58 research outputs found

    Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862--2012)

    Full text link
    In 1862 Wolstenholme proved that for any prime p≥5p\ge 5 the numerator of the fraction 1+12+13+...+1p−1 1+\frac 12 +\frac 13+...+\frac{1}{p-1} written in reduced form is divisible by p2p^2, (2)(2) and the numerator of the fraction 1+122+132+...+1(p−1)2 1+\frac{1}{2^2} +\frac{1}{3^2}+...+\frac{1}{(p-1)^2} written in reduced form is divisible by pp. The first of the above congruences, the so called {\it Wolstenholme's theorem}, is a fundamental congruence in combinatorial number theory. In this article, consisting of 11 sections, we provide a historical survey of Wolstenholme's type congruences and related problems. Namely, we present and compare several generalizations and extensions of Wolstenholme's theorem obtained in the last hundred and fifty years. In particular, we present more than 70 variations and generalizations of this theorem including congruences for Wolstenholme primes. These congruences are discussed here by 33 remarks. The Bibliography of this article contains 106 references consisting of 13 textbooks and monographs, 89 papers, 3 problems and Sloane's On-Line Enc. of Integer Sequences. In this article, some results of these references are cited as generalizations of certain Wolstenholme's type congruences, but without the expositions of related congruences. The total number of citations given here is 189.Comment: 31 pages. We provide a historical survey of Wolstenholme's type congruences (1862-2012) including more than 70 related results and 106 references. This is in fact version 2 of the paper extended with congruences (12) and (13

    Constellations and multicontinued fractions: application to Eulerian triangulations

    Get PDF
    We consider the problem of enumerating planar constellations with two points at a prescribed distance. Our approach relies on a combinatorial correspondence between this family of constellations and the simpler family of rooted constellations, which we may formulate algebraically in terms of multicontinued fractions and generalized Hankel determinants. As an application, we provide a combinatorial derivation of the generating function of Eulerian triangulations with two points at a prescribed distance.Comment: 12 pages, 4 figure

    Annales Mathematicae et Informaticae (34.)

    Get PDF

    Artin's primitive root conjecture -a survey -

    Get PDF
    This is an expanded version of a write-up of a talk given in the fall of 2000 in Oberwolfach. A large part of it is intended to be understandable by non-number theorists with a mathematical background. The talk covered some of the history, results and ideas connected with Artin's celebrated primitive root conjecture dating from 1927. In the update several new results established after 2000 are also discussed.Comment: 87 pages, 512 references, to appear in Integer

    Annales Mathematicae et Informaticae (42.)

    Get PDF

    Diophantine equations with arithmetic functions and binary recurrences sequences

    Get PDF
    A thesis submitted to the Faculty of Science, University of the Witwatersrand and to the University Cheikh Anta Diop of Dakar(UCAD) in fulfillment of the requirements for a Dual-degree for Doctor in Philosophy in Mathematics. November 6th, 2017.This thesis is about the study of Diophantine equations involving binary recurrent sequences with arithmetic functions. Various Diophantine problems are investigated and new results are found out of this study. Firstly, we study several questions concerning the intersection between two classes of non-degenerate binary recurrence sequences and provide, whenever possible, effective bounds on the largest member of this intersection. Our main study concerns Diophantine equations of the form '(jaunj) = jbvmj; where ' is the Euler totient function, fungn 0 and fvmgm 0 are two non-degenerate binary recurrence sequences and a; b some positive integers. More precisely, we study problems involving members of the recurrent sequences being rep-digits, Lehmer numbers, whose Euler’s function remain in the same sequence. We prove that there is no Lehmer number neither in the Lucas sequence fLngn 0 nor in the Pell sequence fPngn 0. The main tools used in this thesis are lower bounds for linear forms in logarithms of algebraic numbers, the so-called Baker-Davenport reduction method, continued fractions, elementary estimates from the theory of prime numbers and sieve methods.LG201
    • …
    corecore