527 research outputs found

    Finding a point in the relative interior of a polyhedron

    Get PDF
    A new initialization or `Phase I' strategy for feasible interior point methods for linear programming is proposed that computes a point on the primal-dual central path associated with the linear program. Provided there exist primal-dual strictly feasible points - an all-pervasive assumption in interior point method theory that implies the existence of the central path - our initial method (Algorithm 1) is globally Q-linearly and asymptotically Q-quadratically convergent, with a provable worst-case iteration complexity bound. When this assumption is not met, the numerical behaviour of Algorithm 1 is highly disappointing, even when the problem is primal-dual feasible. This is due to the presence of implicit equalities, inequality constraints that hold as equalities at all the feasible points. Controlled perturbations of the inequality constraints of the primal-dual problems are introduced - geometrically equivalent to enlarging the primal-dual feasible region and then systematically contracting it back to its initial shape - in order for the perturbed problems to satisfy the assumption. Thus Algorithm 1 can successfully be employed to solve each of the perturbed problems.\ud We show that, when there exist primal-dual strictly feasible points of the original problems, the resulting method, Algorithm 2, finds such a point in a finite number of changes to the perturbation parameters. When implicit equalities are present, but the original problem and its dual are feasible, Algorithm 2 asymptotically detects all the primal-dual implicit equalities and generates a point in the relative interior of the primal-dual feasible set. Algorithm 2 can also asymptotically detect primal-dual infeasibility. Successful numerical experience with Algorithm 2 on linear programs from NETLIB and CUTEr, both with and without any significant preprocessing of the problems, indicates that Algorithm 2 may be used as an algorithmic preprocessor for removing implicit equalities, with theoretical guarantees of convergence

    Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordès coefficients

    Get PDF
    We propose an hp-version discontinuous Galerkin finite element method for fully nonlinear second-order elliptic Hamilton-Jacobi-Bellman equations with Cord�ès coefficients. The method is proven to be consistent and stable, with convergence rates that are optimal with respect to mesh size, and suboptimal in the polynomial degree by only half an order. Numerical experiments on problems with strongly anisotropic diffusion coefficients illustrate the accuracy and computational efficiency of the scheme. An existence and uniqueness result for strong solutions of the fully nonlinear problem, and a semismoothness result for the nonlinear operator are also provided

    Interior-point methods for PDE-constrained optimization

    Get PDF
    In applied sciences PDEs model an extensive variety of phenomena. Typically the final goal of simulations is a system which is optimal in a certain sense. For instance optimal control problems identify a control to steer a system towards a desired state. Inverse problems seek PDE parameters which are most consistent with measurements. In these optimization problems PDEs appear as equality constraints. PDE-constrained optimization problems are large-scale and often nonconvex. Their numerical solution leads to large ill-conditioned linear systems. In many practical problems inequality constraints implement technical limitations or prior knowledge. In this thesis interior-point (IP) methods are considered to solve nonconvex large-scale PDE-constrained optimization problems with inequality constraints. To cope with enormous fill-in of direct linear solvers, inexact search directions are allowed in an inexact interior-point (IIP) method. This thesis builds upon the IIP method proposed in [Curtis, Schenk, Wächter, SIAM Journal on Scientific Computing, 2010]. SMART tests cope with the lack of inertia information to control Hessian modification and also specify termination tests for the iterative linear solver. The original IIP method needs to solve two sparse large-scale linear systems in each optimization step. This is improved to only a single linear system solution in most optimization steps. Within this improved IIP framework, two iterative linear solvers are evaluated: A general purpose algebraic multilevel incomplete L D L^T preconditioned SQMR method is applied to PDE-constrained optimization problems for optimal server room cooling in three space dimensions and to compute an ambient temperature for optimal cooling. The results show robustness and efficiency of the IIP method when compared with the exact IP method. These advantages are even more evident for a reduced-space preconditioned (RSP) GMRES solver which takes advantage of the linear system's structure. This RSP-IIP method is studied on the basis of distributed and boundary control problems originating from superconductivity and from two-dimensional and three-dimensional parameter estimation problems in groundwater modeling. The numerical results exhibit the improved efficiency especially for multiple PDE constraints. An inverse medium problem for the Helmholtz equation with pointwise box constraints is solved by IP methods. The ill-posedness of the problem is explored numerically and different regularization strategies are compared. The impact of box constraints and the importance of Hessian modification on the optimization algorithm is demonstrated. A real world seismic imaging problem is solved successfully by the RSP-IIP method

    Parallel Support Vector Machines

    Get PDF
    The Support Vector Machine (SVM) is a supervised algorithm for the solution of classification and regression problems. SVMs have gained widespread use in recent years because of successful applications like character recognition and the profound theoretical underpinnings concerning generalization performance. Yet, one of the remaining drawbacks of the SVM algorithm is its high computational demands during the training and testing phase. This article describes how to efficiently parallelize SVM training in order to cut down execution times. The parallelization technique employed is based on a decomposition approach, where the inner quadratic program (QP) is solved using Sequential Minimal Optimization (SMO). Thus all types of SVM formulations can be solved in parallel, including C-SVC and nu-SVC for classification as well as epsilon-SVR and nu-SVR for regression. Practical results show, that on most problems linear or even superlinear speedups can be attained

    Distributed Optimization with Application to Power Systems and Control

    Get PDF
    In many engineering domains, systems are composed of partially independent subsystems—power systems are composed of distribution and transmission systems, teams of robots are composed of individual robots, and chemical process systems are composed of vessels, heat exchangers and reactors. Often, these subsystems should reach a common goal such as satisfying a power demand with minimum cost, flying in a formation, or reaching an optimal set-point. At the same time, limited information exchange is desirable—for confidentiality reasons but also due to communication constraints. Moreover, a fast and reliable decision process is key as applications might be safety-critical. Mathematical optimization techniques are among the most successful tools for controlling systems optimally with feasibility guarantees. Yet, they are often centralized—all data has to be collected in one central and computationally powerful entity. Methods from distributed optimization control the subsystems in a distributed or decentralized fashion, reducing or avoiding central coordination. These methods have a long and successful history. Classical distributed optimization algorithms, however, are typically designed for convex problems. Hence, they are only partially applicable in the above domains since many of them lead to optimization problems with non-convex constraints. This thesis develops one of the first frameworks for distributed and decentralized optimization with non-convex constraints. Based on the Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) algorithm, a bi-level distributed ALADIN framework is presented, solving the coordination step of ALADIN in a decentralized fashion. This framework can handle various decentralized inner algorithms, two of which we develop here: a decentralized variant of the Alternating Direction Method of Multipliers (ADMM) and a novel decentralized Conjugate Gradient algorithm. Decentralized conjugate gradient is to the best of our knowledge the first decentralized algorithm with a guarantee of convergence to the exact solution in a finite number of iterates. Sufficient conditions for fast local convergence of bi-level ALADIN are derived. Bi-level ALADIN strongly reduces the communication and coordination effort of ALADIN and preserves its fast convergence guarantees. We illustrate these properties on challenging problems from power systems and control, and compare performance to the widely used ADMM. The developed methods are implemented in the open-source MATLAB toolbox ALADIN-—one of the first toolboxes for decentralized non-convex optimization. ALADIN- comes with a rich set of application examples from different domains showing its broad applicability. As an additional contribution, this thesis provides new insights why state-of-the-art distributed algorithms might encounter issues for constrained problems

    Variational Multiscale Nonparametric Regression: Algorithms and Implementation

    Get PDF
    Many modern statistically efficient methods come with tremendous computational challenges, often leading to large-scale optimisation problems. In this work, we examine such computational issues for recently developed estimation methods in nonparametric regression with a specific view on image denoising. We consider in particular certain variational multiscale estimators which are statistically optimal in minimax sense, yet computationally intensive. Such an estimator is computed as the minimiser of a smoothness functional (e.g., TV norm) over the class of all estimators such that none of its coefficients with respect to a given multiscale dictionary is statistically significant. The so obtained multiscale Nemirowski-Dantzig estimator (MIND) can incorporate any convex smoothness functional and combine it with a proper dictionary including wavelets, curvelets and shearlets. The computation of MIND in general requires to solve a high-dimensional constrained convex optimisation problem with a specific structure of the constraints induced by the statistical multiscale testing criterion. To solve this explicitly, we discuss three different algorithmic approaches: the Chambolle-Pock, ADMM and semismooth Newton algorithms. Algorithmic details and an explicit implementation is presented and the solutions are then compared numerically in a simulation study and on various test images. We thereby recommend the Chambolle-Pock algorithm in most cases for its fast convergence. We stress that our analysis can also be transferred to signal recovery and other denoising problems to recover more general objects whenever it is possible to borrow statistical strength from data patches of similar object structure.Comment: Codes are available at https://github.com/housenli/MIN
    • …
    corecore