370 research outputs found

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    Improving Efficiency and Scalability of Sum of Squares Optimization: Recent Advances and Limitations

    Full text link
    It is well-known that any sum of squares (SOS) program can be cast as a semidefinite program (SDP) of a particular structure and that therein lies the computational bottleneck for SOS programs, as the SDPs generated by this procedure are large and costly to solve when the polynomials involved in the SOS programs have a large number of variables and degree. In this paper, we review SOS optimization techniques and present two new methods for improving their computational efficiency. The first method leverages the sparsity of the underlying SDP to obtain computational speed-ups. Further improvements can be obtained if the coefficients of the polynomials that describe the problem have a particular sparsity pattern, called chordal sparsity. The second method bypasses semidefinite programming altogether and relies instead on solving a sequence of more tractable convex programs, namely linear and second order cone programs. This opens up the question as to how well one can approximate the cone of SOS polynomials by second order representable cones. In the last part of the paper, we present some recent negative results related to this question.Comment: Tutorial for CDC 201

    Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials

    Full text link
    Optimization over non-negative polynomials is fundamental for nonlinear systems analysis and control. We investigate the relation between three tractable relaxations for optimizing over sparse non-negative polynomials: sparse sum-of-squares (SSOS) optimization, diagonally dominant sum-of-squares (DSOS) optimization, and scaled diagonally dominant sum-of-squares (SDSOS) optimization. We prove that the set of SSOS polynomials, an inner approximation of the cone of SOS polynomials, strictly contains the spaces of sparse DSOS/SDSOS polynomials. When applicable, therefore, SSOS optimization is less conservative than its DSOS/SDSOS counterparts. Numerical results for large-scale sparse polynomial optimization problems demonstrate this fact, and also that SSOS optimization can be faster than DSOS/SDSOS methods despite requiring the solution of semidefinite programs instead of less expensive linear/second-order cone programs.Comment: 9 pages, 3 figure

    Certification of Bounds of Non-linear Functions: the Templates Method

    Get PDF
    The aim of this work is to certify lower bounds for real-valued multivariate functions, defined by semialgebraic or transcendental expressions. The certificate must be, eventually, formally provable in a proof system such as Coq. The application range for such a tool is widespread; for instance Hales' proof of Kepler's conjecture yields thousands of inequalities. We introduce an approximation algorithm, which combines ideas of the max-plus basis method (in optimal control) and of the linear templates method developed by Manna et al. (in static analysis). This algorithm consists in bounding some of the constituents of the function by suprema of quadratic forms with a well chosen curvature. This leads to semialgebraic optimization problems, solved by sum-of-squares relaxations. Templates limit the blow up of these relaxations at the price of coarsening the approximation. We illustrate the efficiency of our framework with various examples from the literature and discuss the interfacing with Coq.Comment: 16 pages, 3 figures, 2 table

    Smaller SDP for SOS Decomposition

    Full text link
    A popular numerical method to compute SOS (sum of squares of polynomials) decompositions for polynomials is to transform the problem into semi-definite programming (SDP) problems and then solve them by SDP solvers. In this paper, we focus on reducing the sizes of inputs to SDP solvers to improve the efficiency and reliability of those SDP based methods. Two types of polynomials, convex cover polynomials and split polynomials, are defined. A convex cover polynomial or a split polynomial can be decomposed into several smaller sub-polynomials such that the original polynomial is SOS if and only if the sub-polynomials are all SOS. Thus the original SOS problem can be decomposed equivalently into smaller sub-problems. It is proved that convex cover polynomials are split polynomials and it is quite possible that sparse polynomials with many variables are split polynomials, which can be efficiently detected in practice. Some necessary conditions for polynomials to be SOS are also given, which can help refute quickly those polynomials which have no SOS representations so that SDP solvers are not called in this case. All the new results lead to a new SDP based method to compute SOS decompositions, which improves this kind of methods by passing smaller inputs to SDP solvers in some cases. Experiments show that the number of monomials obtained by our program is often smaller than that by other SDP based software, especially for polynomials with many variables and high degrees. Numerical results on various tests are reported to show the performance of our program.Comment: 18 page
    • …
    corecore