual parsing is unre-

liable.

Spatio-temporal percepts (segments) are useful for visual recognition because they al-

low opportunistic parsing in time. Thanks to their temporal extent, matching them against

object models can be done sparsely rather than densely in time, in the frames when the

object pose or viewpoint is easy to recognize. This parsing then propagates along the tem-

poral dimension of the percepts. Opportunistic parsing in time is a big advantage we see

in spatio-temporal perceptual organization over static image segmentation.

In this chapter, we present a spatio-temporal organization framework that partitions a

video sequence into moving objects and the world scene, exploiting long range motion

and appearance coherence. In the following chapters, we will combine the video repre-

sentation developed here with information from object detectors, in order to track objects

and their pose through occlusions and wide deformations.

3.1 Introduction

Motion as a grouping cue for perceptual organization has long occupied scientists and

philosophers of animal vision and perception. “We see in order to move, we move in

order to see”, writes Gibson in his work on motion perception Gibson (1951). Grouping

by motion similarity is expressed in the Gestaltic principle of “common fate” in Johansson

(1973). Motion segregation as a perceptual cue, aside of motion similarity, is explored in

the psychophysics experiments of Nothdurft (1992): bar-link visual concepts are perceived

as a group, when viewed in background of similar concepts that dier from them in motion

or orientation, despite their low intra-coherence.

Numerous computer vision algorithms have been proposed that exploit motion sim-

ilarity and motion segregation to segment a video and/or identify occlusion boundaries,
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without matching to object models. Most of them critically depend on the accuracy of

pixels’ apparent 2D displacements from frame to frame. Dense pixel displacement fields

are referred as optical flow in the computer vision literature, a term borrowed from Gib-

son (1951). In fact, progress in optical flow estimation may have been the most critical

determinant behind high accuracy video segmentation and occlusion boundary detection,

as reported in Garg et al. (2013); Sundberg et al. (2011).

Optical flow estimation has a large impact in all aspects of video analysis and has al-

ways been an active area of Computer Vision research. Most motion estimation works

assume constancy of some pixels’ properties under motion, such as image brightness in

Lucas and Kanade (1981), image gradient in Brox et al. (2004), and, more recently, ag-

gregated gradient histograms (HOG descriptors) in Brox and Malik (2010a); Xu et al.

(2012b). The seminal work of Lucas and Kanade (1981) assumes that pixel motion repre-

sented by a translation or affine transformation is constant within a small image window.

Their method expresses the brightness of the displaced patch as a function of the pixel

displacement using first order Taylor expansion, under small displacement assumptions.

Window-based motion estimation methods are referred to as ’local’ because they do not

couple motion estimates across different image windows. The seminal work of Horn and

Schunck Horn and Schunck (1981) introduced a variational model for optical flow esti-

mation which minimizes pixel brightness differences (linearized with respect to the pixel

displacement as in Lucas and Kanade (1981)) and a quadratic penalizer of displacement

gradient magnitude, enforcing smoothness of the estimated motion field. The original

Horn and Schunck model has been modified and extended in two main directions: 1)

Tackling motion discontinuities and occlusions by employing non-quadratic penalizers

in the smoothness and data terms Black and Anandan (1996); Memin and Perez (1998).

2) Relaxing small displacement assumptions by employing either coarse-to-fine warping

schemes as in Brox et al. (2004) (similar to those used in Lucas and Kanade (1981)),

or discrete-continuous optimization as in the works of Lempitsky et al. (2008); Xu et al.

(2012b).
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Many video segmentation approaches in order to take advantage of longer time hori-

zon use point trajectories instead of per frame flow fields. Given a video sequence, point

trajectories are computed on pixels with reliable frame-to-frame correspondence. Early

work of Shi and Tomasi (1994) computes trajectories on corner-like features and employs

long range affine matching to determine drift and trajectory termination. Recent work

of Sundaram et al. (2010) computes trajectories on a dense pixel grid and employs a per

frame forward-backward consistency check of optical flow estimates to determine trajec-

tory termination. Such check fails under occlusion or dis-occlusion of pixels as well as at

very low textured image regions, where correspondence is ambiguous, as shown in Figure

3.7. Experiments of Sundaram et al. (2010) quantify that trajectories computed from link-

ing state-of-the-art optical flow fields of Brox and Malik (2010a) are more accurate than

the long standing KLT trajectories of Lucas and Kanade (1981); Shi and Tomasi (1994),

while being denser.

Multi-body factorization methods cluster trajectories by reasoning about relationships

between the corresponding motion subspaces Costeira and Kanade (1995); Rao et al.

(2008); Yan and Pollefeys (2006). Each trajectory cluster ideally corresponds to an object

hypothesis in space and time. These works extend the factorization framework intro-

duced in Tomasi and Kanade (1991), under low rank assumptions on per frame 3D shape

deformations in Costeira and Kanade (1995); Yan and Pollefeys (2006) or multi-frame

trajectory motion in Akhter et al. (2011). Most factorization methods require trajectories

to have the same (large enough) length. This is often an infeasible requirement under

articulated motion where frequent self occlusions and deformations of the objects cause

frequent trajectory terminations. Works of Brostow and Cipolla (2006); Brox and Ma-

lik (2010b); Fradet et al. (2009) and ours Fragkiadaki and Shi (2011) cluster trajectories

directly from similarities of their 2D motion profiles, without modeling the camera pro-

jection process or attempt 3D reconstruction. These works do not require trajectories to

have the same length. In fact, trajectory spectral clustering computed from 2D motion

information has shown to outperform factorization methods in Brox and Malik (2010b).
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Figure 3.1: Gains and ambiguities in motion estimation. Column 1: Trajectory sparsity

in untextured regions due to unreliable frame to frame correspondence. Column 2 : Flow

estimates do not drift under accidental appearance similarity across objects. The result-

ing trajectory partitioning digs out the faint boundaries boundary between the two men

wearing the same black suit and bridges fake shirt-suit contour. Column 3: Optical flow

estimates bleed to the untextured background between the legs of the actor. Out of plane

rotations of limbs cause trajectories to terminate suddenly. Column 4: Trajectory sparsity

in one dimensional limbs due to aperture problems.

The clustering is obtained by discretizing the top eigenvectors of a normalized trajectory

affinity matrix; affinities reflect motion similarity between the corresponding point trajec-

tories. In essence, trajectory spectral partitioning extends the per frame motion profile

partitioning work of Shi and Malik (1998) to large temporal horizon, crucial for dealing

with per frame motion ambiguities.

Despite the progress in optical flow and trajectory computation, there remain intrinsic

ambiguities in motion estimation of low textured image regions and articulated structures.

Untextured backgrounds cause optical flow of the foreground region to “bleed” across, as

shown in Figure 3.1 and described in Thompson (1998). Wide deformations, self occlu-

sions, out-of-plane rotations of human body limbs are hard to track with bottom-up motion

estimation methods, due to aperture problems.

To deal with limitations of motion estimation, many segmentation methods employ
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both motion and appearance coherence for spatio-temporal grouping. Works of Fragki-

adaki et al. (2012a); Lezama et al. (2011); Ochs and Brox (2011) combine point trajecto-

ries with image regions to produce a pixel-wise video segmentation from sparse trajectory

clusters. Work of Xu et al. (2012a) computes a hierarchical voxel segmentation based

on pixel proximity and color similarity, bypassing optical flow computation. While fast,

it fails under color similarity across different objects. This is precisely the strength of

motion based frameworks: they can separate objects with similar appearance and distinct

motion, digging out faint contours while bridging fake, interior ones, e.g., due to colorful

clothing. This is depicted in Figure 3.1 column 2.

Given a video sequence that contains object or camera motion, we want to compute

a hierarchical segmentation of the objects and the background. We exploit information

in dense point trajectories (of large temporal and small spatial support) and static image

regions (of large spatial and small temporal support) in textured and untextured areas of

the video selectively. We establish a point trajectory adjacency graph whose edge weights

convey boundary probability, the probability of two adjacent trajectories belonging to dif-

ferent objects. We compute link boundary probabilities using the spectral embedding of

trajectory motion affinities. Thresholding link boundary probabilities at different cutoff

values provides trajectory clusterings of different granularities. Given a trajectory clus-

tering, we map trajectory clusters to image regions using random walkers on a multiscale

space-time region graph. Such mapping effectively recovers from optical flow bleeding

effects and trajectory sparsity under low image texturedness.

We present quantitative and qualitative results of our method that outperform previous

approaches on established segmentation as well as motion boundary detection datasets.

Our code is available at www.seas.upenn.edu/∼katef/videoseg.html. We

explore generality and limitations of our approach with varying spatial resolution, object

deformation, articulation and scale.
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3.2 Related work

Numerous works have addressed simultaneous segmentation and motion estimation in

layer video representations. Works of Ayer and Sawhney (1995); Jepson et al. (2002);

Pawan Kumar et al. (2008); Soatto (2005); Wang and Adelson (1994); Xiao and Shah

(2005) consider affine layer motion models, which assume that image layers are projec-

tions of planar 3D patches. Parametric models have been shown to be too restrictive to

capture the often diverse layer motion, as discussed in Sun et al. (2010). Work of Weiss

(1997) imposes a smoothness constraint on non parametric layer motion fields and work

of Sun et al. (2010) assumes affine layer motions with a robust penaliser of deviations

from it. Inferred segmentation boundaries on motion discontinuities block diffusion of the

smoothness motion coupling in Xiao et al. (2006). While earlier works mostly consider

pair of frames, works of Sun et al. (2012); Xiao and Shah (2005) infer motion and segmen-

tation across multiple frames simultaneously, exploiting structure consistency over time to

disambiguate layer depth ordering.

Numerous works have attempted to extend the notion of segments or superpixels from

the static image domain to videos. Approaches that rely on pixel appearance similarity for

spatio-temporal grouping, such as Brendel and Todorovic (2009); Vazquez-Reina et al.

(2010); Wang et al. (2011); Xu et al. (2012a), aim at temporal consistency of superpixel

labels, whether they capture moving or stationary objects. Approaches that rely on mo-

tion similarity, such as Shi and Malik (1998), aim at segmenting moving objects from the

static world scene, and neglect groups of non distinct apparent motion. Approaches of

Gao et al. (2008); Mahadevan and Vasconcelos (2010); Rahtu et al. (2010a) compute mo-

tion saliency via a center-surround motion dissimilarity computation in a sliding window

fashion across multiple scales. They focus on fast segmentation of the moving ensem-

ble from the background, without trying to dis-entangle adjacent moving objects. Early

work of Shi and Malik (1998) segments a video frame into moving objects by spectral

clustering of pixel motion profiles, i.e., probability distributions over possible pixel dis-

placements. It is dependent on choosing the pair of frames with large motion difference
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between the objects. Work of Grundmann et al. (2010) builds a hierarchical super-voxel

graph, using dense optical flow and color similarity for establishing super-voxel affinities.

Work of Xu et al. (2012a) bypasses optical flow computation, to produce a streaming hi-

erarchical video segmentation by reasoning about pixel intra-frame and cross-frame color

similarities. While fast, it fails under accidental color similarity across different objects.

Segmentation ambiguities from cross-object appearance similarities can be resolved with

long range trajectory motion, as shown in Figure 3.1.

In order to take advantage of longer time horizon many approaches use point trajec-

tories. Multi-body factorization methods of Costeira and Kanade (1995); Elhamifar and

Vidal (2009); Rao et al. (2008); Yan and Pollefeys (2006) segment rigid object motion

relying on properties of an affine camera model. These works extend the low rank con-

straint on a trajectory matrix proposed in Tomasi and Kanade (1991), under assumptions

about 3D object deformation and camera projection. Recent work of Akhter et al. (2011)

uses trajectory rather than shape decomposition of the 2D trajectory matrix and can re-

construct point trajectories without the need to pre-infer their segmentation. It is the first

work to reconstruct ensemble of articulated objects. Reconstruction allows segmentation

to take place in the estimated 3D point cloud rather than in 2D trajectories. Factorization

methods thought generally require all trajectories to have the same length, and quality of

reconstruction depends on long trajectories that track the object across rotations. How-

ever, tracking is a hard problem on its own and factorization methods often assume the

trajectory input to be given, which makes them impractical. Works of Elhamifar and Vidal

(2009); Rao et al. (2008) have tried to recover from the requirement of trajectory length

equality to a certain extent. However, deformable or articulated motion still poses chal-

lenges to the factorization literature. Authors of Yaser Sheikh and Kanade (2009) obtain a

figure ground classification of trajectories under a projective camera model by estimating

the basis for trajectories of the static rigid world scene using RANSAC.

Works of Brostow and Cipolla (2006); Brox and Malik (2010b); Fradet et al. (2009);

P.Ochs and T.Brox (2012) and ours Fragkiadaki and Shi (2011) cluster trajectories directly
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from similarities of their 2D motion profiles, without modeling the camera projection

process. While most approaches employ pairwise trajectory similarities, work of P.Ochs

and T.Brox (2012) considers trajectory hyper-graphs with affinities on trajectory triplets

using in plane rotation models. The authors back-project to pairwise trajectory affinities

for spectral clustering.

Numerous works have addressed occlusion boundary detection, manifested as motion

boundaries under object motion or camera motion, due to parallax. Works of Ayvaci and

Soatto (2012); Ravichandran et al. (2012) use motion discontinuities and pixel occlusions,

output of the occlusion-aware optical flow of Ayvaci et al. (2012) for video segmentation.

Work of Derpanis and Wildes (2010) uses spatio-temporal filter responses for texture and

structure boundary detection. Work of He and Yuille (2010) assumes a rigid video scene

and scaled-orthographic projection, and estimates camera projection matrices and pixel

pseudo-depths, so that the difference of their camera projections in consecutive frames

matches the optical flow estimates. The estimated pseudo-depths and appearance cues

are used to classify superpixel boundaries as occlusion or not. The motion boundary

detector of Stein et al. (2007) estimates translational motion for pair of regions adjacent

to a superpixel boundary, down-weighting the contribution of pixels close to the boundary

to avoid contamination of the estimated motion models. The local boundary strength

measurements from motion disagreements are incorporated into an MRF for inferring

globally consistency boundaries, which are further used for object segmentation in Stein

et al..

Recently, work of Sundberg et al. (2011) showed that aggregating state-of-the-art op-

tical flow estimates of Brox et al. (2004) in image regions and comparing the fitted affine

estimates along the shared region boundary works better than estimating flow and regions

together: information from the shared region contour is too important to be neglected in

the motion estimation process, despite lack of information regarding local segmentation

and possibility of bleeding. Interestingly, increasing spatial resolution alleviates from un-

texturedness of low resolution videos, improving optical flow estimates and diminishing
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their bleeding effects. However, when the regions are too small for the computed cues to

be reliable, spurious boundaries are detected. Also, body deformations may give rise to

many interior boundaries, not corresponding to objects.

3.3 Motion segmentation from trajectories and regions

Point trajectories We define a point trajectory tri to be a sequence of video pixels that

correspond to 2D projections of the same 3D physical point in time:

tri = {(xti, yti), t ∈ Ti}, (3.1)

where Ti is the frame span of tri.

We compute point trajectories by linking optical flow fields, as proposed in Sundaram

et al. (2010): a trajectory is produced by following the optical flow vectors. A trajectory

terminates at the frame when forward-backward flow consistency check fails, indicating

ambiguity in correspondence. This is usually the case under occlusion or dis-occlusions

of the reference pixel, as well as under low image texturedness. Given a video sequence

I , we consider the trajectory set T = {tri, i = 1 · · ·nT}, where nT is the number of

trajectories.

3.3.1 Trajectory spectral discontinuities

We seek a motion discontinuity measure that given a pair of spatially neighboring tra-

jectories reflects the probability they belong to different objects. We measure trajectory

spatial neighborness using Delaunay triangulations on trajectory points of each frame, as

shown in Figure 3.2. By definition of the Delaunay triangulation, three trajectory points

are connected if no other point is contained in the circumcircle of their triangle. Each tri-

angulation is a planar graph on trajectory points, with Delaunay edges incident to spatially

neighboring trajectory points (we denote spatial neighborness with symbol ∼). We con-

sider the trajectory adjacency graph G(T , ED) that aggregates per frame triangulations in
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time, from trajectory points to trajectories:

(i, j) ∈ ED iff ∃ t s. t. (xti, y
t
i) ∼ (xtj, y

t
j), i, j = 1 · · ·nT (3.2)

Two trajectories are adjacent in G if they are adjacent in any frame during their time

overlap.

We seek a discontinuity measure d that reflects the probability that two trajectories

adjacent to an edge in G belong to different objects:

Trajectory Spectral Discontinuities d : ED → [0, 1]. (3.3)

Discontinuities depend on trajectory motion (dis)similarities, which we describe right be-

low.

Trajectory motion affinities We compute trajectory motion affinities AT ∈ [0, 1]nT×nT ,

where AT (i, j) measures motion similarity between trajectories tri and trj . Our motion

affinities are a function of the maximum velocity difference between the corresponding

trajectories, as proposed in Brox and Malik (2010b):

AT (i, j) = exp (−dij∆uij
σ

) · δ(Ti ∩ Tj 6= ∅), (3.4)

where δ is the Dirac function being one if its argument is true and 0 otherwise, dij is the

maximum Euclidean distance between tri and trj . ∆uij is the largest velocity difference

between tri and trj during their time overlap:

∆uij = max
t∈Ti∩Tj

|~uit − ~ujt |22
tf

, (3.5)

where ~uit = (xit+tf − xit, yit+tf − yit) is the velocity of tri at time t. The largest velocity

difference ∆u between two trajectories in Eq. 3.4 is the most informative measurement

regarding their association. It avoids periods of accidental motion similarity between ob-

jects, e.g., when objects are stationary with respect to each other. We use σ = 100 and

tf = 5. If trajectories are shorter than 5 frames, we use tf = min(Ti, Tj).
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Figure 3.2: Trajectory spectral discontinuities. We show trajectory motion affinities AT ,

embedding affinities Ŵ and discontinuities d on per frame Delaunay edges. Disconti-

nuities lies in [0, 1] and are calibrated against scales and kinematic nature of the various

objects in the scene. We have links with large discontinuities between trajectories captur-

ing different objects.
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Trajectory spectral embedding Motion affinities in AT are not calibrated across dif-

ferent objects in the video scene. Some objects have more distinct apparent motion with

respect to their surroundings than others, e.g., in Figure 3.2 the small car appears to move

slower than the larger one, partly because it is further away from the camera. Conse-

quently, the motion affinities on edges ED spanning the larger car and its background

are smaller than the affinities on edges spanning the small car and its background. Fur-

thermore, deformable objects may have lower interior motion affinities than rigid moving

ones, due to the non-uniform deformation field. Summarizing, the varying kinematic na-

ture, scale and deformability of the objects in the video scene cause motion affinities AT

to have very different values on the different trajectory boundary edges, which makes them

unsuitable for indicating probability of object boundaries.

The observation that different parts of a visual scene have asymmetric, hard to compare

affinity profiles, with very tight or loose closest neighbor affinity values, is in fact quite

old. The seminal work of Shi and Malik (2000) proposes normalization of the affinity

matrix as a simple way of calibrating pixel affinities for image segmentation. We perform

the same (row) normalization for our trajectory affinity matrix AT and obtain:

W = D−1
AT

AT , (3.6)

where DAT
= Diag(AT1nT ) is the diagonal degree matrix of AT . Let V ∈ RnT×K ,

λ ∈ [0, 1]K × 1 denote the top K eigenvectors and eigenvalues of W. We obtain the K

rank approximation of W by:

Ŵ = V ΛV T , (3.7)

which is a smooth version of W. Here Λ = Diag(λ). We have shown in Chapter 2 that

node partitioning by discretizing the top K eigenvectors of a normalized affinity matrix

minimizes approximately the K-way normalized cut criterion of Shi and Malik (2000).

We select K by thresholding the eigenvalues λ at spectral threshold eig.

Rows of V represent trajectory embedding coordinates and can have different norms.

It has been shown in Gallier (2013) that columns of V correspond to cluster indicator
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vectors which in the most general form take the form {0, 1√
αk
}, where αk the degree of

the kth cluster. This means that small clusters are embedded further from the origin than

larger ones. The resulting intra affinities Ŵ are high for small degree clusters and low

for large degree clusters, as shown in Figure 3.2 2nd row left: the two small clusters have

higher Ŵ than the clusters on the large car or the background. Previous works normalize

the rows of V so that all trajectory embedded coordinates to have unit norm, as shown in

Figure 3.2 2nd row right. Normalization with respect to neighborhood density in Eq. 3.8

does not require rows of V to have equal norm.

We are now ready to introduce our trajectory spectral discontinuities, measuring sud-

den drops or peaks of Ŵ between spatially adjacent trajectories. Let Ni denote the set of

trajectories being spatial neighbors of tri, Ni = {j, (i, j) ∈ ED}. For each trajectory tri,

we define the density ρi to be the maximum embedding affinity to its Delaunay neighbors

Ni. Then the spectral discontinuities take the form:

ρi = max
j∈Ni

Ŵij, (3.8)

d(eij) = (1− Ŵij

max(ρi, ρj)
), ∀ eij ∈ ED. (3.9)

Discontinuities d lie on motion boundaries and provide a strong indication of object

boundaries, as shown in Figure 3.2 4th row. We show d with and without norm normaliza-

tion of rows in V . By skipping norm normalization resulting discontinuities can be more

informative, as shown in Figure 3.2 3rd row left: the small car is more clearly delineated

from its surroundings. This is the case because the norm of the embedding coordinates

carries information with regard to cluster degree, which is useful for clustering.

Multiscale trajectory clustering We want to compute a multiscale trajectory partition-

ing that provides trajectory clusters in different levels of granularity, depending on a cutoff

probability of boundary threshold. Currently, the standard way of obtaining a multiscale

partitioning is by discretizing varying number of spectral eigenvectors K. The larger the
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K, the finer the partitioning. However, the two typical discretization methods used in the

literature, namely K-means of Ng et al. (2001) and eigenvector rotation of Yu and Shi

(2003), often break coherent regions into chunks, as noted it Arbelaez et al. (2009). Re-

sulting cluster boundaries are often not correlated to true object boundaries, as shown in

Figure 3.4 1st row.

� = 0.05 � = 0.1 � = 0.4 � = 0.6

Figure 3.3: Multiscale trajectory partitioning. By varying our discontinuity cutoff thresh-

old γ we obtain finer or coarser granularity clusters.

In static image segmentation, the spectral rounding work of Tolliver (2006) attempts to

recover from discretization artifacts by using an iterative rounding procedure for discretiz-

ing the eigenvectors. Work of Maire et al. (2008) instead of discretizing the eigenvectors,

computes a probability of boundary map by measuring difference in eigenvector values in

adjacent half discs. It obtains closed regions using oriented watershed transform on the

resulting probability of boundary map.

In video segmentation, we propose a trajectory multiscale partitioning by merging
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Figure 3.4: Robustness of discontinuities to the number of eigenvectors. We compare our

trajectory multiscale partitioning with previous discretization methods with varying num-

ber of eigenvectors K. The resulting trajectory partitionings of our method shown in 3rd

row are very similar for different number of eigenvectors K. This shows that Trajectory

spectral discontinuities d, shown in 2nd row, are robust to K. In contrast, the clustering

of previous discretizations varies a lot with K, as shown in 1st row. The small trajectory

cluster below the large car is comprised of trajectories that erroneously slide along the low

textured car door.

clusters whose inter-cluster boundaries have discontinuities below a designated threshold.

We choose eigenvector rotation as the discretization method for obtaining an initial trajec-

tory partitioning due to its deterministic nature. In contrast,K-means is sensitive to cluster

center initialization. For each pair of spatially neighboring trajectory clusters Ta, Tb, we

define their inter-cluster discontinuity d̄ab to be:

d̄ab =

∑
eij∈ED,tri∈Ta, trj∈Tb

d(eij)

|{eij ∈ ED, tri ∈ Ta, trj ∈ Tb}|
.

Given a discontinuity threshold γ ∈ [0, 1], we merge clusters (a, b) with inter-cluster
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discontinuities d̄a,b < γ.

In Figure 3.4, 3rd row we show our trajectory clustering for different number of eigen-

vectors K and γ = 0.4. It captures true object boundaries and does not suffer from artifi-

cial fragmentations of previous methods. While for K = 10 the small car is merged with

its surrounding, after K = 11 the resulting segmentation is the same with increasing num-

ber of eigenvectors. By varying γ we obtain finer or coarser clusterings. In scenes with

rigid motion, such as the one depicted in Figure 3.4, clusterings from different values γ

will be very similar. This is not the case for scenes with deforming or articulated motion,

where motion clustering is more ambiguous and less well defined. We show trajectory

clusterings while varying γ threshold in Figure 3.7.

3.3.2 Trajectory to pixel partitioning via random walkers

Point trajectories are sparse on low textured regions, e.g., the road in Figure 3.2. Lack

of texture results in ambiguous motion estimates. Furthermore, trajectories on untextured

backgrounds are often “dragged” by nearby occluding boundaries, a phenomenon referred

as optical flow “bleeding” in Thompson (1998).

While lack of texture causes ambiguity in optical flow estimation, at the same time,

untextured regions usually have salient boundaries, easy to detect from appearance cues.

We cast mapping of trajectory clusters to pixel regions as a seeded superpixel partitioning

problem. Seeds are provided from superpixels that well overlap with trajectory clusters.

We propagate seed labels to non-seed superpixels via random walkers on multiscale su-

perpixel affinity graphs. We show such mapping is efficient and robust to low image

texturedness and optical flow bleeding. Details are presented right below.

Spatio-temporal multiscale region graphs

Given a video sequence I , we compute a set of superpixels by thresholding the output of

globalPb of Arbelaez et al. (2009) at value βmin at each frame. LetR = {rp, p = 1 · · ·nR}
denote the set of superpixels, where nR is the number of superpixels. We will use the
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notation rp to denote both the pth superpixel as well as its pixel mask. Let tp denote the

frame of superpixel rp.

While superpixels rarely leak across object boundaries, their spatial support is often

too small to compute a reliable mapping with trajectory clusters: many of the superpixels

overlap with trajectory gaps, as shown in Figure 3.5. We will use random walkers on

region affinity graphs to propagate labels of well regions well overlapping with trajectory

clusters (seeds) to ambiguous ones.

We establish intra-frame and cross-frame superpixel affinities AR ∈ RnR×nR . In each

frame, we compute multi-scale superpixel affinities from ultra-contour maps of Arbelaez

et al. (2009). The ultra-contour map provides a different superpixel labeling st,β ∈ NntR×1

for each probability of boundary threshold β ∈ [βmin, 1], where ntR the number of super-

pixels at frame t. The intra-frame superpixel affinities are as follows:

AR(rp, rq) = max
β, s

tp,β
p =s

tq,β
q

exp(− β3

0.12
) · δ(tp = tq). (3.10)

intuitively, the affinity between two superpixels of the same frame t depends on the thresh-

old β for which they have the same label in st,β , the higher β the lower the affinity. In this

way, intra-frame superpixel affinities is AR have large spatial connection radius. In each

frame, they do not form a planar graph as is often the case in the literature, where each su-

perpixel is connected only to its spatial neighbors. Such long range connectivity between

superpixels is lost once globalPb is thresholded at a single scale and resulting regions are

treated as independent.

We compute cross-frame superpixel affinities from optical flow. Let r+
p denote the

pixel mask after translating pixels in rp with their optical flow displacements: r+
p = {(xp +

up, yp + vp), p ∈ rp}. The cross-frame superpixel affinities are as follows:

AR(rp, rq) =
|r+
p ∩ rq|
|r+
p ∪ rq|

· δ(tp = tq + 1). (3.11)

Cross-frame region affinities are established only between regions of consecutive video

frames. Affinities between regions of non-adjacent frames can be considered using point

trajectory overlap, as in Galasso et al. (2012).
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Figure 3.5: Random walkers on spatio-temporal region graphs. The region graph AR

extends across multiple frames.

Trajectory seeded superpixel labeling

Let l ∈ LnT×1 denote a trajectory labeling, where L = {1 · · ·L} is the trajectory label set.

We want to estimate a corresponding superpixel labeling.

We partition superpixels into seeds (marked) and non seeds (unmarked) depending

on their overlap with labeled trajectory Delaunay triangles, as shown in Figure 3.5. We

assign to each Delaunay triangle the label shared by its vertices or leave it unlabeled if its

vertices do not have the same label. We then compute intersection of each superpixel r

with the colored Delaunay triangulation. Seed regions are those that have more that 50%

overlap with a trajectory label. We want to estimate the superpixel labels of the rest of the

superpixels.

For each label l ∈ L, let x ∈ [0, 1]nR×1 denote the corresponding region potentials.

Potential xa corresponds to the probability of superpixel xa to be assigned label l. We

denote F the seed superpixels of label l, and B the seed superpixels of any other label.
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We minimize the following criterion for our superpixel potentials:

min .
x

D(x) = 1
2

∑
a,bAR(ra, rb)(xa − xb)2 = 1

2
xTLx,

subject to xB = 0, xF = 1,
(3.12)

where L = DAR
−AR is the unnormalized Laplacian of AR.

We seek the potential function x that minimizes Eq. 3.12. We assume without loss of

generality that superpixel are ordered into marked (seeds) and unmarked (non seeds), and

xM , xU correspond to potentials of seeded and unseeded superpixel nodes respectively.

Then, xU that minimizes Eq. 3.12 is given by taking the gradient of our cost function and

setting it to zero, which gives:

LUxU = −LTMUxL, (3.13)

as already discussed in the Chapter 2. We solve one linear system for each trajectory label

l ∈ L and assign each unmarked superpixel to the label it has the highest potential for.

3.3.3 Experiments

The benchmarks available in the literature for scoring performance of video segmentation

algorithms mostly focus on one of the following two tasks: 1) object segmentation, where

the extracted object masks are scored against ground-truth labeled objects as in Brox and

Malik (2010b); Chen and Corso (2010), and 2) occlusion boundary detection, where ex-

tracted boundaries are scored against human labeled boundaries without scoring grouping

of boundaries into objects, as in Stein et al. (2007); Sundberg et al. (2011). We evaluate

our algorithm on both segmentation and boundary detection tasks, quantifying its gen-

erality and limitations with varying spatial and temporal resolution, object scale, object

deformability and articulation.

We first test our method on the Berkeley motion segmentation benchmark introduced

in Brox and Malik (2010b). It is comprised of 26 video sequences of 19 to 700 frames

long and extends the Hopkins segmentation dataset of Tron and Vidal (2007). It contains
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Figure 3.6: Qualitative segmentation results in the Berkeley motion segmentation bench-

mark. The odd rows show trajectory labelings and the even ones show corresponding pixel

labellings.
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objects of various scales that exhibit mostly rigid motions. The benchmark scores a sin-

gle spatio-temporal segmentation map against human labeled objects. We threshold our

trajectory link boundary probability d at γ = 0.3 and map resulting trajectory clusters to

pixel regions as presented in Section 3.3.2. We used spectral threshold eig = 0.85 and

globalPb threshold β = 0.05.

Dataset density(%) overall error(%) region error(%) over-segment detections

Moseg10 our method (traj) 5.06 3.84 26.09 0.1 23

Moseg10 our method (regions) 87.24 4.66 29.72 0.15 19

Moseg10 Brox and Malik (2010b) 3.32 4.29 23.7 0.35 24

Moseg50 our method (traj) 4.97 3.37 22.1 0.75 27

Moseg50 our method (regions) 87.32 4.24 27.79 0.75 20

Moseg50 Brox and Malik (2010b) 3.32 3.50 27.09 0.45 26

Moseg200 our method (traj) 4.94 4.38 19.3 2.3 30

Moseg200 our method (regions) 87.49 5.06 23.95 2.05 25

Moseg200 Brox and Malik (2010b) 3.31 3.74 24.66 1.05 29

Table 3.1: Quantitative segmentation results in the Berkeley motion segmentation bench-

mark. Detections are missed in the pixel labelings when wrong mapping increases the

region error above 10%.

Quantitative results for both our trajectory and pixel labeling are shown in Table 3.1.

We test on the first 10, 50 and 200 frames in each video sequence. When the sequence has

less frames, we use the whole sequence. The benchmark evaluation code optimally as-

signs extracted video segments to ground-truth objects and background. Clustering error

measures percent of wrongly labeled pixels. Region clustering error computes percent of

correctly labeled pixels in each object rather than the whole scene. This metric is important

as in videos where the background occupies a very large part of the scene an algorithm that

labels all pixels with one (background) label achieves low clustering error. Objects with

region error below 10% are assumed correct detections. Over-segmentation measures how

many extracted video segments are assigned to the same ground-truth object. We use trim

mean to average clustering error and region clustering error across the video sequences
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and their objects respectively and we reject the top and bottom 10% of the measurements.

Qualitative results of our approach are shown in Figure 3.6.

Our method performs well and segments the objects correctly. It occasionally over-

segments the objects as we see from the increased over-segmentation error for sequence

length 200, but such over-segmentations occur mostly in the background. Wrong cluster

to region mappings, that assign parts of objects to the background rather than to the right

cluster label cause the number of detections to drop for our region partitionings.

The qualitative results in Figure 3.6 show limitations of our framework under artic-

ulated motion. Freely moving body parts may be disconnected from the main body and

merged to the background. And indeed, our trajectory affinities in Eq. 3.4 penalize mo-

tion discontinuities of different articulated parts. More importantly though, trajectories

on body limbs are often too short to be informative, due to the frequent self occlusions.

Topological tracking presented in Section 3.4 attempts to recover from such limitations by

employing information of video figure-ground topology along with trajectory motion.

Next, we test our method on the video segmentation benchmark of Chen and Corso

(2010). It contains 8 video sequence of average length 85 frames. The sequences have

a wide range of motions but have low spatial resolution. Spatial resolution is often a

determinant parameter of success or failure of trajectory based algorithms, since quality of

optical flow decreases with decrease of spatial or temporal resolution. We show qualitative

results of our approach on all eight sequences of the dataset in Figure 3.7. We used spectral

threshold eig = 0.85 and globalPb threshold β = 0.2. In the first row, the reflectance on

the bus confuses motion estimation. Notice in the 4th row the optical flow bleeding on

the untextured soccer field, next to the legs of the players, and how mapping to regions

alleviates from this problem.

Next, we test our algorithm in the CMU occlusion boundary detection benchmark,

introduced in Stein et al. (2007). The benchmark contains 30 short video sequences and

focuses on occlusion boundary extraction without scoring boundary grouping into objects.

Each video sequence may contain object or camera motion. We used spectral threshold
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Figure 3.7: Video segmentation results in the dataset of Chen and Corso (2010). The

dataset contains eight video sequences, shown along the eight rows. Columns 1, 3, 5:

trajectory clustering with probability of boundary link thresholded at 0.1, 0.3 and 0.6

respectively. Columns 2, 4, 6: pixel segmentation by mapping corresponding trajectory

clusters to regions.
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Figure 3.8: Results in the CMU boundary detection benchmark of Stein et al. (2007).

Rows 1, 4, 7: trajectory link boundary probability d. We show only the edges eij with

nonzero d(eij). Point color indicates trajectory cluster labels of the finest trajectory parti-

tioning. Rows 2, 5, 8: the resulting pixel probability boundary maps from our multiscale

trajectory partitioning and region mapping. Rows 3, 6, 9: ground-truth occlusion bound-

aries.
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Figure 3.9: Pixelwise probability of occlusion boundary map. Each ucm contour fragment

has occlusion probability equal to the maximum γ threshold for which it is a boundary

contour in the corresponding superpixel labeling map.

Figure 3.10: Precision-recall

curve in the CMU occlusion

boundary benchmark.

eig = 0.4 and minimum globalPb threshold β = 0.2. We compute a pixelwise occlusion

probability of boundary map as follows: we threshold our trajectory link probability d in

various cutoff values γ in the interval [0, 1] and map the resulting trajectory clusters to im-

age regions. Each ucm boundary fragment (shared by a pair of adjacent superpixels) takes

the value of the highest cutoff value γ for which the boundary fragment exists. We show

our computed occlusion boundary maps in Figure 3.8. We also visualize the trajectory

link boundary probabilities d.

We show precision-recall curves of our method and baselines in Figure 3.10. We com-

pute the precision-recall curves by mapping extracted boundaries to groundtruth bound-

aries under various cut-off values, using the assignment code of Martin et al. (2001). We
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accept an extracted edgel as groundtruth if the Euclidean distance is below 0.01 of the

maximum of width and height of the image, as used in the Berkley static boundary detec-

tion benchmark. Along with our algorithm we evaluate the globalPb detector of Arbelaez

et al. (2009) for which code is publicly available and the occlusion boundary detector of

Stein et al. (2007) for which authors supply their extracted boundary probability maps. We

also score our own implementation of a baseline motion boundary detector that for each

ucm boundary fragment fits affine models to the optical flow vectors of the left and right

adjacent regions and compares the affine motion estimates on the common boundary. The

larger the disagreement between the two affine estimates, the larger the probability that

the fragment corresponds to an occlusion boundary. This computation is in the heart of

the occlusion boundary detector of Sundberg et al. (2011), for which code or results are

not available. The authors do not specify which Pb threshold they use to obtain the initial

segmentation. We used β = 0.2, same for our algorithm.

Finally, we evaluate our discontinuity detector as a general way of discretizing the

spectral embedding. We denote our method as rot-disc (rotation+discontinuity based clus-

ter merging) and compare with four other discretization algorithms: 1) K-means and 2)

eigenvector rotation (rot), with number of eigenvectors K selected by thresholding eigen-

values, 3)K-means and 4) eigenvector rotation, withK selected by thresholding consecu-

tive eigenvalue difference (denoted by K-means-gap and rot-gap respectively). In Figure

3.11 we plot the average over-segmentation error (i.e., the number of interior fragmenta-

tions not corresponding to object boundaries) against the average miss detection error (i.e.,

the number of groundtruth objects or world scene that were not matched to a cluster with

intersection over union score above 70%), as we vary the thresholds that determine K of

the various algorithms. We average across the 26 video sequences of the Berkeley motion

segmentation benchmark. Our method outperforms standard discretizations, it has con-

siderably smaller over-segmentation error for the same miss-detection error, which shows

that the local discontinuity values are a simple yet effective fix to discretization artifacts

of previous approaches.
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Figure 3.11: Comparison of

spectral embedding discretiza-

tions. Curves are computed

by varying the number of spec-

tral eigenvectors K while keep-

ing our discontinuity threshold

fixed at γ = 0.3.

Discontinuity driven discretization consistently 

oversegments less and detects more objects than 

clustering based discretizations.

our method

Running time Our method for video sequences of 50 frames in Moseg dataset took

on average 5.5 minutes on a 2.6 GHz processor, excluding the optical flow and globalPb

computation that can be parallelized for the different frames in the video. Memory re-

quirements do not scale well with increasing number of trajectories, which means that a

long video sequence would need to be chopped into subsequences of smaller length. Topo-

logical tracking presented in the next section, alleviates to a certain extent from intense

memory requirements, by computing early a figure-ground classification and clustering

only on the foreground trajectories, without sacrificing performance.

3.4 Topological Tracking

The results of the previous section show that long range trajectory motion is very effec-

tive in segmenting rigidly moving objects. At the same time, we saw limitations of our

method under articulated motion, since aperture problems and frequent self-occlusions

and deformations of the human body cause trajectories to be sparse and short. Articulated

limbs were often merged to the background. For general deforming and articulated mo-

tion, grouping by motion similarity may be insufficient, causing over-fragmentations of

objects into distinctly moving parts. In general, model selection, i.e., choosing the right

level of granularity from the segmentation hierarchy, is a hard, and maybe ill-posed prob-

lem, in absence of model information. For the resulting segmentation to have a semantic
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interpretation, the grouping cues need to go beyond appearance or motion similarity.

In this section, we will explore motion saliency for segmenting interacting articulated

bodies in monocular videos. Motion saliency approaches, such as Gao et al. (2008); Ma-

hadevan and Vasconcelos (2010); Rahtu et al. (2010a), employ center-surround filters for

extracting the moving ensemble - which may not have coherent motion - from the oth-

erwise static world scene (not necessarily static camera). In this way, they compute a

pixel figure-ground segmentation in each frame. They do not dis-entangle the different

objects in the moving ensemble though. Motion saliency works are often inspired by psy-

chophysics experiments of Nothdurft (1992) on human motion perception: entities with

dissimilar motion are perceived as a group when viewed against smoothly moving entities.

We present an approach that couples saliency information with trajectories to cor-

rectly delineate the interacting objects of the foreground. Specifically, we will use object

connectedness constraints from video foreground to establish repulsions (not-group rela-

tionships) between trajectories.

Figure 3.12: Left: Segmentation using only motion affinities. Right: Segmentation using

motion affinities and topology-driven repulsions.

Topology-driven trajectory repulsions

In each frame It, we compute a saliency map using the multi-scale center-surround filter

of Rahtu et al. (2010b) on optical flow magnitude. We classify trajectories into foreground
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and background depending on their intersection with the motion salient pixels. Trajecto-

ries that intersect salient foreground for more than 10% of their lifespan are classified as

salient and are used to compute per frame foreground maps Ft ∈ {0, 1}w×h, t = 1 · · ·T ,

where w, h the width and height of It. Computing saliency on trajectories rather than pix-

els allows to assign salient even objects in frames when they are stationary, as shown in

Figure 3.13.

We compute connected components in the per frame foreground maps. Let Ct : T →
N denote the function that assigns to each trajectory the connected component index in the

foreground frame map Ft. We use the term foreground topology to describe the assignment

of trajectories to connected components.

• Foreground topology cannot indicate when two trajectories should be grouped to-

gether: a connected component in a foreground map may contain a single agent or

a group of agents.

• Foreground topology can indicate when two trajectories cannot be grouped together

if assigned to different connected components, since they would violate object con-

nectedness.

Nevertheless, indicating separation is as useful as indicating attraction. We establish

trajectory repulsions between trajectories that at any frame of they time overlap they be-

long to different connected components, depicted also in Figure 3.14:

RT (i, j) = δ(∃ t ∈ Ti ∩ Tj, Ct(tri) 6= Ct(trj)). (3.14)

We cancel trajectory affinities on repulsive links:

A′T = AT • (1−RT ), (3.15)

where • denotes Hadamard product. We have found affinity cancellation to be more robust

to wrong repulsions in RT than spectral clustering with attraction and repulsion of Yu and

Shi (2001).
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Flow magnitude 

center-surround filter 

Pixel saliency Trajectory Saliency 

Figure 3.13: Trajectory motion saliency. Although the basketball player is not moving in

the current frame, he is assigned as salient in the trajectory saliency maps. Computing

saliency on trajectories rather than pixels propagates information from frames with object

distinct motion to frames with no motion.

t 

RT (i; j)

Figure 3.14: Topology-driven trajectory repulsions. The connected components of the

foreground maps are shown in different colors. Repulsive weights are set between trajec-

tories that belong to different connected components at any frame of their time overlap.
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We compute spectral clustering in A′T matrix. We use different number of eigenvectors

for discretizing the embedding and keep only clusters x ∈ {0, 1}nT×1 that do not have

interior repulsions xTRTx.

3.4.1 Experiments

We test topological tracking in the Berkeley motion segmentation benchmark and in Fig-

ment segmentation dataset which we introduce. Figment (Figure untanglement) dataset

contains 18 video sequences of 50-80 frames each, with scenes from a basketball game

collected by Vondrick et al. (2010). In each sequence, we supply groundtruth labels for

all players and the background scene every seven frames. For evaluation, each trajectory

cluster is optimally assigned to one groundtruth object based on maximum intersection.

The metrics are familiar from Section 3.3.3. The new metric leakage measures the per-

centage of leaking trajectory clusters, i.e., clusters that have high intersection over union

score with more than one groundtruth labeled masks (more than 50 % of the one with their

assigned mask). Quantitative results are shown in Tables 3.2, 3.3 and qualitative results

are shown in Figure 3.15.

Dataset density(%) overall error(%) region error(%) over-segment detections

Moseg50 motion tracking 4.97 3.37 22.1 0.75 27

Moseg50 topological tracking 3.22 3.76 22.06 1.15 25

Moseg50 Brox and Malik (2010b) 3.32% 3.50% 27.09% 0.45 26

Table 3.2: Segmentation results of topological tracking in Berkeley motion segmentation

dataset.

In contrast to the Berkeley motion segmentation dataset, where there is no gain from

the use of foreground topological information, under articulation and object deformation,

connectedness constraints improve performance by a large margin. This is due to the fact

that articulated motion is not always informative to provide a semantic video segmenta-

tion. However, in case the objects in the scene do not separate, i.e., they belong to the
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Figure 3.15: Segmentation results in Figment dataset. We show dilated trajectory points

in each frame. The basketball players are correctly delineated in most cases.

Dataset density(%) overall error(%) region error(%) over-segment leakage(%)

Figment motion tracking 4.90 17.49 41.06 3.21 44.96

Figment topological tracking 5.21 4.73 20.32 1.57 16.52

Figment Brox and Malik (2010b) 0.57 20.74 86.43 0 81.55

Table 3.3: Quantitative segmentation results of topological tracking in Figment dataset.

Under articulated motion and close agent interactions the gain from topological informa-

tion is substantial.

same connected component throughout the whole video sequence, then motion is still the

only cue for segmentation. In practise, we found it hard to recover from isolated trajec-

tory groups on the background, that were found salient due to noisy motion estimates, as

shown also in the high oversegmentation error of topological tracking in Berkeley motion

segmentation dataset.
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3.4.2 Discussion

We presented object connectedness constraints from trajectory saliency as a way to obtain

repulsive (not-group) relationships between trajectories, that depend on target topological

separations rather than motion dissimilarity. In the next chapter, we will use detection

responses for inducing repulsive constraints between trajectories, necessary for resolving

motion leakage under lack of distinct motion. Detector-driven repulsions are less depen-

dent on “lucky” target separations, that topological tracking relies upon.
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Chapter 4

Two-Granularity Tracking

What we see depends mainly on what we look for.

— John Lubbock

Our goal is tracking people in crowded scenes. People moving in crowds often occlude

each other. We present a two-granularity tracking framework that exploits model informa-

tion from object detectors and long term motion information of point trajectories to track

objects through partial occlusions. Detectors alone are often insufficient for accurately

parsing cross-object occlusions. Motion alone is ambiguous under lack of distinct object

motion or low texture, as already discussed in Chapter 3. We propose a grouping frame-

work that combines trajectory motion affinities with detection-driven repulsions to correct

motion leakages and select the right segments that correspond to the different people in

the scene. These segments, in contrast to bounding boxes, accurately capture the targets

as they undergo heavy occlusions while navigating in the crowded scene.

We will use a whole object representation as opposed to objects parts. This will not

allow to extract detailed object pose of the targets. In the next Chapter, we will build upon

our two-granularity tracking to present a body pose estimation framework in crowded
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scenes.

4.1 Introduction

Frameworks combining perceptual grouping information and object detection have a long

history in segmentation and recognition of static scenes, such as the works of Amir and

Lindenbaum (1998); Borenstein and Ullman; Hariharan et al. (2011); Ionescu et al. (2011b);

Levin and Weiss (2006); Mori et al. (2004). In the video domain, most recognition frame-

works rely on frame-by-frame detection. Perceptual motion based grouping has not been

exploited in current tracking-by-detection systems. The large data throughput of videos

- in comparison to still images - requests fast, time efficient processing, as noted in Xu

et al. (2012a). Temporal demands are especially prominent in real time applications.

Timely motion estimation is possible in hardware based optical flow implementations,

which are not widely available yet. For this reason, two lines of work, namely 1) tracking-

by-detection, and 2) motion/appearance based video segmentation, have developed inde-

pendently, targeting different applications and time requirements.

Current state-of-the-art tracking algorithms Breitenstein et al. (2009); Brendel et al.

(2011); Leibe et al. (2007) link detections over time. Object detection under persistent

partial occlusions is challenging since features extracted from a window around an object

may be corrupted by surrounding occluders. A box tracker cannot adapt to the changing

visibility mask of a partially occluded object. As a result, detection responses come as

loose-fit / under-fit boxes around a target, or as hallucinated detections spanning over or in

the gap of two objects, which causes difficulties to data association during tracking. Apart

from occlusions, object deformation poses additional challenges, resulting in a difficult

trade-off between precision and recall for deformable object detection.

Motion based video segments can adapt to the changing visibility masks of moving

targets under occlusions, as shown in Figure 4.1, 2nd column. However, they fail un-

der similar motion across different targets, which is often the case when people move in
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Two‐granularity tracking Trajectory mo4on clustering Per frame detec4ons of Bourdev et. al. 2010 

Figure 4.1: Left: Detections of poselet detector of Bourdev et al. (2010). Many detector

responses come as a loose fit or under-fit around the targets, especially under partial oc-

clusions (the crowd in the center) or deformations (the lady running on the left). Center:

Trajectory spectral clustering. Deforming targets are captured and moving people under

partial occlusions are correctly delineated. However, clusters leak across objects that move

similarly (the couple in the center). Right: Two granularity tracking. Trajectory spectral

clustering in the steered graph of motion attractions and detection-driven repulsions. Mo-

tion leakages are fixed and trajectory clusters clusters adapt to the visibility mask of the

targets under partial occlusions.

crowds.

We propose a tracking framework that exploits cues in two levels of tracking granular-

ity:

1. tracking-by-detection, and

2. dense point trajectories.

We cast mutli-object tracking as a joint detection and trajectory partitioning problem. We

establish trajectory affinities using both long range motion similarity and associations to

detections. Specifically, incompatible detections induce repulsive weights between trajec-

tories associated with them, as shown in Figure 4.2. In this way, motion leakage is cor-

rected across similarly moving objects captured by confident detections. At the same time,

our partitioning framework can generate potentially an exponential number of trajectory

clusters to fit the changing visibility masks of targets under partial occlusions. Result-

ing trajectory clusters link detections across miss detection gaps. Our goal is to improve

55



robustness in tracking, minimize drifts due to interpolation due to lack of reliable detec-

tions, rather than the segmentation itself. We call our framework “graph steering” since

detection information is incorporated in the form of link cancellation, that steer (change)

corresponding motion affinities.

We show that graph steering is resistant to noisy dis-associations of false alarm or

spatially inaccurate detections. Resulting trajectory clusters in the steered affinity graph

provide feedback to detection classification by rejecting detections misaligned with them.

Each resulting trajectory-detection co-cluster corresponds to one object hypothesis in

space and time, as shown in Figure 4.1 3rd column. We analyze the graph connectiv-

ity and resulting spectral clustering as we vary the rate of false alarm detections.

A byproduct of the two-granularity representation is the relative depth ordering of

the resulting object tracks, by analyzing the lifespans of point trajectories in the corre-

sponding detection and trajectory co-clusters. In contrast, previous tracking-by-detection

frameworks cannot easily differentiate a miss detection gap from an occlusion gap. To

that respect, two-granularity representations better help the analysis of target behavior by

grounding each bounding box to the relevant trajectory content and inferring its occlusions

and dis-occlusions.

We test our algorithm in a variety of tracking benchmarks available in the literature and

show its capability to track people under persistent partial occlusions. We also introduce

a new tracking dataset, we call UrbanStreet, captured from a stereo rig mounted on a

car driving in the streets of Philadelphia, PA. We provide segmentation masks rather than

bounding boxes as groundtruth pedestrian labels, since often times the targets are partially

occluded while navigating in traffic. We show qualitative and quantitative results of our

system under CLEAR MOT tracking metrics and quantify its performance under both

monocular and binocular input. The UrbanStreet dataset and the code of our algorithm is

available at www.seas.upenn.edu / ∼ katef/steer.html/.
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Figure 4.2: Two-granularity tracking overview. We establish one detectlet (detection

tracklet) and one trajectory graph with repulsive and attractive weights RD and AT re-

spectively and cross-associations C. We jointly optimize over detectlet classification y and

co-clusteringX, Y via graph steering: Selected detectlets induce dis-associations between

their associated point trajectories. Clustering in the modified graph Wsteer
T (y) verifies or

rejects detectlet hypotheses depending on their alignment with trajectory clusters, chang-

ing accordingly their classification y. Here, the green detectlets are accepted while the red

one is misaligned and thus rejected. Each detectlet/trajectory co-cluster corresponds to an

object hypothesis in space and time.
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4.2 Related work

Most tracking algorithms estimate the states of targets over time using two types of pattern

matching: 1) matching image patches to pre-trained detector templates 2) matching image

patches to on-the-fly built detection models for each target. Both matching problems are

ambiguous under 1) target deformations and 2) target interactions and occlusions, which

cause the appearance of a target to divert from 1) the common patterns in the training set of

the pre-trained detector, 2) the learnt pattern of the on-the-fly detection model. This results

in an important trade-off between precision and recall for detection and data association

in tracking.

Improved object detectors, using expressive mixture models learnt from larger train-

ing sets, have led to higher accuracies in multi-object tracking-by-detection Brendel et al.

(2011). Cross-object occlusions still pose challenges to current detectors due to the combi-

natorial number of resulting object configurations. Researchers seek ways to attack config-

uration explosion under object interactions in different ways: 1) learning more templates,

following visual similarity rather than categorical description of such configurations Mal-

isiewicz and Efros (2009); Sadeghi and Farhadi (2011), 2) searching for part-based repre-

sentations that would effectively share parts between “rare” and “common” configurations

Desai and Ramanan (2012b). Some multi-object configurations are stable, repeatable in

the datasets, and thus easy to detect as a template, e.g., man on horse, hand holding cup,

cars parked in a row Pepik et al. (2013) etc. General cross-object occlusions though may

not always be same as repeatable or stable. Instead of trying to improve the pre-trained

detection model, in this work, we explore motion segmentation for untangling interacting

objects as a way of dealing with limitations of standard object detectors.

Researchers have explored ways of linking sparse confident detections in time in nu-

merous ways. Works of Bibby and Reid (2008); Mitzel et al. (2010); Ren and Malik

(2007) use figure-ground segmentation and level-set segmentors. Works of Shu et al.

(2012); Wu and Nevatia (2007) use body parts tracklets in the place of whole body track-

lets for tracking partially occluded objects. Numerous works delay the data association
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process and use future information to decide assignment of detections to targets Brendel

et al. (2011); Huang et al. (2008a). Work of Huang et al. (2008a) proposes a hierarchical

association of detection responses, updating the cross-tracklet affinities from information

of increasing tracklet length. Numerous works focus on goal planning for targets as they

navigate in their environment, considering scene exits/entries to estimate termination of

tracklets Huang et al. (2008a), sidewalk information and pedestrian walking preferences

Kitani et al. (2012), cross-target collision prediction and resolution Gong et al. (2011);

Pellegrini et al. (2009), periodic walking cycles Andriluka et al. (2008), or simple motion

smoothness priors Huang et al. (2008a).

Many approaches learn on-the-fly appearance models with the aim to adapt to the

appearance distribution of the target at hand, which may differ significantly from the dis-

tribution under which the pre-trained detector is learnt Gall et al. (2011); Okuma et al.

(2004). Under stationary cameras, background subtraction is used to help detection of

targets Berclaz et al. (2011). Work of Breitenstein et al. (2009) employs on the-fly-learnt

target appearance classifiers with a probabilistic gating function and continuous detection

maps, instead of discretized, non-maxima suppressed detections, for guiding a particle

filter in a causal, online tracking system.

Our works focuses on estimating concurrent tracking and segmentation of targets, with

the aim of linking sparse detections of a pre-trained model via motion trajectory clusters.

Instead of on-the-fly learning target appearance classifiers, we employ a robust variational

coarse-to-fine optical flow computation for frame-to-frame pixel matching. We link such

pixel matches into trajectories and compute long-range motion trajectories similarities.

Trajectory units are more powerful than level set segmentors or per frame appearance

models thanks to their large temporal support: they can distinguish targets with different

motions despite accidental appearance similarity, where target appearance models would

fail. While right now our system is not causal (we compute two-granularity tracking using

information in all frames that are available), one could consider only trajectories spanning

past frames for developping a causal tracking system.
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Figure 4.3: Complementarity of detectlets and point trajectories. 1st Row: Similarly

moving objects. 2nd Row: Body deformations. 3rd Row: Partial occlusions. Motion

segmentation is computed by spectral clustering on motion and disparity based trajectory

affinities.

4.3 Tracking units

Detection tracklets (we will call them detectlets for short) and point trajectories provide

complementary information for tracking in different points in space and time:

1. Detectlets may be sparse in time. They often miss objects under severe occlusions

or extreme deformations. In contrast, point trajectories are dense in space and time.

2. Detection bounding boxes are often spatially inaccurate. In contrast, point trajecto-

ries have small spatial support, hence trajectory clusters can adapt to the changing

visibility mask of occluded pedestrians.

3. Detectlets can separate objects under canonical pose, despite their motion or dispar-

ity being similar to surroundings. In contrast, trajectory affinities leak across objects

moving in groups with (persistently) similar motion and disparity.
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A summary of advantages and disadvantages of detection and motion/disparity seg-

mentation is presented in Figure 4.3. In Sections 4.3.1 and 4.3.2 we present our trajectory

and detectlet units and their pairwise affinities AT , and repulsions RD, respectively, and

in Section 4.3.3 we present their cross-associations C.

4.3.1 Fine-grained point trajectories

We define a trajectory tri to be a sequence of space-time points: tri = {(xti, yti), t ∈ Ti}
where Ti is the frame span of tri. In case of stereo or multi-view input, each trajectory

is augmented with a disparity or depth value per frame, depending on whether camera

calibration information is available: tri = {(xti, yti , zti), t ∈ Ti}. In cases of calibrated

cameras, we still prefer to use the pixel locations xti, y
t
i instead of true 3D coordinates

X t
i , Y

t
i to avoid errors during disparity computation and triangulation.

We obtain point trajectories by tracking pixels across frames following the per frame

optical flow fields. Point trajectories are dense in space and can have various lengths de-

pending on the occlusion frequency of the scene part they capture. Trajectory computation

is bottom-up, oblivious to any object knowledge.

Trajectory affinities Point trajectories encode rich grouping information in their motion

and depth differences. The depth channel helps differentiate targets that have the same

apparent 2D motion but reside in different depths, e.g., targets that move perpendicular to

the image plane of the camera.

We compute motion based trajectory affinities similar to the previous chapter and ob-

tain:

AMT (i, j) = exp (−dij∆uij
σ

) · δ(Ti ∩ Tj 6= ∅), (4.1)

where dij is the maximum Euclidean distance between tri and trj and ∆uij is the largest

velocity difference between tri and trj during their time overlap:

∆uij = max
t∈Ti∩Tj

|~uit − ~ujt |22
tf

, (4.2)
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where ~uit = (xit+tf − xit, yit+tf − yit) is the velocity of tri at time t. Similarly, we compute

depth based trajectory affinities as:

ADT (i, j) = exp (−zij∆wij
σz

) · δ(Ti ∩ Tj 6= ∅), (4.3)

where zij is the maximum depth and ∆wij is the largest Z velocity difference between tri

and trj during their time overlap:

∆wij = max
t∈Ti∩Tj

|~wit − ~wjt |22
tf

, (4.4)

where ~wit = (zit+tf − zit) is the Z component of the velocity of tri at time t. Notably,

trajectory affinities in 4.3 can differentiate targets that have the same depth for a number

of frames, as long as they reside in different depths for at least one frame during their time

overlap. The final combined motion and disparity trajectory affinities take the form:

AT = AMT •ADT , (4.5)

where • denotes Hadamard product. In Figure 4.8 we show video segmentations using

motion only, disparity only and motion plus disparity in trajectory affinities.

4.3.2 Coarse-grained detectlets

We define a detectlet dlp to be a sequence of detector responses dlp = {(boxtp, c
t
p), t ∈ Tp},

where boxtp is the detection bounding box at frame t, ctp is the corresponding detection

score and Tp is the frame span of the detectlet. We define the confidence of detectlet dlp

to be the sum of confidences of its detection responses: cp =
∑

t∈Tp c
t
p.

We obtain detectlets by conservatively linking detections using trajectory anchoring,

as shown in Figure 4.4. Let boxa = [xula yula xbra ybra ], boxb = [xulb yulb xbrb ybrb ] denote

two detection responses in frames t1, t2 with t2 − t1 = g ∈ N+. Let Ta, Tb denote the

trajectory sets overlapping with each bounding box. We define the compatibility score

between boxa, boxb according to the similarity of the relative positions of the common

trajectories inside the two boxes:

P g(a, b) = exp(− 1

σ2
median

tri∈Ta∩Tb
|(xti−xula )−(xti−xulb )|2+|(yti−yula )−(yti−yulb )|2)δ(

|Ta ∩ Tb|
|Ta ∪ Tb|

> 0.3).

(4.6)
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t1

t2

tri

bboxa bboxb

t1 t2

bboxc

P g(a, b) >> P g(a, c)bboxa

bboxb
bboxc

tr

Figure 4.4: Detection linking into detectlets. Compatibility score of detection boxes

boxa, boxb measures the stability of the relative position of their common point trajec-

tories w.r.t. the upper left box corners.

We use only the upper left corner to measure trajectory relative positions, as shown in

Figure 4.4. The upper boundary of a bounding box response is better anchored with respect

to the target than the lower boundary, because head and torso is more stable configuration

than legs.

For each g ∈ {1 · · · 1.5fps} we compute matrix P g, encoding compatibilities between

detection responses that reside g frames apart (fps denotes frames per second of the video

sequence). For each g, the matrix summation P g+ = P 1 + · · · + P g encodes compatibil-

ities between detection responses that reside at most g frames apart. We apply a double

threshold to each of the matrices P g+, g ∈ {1 · · · 1.5fps}, discarding detection pairs with

compatibility score below a threshold or whose compatibility score is not 0.3 times larger

that the second best competing detection pair, denoting ambiguity in association. Detec-

tion pairs that survive the double thresholding are linked into detectlets.

Detectlet repulsions We establish repulsions RD ∈ {0, 1}nD×nD between detectlets

overlapping in time, expressing their inability to span the same object. Such incompatibil-

ities are implicit in most previous approaches which never link detectlets that overlap in

time. We have:

RD(p, q) = δ(|Tp ∩ Tq| > 0). (4.7)
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4.3.3 Trajectory to detectlet associations

We set associations C ∈ {0, 1}nD×nT between detectlets and trajectories according to

spatio-temporal overlap:

C(p, i) = δ(∀t ∈ Ti ∩ Tp, (xti, y
t
i) ∈ boxtp). (4.8)

Computing associations between point trajectories and detectlets rather than between pix-

els and detections benefits from large trajectory horizon: It saves from erroneous associa-

tions between a detectlet and background trajectories or trajectories of nearby targets due

to accidental per frame overlaps of detection bounding boxes. This is depicted in Figure

4.5 Right.

tri

trj

C(p, i) = 1

C(p, j) = 0

dlp

Figure 4.5: Trajectory to detectlet associations C. Left: A trajectory is associated to a

detectlet if it resides inside its bounding box for all their common frames. Right: We

color trajectories according to their box color of the detectlets they are associated with.

Trajectories associated with more that on detectlets or with none are shown in white.

Thanks to the large trajectory lifespans, when people come close, spatial overlaps of the

detectlet bounding boxes do not confuse associations in C.
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4.4 Two-view steering cut

We formulate multi-object tracking as classification-clustering in the joint detectlet and

trajectory space. Each resulting co-cluster of detectlets and trajectories corresponds to

one object hypothesis in space and time.

We establish what we call a “steered” trajectory graph by canceling motion/disparity

affinities between trajectories associated with incompatible detectlets (Section 4.4.1). We

show such link cancellation policy is robust to false alarms or spatially inaccurate de-

tectlets: we vary false alarm detectlet rate and show steering corrects leaking affinities

without disconnecting object interiors from trajectory associated to false alarms.

Different detectlets result in different graph steers. We propose a steering cut crite-

rion that seeks for detectlet classification whose steering minimizes normalized cuts while

maximizing alignment of clusters with detectlets (Section 4.4.2).

We will use the following notation:

y ∈ {0, 1}nD×1 : detectlet classification

Y ∈ {0, 1}nD×K : detectlet cluster indicator

X ∈ {0, 1}nT×K : trajectory cluster indicator,

where K is the total number of clusters. The number of objects K is unknown (there is no

one-to-one correspondence between detectlets and objects in the scene). It is part of our

optimization variables.

4.4.1 Graph steering

We want to compute a trajectory graph that benefits from detector responses in order

to correct leaking motion and disparity based affinities across objects moving similarly.

Below we present construction of our steered graph as a function of detectlet classification

y.

Repulsions between selected detectlets in Y = {p, yp = 1} induce repulsions between

their associated trajectories. Induced trajectory repulsions RT (y) : y → {0, 1}nT×nT take
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the form:

RT (y) = δ (∃(p, q) s.t. ypyqRD(p, q)C(p, i)C(q, j)(¬(C(p, j) + C(q, i)) = 1.)

(4.9)

Intuitively, two trajectories have a repulsive weight if there is a pair of selected incompat-

ible detectlets to which they are exclusively associated to, i.e., none of the two trajectories

is associated with both detectlets. We visualize such affinity cancellation in Figure 4.6.

We define the steered affinity graph Wsteer
T (y) to be the graph resulting from canceling

motion affinities on repulsive trajectory links:

Wsteer
T (y) = (1nT×nT −RT (y)) •AT , (4.10)

where • denotes Hadamard product.

The goal of graph steering is to improve connectivity in the trajectory graph by al-

leviating from leakages across objects captured by detections. However, if false alarms

RD

RT (y)

C

AT

Ini$al affinity graph  Induced trajectory repulsions  Steered graph 

WT (y)steer

Figure 4.6: Graph steering. We show in green and red the selected and dis-selected de-

tectlets in y. Repulsions are induced between trajectories associated with selected de-

tectlets. Affinities are canceled on repulsive links. Notice that the trajectory claimed by

both detectlets has unchanged affinities.
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are erroneously classified as true positives in y, steering can potentially disconnect object

interiors, harming graph connectivity.

      
         

 

   
   

  

  
  

   

   
   

   
  

 

 

  

   

 
 

  

   
    

     
 

   
    

    
 

  

  
  

 

  
  

  

  

  

  

     
    

     
    

  

  

    
    

Detectlets cancel 
corss-object affinities 

Detectlets cancel 
intra-object affinities 

Figure 4.7: Steering and graph connectivity. Left: We assume a densely connected affinity

graph between trajectories (shown in black dots) of two objects (shown in black boxes).

Given a false alarm rate εfp, we sample two detectlets assuming true positive detectlets

have intersection over union score at least 50% with the object they capture while false

alarms at most 50%. Given the pair of sampled detectlets, we cancel trajectory affinities

according to Eq. 4.9,4.10 and compute resulting εsteer
cr . Multiple detectlet samplings result

in the distribution curve of εsteercr

εcr
. Right: Given one object we assume a densely connected

affinity graph between trajectories. We sample pairs of detectlets and compute the steered

affinities as before, for different false alarm rate εfp. We compute resulting εsteer
in . For each

εfp, the decrease of cross-object leaking affinity rate εcr is much larger than the decrease

of intra-object affinity εin. This is the case because false detectlets do not align well with

object boundaries and cause fewer link cancellations.

We will analyze how the leaking affinity rate and the intra-object affinity rate change

before and after steering of our affinity graph, while varying the false alarm detectlet rate

in y. We assume for simplicity that the affinity graph AT is binary. We will use the

following notation:

εin : the probability of an intra-object link

εcr : the probability of a cross-object link

εfp : the probability an object is captured by a false alarm detectlet in y.

In Figure 4.7 we show the empirical distribution of εsteercr

εcr
, and εsteerin

εin
for different rates
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εfp. The distributions are computed using simulations for detectlet generation assuming

true positive detectlets have intersection over union score at least 50% with the object

they capture while false alarms at most 50%. Ideally, we want εsteercr

εcr
= 0 (correcting

all leakages) and εsteerin

εin
= 1 (not harming any true, intra-object links). For each εfp, the

decrease of cross-object leaking affinity rate εcr is much larger than the decrease of intra-

object affinity εin. This means that steering improves affinity accuracy overall.

4.4.2 Steering cuts

Given a set of detectlets and point trajectories, we want to compute a joint partitioning

(X, Y ) so that resulting co-clusters correspond to the objects in our video scene. Columns

of matrices (X, Y ) correspond to trajectory and detectlet cluster indicators. We have the

following constraint between detectlet clustering and detectlet classification:

K∑
k=1

Yk = y, (4.11)

where Yk denotes the kth column of Y . This means only detectlets selected in y (true

positives) participate in the clustering. False alarm detectlets do not belong to any clusters.

We propose the following steering-cut criterion over detectlet classification y and co-

clustering (X, Y ):

Two-view Steering Cut:

max .
y,X,Y,K

K∑
k=1

XT
k W

steer
T (y)Xk

XT
k DWsteer

T (y)Xk︸ ︷︷ ︸
coherence

· Y
T
k CXk

Y T
k DCYk︸ ︷︷ ︸
alignment

· Y T
k c︸︷︷︸

confidence


s.t. ∀k, Y Tk CXk

Y Tk DCYk
> h, ∀k Y T

k RDYk = 0,
K∑
k=1

Xk ≤ 1nT ,
K∑
k=1

Yk = y,

X ∈ {0, 1}nT×K , Y ∈ {0, 1}nD×K , y ∈ {0, 1}nD×1,
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where DC = Diag(C1nT ). Cluster coherence is measured using the intra-cluster normal-

ized affinities, same as in spectral clustering. Alignment between detectlets and trajec-

tories in each co-cluster (Xk, Yk) is measured by normalized intra-cluster associations.

Cluster confidence is measured by the sum of detectlet confidence scores. The first con-

straint ensures that each co-cluster has a minimum alignment score h. The second con-

straint ensures that detectlets assigned to the same co-cluster are not repulsive. The third

constraint ensures that each each trajectory is assigned to at most one cluster, since we

do not want background trajectories to participate in the clustering. The forth constraint

ensures only detectlets with positive values in y participate in the clustering.

In bottom-up segmentation methods there is an inherent model selection problem:

coarser or finer partitionings minimize equally well the cut criterion. In our steering cut,

alignment of trajectory clusters with detectlet clusters allows to pick the right segmen-

tation granularity and reject over-fragmentations or leakages. The first constraint makes

detectlets to compete in claiming point trajectories. This causes co-clusters with false

alarm detectlets to be rejected by competing with better aligned and more confident ones.

It also gives feedback from segmentation to detectlet classification: detectlets not aligning

well with trajectory clusters are discarded (classified as false alarms).

We approximately optimize our steering cut cost function with multiple (steered) seg-

mentations. We sample y according to detectlet confidence c and compute normalized cut

clustering in the steered graph Wsteer
T (y):

max .
X

K∑
k=1

(
XT
k W

steer
T (y)Xk

XT
k DWsteer

T (y)Xk

)

s.t.
K∑
k=1

Xk = 1nT , X ∈ {0, 1}nT×K .
(4.12)

This results in a large pool of trajectory clusters. For each trajectory cluster Xl, we

greedily select detectlets with highest to lowest alignment scores and reject detectlets in-

compatible with already selected ones. For each resulting co-cluster (Xl, Yl), we measure
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Figure 4.8: Disparity based affinities are often not informative for targets residing far

from the camera. Longer trajectories can better differentiate targets than shorter ones.

In Bottom Left we show steering cut only on trajectories captured by some detectlet, as

explained in Section 4.4.3.
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alignment score Y Tl CXl
Y Tl DCYl

and confidence score cTYl. We prune co-clusters whose align-

ment score is below a threshold h. Co-cluster score is measured by Y Tl CXl
Y Tl DCYl

· Y T
l c. We

obtain the tracking solution by sequentially choosing highest to lowest scoring co-clusters

(Xl, Yl), rejecting those that have non zero trajectory intersection with already chosen

ones.

Our resulting co-clusters (Xl, Yl) terminate at full occlusions because trajectories be-

fore and after full occlusions do not overlap in time and thus have zero affinities in both AT

and Wsteer
T . To link co-clusters through full occlusions we compute compatibility scores

between all pairs of co-clusters depending on first order motion smoothness. We link

co-clusters whose compatibility score survives a double thresholding policy, described in

Section 4.3.2.

Multiple steered segmentations versus multiple segmentations The proposed graph

steering framework incorporates detection information early, in the segmentation graph

Wsteer
T . In contrast, multiple segmentation approaches such as Russell et al. (2006), sam-

ple a number of segmentation proposals to be post processed with an object model. This

does not allow to recover from mistakes of bottom-up grouping affinities.

Graph steering versus co-clustering

Clustering in the joint space of detections and image pixels has been considered in Yu

et al. (2002) for simultaneous detection and segmentation in static images. The authors

bypass explicit object hypotheses classification by assigning false alarms to a background

cluster and compute a clustering in the joint matrix:

A =
[
AT CT ; C AD

]
, (4.13)

where AD stands for detectlet affinities. Problems of spectral clustering in this augmented

graph come from false alarm detectlets and affinity contradictions between trajectories and

detections:
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1. False associations. Assigning a false detectlet to the background cluster needs to

cut association edges between the false detectlet and its associated in C point tra-

jectories (overlapping with it). Such cut cost may be prohibitively large and can

confuse the solution, as shown in Figure 4.9 Left.

2. Affinity contradictions. In places detectlet and trajectory graphs disagree, incorrect

affinities confuse the solution, as shown in Figure 4.9 Right.

The above problems stem from the fact that co-clustering is computed in the initial

affinity graph A and are eliminated in the proposed graph steering framework where the

affinity graph changes according to detectlet classification.
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Figure 4.9: Graph steering versus co-clustering. Left: Only selected in y detectlets, here

dl1, can claim trajectories. In this way, we avoid

contaminating the spectral partitioning solution with false detectlets (here dl2). Right: We

cancel trajectory affinities (AT (2, 4),AT (1, 3)) between incompatible detectlets (dl1, dl2).

Spectral partitioning in the steered graph does not leak across similarly moving targets.
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4.4.3 Graph steerability

We assume again for simplicity that the affinity graph AT is binary. We will use the

following notation:

εin : the probability of an intra-object link

εcr : the probability of a cross-object link

εfg : the probability of a figure-ground link

εgg : the probability of a ground-ground link

We have already discussed how graph steering impacts the connectivity of Wsteer
T . In

this section, we analyze how graph steering impacts the normalized cut of the resulting

graph Wsteer
T (y). There are three challenging cases:

1. Case A: Intra-object connections are only marginally larger than cross-object ones.

This can happen due to similar motion/disparity across objects, and large deforma-

tion (articulated motion) within the objects. If the repulsion induced by detectlets is

too weak (due to large misalignment with the object they capture), the segments will

still leak across the two objects. If the induced repulsion is strong but the detectlets

do not align well with the objects they capture then the objects will be fragmented

into two parts, one for each repulsive region, while the parts outside the detectlets

(but on the objects) will still leak across.

2. Case B: Misalignment of detectlets with underlying objects induces wrong repul-

sions between background regions and over-fragments the background if ground-

ground affinity rate εgg is low.

3. Case C: Figure-ground affinity rate εfg is large and foreground objects leak to the

background. Steering cannot correct figure-ground leakage since repulsions are de-

signed to cancel only cross-object affinities.

To quantify feasibility of Steering Cut under these challenges, we analyze the sim-

plified case of a 7 node graph shown in Figure 4.10 Top. Each node corresponds to a
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trajectory set. The desired clustering X ideal assigns {1, 2} and {3, 4} in two foreground

objects, and {5, 6, 7} in the background group. Nodes {5, 6} are background nodes mis-

takenly declared as foreground by detectlet, due to detectlets’ misalignments. Detectlets A
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Figure 4.10: Feasibility analysis of steering cut. Top: A simplified graph for 7 tracklets

nodes. Nodes {1, 2}, {3, 4} are two foreground objects, 5, 6 are background imposters de-

fined by detectlets A, B, 7 is a background distractor. A, B cancel links between nodes 1, 5

and 3, 6 in the steered graph. Middle Right: Conditions on εin, εcr, εfg, εgg for the desired

clustering achieving the optimal ncut score in the steered (shaded area) and non-steered

(textured area) graph. Middle Left: Plots of the feasibility region of εin, εcr for the steered

comparing with the initial graphs. Bottom Left: Feasibility regions relating cross-object

and intra-object affinity rates εin,εcr for different detectlet / object overlap s and different

affinity ratios εfg
εcr

. Bottom Right: Failure cases outside of feasibility regions corresponding

to the three challenges outlined. The size of the nodes indicates their cardinality.
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and B cancel graph links between nodes 1, 5 and 3, 6 (shown in red) in the steered graph,

Wsteer
T , in Figure 4.10 Top.

Let a1...a7 denote the cardinality of the trajectory sets corresponding to the 7 nodes.

Let s = a1
a1+a2

denote detectlet to object overlapping ratio and let b denote area of back-

ground node a7. We analytically derive the conditions for the ideal segmentation X ideal

achieving the optimal value of ncut(Wsteer
T , X ideal) as a function or affinity link rates

εcr, εin, εfg, εgg, object-detectlet alignment s and background area b. There are number of

these conditions. A simplified set of feasibility conditions are stated in the table shown in

Figure 4.10 Middle. We plot a subset of the feasibility regions for εin and εcr for different

values of s ground-ground connections εgg and different ratios of figure-ground and cross-

object affinity rates εfg
εcr

in Figure 4.10 Bottom. The feasibility conditions of Steering Cut

lead to three conclusions:

• Steering improves feasibility margin between εcr and εin affinity rates, as shown

by the steeper slope of the linear part of the curves for the steered segmentation case

compared to non-steered one, in Figure 4.10 Bottom Left. Ratio of cross-object over

intra-object affinity rates εcr
εin

is upper-bounded by detectlet object overlap:

εcr
εin

< s. (4.14)

The larger the overlap s, the stronger the steering between objects and the larger the

feasibility region. In the typical case where εfg
εcr

= 1
10

, εgg = 0.9, s = 5
6

the feasible

ratio εcr
εin

in the steered graph is 5 times larger over the unsteered one whose slope is

1− s, as shown in Figure 4.10 Middle Left. The assumption of small figure-ground

over cross-object affinity ratio εfg
εcr

is justified since motion/depth difference between

objects and background is larger than motion/depth difference across objects, that

often move in coherent groups. Also, coherence of background motion and depth

justifies large ground-ground affinity rate εgg = 0.9.

• Steering is limited by background incoherence. Cross-object affinity rate is upper

75



bounded by total background connectivity bεgg:

εcr <
b

s+ 1
εgg. (4.15)

This causes the saturated part of the feasibility curves for both the steered and

unsteered segmentation case. In case of graph steering, saturation is caused by

wrong repulsions introduced between background nodes 5, 6 due to imperfect align-

ment of the detectlets with the corresponding objects, causing background over-

fragmentation. The larger the background connectivity bεgg over the overlap ratio s,

the later we reach the saturation point. Moreover, if b
s+1

εgg < s we never reach the

saturation point, as is the case for the right most curves in magenta in Figure 4.10

Bottom.

• Steering is limited by average figure-ground leakage εfg. Large figure-ground

leaking rate εfg dramatically decreases the ability of both steered and unsteered

graph to generate the right segmentations. In that case, graph steering improves by

a smaller margin over segmentation in the unsteered graph as shown in Figure 4.10

bottom row. This is expected since steering is designed to deal with object-object

and not figure-ground entanglement.

We revisit the challenges outlined, relate them to points on the feasibility plots and

discuss corresponding failure cases A, B and C depicted in Figure 4.10 Bottom. Cases A

and B have the same overlap ratio s and average ground-ground connectivity εgg. Case

A resides close to the linear part of the curve while B is at its saturation point. In A

objects are over-fragmented because intra-object affinities are weak relatively to cross-

object affinities εcr and fail to piece the objects as a whole. Increasing intra-object affinity

εin can recover the right clustering. In case B, background over-fragments and foreground

under-segments. This is due to background incoherence and imposters 5 and 6 create more

salient clusters. Background fragmentation cannot be corrected by increasing intra-object

affinity εin. In case C, the object leaks to the background, independently of the amount of
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steering between object nodes. This happens because of large figure-ground affinity rate

εfg, equal to the cross-object affinity rate εcr.

Findings of our theoretical analysis have been verified empirically. High figure-ground

affinity rate limits the effectiveness of our steering framework. We encounter high figure-

ground affinities in cases of standing, not moving pedestrians. In our implementation we

recover from this problem by computing steered clustering only for trajectories that are

associated to some detectlet, and discard (background) trajectories not associated to any

of them. We show the resulting clustering for this set of trajectories in Figure 4.8 Bottom

Left. The few trajectories associated to false alarms on the background do not create a

problem. We further compute one bottom-up clustering (using unsteered affinities in AT )

for the full set of trajectories, for capturing targets with very few detections on them but

who move saliently. Resulting clusters from both partitionings populate our cluster pool

and are matched against detectlets to produce resulting co-clusters.

4.5 Experiments

We test two-granularity tracking in the following established datasets for multi-object

tracking: 1) TUD crossing of Andriluka et al. (2008), 2) PETS 2009 dataset, scenario

S2.L1 , 3) ETH sunny-day dataset used in Ess et al. (2007), 4) AVSS AB Hard, part of

i-Lids dataset for AVSS 2007 (International Conference on Advanced Video and Signal

based Surveillance), and 5) our own UrbanStreet dataset. The datasets vary with respect

to camera motion (static, translating, zoom in-zoom out), object scale, degree of target

entanglement, objects’ speed.

In all datasets apart from UrbanStreet we use a single camera view. We discard stereo

or multiview information available in ETH sunny day and PETS respectively, to be in

accordance with most previous works tested on these datasets. For PETS, ilids and ETH

sunny day datasets we use the pre-trained detector of Felzenszwalb et al. (2010). For TUD

crossing and UrbanStreet we use the pre-trained poselet detector of Bourdev et al. (2010),
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Figure 4.11: Two-granularity tracking results in UrbanStreet. Point trajectory clusters

adapt to the changing target visibility masks during partial occlusions.
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mainly because people that appear close to the camera are often only half visible. The

camera is static in PETS, TUD-crossing and iLids and moving in ETH sunny-day and

UrbanStreet. For TUD-crossing, PETS S2.L1 and ETH sunny-day we used groundtruth

provided by the authors of Yang and Nevatia (2012). Groundtruth is not available for

AVSS AB Hard and we show only qualitative results.

UrbanStreet dataset contains 17 video sequences taken from a stereo rig mounted on a

car traversing the central streets of Philadelphia during rush hour. We supply segmentation

masks for all visible targets every four frames (0.6 seconds) in each sequence, with a total

of 2500 pedestrian masks labeled. Groundtruth samples are shown in Figure 4.13. The

sequences contain a wide variability of target size, motion and entanglement, and the cam-

era may be stationary (when the car is stopped on a cross-road) or moving. We evaluate

performance both with and without the disparity channel. We use the disparity channel in

two ways: 1) we prune out-of-perspective detections, assuming the mean human height to

be 1.7m, 2) we compute trajectory affinities AT from maximum disparity difference be-

tween point trajectories, as discussed in Section 4.3.1. We compute disparity by a 4-way

dynamic programming on SIFT descriptor matching scores. Due to our large baseline, the

resulting disparity fields are coarse and mostly informative for targets close to the camera.

Figure 4.12: Top: tracking-by-detection of Gong et al. (2011). It interpolates across occlu-

sion and miss detection gaps. The interpolated boxes are shown with dashed line. Bottom:

two granularity tracking. The detectlet-trajectory co-clusters have accurate grounding of

the targets during partial occlusions.
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Figure 4.13: Groundtruth segmentations in UrbanStreet.

We measure tracking performance using the CLEAR MOT metrics described in Bernardin

and Stiefelhagen (2008). In each frame, we compute intersection over union score between

the box hypotheses of our two-granularity tracker and groundtruth boxes. We compute a

greedy one-to-one assignment between box hypotheses and groundtruth boxes whose in-

tersection over union score is above 50%. Groundtruth boxes not assigned to any hypothe-

ses are counted as miss detections (false negatives) and box hypotheses not assigned to any

groundtruth are counted as false positives. A hypothesized box can be a false positive ei-

ther because it has less than 50% intersection over union score with all ground-truth boxes

of its frame or because another hypothesis is assigned to the ground-truth box with which

it overlaps well. We report true positive, false positive and false negative rates, which are

the number of true positives, false positives and false negatives over the total number of

groundtruth boxes. An identity switch is reported whenever a tracklet is assigned to differ-

ent ground-truth tracklets in consecutive frames. A fragmentation is reported whenever a

groundtruth tracklet is assigned to different tracklet hypotheses in consecutive frames. Fi-

nally, CLEARMOT precision is defined as the average intersection over union score of the

true positive hypotheses. We did not find a script publicly available for evaluating tracking

performance. Specifically, the publicly available script supplied from authors of Bagdanov

et al. (2012) that implements the CLEARMOT evaluation, 1) misses identity switches that

occur when a tracker drifts from one object to another during termination of a groundtruth

track and 2) does not differentiate between fragmentations and identity switches, which is

important for analyzing tracking performance. We use our own evaluation code by adapt-

ing the script of Bagdanov et al. (2012) accordingly. We add groundtruth detections for

heavily occluded people or people close to the image borders that are often missing from
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Figure 4.14: Drifting in two-granularity tracking. 1st, 2nd Rows: The optical flow trajec-

tories drift from the lady and the man to the street lamp. Low temporal resolution of Ur-

banStreet (6fps) sometimes causes optical flow drifting during target occlusions. Trajec-

tory drifting is decreased by making the forward-backward flow consistency check stricter,

which though results in sparser trajectory coverage, especially for fast moving objects that

are close to the camera. 3rd Row: The tracklet drifts from the man in white to part of

the car. This leaking trajectory cluster is proposed during our multiple segmentations in

Wsteer
T (y). It happens to align well with the detection responses shown in solid line. Finer

clustering separates the two sets of point trajectories. Establishing detectlet affinities be-

tween non overlapping in time detectlets can reject those obvious cases of bad trajectory

clusters.

the ground truth of Yang and Nevatia (2012). Finally, we visually inspect the identity

switches and fragmentations (as advised also by Bagdanov et al. (2012)) since the greedy
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Figure 4.15: Comparison of 3D (top row) and 2D (bottom row) two-granularity tracking

in UrbanStreet. Depth channel enables pruning out-of-perspective detections and discard

the false alarms shown in green and yellow in the 2nd and 3rd columns of bottom row. In

case of similarly moving targets under occlusions, such as the couple in the 1st column,

both motion based affinities and detection driven repulsions are weak. Disparity based

affinities can differentiate the targets due to depth difference between the occluder and

occludee. Due to the coarseness of our disparity fields, disparity based trajectory affinities

are informative mostly for targets close to the camera.

assignment often makes mistakes under closely interacting targets. For UrbanSteet we fit

tight boxes to segmentation masks of each target and use 30% (instead of (50%)) as the

cutoff threshold of intersection over union score. We show quantitative results in Table

4.1 and qualitative results in Figures 4.11, 4.18, 4.19, 4.20, and 4.21.

We compare with the following baseline systems:

1. Two-granularity tracking with the initial affinity graph AT instead of Wsteer
T . We

call this baseline nosteering.

2. Two granularity tracking using the following set of coclusters: (Xk, Yk), Yk = εk, Xk = C(k, :)T ,

where ek is an nD long vector of zeros with one at kth position. That is, we pair

each detectlet with its associated with it trajectories. We call this baseline detectlets.

3. We pair each detectlet with its associated with it trajectories and propagate the de-

tections using trajectory anchoring. We call this baseline trajectory classification.
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Figure 4.16: Tracklet fragmentations. The trajectory/detectlet co-clusters terminate at full

occlusions since there are no affinities between trajectories that do not overlap in time.

We link co-clusters conservatively through full occlusions based on motion smoothness.

In cases the target’s motion before and after the occlusion is not similar enough, cor-

responding co-clusters are not linked which results in fragmentations. Here, the lady’s

motion changes after the occlusion: she stops to wait for the car to pass by.

Dataset T.Pos.(%) F. Pos. (%) ID-switch Fragment. Precision

TUD-crossing 90.75 1.09 2 2 74.00

PETS S2.L1 94.56 47.00 1 21 73.80

Sunny day (ETH) 70.90 4.26 0 6 77.18

UrbanStreet2D 63.50 14.80 2 40 67.60

UrbanStreet3D 64.34 11.55 1 44 67.40

UrbanStreet3D baseline-detectlets 48.62 5.03 1 69 71.84

UrbanSteet3D baseline-nosteering 30.70 1.46 5 15 63.37

UrbanSteet3D baseline-trclassification 66.12 55.06 17 56 65.02

Table 4.1: Two-granularity tracking results in CLEAR MOT metrics.

Baseline nosteering has the lowest false alarm rate. This indicates the non-accidentalness

of alignment between trajectory clusters with detectlets. False alarm detectlets are rejected

due to mis-alignment with the underlying trajectory motion/disparity organization. Such

alignment resembles the non-additive grouping based verification advocated in the early

work of Amir and Lindenbaum (1998). On the other hand, nosteering baseline persistently
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Figure 4.17: Two-granularity baseline systems. Nosteering persistenly misses stationary

pedestrians and reliably captures distinctly moving ones. Detectlets misses people under

deformation or partial occlusions. Trajectory classification suffers from propagation based

on wrongly associated with detectlets background trajectories.

misses stationary pedestrians far away from the camera, whose disparity difference with

the surroundings is non distinct. This results in very low true positive rate.

Detectlets baseline has very few identity switches thanks to our conservative detec-

tion linking policy. The lower true positive rate in comparison to our full system is due

to miss detections on deformed or occluded pedestrians. Notice that our detectlets al-

ready do a trajectory based interpolation across miss detection gaps that are shorter than

1 second. The large number of fragmentations shows that detectlets are too short for our

motion smoothness based long range co-cluster linking to bridge the miss detection gaps.

Comparing our false alarm rate with the detectlet baseline shows that our two-granularity

co-clusters often amplify in time a false alarm that would otherwise have short temporal

framespan.

Trajectory classification baselines suffers from large number of drifting co-clusters.

This shows that 1) our detectlet-trajectory cross-associations C often associate detectlets

with spurious background trajectories, and 2) trajectory affinities clustering can isolate

drifting from non drifting trajectories. Qualitative results for our baselines systems are
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shown in Figure 4.17.

Figure 4.18: Two-granularity tracking results in PETS S2.L1 dataset. We use only the first

camera view (from the 8 available). Point trajectories terminate at cross-target occlusions

and when targets walk behind the lamp. The trajectory-detectlet co-clusters are linked

though full occlusions using motion smoothness. Incorporating target appearance models

during linking across full occlusions can help in cases of non smooth motion and result in

less tracklet fragmentations. In PETS S2.L1 the camera is static and background subtrac-

tion is used to discard background trajectories and decrease computational times. Figure-

ground trajectory classification can be used in cases of static camera and long footage.
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Figure 4.19: Two-granularity tracking results in TUD crossing. In the last row, although

the two men are tracked as separate entities before their full occlusion, lack of detections

after, cause them to be considered one entity. Information about scene functionality that

indicates enties/exits where targets may appear and disappear, in combination with target

appearance models, can resolve these failure tracking cases.

Our tracklets adapt to the visibility mask of the targets under occlusions. In datasets

TUD, PETS, and ETH sunny day, the two-granularity tracklets rarely drift once targets

come close or stay close. The few drifts (id-switches) reported in TUD dataset are due to

86



Figure 4.20: Two-granularity tracking results in ETH sunny day. We use only the left view.

Many targets have out-of-plane plane motion (they move roughly perpendicularly to the

camera image plane). Their apparent 2D motion is less distinct in this case in comparison

to in plane motion.

the loose fit of the bounding box, as shown in Figure 4.19 Row 1, rather than drifting of the

point trajectories. In UrbanStreet, due to the low frame rate (6fps), we have more drifting

point trajectories and resulting drifting tracklets. An analysis of drifting co-clusters is

87



Figure 4.21: Two-granularity tracking results in iLids Hard.

shown in Figure 4.14. The higher the temporal and spatial resolution, the more robust the

optical flow estimation and the lower the drifting rate of point trajectories.

The false negatives are often due to overlapping tracklets capturing (accurately) the

same target. In ETH sunny day there are few false alarms on windows. The use of 3D in-

formation for pruning out-of-perspective detections can minimize this type of false alarms.

The large number of fragmentations in PETS dataset is due to our weak linking model

of tracklets through occlusion gaps. Building target appearance models as in Gall et al.

(2011) and/or using information of scene functionality and goal planning as proposed in

Gong et al. (2011); Kitani et al. (2012) can improve linking of tracklets through occlu-

sion gaps. In Urbanstreet, scene functionality is less useful for long range tracklet linking,

since targets often disappear in the crowd, rather than at the designated exits of the scene.

Two-granularity tracking can be easily used for tracking objects of any class with the

appropriate replacement of the object detetcor. We show in Figure 4.22 results of tracking

people and cars in crowded urban scenes.

88



Figure 4.22: Two-granularity tracking for multi-class object tracking in crowded scenes.

We show tracking of people and cars in the urban streets of Philadelphia.

Running times The computational bottleneck in our algorithm is the steering cut com-

putation that involves computing eigenvectors of the normalized steered affinity matrix of

the point trajectories in the video. For iLids and PETS datasets, that are 750 and 1045
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frames long respectively we use background subtraction to remove background trajec-

tories for saving computation. This can be done whenever the camera is static and a

background median image can be built accurately. The running times for PETS dataset

are 13 mins, iLids 18 mins, TUD crossing (200 frames without background subtraction)

14mins on a 2.6 Ghz processor. The running times exclude optical flow computation and

per frame object detection that can be parallelized. Memory restrictions would require our

algorithm to process a long video at frame intervals, although the datasets used here did

not need this.

4.6 Discussion

We presented a two-granularity tracking framework for tracking and segmenting objects

in crowded scenes. Our method mediates information between detectlets and point tra-

jectories via graph steering by repulsion, where classification of detectlets changes the

trajectory graph, canceling affinities between point trajectories associated to incompatible

detectlets. We showed that the proposed two-view steering cut can effectively handle con-

tradictions in detectlet and trajectory graphs as well as false alarm detectlets in contrast to

standard co-clustering. Two-granularity tracking can greatly benefit tracking-by-detection

approaches, for better handling detection gaps and tolerating detection sparsity while pro-

viding a target accurate mask.
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Chapter 5

Two-Granularity Body Pose Tracking

If the doors of perception were cleansed everything would appear to man as it

is, infinite.

— William Blake

Our goal is to estimate 2D human body pose from monocular videos “in the wild”:

arbitrary clothing, intra-body and background clutter, camera motion, lighting variations,

scene and self occlusions. Under partial occlusions, pose detectors often fail and output

a pose estimate spanning across two close-by targets. We build upon our two-granularity

tracking framework to estimate rough segmentation masks for the people in the scene. We

compute an asignment of body joint trajectories to targets’ segmentation masks and infer

space-time body pose separately for each target in the scene.

5.1 Introduction

Pose specific part templates of Bourdev et al. (2010); Johnson and Everingham (2011);

Yang and Ramanan (2011) and pose specific geometric potentials Sapp and Taskar (2013)
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have recently contributed great performance boosts in body pose detection from static

images. Current mixture of parts or mixture of trees representations can better adapt to

the multi-modality of appearance of the human body. It is expected that larger number

of training examples will boost this performance even further Johnson and Everingham

(2011).

Despite the progress, pose detectors still cannot effectively handle self or scene body

occlusions. Low part unary potentials are often not discriminative enough to indicate

occlusion of a part. Work of Desai and Ramanan (2012a) infers part occlusions by learning

instead the typical appearances of the occluder. Though occluder’s appearance may indeed

be informative for self occlusions (e.g. straight body contour in side view), the appearance

of a general scene occluder is widely unconstrained, and the corresponding HOG template

will simply learn to set zero weight on this position. So, essentially, learning occluder’s

appearance results in canceling part template support.

We propose using the spatio-temporal organization of video pixels to constrain the task

of body pose estimation in videos. The way objects move, establishes segregations and

attractions between video pixels and their corresponding temporal trajectories. In static

images, fake boundaries in body interiors or faint boundaries across objects with acciden-

tal similarity in appearance create ambiguities in segmentation, despite the progress of

boundary detectors Arbelaez et al. (2009). In videos, motion segmentation can dig out

faint contours between objects with distinct motion and does not over-fragment object in-

teriors since motion is smooth on textured torsos. As such, motion segmentation holds

great potentials in assisting pose estimation in videos.

We demonstrate the usefulness of motion segmentation for pose estimation in videos

by mediating information between a motion trajectory graph and a space-time graph over

random variables representing body joints in each frame. Our contributions are two-fold:

1. A detection-by-tracking approach for populating the state space of the body joint

random variables. We represent body joints candidates as trajectories, rather than

per frame instances, exploiting pixel temporal correspondences in video: we track

92



the MAP body pose estimate in time using optical flow, each trajectory point be-

comes a body joint candidate in the corresponding frame. Previous approaches such

as Batra et al. (2012) sample multiple modes from a static pose detector to populate

the state space of each body joint variable. We quantitatively show that such pose

tracking can fill in mis-detections gaps more effectively than standard per frame

pose sampling, and produces a better pose oracle than per frame pose sampling

methods. Given body joint candidates binded on trajectories, we estimate unary po-

tentials for each hypothesized body joint using motion based trajectory voting. We

show that motion voting of body joint trajectories can isolate spatially inaccurate

body joint candidates that reside on trajectories that drift to surroundings. Further-

more, the long temporal lifespan of body joint trajectories helps their association

with whole body tracklets for pose estimation under close object interactions.

2. An inference framework that maximizes goodness of figure-ground segmentation

and pose fit. We propose the use of consensus between part assignments and motion

grouping for evaluating confidence of our pose estimates. For crowded scenes, we

build upon our two-granularity tracking work and compute associations of body

joint trajectories to two-granularity tracklets, filtering in this way body joints on

closeby targets.

We have tested our algorithm on the FLIC movie dataset introduced in Sapp and Taskar

(2013) and on video sequences of pedestrians in crowded urban scenes. We compare

against popular sample-and-link approaches of Park and Ramanan (2011). We show our

method outperforms by a large margin baselines that ignore spatio-temporal organization

of video pixels.

5.2 Related work

Pose tracking-by-detection Early approaches for human pose estimation in videos,

track a manually initialized body pose using kinematic constraints in 3D, as in Bregler
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Figure 5.1: Top Left: The result of

the state-of-the art pose detector of

Sapp and Taskar (2013). Cross-object

occlusions confuse the pose estima-

tion algorithm. Bottom left: Motion

based trajectory partitioning. Right:

The pose and segmentation result of

our method. Motion dissimilarity be-

tween occluder and occludee is an

important cue for scene occlusions,

whether the occluder corresponds to

another person (as is the case here) or

to a background object.

and Malik (1998), or 2D, as in Ju et al. (1996). Pose tracking-by-detection approaches

such as Batra et al. (2012); Park and Ramanan (2011) sample a set of poses in each frame

and link them in time according to temporal coherence. Recent progress in static pose

detection reported in Bourdev et al. (2010); Johnson and Everingham (2011); Yang and

Ramanan (2011) make pose tracking-by-detection approaches increasingly popular. They

allow automatic recovery from pose drifts, in contrast to manually initialized pose trackers.

Pairwise temporal dependencies may be represented at the level of whole pose samples, as

in Park and Ramanan (2011), where inference is carried out by dynamic programming, or

at the level of individual body parts, as in Ferrari et al. (2009b); Sapp et al. (2011); Sigal

et al. (2012), which creates loops in the spatio-temporal graphical model of the human

body. Activity specific temporal dynamics have been explored in Lan and Huttenlocher

(2004); Sminchisescu et al. (2005), where the parts in consecutive frames are coupled

through a latent variable, that controls the evolution of the activity, e.g., state of the walk-

ing cycle. Works of Ferrari et al. (2009b); Ramanan et al. (2005b) use ”lucky“ frames of

confident detections to learn instance specific part appearance models tailored to the video
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sequence in hand.

Pose under Occlusions Multiple works have extended the basic pictorial structure for-

mulation with occlusion part states Sigal and Black (2006), where occlusion unary po-

tentials depends on low scoring of the image evidence. This is often not discriminative

enough to determine absence or presence of a body part Desai and Ramanan (2012a).

Authors of Wang and Mori (2008) have proposed mixtures of pictorial structures, each

mixture corresponds to a different occlusion case for the human body. Work of Eichner

and Ferrari (2010) fits multiple pictorial structure models simultaneously in (family) pic-

tures of multiple people, estimating occlusions in case of pose overlaps. Finally, work of

Gammeter et al. (2008) uses a multi-object detection tracker to estimate multiple pedes-

trian trajectories in urban scenes, and for each pedestrian trajectory estimates a segmen-

tation prior on which it regresses towards body joint estimates. It can successfully deal

with upright poses for which an informative prior can be extracted from the pedestrian

trajectory.

Joint detection and segmentation Numerous approaches have proposed co-inference

of pose and segmentation in static images. However, the complexity of interactions in

this multi-level joint model of parts and pixels, has led to relaxations that essentially use

multiple samples of poses to be evaluated against segmentation cut energy Bray et al.

(2006) or multiple figure-ground segmentation samples to be evaluated against pose fit

energy Ionescu et al. (2011a), in a discriminative manner. Wang and Koller Wang and

Koller (2011) compute a foreground appearance model from all the part detections (true

or false alarms) and ask for the total number of parts to explain the image foreground.
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5.3 Pose and segmentation model

5.3.1 Space-time body pose graph

Given a video sequence I = {It, t = 1 · · ·T}, we represent the upper body pose of

an actor with a pairwise Markov Random Field G(V, (EA, ET )) that extends in space

and time, depicted in Figure 5.2. Each node vs ∈ V corresponds to a random variable

Ys that represents the pixel location of one of the 6 body joints in one of the T video

frames of the sequence. We have n = 6T random variables in total. For simplicity

we will assume that all random variables have state space of equal cardinality m, that is

Ys ∈ {1 · · ·m}, s = 1 · · ·n.

Potentials functions φi(Yi) encode scores of each body joint location. Potential func-

tions ΨA
i,j(Yi, Yj) on intra-frame edges EA encode articulation (geometric) compatibilities

between assignments of pairs of random variables that are neighbors in the per frame ar-

ticulation tree. Potential functions ΨT
i,j(Yi, Yj) on cross-frame edges ET encode temporal

compatibilities between random variables of the same body joint on consecutive frames.

The joint distribution represented by this MRF is:

P (Y ) =
1

Z

∏
i

φi(Yi)
∏

i,j∈EA
ΨA
i,j(Yi, Yj)

∏
i,j∈ET

ΨT
i,j(Yi, Yj). (5.1)

The Maximum Aposteriori (MAP) inference problem is to maximize P (Y ) over all pos-

sible joint assignments Y ∈ {1, ...,m}n .

Let yia ∈ {0, 1} be a binary random variable with yia = 1 iff Yi = a. We concatenate

each yi,a in a vector y ∈ {0, 1}nm×1. Since each random variable can take exactly one

value we have the constraint
∑
a

yia = 1, which can be written as a linear constraint

Cy = 1 for some matrix C. We consider matrix U ∈ Rmn×1, with Uia = log(Φi(a))

and matrices PA, P T ∈ Rnm×nm, with PA
ia,jb = log(ΨA

i,j(a, b)) and P T
ia,jb = log(ΨT

i,j(a, b))

(if ij /∈ EA, ET then PA(ia, jb) = 0, P T (ia, jb) = 0). With these notations the MAP

problem becomes:
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Figure 5.2: Space-time Markov Random Field G(V, (EA, ET )) for human pose pose.

Temporal edges create loops in the graph. Color indicates body joint labels.

max .
y

θ(y) = yT (PA + P T )y + UTy, s.t. Cy = 1, y ∈ {0, 1}nm×1. (5.2)

For succinctness, we rewrite θ(y) = yTPy, where P = PA + PE + Diag(U).

In practice, balancing the per frame log potentials U, PA and temporal log potentials

P T in Eq. 5.2 may be difficult: often the right pose is not temporally smooth, e.g., a fast

moving arm, while a false alarm detection may be very temporally stable, residing either

at the (non deforming) torso interior, or at the background. Second, for partially occluded

body poses, unary log potentials U are not always informative. Template matching of the

lower body limbs is often not sufficient to indicate presence versus absence of a body part.

In this work, we try to address these issues with two ideas: a) Exploiting long range

temporal pixel correspondences for constraining long temporal associations of body joints

candidates (Section 5.3.2). b) Using pose and motion segmentation consensus for jointly

inferring body pose and motion figure-ground segmentation (Section 5.3.3).
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5.3.2 Detection-by-tracking: State binding for space-time pose esti-

mation

In each frame It, we compute the MAP pose estimates of a static pose detector. We

consider the set of body joint detections from all frames D = {dp, p = 1 · · ·nD}, where

dp = (xp, yp, tp, lp, cp) and (xp, yp, tp) denote the space-time location of the body joint,

lp ∈ {1 · · · 6} denotes the body joint label and cp the score of the detection. Body joint

hypotheses that result from the same pose detection share the same score.

We use a detection-by-tracking method for populating the state space of the random

variables in our graphical model. We track each detection dp forward and backward in

time using optical flow as proposed in Sundaram et al. (2010) and obtain body joint trajec-

tories T D = {trDp , p = 1 · · ·nD}. Trajectory points {(xtp, ytp), t = 1 · · ·TP , p = 1 · · ·nD}
populate the state space of the random variables of corresponding body joint label lp and

frame t. Body joint detection-by-tracking can jump missed detection gaps by propagating

detected body joints from ”lucky” frames to unlucky ones, where deformation prevents

a reliable pose detection. The resulting state space provides a better pose oracle in com-

parison to pose sampling per frame of Batra et al. (2012); Park and Ramanan (2011), as

depicted also in Figure 5.9. This means the resulting state space has higher probability of

containing the groundtruth body joint location.

We compute motion affinities AD ∈ RnD×nD between body joint trajectories of the

same label according to motion similarity:

AD(p, q) = exp (−dpq∆upq
σ

) · δ(Tp ∩ Tq 6= ∅) · δ(lp=lq), (5.3)

where we use the same computation and notation as in previous chapters.

We compute unary and pairwise intra-frame potentials u ∈ RnD×1, pA ∈ RnD×nD of

body joint trajectories with motion similarity driven voting: the higher the motion similar-

ity between two body joint candidates, the higher the vote:
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Figure 5.3: Body joint state binding. TopLeft: We track the MAP pose detection in each

frame using optical flow. The resulting body joint trajectories can jump miss detection

gaps. BottomLeft: Resulting pool of candidate body joints. Right: The state potentials U ,

incorporate information from multiple frames and are indicative of the basic space-time

modes of the body joints in the video.
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u(p) =
∑

q, lq=lp

AD(p, q)cq (5.4)

pA(p, q) =
∑

a,b,ta=tb

AD(p, a)AD(q, b)cq (5.5)

(5.6)

Let S = {sk, k = 1 · · ·nS} denote the set of resulting body joint candidates from the

trajectory points of T D. Let fk, tk, rk denote the trajectory index, the frame index and

random variable index for body joint candidate sk. We convert trajectory potentials to

state potentials U ∈ RnS×1, and PA, P T ∈ RnS×nS as follows:

U(k) =u(fk) (5.7)

PA(k, l) =pA(fk, fl) (5.8)

P T (k, l) =


1, if fk = fl, |tk − tl| = 1,

log(−||(xtkfk , y
tk
fk

)− (xtlfl , y
tl
fl

)||2, if fk 6= fl, |tk − tl| = 1,

0, otherwise.

(5.9)

Body joint candidates on the same trajectory are bind together, they share the same

unary scores. We compute inference in the body pose graph via tree decomposition as

in Sapp et al. (2011), also depicted in Figure 5.4. We consider 6 tree structured graphs

and sum the resulting max marginals for each body joint candidate. We denote body joint

candidate max marginal scores as mxmr(sk), k = 1 · · ·nS .

The body joint candidate scores U indirectly incorporate large temporal support and

clearly delineate the main modes of the space-time body joint candidates, as depicted in

Figure 5.3right. Thus, omitting temporal dependencies during the sum of trees relaxation

affects less the quality of the approximation.
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Figure 5.4: Tree decomposition. We approximate inference in the loopy graph by sum of

tree inferences.

5.3.3 Trajectory motion graph

Given a video sequence I , we consider a set of dense point trajectories T = {tri, i =

1 · · ·nT}. We compute motion affinities AT ∈ [0, 1]nT×nT according to long range mo-

tion similarity, as proposed in Brox and Malik (2010b). Let z ∈ {0, 1}nT×1 denote the

figure-ground trajectory indicator vector, then the goodness of figure-ground trajectory

classification is measured by:

nassoc(z) =
zTAT z

zTDAT
z
, (5.10)

where DAT
= Diag(AT1nT×1). We remind the reader that maximizing normalized cluster

associations are equivalent to minimizing normalized cuts, as discussed in Chapter 2.

Spectral clustering inG(T ,AT ) often results in over-fragmentation of articulated bod-

ies. Instead of a hard clustering, we will work with soft (undiscretized) embedding trajec-

tory affinities W̃ ∈ [0, 1]nT×nT , depicted in Figure 5.5:

W̃(i, j) =V T
i ΛVj/max(ρi, ρj) (5.11)

ρi = max
j∈N (i)

(ViΛV
T
j ), (5.12)

(5.13)

where (V,Λ = Diag(λ)) are the top K eigenvectors and eigenvalues of the normalized

affinity matrix D−1
AT

AT and Vi ∈ RK×1 represents the embedding coordinates of tri. N (i)

stands for the Delaunay neighborhood of tri.
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K = 10 K = 20

W̃

K = 10 K = 20

Figure 5.5: Trajectory motion graph. Columns 1, 2: Trajectory spectral clustering for

number of eigenvectors K = 10, K = 20 respectively. Trajectory clustering often over-

segments articulated bodies. Columns 3, 4: Normalized embedding trajectory affinities W̃

for number of eigenvectors K = 10, K = 20 respectively. Edges correspond to spatially

neighboring trajectories and color indicates strength of affinity, with red indicating high

affinity and blue low one. The reader can imagine that such pairwise affinities W̃ exist

also between non spatially neighboring trajectories, not shown in the image. Varying the

number of eigenvectors K does not dramatically change affinities in W̃.

5.3.4 Body part to trajectory cross-associations

Let sk∼l denote the body part with endpoints the body joint candidates sk, sl, with tk =

tl and rk, rl are body joint labels neighboring in the per frame articulation tree. Let

MF (sk∼l), MB(sk∼l) denote foreground and background masks, depicted in Figure 5.6.

We establish associations between body parts and trajectories according to spatial overlap:

CF (k ∼ l, i) = δ(tri ∈MF (sk∼l)), (5.14)

CB(k ∼ l, i) = δ(tri ∈MB(sk∼l)). (5.15)

(5.16)

For easy of notation we will consider the matrices CF ,CB ∈ Rn2
S×nT from pairs of body

joint candidates to trajectories. Pairs of body joints candidates that do not neighbor in the

articulation tree (they do not define a body part), are associated to no trajectories. This
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will allow us to have an easy transformation between body joint selector y to body part

selector vec(yyT ).

5.3.5 Joint pose and motion figure-ground segmentation

Let z ∈ {0, 1}nT×1 denote the figure-ground trajectory indicator vector and let y ∈
{0, 1}nS×1 denote the body joint candidate selection. Joint pose estimation and motion

segmentation in videos can be formulated as a maximization of normalized figure-figure

and ground-ground trajectory associations (minimizing normalized cuts), body part pose

fitting and cross-alignment between selected parts and trajectory foreground:

max. ε(z, y, p) =
zTW̃z

zTDW̃z︸ ︷︷ ︸
trajectory clustering

+ yTPy︸ ︷︷ ︸
pose fit

+
pTCF z

pTDCF p︸ ︷︷ ︸
alignment

(5.17)

s.t. z ∈ {0, 1}nT×1, y ∈ {0, 1}nS×1, Cy = 1, p = vec(yyT ). (5.18)

A direct way of optimizing Eq. 5.17 is by computing the ncut segmentation score

of each pose hypothesis in each frame and compute via dynamic programming the most

temporal coherent pose sequence of good segmentability and pose fitting score. We bypass

the brute force computation by decomposing the segmentation score of a body pose into

body part segmentability scores.

Body part segmentabilities We define the segmentability of a body part candidate

seg(sk∼l) to be:

seg(sk∼l) =
CF (sk∼l, :)W̃CF (sk∼l, :)

T

CF (sk∼l, :)W̃CF (sk∼l, :)T + CF (sk∼l, :)W̃CB(sk∼l, :)T
, (5.19)

where CF (sk∼l, :)
T ∈ {0, 1}nT×1 is the trajectory foreground indicator for part sk∼l. The

segmentability of a body part candidate sk∼l is a measure of its agreement with the under-

lying motion affinities in the trajectory motion graph W̃. The higher the segmentability
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Figure 5.6: Body part segmentability. For

each body part candidate sk∼l we con-

sider one foreground and one background

mask MF ,MB respectively and define

segmentability as the fraction of intra-

foreground trajectory affinities to the

sum of intra-foreground and foreground-

background affinities.

sk∼l

sk

sl

MF MB

the lower the normalized motion affinity cut between its foreground and background tra-

jectories.

We use l(sk∼l) to denote the body part label (left upper arm, left lower arm etc.) of the

part candidate sk∼l. For each body part candidate sk∼l we consider the following set of

features:

• Normalized segmentability seg(sk∼l)

max
a,b,r(a)=r(k),r(b)=r(l)

seg(sa∼b)
.

• Normalized max marginal score mxmr(sk∼l)

max
a,b,r(a)=r(k),r(b)=r(l)

mxmr(sa∼b)
, where we define

mxmr(sk∼l) = min(mxmr(sk),mxmr(sl)).

• The tangent tan(sk∼l) of the angle between the line shoulder-wrist or shoulder-

elbow and the vertical direction (depending on whether the type of the part candidate

sk∼l is an upper or lower arm). The larger the angle the more segmentable the part

is expected to be.

• Unary potential score Uk + Ul.

We use these features to learn a logistic regression for mapping each body part candi-

date to a desired confidence value estimated from the negative exponential of the Euclidean

distance between the two body joint endpoints of the candidate sk∼l and the groundtruth

body joint locations. We compute body joint candidate confidence scores by taking the
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maximum of all body part confidence across all parts connected to a body joint candidate.

We discard body joint candidates with low confidence scores and compute an inference

over the pruned state space, where an additional state per random variable indicates occlu-

sion of the corresponding body joint.

We obtain a figure-ground trajectory assignment z by assigning as foreground the tra-

jectories on the foreground of the estimated pose, and as background the rest.

5.3.6 Body pose estimation under interactions

Consensus of segmentation and pose estimation via part segmentabilities works well for

large enough video resolution. In small spatial resolution, frequent trajectory fragmen-

tations often times cause a body part not to contain enough trajectories to describe its

motion.

t 

Figure 5.7: Pose detection under occlusions. We show the MAP pose estimates of Yang

and Ramanan (2011) in a set of frames. While stylized pedestrian poses are reliably de-

tected, under partial occlusions, the pose estimates span across closeby targets. This is

because the pose detector does not model target partial occlusions but rather outputs all

body joints each time. Attempts to model partial poses (via, e.g., different detection mix-

tures) have not been yet very successful due to lack of distinctive features to indicate which

occlusion scenario is the correct one.
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We propose a two step process for computing consensus between body pose estimates

and figure-ground video segmentation that build upon our two-granularity tracking algo-

rithm, described in Chapter 4. Each two-granularity co-cluster provides an approximate

figure-ground segmentation mask per target. These figure-ground segmentations are used

to estimate assignment of body joint trajectories to targets and eliminate body joints can-

didates on closeby targets, as shown in Figure 5.8.

Our method is simple. Given a set of K two-granularity tracklets and nD body joint

trajectories, we compute an assignment matrix P ∈ RK×nD according to maximum closest

point distance between the body joint trajectory and the co-cluster trajectories:

P (i, j) = max
t∈Ti∩Tj

(
min

trk∈Ti
exp(− 1

σ
||xtk − xtj, ytk − ytj||2)

)
, (5.20)

where Tj, Ti the frame sets of the body joint trajectory and the co-cluster respectively and

Ti the trajectories of the co-cluster. We double threshold P and discard co-cluster body

joint trajectory pairs with scores below a threshold as well as pairs whose score is below

0.3 times the second best co-cluster body joint trajectory match. Trajectory points of

the assigned to each target body joint trajectories populate the spate space of the random

variables in its MRF. We estimate body pose of people in our scene by inference in each

target’s MRF using tree decomposition, as already described in Section 5.3.1.

5.4 Experiments

We test our algorithm in pose estimation in 300 randomly sampled videos from the FLIC

dataset, introduced in Sapp and Taskar (2013). FLIC contains video sequences from 6

(monocular) movies. Each video sequence is 50-60 frames long. The actors can take a

wide range of body poses, are not centered in the middle of the image and may exhibit

many different motion patterns: an actor may move abruptly, use only his hands or have

very little to no motion whatsoever throughout a video sequence.

We sample static poses in each frame using MODEC, a state-of-the-art pose detec-

tor proposed in Sapp and Taskar (2013). MODEC uses a coarse-to-fine pose inference
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t 

Figure 5.8: Assigning body joint trajectories to tracklets. Top: Two-granularity tracklets.

Middle: The state space of our MRF random variables. Color denotes body joint label.

Bottom: The body joint trajectories assigned to the lady captured by the blue tracklet are

shown in green. Most of the distracting body joints have been discarded. We estimate

body pose for each target by inference in our MRF where state space of random variables

are populated by the assigned to the target body joint trajectories.
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Shoulders Elbows Wrists 

Figure 5.9: Qualitative pose estimation results in FLIC dataset. Our algorithm outperforms

the baselines by a large margin for all 3 body joints. Also, the oracle from pose detection-

by-tracking (corresponding to the dark green curve) is better than the oracle of standrad

multiple pose sampling per frame.

scheme: it detects shoulder hypotheses using poselets of Bourdev et al. (2010) and classi-

fies the patch around them into 32 coarse patch classes, called pose modes. Then computes

a refined upper body pose using a tree structured model of Yang and Ramanan (2011), tai-

lored though to the specific pose subspace of each coarse mode. In this way, both the part

templates and their pairwise geometric potentials are pose mode specific.

We compare against sample-and-link approaches for video pose estimation that sample

multiple pose estimates in each frame, establish temporal potentials across pose samples

in consecutive frames, and estimate the most temporally smooth pose sequence using

dynamic programming such as Batra et al. (2012); Park and Ramanan (2011). In each

video frame we obtain a set of N diverse pose samples, by computing the detailed body

pose for each of the 32 (for each arm) coarse pose modes of MODEC. The coarse-to-fine

representation of the detector ensures diversity of the resulting poses.

We measure pose detection performance using the evaluation measure of Yang and

Ramanan (2011): for any particular joint location precision radius, measured in Euclidean

pixel distance scaled so that the ground-truth torso is 100 pixels tall, we report the per-

centage of correct joints within that radius. For a test set of size M , radius r and particular
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joint i, this is:

acci =
100

MN

N∑
k=1

1(
||y∗i (xk)− yki ||2

torso heightk/100
) <= r,

where yi(xk) is our model’s predicted ith joint location on test frame xk. We report acci(r)

for a range of r, resulting in a curve that spans both the very tight and very loose regimes

of part localization. We show the result curves for the 3 upper body joints in Figure

5.9. Our method outperforms sample-and-link baselines by a large margin, attributed to

our long range temporal potentials that can accumulate information across mis-detection

gaps, and mediation with motion segmentation that restricts the figure-ground trajectory

assignments and prunes accordingly the part space. We show qualitative results of our

algorithm in Figure 5.10 and compare with the Nbest baseline.

To better demonstrate the performance gains and limitations of our method, we eval-

uate two oracle algorithms, one for our method and one for the baseline, which pick the

body joint candidates closest to the ground-truth. Their performance quantifies the per-

centage of missed detections attributed to ground truth missing from the candidate pool

or to failure of the algorithm to select it, despite being present. Our proposed detection-

by-tracking strategy that tracks in time the highest scoring pose sample in each frame,

provides a better candidate pool than the popular pose sampling in each frame, as shown

in Figure 5.9. We also see that both our method and the baseline have a large margin for

improvement, upper-bounded by the corresponding oracle performance.

We next test our algorithm in crowded urban scenes. The scale of body parts is too

small in this case to reliably compute a trajectory part assignment and segmentability

scores. We show qualitative results of our two step inference process, which first computes

coarse people tracklets and then detailed body pose for each target, using the spation-

temporal coarse target support.
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Figure 5.10: Pose estimation results in FLIC dataset of Sapp and Taskar (2013). In frames

with no motion, our method still has gains by learning how to penalize easily segmentable

poses, such as extended arms, that do not have salient segmentation support and often

correspond to false alarms.
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Figure 5.11: Qualitative results of our two-step body pose estimation. We show torso and

legs. Wrong poses are result of drifting joint trajectories during leg self occlusions.
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5.5 Discussion

We presented a detection-by-tracking approach that represents body joint detections by

optical flow trajectories and estimates their unary and pairwise articulation potentials via

a motion similarity based voting, that accumulates information across mis-detection gaps.

For pose inference under occlusions, we proposed a consensus criterion between pose esti-

mation and motion segmentation, for discarding false alarm body part candidates spanning

across nearby targets with different long range motion. Although in large spatial resolu-

tion, local normalized cut motion affinity scores can indicate agreement of disagreement

of the body part candidate with underlying trajectory motion, in smaller scales, such local

measurements are unreliable. We propose a two step optimization of the pose and seg-

mentation consensus, that first computes coarse space time segmentation masks of targets

using two-granularity tracking, and then assigns body joint trajectories to targets exploit-

ing long range spatial proximity. In this way, the body joint candidates in the MRF of each

target do not contain body joints on closeby targets. We outperform by a large margin the

standard sample-and-link approaches for pose estimation in videos, that neglect both the

long range nature of bottom-up temporal pixel associations and their spatio-temporal mo-

tion based organization.
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Chapter 6

Articulated Optical Flow

All that is important is this one moment in movement. Make the moment im-

portant, vital, and worth living. Do not let it slip away unnoticed and unused.

— Martha Graham

In the previous chapters, we used bottom-up optical flow estimation and motion seg-

mentation to aid tracking of objects and their body pose in videos. In this chapter, our goal

is human pose detection under wide body deformation. We present a method that tracks

deforming human body limbs by employing knowledge of the kinematics of the human

body, and in this way improve the optical flow estimation, under fast body motion. Aper-

ture problems and self-occlusions often cause optical flow to fail on deforming human

body parts. We present a pose from flow and flow from pose approach, that detects human

body pose under large motion. It uses detected articulated joints to incorporate kinematic

constraints in optical flow and kinematically track the body limbs in the rest of the video

sequence.
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6.1 Introduction

Best practices of general object detection algorithms, such as hard mining negative exam-

ples Felzenszwalb et al. (2010), and expressive, mixture of parts representations Yang and

Ramanan (2011) have recently led to rapid progress in human pose estimation from static

images. Parts are the roots of the articulation chains, such as shoulders, are mostly rigid

and as such easily detectable. Parts at the end of the articulation chains, i.e., lower arms,

are widely deformable and are still hard to detect under unusual body pose, infrequent

in the people’s pose repertoires as well as in the datasets (see also Figure 6.1). While

each rare body pose has low probability of occurrence, the collection of rare body poses

occupies a big chunk of the body pose space. This is referred as long tails of the distribu-

tion of body poses and visual data in general: they are often comprised by few frequently

occuring templates and a large collection of rarely encountered ones.

Rare body poses are often characterized by large, salient motion. Large motion of

body parts, though a valuable cue for pose detection, is hard to estimate accurately: body

limbs are lost in the coarse pyramid levels of coarse-to-fine optical flow or other gradient

based tracking schemes. Furthermore, descriptor matches often slide along the body limb

axis due to the 1D nature of body parts, so descriptor augmented optical flow methods also

fail under large body motion.

Can bad motion information be useful? Body part motion from optical flow, though not

accurate, is often sufficient to segment body parts from their backgrounds. By matching

body part segments to shape exemplars, one can improve pose estimation under large

body deformations. By estimating pose inversely to current detectors, that is aligning

image segmentations to pose exemplars rather than learnt templates to image gradients, we

bypass the need for enormous training sets. For such alignment to be possible our method

exploits “lucky” segmentations of moving body parts and 1) indexes into a pose space, 2)

infers articulated kinematic chains in the image, 3) incorporates kinematic constraints into

optical flow tracking. The proposed framework targets rare, widely deformed poses, often

missed by pose detectors, and optical flow of human body parts, often inaccurate due to

114



Figure 6.1: Long trails of human body pose distribution. The color of part sticks represents

number of training exemplars close in body joint configuration as measured by partial

Procrustes distance. While static poses are covered by an abundance of training exemplars

(dark red color), widely deformed ones are often rare in the actors’ repertoires and in

vision datasets (blue color).

clutter and large motion.

Our algorithm segments moving body parts by leveraging motion grouping of saliently

moving body parts and figure-ground segregation of reliably detected body parts, e.g.,

shoulders, in a graph steering framework. Confident body part detections of Bourdev

et al. (2010) induce figure-ground repulsions between regions residing in their interior

and exterior, and steer region motion affinities in places where motion is not informative.

Extracted motion segments with hypothesized body joint locations (at their corners and

endpoints) are matched against body pose exemplars close in body joint configuration.

Resulting pose labeled segments extract occluding body part boundaries (also interior to

the body), not only the human silhouette outline, in contrast to background subtraction

works, such as Jiang (2009).

Pose segmentation hypotheses induce kinematic constraints during motion estimation

of body parts. We compute coarse piece-wise affine, kinematically constrained part motion

models, incorporating reliable pixel correspondences from optical flow, whenever they

are available. Our hybrid flow model benefits from fine-grain optical flow tracking for

elbows and slowly moving limbs of the articulation chain, while computes coarser motion

estimates for fast moving ones. The resulting “articulated” flow can accurately follow

large rotations or mixed displacements and rotations of body parts, which are hard to track
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in the standard optical flow framework. It propagates the pose segmentations in time, from

frames of large motion to frames with no salient motion. We show such tracking is robust

to pose partial self or scene occlusions.

We evaluate our framework on video sequences of TV shows. Our algorithm can detect

people under rare poses, frequently missed by state-of-the-art pose detectors, by proposing

a versatile representation for the human body that effectively adapts to the segmentability

or detectability of different body parts and their motion patterns.

6.2 Related work

We distinguish two main categories of work combining pose and motion estimation in

existing literature: (i) Pose estimation methods that exploit optical flow information; and

(ii) part motion estimation methods that exploit pose information. The first class of meth-

ods comprises methods that use optical flow as a cue either for body part detection or

for pose propagation from frame-to-frame, as in Ferrari et al. (2009a); Sapp et al. (2011).

Brox et al. (2006) propose a pose tracking system that interleaves between contour-driven

pose estimation and optical flow pose propagation from frame to frame. Fablet and Black

(2002) learn to detect patterns of human motion from optical flow.

The second class of methods comprises approaches that exploit kinematic constraints

of the body for part motion estimation. Bregler and Malik (1998) represent 3D motion

of ellipsoidal body parts using a kinematic chain of twists. Ju et al. (1996) model the hu-

man body as a collection of planar patches undergoing affine motion, and soft constraints

penalize the distance between the articulation points predicted by adjacent affine models.

In a similar approach, Datta et al. (2008) constrain the body joint displacements to be the

same under the affine models of the adjacent parts, resulting in a simple linear constrained

least squares optimization for kinematically constrained part tracking. Rehg and Kanade

(1995) exploit the kinematic model to reason about occlusions.

In the “strike a pose” work of Ramanan et al. (2005a), stylized (canonical) human
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Part detections change motion affinities Region clusters index into pose 
exemplars 

Body pose induces kinematic 
constraints 

Pose propagates with articulated flow 

Flow to Pose  Pose to Flow 

MqR(ri; rj jdq)

Xk
Ju;l

Uq

dl

dq

du

Figure 6.2: Pose from flow. Left: Mediating motion grouping with part detections. Region

motion affinities in AR change according to confident body part detections that induce re-

pulsions RR between regions assigned to their foreground and background. Region clus-

ters index into pose exemplars according to hypothesized joint locations at their endpoints.

Right: Pose labelled segmentations propose coarse motion models coupled at the articula-

tion joint. Coarse motion proposals compute an articulated optical flow field that can deal

with large part rotations.

body poses are detected reliably, and are used to learn instance specific part appearance

models for better pose detection in other frames. In this work, we follow a “strike a

segment” approach by segmenting widely deforming body poses and propagating inferred

body pose in time using articulated optical flow. Previously, Mori et al. (2004) have used

image segments to extract body parts in static images of baseball players.

6.3 From flow to pose

We use segmentation to help the detection of highly deformable body poses. Stylized

body poses are covered by an abundance of training examples in current vision datasets,

and can often be reliably detected with state-of-the-art detectors, such as Bourdev et al.

(2010). Highly deformable poses appear infrequently in the datasets, which reflects their

low frequency in people’s body pose repertoires. They are mostly transient in nature, the

actor is briefly in a highly deformed pose, away from the canonical body configuration. It

is precisely their transient nature that makes them easily detectable by motion flow.
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There is an asymmetry of motion segmentability among the parts of the human body

due to its articulated nature. Parts towards the ends of the articulated chains often deform

much faster than the main torso (root of the body articulation tree). Lack of motion may

cause ambiguities in motion segmentation of root body parts. However, such root parts

can often be reliably detected thanks to their rigidity.

We exploit detectability and segmentability across different body poses and parts in

a graph theoretic framework which combines motion-driven grouping cues of articulated

parts and detection-driven grouping cues of torso like parts. Similar to the graph steer-

ing framework of Section 4.4, detection-driven figure-ground repulsions of torso parts

correct (steer) ambiguous motion-based affinities. We segment arm articulated chains by

constrained normalized cuts in the steered region graph.

Resulting segmentations with hypothesizing body joints at their corners and endpoints

infer body pose by matching against pose exemplars. While detectors would need many

training examples to learn to extract a deformed pose from background clutter as noted

in Johnson and Everingham (2011), our pose segmentations are already extracted from

their backgrounds. We use contour matching between extracted segmentations and pose

exemplars to select the right kinematic chain configurations.

6.3.1 Region motion affinities

We pursue a single frame segmentation approach from “lucky” frames that contain non-

zero motion, rather than a multi-frame segmentation, as decribed in Chapter 3. Large per

frame deformations of lower body limbs though, often prevent optical flow to be reliable:

in coarse-to-fine optical flow schemes, motion that is larger than the spatial extent of the

moving structure cannot be recovered, since the structure is lost at the coarser levels of

the image pyramid Brox et al. (2004). As such, we will integrate per frame optical flow

estimates on region spatial support to segment frames with large motion, as measured from

a bounding box around a shoulder activation.
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We describe the motion of an image region in two ways: i) with the set of point tra-

jectories, if any, overlapping with the region mask, ii) with an affine model fitted to the

optical flow displacements of the region pixels. Affine motion fitting allows motion rep-

resentation in places of ambiguous optical flow anchoring and sparse trajectory coverage.

It only takes into account per frame motion estimates and in that sense it is weaker than

multi-frame trajectory affinities.

Given a video frame It of video sequence I , let P denote the set of image pixels and

let R = {ri, i = 1 · · ·nR} denote the set of image regions. We will use ri to refer to

both the region ri and its corresponding pixel set. Let T = {tra, a = 1 · · ·nT} denote

the set of point trajectories of video sequence I . Between each pair of trajectories tra, trb

we compute motion affinities AT (a, b) encoding their long range motion similarity. Each

region ri is characterized by i) an affine motion model wR
i : P → R2, fitted to its optical

flow estimates, that for each pixel outputs a predicted displacement vector (u, v), and ii) a

set of point trajectories Ti overlapping with its pixel mask.
We set motion affinities between each pair of regions ri, rj to be:

AR(i, j) =



∑
a∈Ti,b∈Tj

AT (a, b)

|Ti||Tj | , if |Ti|
|ri| ,

|Tj |
|rj | > α,∑

p∈ri∪rj

exp

(
− 1

σ
||wR

j (p)−wR
i (p)||2

)
|ri∪rj | , o/w,

where |S| denotes cardinality of set S and α a density threshold that depends on the trajec-

tory sampling step. The first case measures mean trajectory affinity between regions, used

if both regions are well covered by trajectories. The second case measures compatibility

of region affine models, being high in case the two regions belong to the projection of the

same 3D planar surface.

6.3.2 Region detection-driven repulsions

We consider a set of poselet shoulder detections of Bourdev et al. (2010), D = {dq, q =

1 · · ·nD}. Let mask Mq denote the pixel set overlapping with dq. We show mask Mq
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of a shoulder detection in Figure 6.2. Each detection dq ∈ D induces implicitly figure-

ground repulsive forces between the regions associated with its interior and exterior. Let

xFq , x
B
q ∈ {0, 1}nR×1 denote foreground and background region indicators for detection

dq and let Uq denote the pixel set outside a circle of radius that upper-bounds the possible

arm length, as estimated from shoulder distance, shown also in Figure 6.2. We have:

xFq (i) = δ

( |ri ∩Mq|
|ri|

> 0.9

)
, i = 1 · · ·nR, q = 1 · · ·nD

xBq (i) = δ

( |ri ∩ Uq|
|ri|

> 0.5

)
, i = 1 · · ·nR, q = 1 · · ·nD. (6.1)

Repulsions are induced between foreground and background regions of each detector

response:

RR(i, j|D) = max
q|dq∈D

xFq (i)xBq (j) + xBq (i)xFq (j).

Let S(D) denote the set of repulsive edges:

S(D) = {(i, j) s.t. ∃ dq ∈ D, xFq (i)xBq (j) + xBq (i)xFq (j) = 1}.

6.3.3 Steering cut

We combine motion-driven affinities and detection-driven repulsions in one region affinity

graph by canceling motion affinities between repulsive regions:

Wsteer(D) = (1nR×nR −RR(D)) ·AR. (6.2)

Inference in our model amounts to selecting the part detections D and clustering the

image regions R into groups that ideally correspond to the left and right upper arms,

left and right lower arms, torso and background. In each video sequence, we infer the

most temporally coherent shoulder detection sequence given poselet shoulder activations

in each frame. This works very well since people are mostly upright in the TV shows

we are working with, which makes their shoulders easily detectable. As such, instead of
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simultaneously optimizing over part selection and region clustering as we did in Chapter

4, we fix the detection set D during region clustering.

Let X ∈ {0, 1}nR×K denote the region cluster indicator matrix, Xk denote the kth col-

umn of X , respectively, and K denote the total number of region clusters. Let DWsteer be

a diagonal degree matrix with DWsteer = Diag(Wsteer1nT ). We maximize the following

constrained normalized cut criterion in the steered graph:

Steering Cut:

max .
X

ε(X|D) =
K∑
k=1

XT
k W

steer(D)Xk

XT
k DWsteer(D)Xk

s.t. X ∈ {0, 1}nR×K ,
K∑
k=1

Xk = 1nR ,

∀(i, j) ∈ S(D),
K∑
k=1

Xk(i)Xk(j) = 0.

(6.3)

The set of constraints in the last row demand regions connected with repulsive links in

S(D) to belong to different clusters.

We solve the constrained normalized cut in Eq. 6.3 by propagating information from

confident (figure-ground seeds, saliently moving regions) to non-confident places, by it-

eratively merging regions close in embedding distance and recomputing region affinities,

similar in spirit to the multiscale segmentation in Sharon et al. (2000). Specifically, we

iterate between:

1. Computing embedding region affinities Ŵ = V ΛV T , where (V,Λ = Diag(λ)) are

the top K eigenvectors and eigenvalues of D−1
WsteerWsteer.

2. Merging regions rĩ, rj̃ with the largest embedding affinity, (̃i, j̃) = arg max
(i,j)/∈S(D)

Ŵ(i, j).

We update Wsteer with the motion affinities of the newly formed region.

Matrix Wsteer shrinks in size during the iterations. In practice, we would merge multiple

regions before recomputing affinities and the spectral embedding of Wsteer. Iterations

terminate when motion affinities in Wsteer are below a threshold. We extracted region

clusters Xk with high normalized cut scores XT
k WsteerXk

XT
k DWsteerXk

even before the termination of
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iterations. While upper arms are very hard to delineate from the torso interior, lower

arms would often correspond to region clusters, as shown in Figure 6.2. Foreground and

background shoulder seeds help segmenting lower limbs by claiming regions of torso

foreground and background, which should not be linked to the lower limb cluster. This is

necessary for reliably estimating the elbow from the lower limb endpoint, as described in

Section 6.3.4.

We compute steered cuts in graphs from multiple segmentation mapsR by threshold-

ing the output of globalPb at 3 different thresholds. Note that in coarser region maps, a

lower limb may correspond to one region.

6.3.4 Matching pose segmentations to exemplars

For each region cluster Xk ∈ {0, 1}nR we fit an ellipse and hypothesize joint locations

J1
k , J

2
k at the endpoints of the major axis. Using J1

k , J
2
k and detected shoulder locations,

we select pose exemplars close in body joint configuration as measured by the partial Pro-

crustes distance between the corresponding sets of body joints (we do not consider scal-

ing). We compute a segment to exemplar matching score according to pixelwise contour

correspondence between exemplar boundary contours and segment boundary contours,

penalizing edgel orientation difference. For this we adapted Andrew Goldberg’s imple-

mentation of Cost Scale Algorithm (used in the code package of Arbelaez et al. (2009))

to oriented contours. We also compute a unary score for each segmentation proposal,

independent of exemplar matching, according to i) chi-square distance between the nor-

malized color histograms of the hypothesized hand and the detected face, and ii) optical

flow magnitude measured at the region endpoints J1
k , J

2
k , large motion indicating a hand

endpoint. We combine the 3 scores with a weighted sum.

Confidently matched pose segments recover body parts that would have been missed

by the pose detectors due to overwhelming surrounding clutter or misalignment of pose.

We select the two segmentations with the highest matching scores, that correspond to left

and right arm kinematic chains. Each kinematic chain is comprised of upper and lower
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arms du, dl connected at the elbow body joint Ju,l, as shown in Figure 6.2.

6.4 From pose to flow

We use the estimated body pose to help motion estimation of lower limbs. Human body

limbs are hard to track accurately with general motion estimation techniques, such as op-

tical flow methods, due to large rotations, deformations, and ambiguity of correspondence

along their medial axis (aperture problems). These are challenges even for descriptor aug-

mented flow methods Brox and Malik (2010a); Xu et al. (2012c) since descriptor matches

may “slide” along the limb direction.

We incorporate knowledge about articulation points and region stiffness in optical flow.

Articulation points correspond to rotation axes and impose kinematic constraints on the

body parts they are connected to. They can thus suggest rotations of parts and predict

occlusions due to large limb motion.

6.4.1 Articulated optical flow

We use our pose labelled segmentations to infer dense displacement fields for body parts,

which we call articulated flow fields. Given an arm articulated chain (left or right), let

Mu, Ml denote the masks of the corresponding upper and lower arms du, dl, linked at

the elbow location Ju,l. Let w = (u, v) denote the dense optical flow field. Let wD
u ,w

D
l

denote affine motion fields of parts du and dl i.e. functions wD
u : Mu → R2. Let Ψ(s2) =

√
s2 + ε2, ε = 0.001 denote the frequently used convex robust function, and φu(x) =

exp(−|(I2(x + wD
u (x)) − I1(x))|2/σ) the pixelwise confidence of the affine field wD

u .
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t 

Articulated Flow LDOF Standard Flow Image Sequence 

Figure 6.3: Articulated optical flow. Left: A video sequence ordered in time with fast

rotations of left lower arm. Right: Motion flow is displayed as a) color encoded optical

flow image, and b) the warped image using the flow. We compare the proposed articulated

flow, Large Displacement Optical Flow (LDOF) Brox and Malik (2010a) and coarse-to-

fine variational flow of Brox et al. (2004). The dashed lines in the warped image indicate

the ideal position of the lower arm. If the flow is correct, the warped arm will be aligned

on the dashed line. Standard optical flow cannot follow fast motion of the lower arm in

most cases. LDOF, which is descriptor augmented, recovers correctly the fast motion in

case of correct descriptor matches. However, when descriptors capture the hand but miss

the arm, hand and arm appear disconnected in the motion flow space (2nd row). Knowing

the rough body articulation points allows to restrict our motion model to be a kinematic

chain along the body parts. The resulting articulated motion flow is more accurate.

The cost function for our articulated optical flow reads:

min .
w,wD

u ,w
D
l

E(w,wD
u ,w

D
l ) =

∫
Ω

Ψ(|I2(x + w(x))− I1(x)|2)dx (6.4)

+ γ

∫
Ω

Ψ(|∇u(x)|2 + |∇v(x)|2)dx+ (6.5)

β
∑

e∈{u,l}

∫
Me

φe(x)Ψ(|w(x)−wD
e (x)|2)dx (6.6)

+
∑

e∈{u,l}

∫
Me

Ψ(|I2(x + wD
e (x))− I1(x)|2)dx (6.7)

s.t. wD
u (Ju,l) = wD

l (Ju,l). (6.8)
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Figure 6.4: Comparison of articulated flow and standard optical flow. Top Row: Pose

propagation with articulated optical flow. Bottom Row: Pose propagation with affine

motion fitting to the optical flow estimates of Brox and Malik (2010a). Green outline

indicates frames with pose detection and red outline indicates frames with the propagated

pose. Limb motion is often too erratic to track with standard optical flow schemes, which

drift to surroundings under wide deformations.

The first two terms of Eq. 6.4 correspond to the standard pixel intensity matching and

spatial regularization in optical flow, as in Brox et al. (2004). For brevity we do not show

the image gradient matching term. The third term penalizes deviations of the displacement

field w from the affine fields wD
u ,w

D
l , weighted by the pixelwise confidence of the affine

displacements φu(x), φl(x). The forth term measures the fitting cost of the affine fields.

The constraint requires the affine displacements predicted for the articulated joint by the

two affine fields to be equal.

We solve our articulated flow model in Eq. 6.4 by computing coarse affine models for

upper and lower arms and then injecting their affine displacements as soft constraints in

an optical flow computation for the kinematic chain. For computing the two kinematically

constrained affine fields we use “hybrid” tracking: for upper arms or the background, stan-

dard optical flow displacements are often reliable, since their motion is not erratic. We use

such flow displacements to propagate foreground and background of the arm kinematic

chain from the previous frame, and compute an affine motion field for the upper arm wD
u .

Such propagation constrains i) the possible displacement hypotheses of the articulation

point Ju,l, and ii) the possible affine deformations of the lower limb dl. We enumerate a

constrained pool of affine deformation hypotheses for the lower limb: it cannot be part
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of the background and should couple at the articulation joint with wD
u . We evaluate such

hypotheses according to a figure-ground Gaussian Mixture Model on color computed in

the initial detection frame, and Chamfer matching between the contours inside the hypoth-

esized part bounding box and the body part contours of the previous frame, transformed

according to each affine hypothesis. The highest scoring deformation hypothesis is used to

compute our lower limb affine field wD
l . Notably, we also experimented with the method

of Datta et al. (2008) but found that it could not deal well with self-occlusions of the arms,

frequent under wide deformation, as also noted by the authors.

Given part affine fields wD
u ,w

D
l , Eq. 6.4 is minimized with respect to displacement

field w using the coarse-to-fine nested fixed point iteration scheme proposed in Sundaram

et al. (2010). The affine displacements wD
u ,w

D
l receive higher weights at coarse pyramid

levels and are down-weighted at finer pyramid levels as more and more image evidence is

taken into account, to better adapt to the fine-grain details of part motion, that may deviate

from an affine model. We show results of the articulated flow in Figure 6.3. Articulated

flow preserves the integrity of the fast moving lower arm and hand. In descriptor aug-

mented optical flow of Sundaram et al. (2010) the motion estimate of the arm “breaks” in

cases of missing reliable descriptor match to capture its deformation. Standard coarse-to-

fine flow misses the fast moving hand whose motion is larger that the its spatial extent.

We propagate our body segmentations in time using articulated optical flow trajecto-

ries, as shown in Figure 6.4. The fine grain trajectories can adapt to the part masks under

occlusion while the coarse affine models prevents drifting under erratic deformations. We

compare with affine fitting to standard flow estimates in Figure 6.4. Ambiguities of limb

motion estimation due to self occlusions, non-discriminative appearance and wide defor-

mations cause flow estimates to drift, in absence of pose informed kinematic constraints.
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Figure 6.5: Pose detection results in the Friends dataset. Top Row: Pose from flow under

wide body deformation. Middle Row: Results of Sapp et al. (2011). Bottom Row: Results

of Park and Ramanan (2011).

6.5 Experiments

We test our method on video clips from the popular TV series “Friends”, part of the

dataset introduced in Sapp et al. (2011). We use 15 video sequences with widely deformed

body pose in at least one frame. Each sequence is 60 frames long. The characters are

particularly expressive and use a lot of interesting gestures in animated conversations.

In each video sequence, we infer the most temporally coherent shoulder sequence us-

ing detection responses from the poselet detector of Bourdev et al. (2010). This was able

to correctly delineate the shoulder locations in each frame. We held out a pose exemplar

set from the training set of the Friends dataset, to match our steered segmentation propos-

als against. For each exemplar we automatically extract a set of boundary contours lying

inside the ground truth body part bounding boxes of width one fifth of the shoulder dis-

tance. We evaluate our full method, which we call “flow→ pose→ flow”, as well as our

pose detection step only, without improving the motion estimation, but rather propagating

the pose in time by fitting affine motion models to standard optical flow Brox and Malik

(2010a). We call this baseline “flow→ pose”.

127



Figure 6.6: Quantitative pose detection results in the Friends dataset. Evaluation of elbow

and wrist localization.

We compare against two approaches for human pose estimation in videos: 1) the sys-

tem of Sapp et al. (2011). It uses a loopy graphical model over body joint locations in

space and time. It combines multiple cues such as Probability of Boundary, optical flow

edges and skin color for computing unary and pairwise part potentials. It is trained on a

subset of the Friends dataset. It assumes the shoulders positions known and focuses on

lower arm detection. 2) The system of Park and Ramanan (2011). It extends the state-

of-the-art static pose detector of Yang and Ramanan (2011) for human pose estimation in

videos by keeping N best pose samples per frame and inferring the most coherent pose

sequence across frames using dynamic programming. We retrained the model with the

same training subset of Friends as Sapp et al. (2011) but the performance did not improve

due to the low number of training examples.

Our performance evaluation measure is percentage of elbows and wrists within a radius

from ground truth locations, same as in Section 4.5. We show in Figure 6.6 the percentage

of correct wrists and elbows as we vary the radius threshold. The flow→pose→flow and

pose→flow methods perform similarly in tracking the detected elbows since upper arms

do not frequently exhibit erratic deformations. The two methods though have a large

performance gap when tracking lower arms, whose wide frame-to-frame deformations

cause standard optical flow to drift. This demonstrates the importance of improving the

motion estimation via articulation constraints for tracking the pose in time.
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Our method provides accurate spatial support for the body parts, robust to intra-body

and scene occlusions. In contrast to standard pose detectors, and also our baseline systems,

our method does not require all body parts to be present in each frame. The lack of

specified wrist and elbow detectors makes our wrist and elbow localization occasionally

poor (see last column of Figure 6.5) while lying inside the body part.

6.6 Discussion

We proposed an approach that detects human body poses by steering cut on motion group-

ing affinities of lower limbs and figure-ground repulsions from shoulder detections. We

focus on detecting rare, transient in nature poses, often under-represented in the datasets

and missed by pose detectors. Our segmentations extract lower limbs from their surround-

ing intra-body and background clutter. Arm articulated chains resulting from matching

such segmentations to exemplars, are used to provide feedback to dense body motion es-

timation about articulation points and region stiffness. Resulting flow fields can deal with

large per frame deformations of body parts and propagate the detected pose in time, during

its deforming posture. Our flow to pose to flow process is able to infer poses under wide

deformations that would have been both too hard to detect and too hard to track otherwise.
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Chapter 7

Conclusion

Never mistake motion for action.

— Ernest Hemingway

We have presented methods that combine temporal correspondences and spatial affini-

ties of video pixels with object detectors for parsing video configurations that are rare, i.e.,

non repeatable in the training sets. Our goal is not to segment detected objects but to use

spatio-temporal segmentation to improve object detection and pose estimation in videos.

Video segmentation as a task on its own is important for semi-supervised or unsu-

pervised learning of objects or activities. We envision a system that automatically asks

human Mechanical Turk workers to label segments with low detection confidence scores.

Video segments and their saliency can cast attention to important parts of a video scene

and discard usually uninteresting static backgrounds. Further, motion provides a strong

cue for delineating object boundaries, potentially saving a lot of time from human label-

ers: it often suffices to provide a box around the object for a local figure-ground motion

segmentation to provide the right object support and propagate it in time. To this end,

we see video segmentation and labeling as a means of obtaining large amounts of labeled
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training data in a never-ending type of learning setup. This knowledge can be used for

parsing more difficult sensor input, such as still images.

Current literature on motion estimation is divided between 1) works that assume a

closed world and use physical or statistical constraints to estimate the motion of known

video content, e.g., a human face in Garg et al. (2013) or a pair of interacting hands in

Oikonomidis et al. (2012), and 2) works that are oblivious to object knowledge, such as

optical flow methods, that estimate temporal correspondences from pixel appearance. We

envision a hybrid system where motion models and physical constraints are employed on-

the-fly to resolve ambiguities of appearance based tracking in open world applications.

Learning how people move from large amounts of multi-view 3D data, where groundtruth

temporal correspondences can be obtained automatically, and developing compact spatio-

temporal representations that can be utilized in unconstrained video input, is important for

dealing with ambiguities in motion estimation and is a goal of our future work.

Information about scene functionality and surrounding objects is necessary for better

tracking of people and their body pose and interpreting their actions and intentions. We do

not model scene context mostly as an effort for the methods to remain as general as possi-

ble. There is a natural trade-off between contextual information to be used and generality

of an approach, since there will always be videos where information about the scene or

surrounding objects is not easy to recover. Coupling the representations developed in this

thesis with scene and object functionality for activity understanding is an interesting path

of future work.

While in this thesis our focus is to disentangle the people and their body pose un-

der interactions, often times, especially under meaningful interactions for collaborative

activity, e.g., shake hands, hugging etc. the entangled ensemble template is stable and

useful. We plan to explore a less semantically meaningful and more data driven detector

design from image and optical flow gradients which we think is necessary for progress in

understanding people’s interactions.

131



Bibliography

Ijaz Akhter, Yaser Sheikh, Sohaib Khan, and Takeo Kanade. Trajectory space: A dual

representation for nonrigid structure from motion. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 33(7):1442–1456, 2011. ISSN 0162-8828. doi:

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.201. 22, 26

Arnon Amir and Michael Lindenbaum. Grouping based non-additive verification. TPAMI,

20, 1998. 54, 83

Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele. People-tracking-by-detection and

people-detection-by-tracking. In CVPR, 2008. 3, 59, 77

Pablo Arbelaez, Michael Maire, Charless C. Fowlkes, and Jitendra Malik. From contours

to regions: An empirical evaluation. In CVPR, 2009. 33, 35, 36, 45, 92, 122

S. Ayer and H. S. Sawhney. Layered representation of motion video using robust

maximum-likelihood estimation of mixture models and mdl encoding. In ICCV, 1995.

25

A. Ayvaci and S. Soatto. Detachable object detection: Segmentation and depth ordering

from short-baseline video. TPAMI, October 2012. 27

A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Inter-

national Journal of Computer Vision, 97(3), May 2012. 27

132



Andrew D. Bagdanov, Alberto Del Bimbo, Fabrizio Dini, Giuseppe Lisanti, and Iacopo

Masi. Compact and efficient posterity logging of face imagery for video surveillance.

2012. 80, 81

Dhruv Batra, Payman Yadollahpour, Abner Guzman-Rivera, and Gregory Shakhnarovich.

Diverse m-best solutions in markov random fields. In Proceedings of the 12th

European conference on Computer Vision - Volume Part V, ECCV’12, pages

1–16, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-33714-7.

doi: 10.1007/978-3-642-33715-4 1. URL http://dx.doi.org/10.1007/

978-3-642-33715-4_1. 93, 94, 98, 108

J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. Multiple object tracking using k-shortest

paths optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence,

2011. 59

Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking performance:

the clear mot metrics. J. Image Video Process., 2008. 80

C. Bibby and I. Reid. Robust real-time visual tracking using pixel-wise posteriors. In

ECCV, 2008. 58

M. J. Black and P. Anandan. The robust estimation of multiple motions: Parametric and

piecewise-smooth flow fields. Computer Vision and Image Understanding, 63(1):75–

104, 1996. 21

Eran Borenstein and Shimon Ullman. Combined top-down/bottom-up segmentation.

TPAMI, 30. 54

Lubomir Bourdev, Subhransu Maji, Thomas Brox, and Jitendra Malik. Detecting people

using mutually consistent poselet activations. In ECCV, 2010. URL http://www.

eecs.berkeley.edu/˜lbourdev/poselets. 3, 55, 77, 91, 94, 108, 115, 117,

119, 127

133

http://dx.doi.org/10.1007/978-3-642-33715-4_1
http://dx.doi.org/10.1007/978-3-642-33715-4_1
http://www.eecs.berkeley.edu/~lbourdev/poselets
http://www.eecs.berkeley.edu/~lbourdev/poselets


Yuri Boykov and Gareth Funka-Lea. Graph cuts and efficient n-d image segmen-

tation. Int. J. Comput. Vision, 70(2):109–131, November 2006. ISSN 0920-

5691. doi: 10.1007/s11263-006-7934-5. URL http://dx.doi.org/10.1007/

s11263-006-7934-5. 18

Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via

graph cuts. TPAMI, 23, 2001. 10, 12, 16, 18

Matthieu Bray, Pushmeet Kohli, and Philip H. S. Torr. Posecut: simultaneous segmenta-

tion and 3d pose estimation of humans using dynamic graph-cuts. In Proceedings of

the 9th European conference on Computer Vision - Volume Part II, ECCV’06, pages

642–655, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-33834-9, 978-3-

540-33834-5. doi: 10.1007/11744047 49. URL http://dx.doi.org/10.1007/

11744047_49. 95

Christoph Bregler and Jitendra Malik. Tracking people with twists and exponential maps.

In CVPR, 1998. 7, 93, 116

Michael D. Breitenstein, Fabian Reichlin, Bastian Leibe, Esther Koller-Meier, and

Luc Van Gool. Robust tracking-by-detection using a detector confidence particle fil-

ter. In ICCV, 2009. 4, 54, 59

William Brendel and Sinisa Todorovic. Video object segmentation by tracking regions. In

ICCV, pages 833–840, 2009. 25

William Brendel, Mohamed R. Amer, and Sinisa Todorovic. Multiobject tracking as max-

imum weight independent set. In CVPR, 2011. 4, 54, 58, 59

Gabriel J. Brostow and Roberto Cipolla. Unsupervised bayesian detection of independent

motion in crowds. In CVPR, 2006. 22, 26

T. Brox, B. Rosenhahn, D. Cremers, and H.-P. Seidel. High accuracy optical flow serves

3-D pose tracking: exploiting contour and flow based constraints. In ECCV, 2006. 116

134

http://dx.doi.org/10.1007/s11263-006-7934-5
http://dx.doi.org/10.1007/s11263-006-7934-5
http://dx.doi.org/10.1007/11744047_49
http://dx.doi.org/10.1007/11744047_49


Thomas Brox and Jitendra Malik. Large displacement optical flow: Descriptor matching

in variational motion estimation. TPAMI, 2010a. 7, 21, 22, 123, 124, 125, 127

Thomas Brox and Jitendra Malik. Object segmentation by long term analysis of point

trajectories. In ECCV. 2010b. 22, 26, 29, 38, 40, 50, 51, 101

Thomas Brox, Andrs Bruhn, Nils Papenberg, and Joachim Weickert. High accuracy opti-

cal flow estimation based on a theory for warping. pages 25–36. Springer, 2004. 6, 21,

27, 118, 124, 125

A. Y. C. Chen and J. J. Corso. Propagating multi-class pixel labels through-

out video frames. In Proceedings of Western New York Image Processing

Workshop, 2010. URL http://www.cse.buffalo.edu/˜jcorso/pubs/

wnyipw2010_video.pdf. xii, 38, 41, 42

Yizong Cheng. Mean shift, mode seeking, and clustering. TPAMI, 17, 1995. 12

J. Costeira and T. Kanade. A multi-body factorization method for motion analysis. ICCV,

1995. 22, 26

Ankur Datta, Yaser Ajmal Sheikh, and Takeo Kanade. Linear motion estimation for sys-

tems of articulated planes. In CVPR, 2008. 7, 116, 126

Konstantinos G. Derpanis and Richard P. Wildes. Detecting spatiotemporal struc-

ture boundaries: Beyond motion discontinuities. In Computer Vision — ACCV

2009, volume 5995, chapter 29. 2010. URL http://dx.doi.org/10.1007/

978-3-642-12304-7_29. 27

Chaitanya Desai and Deva Ramanan. Detecting actions, poses, and objects with relational

phraselets. In ECCV (4), pages 158–172, 2012a. 92, 95

Chaitanya Desai and Deva Ramanan. Detecting actions, poses, and objects with relational

phraselets. In ECCV (4), pages 158–172, 2012b. 58

135

http://www.cse.buffalo.edu/~jcorso/pubs/wnyipw2010_video.pdf
http://www.cse.buffalo.edu/~jcorso/pubs/wnyipw2010_video.pdf
http://dx.doi.org/10.1007/978-3-642-12304-7_29
http://dx.doi.org/10.1007/978-3-642-12304-7_29


O. Duchenne, J. Y. Audibert, R. Keriven, J. Ponce, and F. Segonne. Segmentation by

transduction. Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Con-

ference on, pages 1–8, 2008. ISSN 1063-6919. doi: 10.1109/cvpr.2008.4587419. URL

http://dx.doi.org/10.1109/cvpr.2008.4587419. 16

Marcin Eichner and Vittorio Ferrari. We Are Family: Joint Pose Estimation of Multiple

Persons. In ECCV. 2010. 95

E. Elhamifar and R. Vidal. Sparse subspace clustering. In CVPR, 2009. 26

A. Ess, B. Leibe, and L. Van Gool. Depth and appearance for mobile scene analysis. In

International Conference on Computer Vision (ICCV’07), 2007. 77

Ronan Fablet and Michael J. Black. Automatic detection and tracking of human motion

with a view-based representation. In ECCV, 2002. 116

Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan. Object

detection with discriminatively trained part-based models. TPAMI, 32, 2010. 77, 114

V. Ferrari, M.J. Marn-Jimnez, and A. Zisserman. 2D human pose estimation in TV shows.

In D. Cremers et al., editor, Statistical and Geometrical Approaches to Visual Motion

Analysis, LNCS, pages 128–147. Springer, 1st edition, 2009a. 116

V. Ferrari, M.J. Marn-Jimnez, and A. Zisserman. 2d human pose estimation in tv shows.

In D. Cremers et al., editor, Statistical and Geometrical Approaches to Visual Motion

Analysis, LNCS, pages 128–147. Springer, 1st edition, 2009b. 94

Matthieu Fradet, Philippe Robert, and Patrick Pérez. Clustering point trajectories with
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